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Abstract. The concept of “quasiconformal motion” was first introduced by Sullivan
and Thurston (in [24]). Theorem 3 of that paper asserted that any quasiconformal motion of
a set in the sphere over an interval can be extended to the sphere. In this paper, we give a
counter-example to that assertion. We introduce a new concept called “tame quasiconformal
motion” and show that their assertion is true for tame quasiconformal motions. We prove a
much more general result that, any tame quasiconformal motion of a closed set in the sphere,
over a simply connected Hausdorff space, can be extended as a quasiconformal motion of
the sphere. Furthermore, we show that this extension can be done in a conformally natural
way. The fundamental idea is to show that the Teichmüller space of a closed set in the sphere
is a “universal parameter space” for tame quasiconformal motions of that set over a simply
connected Hausdorff space.

1. Introduction. Throughout this paper, we will use C for the complex plane, Ĉ =
C ∪ {∞} for the Riemann sphere, I = [0, 1] for the closed unit interval and Δ = {z ∈ C :
|z| < 1} for the open unit disk.

When we write V is “simply connected”, we mean that V is a path-connected topological
space and that its fundamental group is trivial (see, for example, [13] or [18]).

In their famous paper [24], Sullivan and Thurston introduced the idea of “quasiconformal
motion”. Theorem 3 of their paper claimed that every quasiconformal motion of a set in Ĉ

over I , can be extended to a quasiconformal motion of Ĉ. The first result in our paper is to give
a counter-example to that claim. We introduce a new concept, called “tame quasiconformal
motion”. We show that the claim of Theorem 3 in [24] is correct for tame quasiconformal
motions of a set in Ĉ. More generally, we show that every tame quasiconformal motion of
a set in Ĉ over a simply connected Hausdorff space (with a basepoint) can be extended to a
quasiconformal motion of Ĉ. We also show that this extension can be done in a conformally
natural way. The main idea is to show that the Teichmüller space of a closed set E in Ĉ is a
“universal parameter space” for tame quasiconformal motions of E over a simply connected
Hausdorff space V .
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1.1. Basic definitions. We begin with some definitions.
DEFINITION 1. Let E be a subset of Ĉ, and let X be a connected Hausdorff space

with basepoint x0. A motion of E over X is a map φ : X ×E → Ĉ satisfying

(i) φ(x0, z) = z for all z ∈ E, and
(ii) for all x ∈ X, the map φ(x, ·) : E → Ĉ is injective.

We say that X is the parameter space of the motion φ.

We will assume that 0, 1, and ∞ belong to E and that the motion φ is normalized, i.e. 0,
1, and ∞ are fixed points of the map φ(x, ·) for every x in X.

Let E ⊂ Ê, φ : X×E → Ĉ and φ̂ : X× Ê → Ĉ be two motions. We say that φ̂ extends
φ if φ̂(x, z) = φ(x, z) for all (x, z) ∈ X × E.

For any motion φ : X × E → Ĉ, x in X, and any quadruplet of distinct points a, b, c, d
of points in E, let φx(a, b, c, d) denote the cross-ratio of the values φ(x, a), φ(x, b), φ(x, c),
and φ(x, d). We will often write φ(x, z) as φx(z) for x in X and z in E. So we have:

(1.1) φx(a, b, c, d) = (φx(a)− φx(c))(φx(b)− φx(d))

(φx(a)− φx(d))(φx(b)− φx(c))

for each x in X.
It is obvious that condition (ii) in Definition 1 holds if and only if φx(a, b, c, d) is a well-

defined point in the thrice-punctured sphere Ĉ \ {0, 1,∞} for all x in X and all quadruplets
a, b, c, d of distinct points in E.

Let ρ be the Poincaré distance on Ĉ\{0, 1,∞}. In their paper [24], Sullivan and Thurston
introduced the following definition.

DEFINITION 2. A quasiconformal motion is a motion φ : X × E → Ĉ of E over X
with the following additional property:

(iii) given any x in X and any ε > 0, there exists a neighborhood Ux of x such that for
any quadruplet of distinct points a, b, c, d in E, we have

ρ
(
φy(a, b, c, d), φy ′(a, b, c, d)

)
< ε for all y and y ′ in Ux.

We also need the definition of a continuous motion.

DEFINITION 3. A continuous motion of Ĉ over X is a motion φ : X × Ĉ → Ĉ such
that the map φ is continuous.

Recall that all motions in this paper are normalized. If φ is a continuous motion of Ĉ,
then each φx , x in X, is a map from Ĉ to itself that fixes 0, 1, and ∞. Since φx is injective
and continuous, it is a homeomorphism of Ĉ onto itself, by invariance of domain.

Now we recall the definition of a holomorphic motion.

DEFINITION 4. Let W be a connected complex manifold with basepoint x0. A holo-
morphic motion of E over W is a motion φ : W × E → Ĉ of E over W such that the map
φ(·, z) : W → Ĉ is holomorphic for each z in E.
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REMARK 1. Suppose φ : W×E → Ĉ is a holomorphic motion. For any quadruplet of
points a, b, c, d in E, the map x �→ φx(a, b, c, d) fromW into Ĉ \ {0, 1,∞} is holomorphic.
Therefore, it is distance-decreasing with respect to the Kobayashi metrics on W and Ĉ \
{0, 1,∞}. It easily follows that φ is also a quasiconformal motion.

DEFINITION 5. LetX and Y be connected Hausdorff spaces with basepoints, and f be
a continuous basepoint preserving map of X into Y . If φ is a motion of E over Y its pullback
by f is the motion

(1.2) f ∗(φ)(x, z) = φ(f (x), z) ∀(x, z) ∈ X ×E

of E over X.

REMARK 2. If the motion φ is quasiconformal or continuous, then f ∗(φ) has the same
property. If X and Y are complex manifolds, f is holomorphic, and φ is a holomorphic
motion, then so is f ∗(φ).

A natural question is:
If φ : V ×E → Ĉ is a quasiconformal motion, where V is simply connected, does there

exist a quasiconformal motion φ̃ : V × Ĉ → Ĉ such that φ̃ extends φ?
The answer is affirmative when E is a finite set. We shall discuss this in §6. However,

Theorem I of our paper shows that the answer is negative for an infinite closed set, where
V = I . This gives a counter-example to Theorem 3 in [24], where the authors claim that any
quasiconformal motion of E over an interval can be extended to a quasiconformal motion of
Ĉ.

For this reason, we introduce the new concept of a “tame quasiconformal motion”.

DEFINITION 6. Let X be a connected Hausdorff space with a basepoint x0, and E be
a set in Ĉ (containing the points 0, 1, and ∞). A tame quasiconformal motion is a motion
φ : X × E → Ĉ of E overX with the additional property:

(iii) Given any x in X, there exists a quasiconformal map w : Ĉ → Ĉ, a neighborhood
N(x), with basepoint x, and a quasiconformal motionψ : N(x)× Ĉ → Ĉ overN(x)
such that φ(y, z) = ψ(y,w(z)) for all (y, z) ∈ N(x)× E.

Let X and Y be connected Hausdorff spaces with basepoints, and f be a continuous
basepoint preserving map of X into Y . If φ is a tame quasiconformal motion of E over Y its
pullback f ∗(φ) is a tame quasiconformal motion of E over X.

DEFINITION 7. Let φ : X × E → Ĉ be a (normalized) motion. Let G be a group of
Möbius transformations, such that E is invariant under G (which means g(E) = E for all g
in G). We say that φ is G-equivariant if and only if for each g in G, and x in X, there is a
Möbius transformation θx(g) such that

(1.3) φ(x, g(z)) = (θx(g))(φ(x, z)) for all z ∈ E.
1.2. Statements of the main results. The main purpose in this paper is to prove the

following theorems.
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THEOREM I. There exist a closed set E (in Ĉ), with #(E) = ∞, and a quasiconformal
motion φ : I × E → Ĉ, such that φ can be extended to a continuous motion of Ĉ over
I . However, for any neighborhood U about 0, φ CANNOT be extended to a quasiconformal
motion of Ĉ over U .

REMARK 3. We will show that a tame quasiconformal motion of a set (over a simply
connected parameter space) can always be extended to Ĉ.

For the next theorem, we assume that the set E is closed; (as usual, the points 0, 1, and
∞ belong to E). Associated to each closed set E in Ĉ, there is a contractible complex Banach
manifold which we call the Teichmüller space of the closed set E, denoted by T (E). This
was first studied by G. Lieb in his doctoral dissertation [12]. We will give precise definitions
of T (E) and a tame quasiconformal motion

ΨE : T (E)× E → Ĉ

of E over the parameter space T (E) in §4 and §5.
THEOREM II. Let φ : V ×E → Ĉ be a tame quasiconformal motion. If V is a simply

connected Hausdorff space with a basepoint x0, there exists a unique basepoint preserving
continuous map F : V → T (E) such that F ∗(ΨE) = φ.

COROLLARY 1 (Extension to the Riemann Sphere). Let V be a simply connected
Hausdorff space with a basepoint, and φ : V × E → Ĉ be a tame quasiconformal motion.
Then, there exists a quasiconformal motion φ̃ : V × Ĉ → Ĉ such that φ̃ extends φ.

LetG be a group of Möbius transformations, such that the closed setE is invariant under
G.

COROLLARY 2 (Group Equivariance). Let V be a simply connected Hausdorff space
with a basepoint, and φ : V×E → Ĉ be aG-equivariant tame quasiconformal motion. Then,
there exists a G-equivariant quasiconformal motion φ̃ : V × Ĉ → Ĉ such that φ̃ extends φ.

This is the analogue of Theorem 1 in [4] for tame quasiconformal motions.

Acknowledgement. We are extremely grateful to the referee for his/her very careful reading and
many valuable comments, that have helped us to substantially improve our paper. His/her suggestions
also helped us to correct several errors. We also want to thank the referee of a previous version for
suggesting the term “tame quasiconformal motions” and also for suggesting Definition 6 and Proposition
1. His/her comments also helped us to improve the presentation of Theorem I.

2. Some properties of tame quasiconformal motions. Recall that a homeomor-
phism of Ĉ is called normalized if it fixes the points 0, 1, and ∞.

We use M(C) to denote the open unit ball of the complex Banach space L∞(C). Each μ
in M(C) is the Beltrami coefficient of a unique normalized quasiconformal homeomorphism
wμ of Ĉ onto itself. The basepoint of M(C) is the zero function.

We will need the following properties of quasiconformal motions of Ĉ, proved in [16].

PROPOSITION 1. A motion φ : X× Ĉ → Ĉ is quasiconformal if and only if it satisfies
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(a) the map φx : Ĉ → Ĉ is quasiconformal for each x in X, and
(b) the map from X to M(C) that sends x to the Beltrami coefficient of φx for each x in

X is continuous.

Part (b) means that the map x �→ μx = (φx)z̄
(φx)z

, x ∈X, is continuous.

PROPOSITION 2. Every quasiconformal motion of Ĉ is a continuous motion.

The following useful lemma is an immediate consequence of Definition 6.

LEMMA 1. A motion φ : X × E → Ĉ is a tame quasiconformal motion if and only
if given any x in X, there exists a neighborhood N(x), and a continuous map gx : N(x) →
M(C) such that φ(y, z) = wgx (y)(z) for all (y, z) ∈ N(x)× E.

PROOF. Let φ : X × E → Ĉ be a motion. Suppose, for each x in X, there exists a
neighborhoodN(x), and a continuous map gx : N(x) → M(C) such that φ(y, z) = wgx (y)(z)

for all (y, z) ∈ N(x) × E. Set w = wgx(x) and ψ(y, z) = wgx (y)(w−1(z)) in N(x) × Ĉ. It
now follows that φ is a tame quasiconformal motion of E overX.

Conversely, if φ : X × E → Ĉ is a tame quasiconformal motion, then by Proposition 1,
the condition of our lemma immediately follows. �

LEMMA 2. Let φ : X × E → Ĉ be a tame quasiconformal motion. Then, φ is a
quasiconformal motion.

PROOF. The proof follows immediately from Lemma 1 and the quasi-invariance of
cross ratios (see Theorem 1 in [11]). �

LEMMA 3. Let φ : X × E → Ĉ be a tame quasiconformal motion, where X is a
connected Hausdorff space with a basepoint. Then, for each fixed x in X, the map φ(x, ·) :
E → Ĉ is continuous.

PROOF. The proof follows easily from Lemma 1. �

3. Proof of theorem I. Let I = [0, 1] with 0 as the base point. We take 1 < r1 <

r2 < · · · < rn < rn+1 < · · · so that rn+1/rn → ∞ as n → ∞. PutX = Ĉ\(⋃∞
n=1 rn∪{∞})

and E = ⋃∞
n=1 Cn ∪ {0, 1,∞}, where Cn = {|z| = rn}. Let αn (n ∈ N) be a simple closed

curve in X only surrounding r2n and r2n+1 as Figure 1.

FIGURE 1.



612 Y. JIANG, S. MITRA, H. SHIGA AND Z. WANG

FIGURE 2.

Let An := {r2n ≤ |z| ≤ r2n+1} and Bn := {r2n+1 ≤ |z| ≤ r2n+2}. We take pn ∈ N so
large that

(3.1) lim
n→∞


X(τ
pn
n (αn))


X(αn)
= ∞,

where τn is the right Dehn twist in An about Dn := {|z| = √
r2nr2n+1} (see Figure 2) and


X(c) stands for the hyperbolic length of the geodesic on X homotopic to a closed curve c in
X.

For each n ∈ N, we define Φn : I × E → Ĉ by

Φn(t, z) = z exp{2πin(n+ 1)(t − (n+ 1)−1)pn}
for (t, z) ∈ [(n + 1)−1, n−1] × C2n+1 and Φn(t, z) = z elsewhere. Note that n(n + 1)(t −
(n + 1)−1)pn ↑ pn as t ↑ n−1 and Φn((n + 1)−1, z) = Φn(n

−1, z) = z. Thus Φn(t, z) is
continuous at n−1 and (n+ 1)−1. Now, we define φ : I × E → Ĉ by

φ(t, z) = lim
n→∞Φn ◦ · · · ◦Φ1(t, z)

for every (t, z) ∈ I ×E. Obviously, φ is a continuous motion of E over I .

CLAIM 1. φ : I × E → Ĉ can be extended to a continuous motion Φ : I × Ĉ → Ĉ.

PROOF. We extend Φn(t, z) to I × Ĉ by

Φn(t, re
2πiθ ) = z exp

{
2πi

log r − log r2n
log r2n+1 − log r2n

n(n+ 1)pn(t − (n+ 1)−1)

}
,
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for (t, re2πiθ ) ∈ [(n+ 1)−1, n−1] × An,

Φn(t, re
2πiθ ) = z exp

{
2πi

log r − log r2n+2

log r2n+1 − log r2n+2
n(n+ 1)pn(t − (n+ 1)−1)

}
,

for (t, re2πiθ ) ∈ [(n+ 1)−1, n−1] × Bn, and Φn(t, z) = z elsewhere. Then, we define

Φ(t, z) = lim
n→∞Φn ◦ · · · ◦Φ1(t, z)

for (t, z) ∈ I × Ĉ. Clearly, this is an extension of φ. It is also clear that Φ is continuous in
I×C. Since the annuliAn shrink to ∞ on Ĉ in the spherical metric as n → ∞,Φ : I×Ĉ → Ĉ

is continuous. This implies that Φ is a continuous motion of Ĉ which extends φ. �

CLAIM 2. φ is a quasiconformal motion of E over I .

PROOF. We define quasiconformal homeomorphisms f+
t,n and f−

t,n of Ĉ as follows:
For any t ∈ [(n + 1)−1, n−1], let θn(t) be in [0, 1) with n(n + 1)pnt − θn(t) ∈ N. The

function θn is not continuous at Tn,m := (npn +m){n(n+ 1)pn}−1 (m = 0, . . . , pn). Indeed,
limt↑Tn,m θn(t) = 1, while θn(Tn,m) = 0.

(i): For z = re2πiθ ∈ An,

f+
t,n(z) = z exp

{
2πi

log r − log r2n
log r2n+1 − log r2n

θn(t)

}
and for z = re2πiθ ∈ Bn,

f+
t,n(z) = z exp

{
2πi

log r − log r2n+2

log r2n+1 − log r2n+2
θn(t)

}
,

(ii): For z = re2πiθ ∈ An,

f−
t,n(z) = z exp

{
2πi

log r − log r2n
log r2n+1 − log r2n

(θn(t)− 1)

}
and for z = re2πiθ ∈ Bn,

f−
t,n(z) = z exp

{
2πi

log r − log r2n+2

log r2n+1 − log r2n+2
(θn(t)− 1)

}
,

(iii): f+
t,n(z) = f−

t,n(z) = z for z �∈ An ∪ Bn.

Since limn→∞(log r2n − log r2n−1) = limn→∞(log r2n+1 − log r2n) = ∞ and θn(t) ∈ [0, 1),
we see that

(3.2) lim
n→∞ sup

(
K(f±

t,n) : (n+ 1)−1 ≤ t ≤ n−1
)

= 1 .

and

(3.3) lim
t↓Tn,m

K(f+
t,n) = lim

t↑Tn,m
K(f−

t,n) = 1 ,

where K(f ) denotes the maximal dilatation of a quasiconformal map f .
We also see that f+

t,n(z) = f−
t,n(t, z) = φ(t, z) for z ∈ E and t ∈ [(n + 1)−1, n−1].

Moreover, f+
Tn,m,n

(z) = z on Ĉ because θn(Tn,m) = 0.
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Now, we are ready to show that φ : I × E → Ĉ is a quasiconformal motion. Let t0 ∈ I
and ε > 0. If t0 �= 0, then choose a positive integer n such that t0 ∈ [(n+ 1)−1, n−1)].

CASE 1. t0 �= Tn,m,(m = 1, . . . , pn − 1) and t0 �= 0: Since K(f+
t,n ◦ (f+

t0,n
)−1) →

1 as t → t0, it follows from the uniform continuity of cross ratios under quasiconformal
deformation (see [11], the proof of the “only if” part of Theorem 1) that there exists a δ > 0
such that if |t − t0| < δ, then

ρ(φt (a, b, c, d), φt0(a, b, c, d)) = ρ(f+
t,n(a, b, c, d), f

+
t0,n
(a, b, c, d))

= ρ(f+
t,n ◦ (f+

t0,n
)−1(at0, bt0, ct0, dt0), (at0, bt0, ct0, dt0)) < ε

for any four distinct points a, b, c, d in E, where at0 = f+
t0,n
(a), bt0 = f+

t0,n
(b), ct0 = f+

t0,n
(c)

and dt0 = f+
t0,n
(d).

CASE 2. t0 = Tn,m for some m (1 ≤ m ≤ pn − 1): Note that φ(t0, z) = z for any
z ∈ E. By using (3.3) and the uniform continuity of cross ratios as above, we may find a
δ > 0 such that for any four distinct points a, b, c, d in E,

ρ(φt (a, b, c, d), φt0(a, b, c, d)) = ρ(f+
t,n(a, b, c, d), (a, b, c, d)) < ε

if t0 < t < t0 + δ and

ρ(φt (a, b, c, d), φt0(a, b, c, d)) = ρ(f−
t,n(a, b, c, d), (a, b, c, d)) < ε

if t0 − δ < t < t0.
CASE 3. t0 = n−1: In this case, φ(t0, ·) is still the identity onE. By the same argument

as in Case 2, we see that there exists δ > 0 such that for any four distinct points a, b, c, d in
E,

ρ(φt (a, b, c, d), φt0(a, b, c, d)) = ρ(f+
t,n(a, b, c, d), (a, b, c, d)) < ε

if t0 < t < t0 + δ and

ρ(φt (a, b, c, d), φt0(a, b, c, d)) = ρ(f−
t,n+1(a, b, c, d), (a, b, c, d)) < ε

if t0 − δ < t < t0.
CASE 4. t0 = 0: By the definition, φ(0, z) = z on E. Using the uniform continuity of

cross ratios again, we see from (3.2) that

ρ(φt (a, b, c, d), φ0(a, b, c, d)) = ρ(f+
t,n(a, b, c, d), (a, b, c, d)) < ε

holds for sufficiently small t > 0 and large n ∈ N.
Therefore, we conclude that φ : I × E → Ĉ is a quasiconformal motion. �

CLAIM 3. φ cannot be extended to a quasiconformal motion of Ĉ over any neighbour-
hood U ⊂ I about 0
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PROOF. Suppose that there exists a quasiconformal motion φ̂ of Ĉ over U which ex-
tends φ. It follows from Proposition 1 that φ̂t : Ĉ → Ĉ is a quasiconformal map for t ∈ U

and U � t �→ μ
φ̂t

∈ M(C) is continuous. Hence, there exists K ≥ 1 such that φ̂t is K-
quasiconformal for any t ∈ U (taking U smaller if it is necessary).

Let N > 0 such that 1/N ∈ U . For any n > N , we consider Ft := φ̂t ◦ (φ̂(n+1)−1)−1 for
t ∈ [(n+1)−1, n−1]. Since F(n+1)−1 = id and Fn−1 = limt↑n−1 Ft , we verify that Fn−1(αn) =
limt↑n−1 Ft(αn) is homotopic to τpnn (αn) in X. (Indeed, Fn−1 |An is a homeomorphism of the
annulus An which keeps each boundary point fixed. It gives a pn-times rotation on An. Since
Ft is a family of homeomorphisms of Ĉ continuously depending on t , so when t changes from
(n+ 1)−1 to n−1, αn moves continuously to τpnn (αn).)

Now, we use the following lemma by Wolpert (see [22], [23], [25]).

LEMMA 4 (Wolpert). Let X, Y be hyperbolic Riemann surfaces and f : X → Y be a
K-quasiconformal map from X onto Y . Then, for any non-trivial and non-peripheral closed
curve α on X,

1

K

X(α) ≤ 
Y (f (α)) ≤ K
X(α)

holds, where 
X(α) is the hyperbolic length of the geodesic on X homotopic to α.

Since φ̂t is K-quasiconformal, we see from Lemma 4 that


X(τ
pn
n (αn)) = 
X(Fn−1(αn)) ≤ K2
X(αn) .

This contradicts (3.1). Thus, we have shown that φ cannot be extended to a quasiconfor-
mal motion of Ĉ over U . �

4. Teichmüller space of a closed set in the sphere. By Lemma 2, every tame quasi-
conformal motion is a quasiconformal motion. In the Appendix of our paper, we show that a
quasiconformal motion of set E in Ĉ, over a connected Hausdorff space, can be extended to
the closure of E. This fact is also proved in the paper [24], where the parameter space is an
interval. It therefore follows that every tame quasiconformal motion of a set can be extended
to its closure.

Henceforth, we will always assume that E is a closed set in Ĉ (as usual, 0, 1, and ∞ are
in E).

One of our goals in this paper is to study the “universal property” for tame quasiconfor-
mal motions of a closed set E in Ĉ, over Δ. For that, we need some basic facts about the
Teichmüller space of E, which is related to the “universal” holomorphic motion of E.

4.1. T (E) as a complex manifold. Two normalized quasiconformal self-mappings
f and g of Ĉ are said to be E-equivalent if and only if f−1 ◦ g is isotopic to the identity
rel E. The Teichmüller space T (E) is the set of all E-equivalence classes of normalized
quasiconformal self-mappings of Ĉ.

An analytic description of T (E) will be more useful for our purposes. Let M(C) be
the open unit ball of the complex Banach space L∞(C). Each μ in M(C) is the Beltrami
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coefficient of a unique normalized quasiconformal homeomorphismwμ of Ĉ onto itself. The
basepoint of M(C) is the zero function. We define the quotient map

PE : M(C) → T (E)

by setting PE(μ) equal to the E-equivalence class ofwμ, written as [wμ]E . Clearly, PE maps
the basepoint ofM(C) to the basepoint of T (E).

In his doctoral dissertation ([12]), G. Lieb proved that T (E) is a complex Banach mani-
fold such that the projection map PE fromM(C) to T (E) is a holomorphic split submersion.
For details, the reader is referred to the paper [5].

4.2. The finite case. Let E be a finite set. Its complement Ec = Ω is the Riemann
sphere with punctures at the points of E. Since T (E) and the classical Teichmüller space
T eich(Ω) are quotients of M(C) by the same equivalence relation, T (E) can be naturally
identified with T eich(Ω) (see Example 3.1 in [15]). For references on standard Teichmüller
theory, see [8] or [20].

4.3. Forgetful maps. Let E and Ê be two closed sets such that E ⊂ Ê; as usual, 0,
1, and ∞ belong to both E and Ê. If μ is in M(C), then the Ê-equivalence class of wμ is
contained in the E-equivalence class ofwμ. Therefore, there is a well-defined ‘forgetful map’
pÊ,E from T (Ê) to T (E) such that PE = pÊ,E ◦ PÊ . It is easy to see that this forgetful map
is a basepoint preserving holomorphic split submersion.

4.4. Teichmüller metric on T (E). Teichmüller distance dM(μ, ν) between μ and ν
on M(C) is defined by

dM(μ, ν) = tanh−1
∥∥∥ μ− ν

1 − μν

∥∥∥∞ .

The Teichmüller metric on T (E) is the quotient metric

dT (E)(s, t) = inf{dM(μ, ν) : μ and ν ∈ M(C), PE(μ) = s and PE(ν) = t} .
It is proved in [5] that the Teichmüller metric on T (E) is the same as its Kobayashi metric.

4.5. Douady-Earle section. The following fact will be useful in our paper.

PROPOSITION 3. There is a continuous basepoint preserving map s from T (E) to
M(C) such that PE ◦ s is the identity map on T (E).

See [5] for a proof. It immediately follows that

COROLLARY 3. The Teichmüller space T (E) is contractible.

Let t ∈ T (E) and PE(μ) = t for μ ∈ M(C). If ‖μ‖∞ = k, then ‖s(t)‖∞ ≤
max(k, c(k)) where c(k) is a constant that depends only on k and 0 ≤ c(k) < 1. The ex-
istence of c(k) follows from Proposition 7 in [3]. For details see Sections 3.2 and 3.3 (and
especially Remark 3.6) in [9].

DEFINITION 8. The map s from T (E) to M(C) is called the Douady-Earle section of
PE for the Teichmüller space T (E).
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Let G be a group of Möbius transformations that map E onto itself. For each g in G,
there exists a biholomorphic map ρg : T (E) → T (E) which is defined as follows: for each
μ in M(C),

(4.1) ρg ([wμ]E) = [̂g ◦ wμ ◦ g−1]E
where ĝ is the unique Möbius transformation such that ĝ ◦wμ ◦ g−1 fixes the points 0, 1, and
∞.

It follows from the definition that, for each g in G, ρg is basepoint preserving.

DEFINITION 9. We define M(C)G and T (E)G as follows:

M(C)G := {μ ∈ M(C) : (μ ◦ g)
ḡ ′
g ′ = μ a.e. on C for each g ∈ G}

and

T (E)G := {t ∈ T (E) : ρg (t) = t for each g ∈ G} .
The next proposition shows the conformal naturality of the Douady-Earle section s :

T (E) → M(C).

PROPOSITION 4. If t ∈ T (E)G, then s(t) ∈ M(C)G.

See [9] or [10] for a proof.

5. Universal holomorphic motion. The universal holomorphic motionΨE ofE over
T (E) is defined as follows:

ΨE(PE(μ), z) = wμ(z) for μ ∈ M(C) and z ∈ E .
The definition of PE in §4.1 guarantees that ΨE is well-defined. It is a holomorphic

motion since PE is a holomorphic split submersion and μ �→ wμ(z) is a holomorphic map
from M(C) to Ĉ for every fixed z in Ĉ (by Theorem 11 in [1]). This holomorphic motion is
“universal” in the following sense:

THEOREM 1. Let φ : V × E → Ĉ be a holomorphic motion. If V is a simply con-
nected complex Banach manifold with a basepoint x0, there is a unique basepoint preserving
holomorphic map f : V → T (E) such that f ∗(ΨE) = φ.

For a proof see Section 14 in [15].
Note that if E = Ĉ, then T (E) = M(C), and the universal holomorphic motion Ψ

Ĉ
:

M(C)× Ĉ → Ĉ is given by:

Ψ
Ĉ
(μ, z) = wμ(z) for all (μ, z) ∈ M(C)× Ĉ .

We also have the following (see Corollary 6.1 in [16]). Here, V is a simply connected
complex Banach manifold with a basepoint, and E is a closed set in Ĉ (as usual, 0, 1, ∞ are
in E).

PROPOSITION 5. Let φ : V × E → Ĉ be a holomorphic motion. Then, there exists a
quasiconformal motion φ̃ : V × Ĉ → Ĉ such that φ̃ extends φ.
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PROPOSITION 6. Let φ : X × E → Ĉ be a holomorphic motion where X is a con-
nected complex Banach manifold with a basepoint x0. Then, φ is a tame quasiconformal
motion.

PROOF. It is sufficient to consider a simply connected neighborhoodN(x0) of the base-
point x0. By Proposition 5, there exists a quasiconformal motion φ̃ : N(x0) × Ĉ → Ĉ such
that φ̃(x, z) = φ(x, z) for all (x, z) ∈ N(x0)× E. Our assertion now follows by Proposition
1, and Lemma 1. �

By the above proposition, ΨE : T (E)× E → Ĉ is also a tame quasiconformal motion.
Theorem II claims that this is the universal tame quasiconformal motion of the closed set E
over a simply connected Hausdorff space.

Let B be a path-connected Hausdorff space with a basepoint x0.

LEMMA 5. If the continuous maps f and g from B to T (E) satisfy:

(i) ΨE(f (x), z) = ΨE(g(x), z) for all x in B, and for all z in E, and
(ii) f (p) = g(p) for some p in B,

then f (x) = g(x) for all x in B.

See Lemma 12.2 in [15].
Suppose E1 and E2 are closed subsets of Ĉ such that E1 ⊂ E2 and 0, 1, and ∞ are in

E1. We have the standard projections PE1 : M(C) → T (E1) and PE2 : M(C) → T (E2).
Recall from §4.3 that there is a well-defined ‘forgetful map’ pE2,E1 from T (E2) to T (E1)

such that PE1 = pE2,E1 ◦ PE2 , and that pE2,E1 is a basepoint preserving holomorphic split
submersion. Furthermore, both Ψ1 : T (E1)× E1 → Ĉ and Ψ2 : T (E2)× E2 → Ĉ are tame
quasiconformal motions.

PROPOSITION 7. Let f1 and f2 be basepoint preserving continuous maps from B into
T (E1) and T (E2) respectively. Then pE2,E1 ◦f2 = f1 if and only if f ∗

2 (ΨE2) extends f ∗
1 (ΨE1).

See Proposition 4.7 in [10] for a proof.
In Proposition 7, if E1 = E and E2 = Ĉ, we get the following

COROLLARY 4. Let f1 and f2 be basepoint preserving continuous maps from B into
T (E) andM(C) respectively. Then PE ◦ f2 = f1 if and only if f ∗

2 (ΨĈ
) extends f ∗

1 (ΨE).

6. Quasiconformal motion of a finite set. Let X be a connected Hausdorff space
with a basepoint x0 and E be a closed set in Ĉ (as usual, 0, 1, and ∞ are in E).

LEMMA 6. If φ : X × E → Ĉ is a quasiconformal motion, for each z in E, φ(·, z) :
X → Ĉ is continuous.

See Lemma 4.4 in [10].

REMARK 4. Let φ : X × E → Ĉ be a tame quasiconformal motion. By Lemma 2, φ
is also a quasiconformal motion. Therefore, by Lemma 6, it follows that, for each z in E, the
map φ(·, z) : X → Ĉ is continuous.
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For the rest of this section, we assume that E = {0, 1,∞, ζ1, . . . , ζn} where n ≥ 1 and
ζi �= ζj for 1 ≤ i �= j ≤ n and ζi �= 0, 1,∞ for 1 ≤ i ≤ n. Recall from §4.2 that T (E) is
naturally identified with T eich(Ĉ \ E).

PROPOSITION 8 (Nag). Given n > 0, let

Yn = {z ∈ C
n : zi �= zj for 1 ≤ i �= j ≤ n and zi �= 0, 1 for all i = 1, . . . , n} .

There is a holomorphic universal covering p̂ : T (E) → Yn such that

p̂([wμ]E) = (wμ(ζ1), . . . , w
μ(ζn)) for all μ ∈ M(C) .

See [19]. A proof is also given in [2].

PROPOSITION 9. Let φ : V × E → Ĉ be a quasiconformal motion. If V is simply
connected, there exists a basepoint preserving continuous map f : V → T (E) such that
f ∗(ΨE) = φ.

PROOF. For x in V , let

F(x) = (φ(x, ζ1), . . . , φ(x, ζn)).

Note that the basepoint of Yn is(
φ(x0, ζ1), . . . , φ(x0, ζn)

) = (ζ1, . . . , ζn).

By Lemma 6, F : V → Yn is a basepoint preserving continuous map. Since V is simply
connected, by Proposition 8, there exists a basepoint preserving continuous map f : V →
T (E), such that p̂ ◦ f = F . Let f (x) = PE(μ) for μ in M(C). It immediately follows (by
Proposition 8) that f ∗(ΨE) = φ. �

THEOREM 2. Let V be simply connected and let φ : V ×E → Ĉ be a quasiconformal
motion. There exists a quasiconformal motion φ̃ : V × Ĉ → Ĉ such that φ̃ extends φ.

PROOF. By Proposition 9, there exists a basepoint preserving continuous map f : V →
T (E) such that f ∗(ΨE) = φ. By Proposition 3, there exists a basepoint preserving continuous
map s from T (E) to M(C) such that PE ◦ s is the identity map on T (E). Let f̃ = s ◦ f .
Define φ̃ : V × Ĉ → Ĉ as follows:

φ̃(x, z) = wf̃ (x)(z) for all (x, z) ∈ V × Ĉ .

Since f̃ is continuous, it follows by Proposition 1 that φ̃ is a quasiconformal motion.
Finally, for all (x, z) ∈ V × E, we have
f ∗(ΨE)(x, z) = ΨE(f (x), z) = ΨE(PE(s(f (x)), z) = ΨE(PE(f̃ (x)), z)

= wf̃ (x)(z) = φ̃(x, z) which shows that φ̃ extends φ. �
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7. Proof of theorem II.
7.1. A construction. Henceforth we assume that E is an infinite closed set in Ĉ such

that 0, 1, and ∞ are in E. Let E1, E2, . . . , En, . . . be a sequence of finite subsets of E such
that

{0, 1,∞} ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · ·
and

⋃∞
n=1 En is dense in E.

For each n ≥ 1, let Sn = Ĉ \ En. We saw in Subsection 4.2 that T (En) and T eich(Sn)
are naturally identified. Let 0n be the basepoint of T eich(Sn), and let dn be the Teichmüller
metric on T eich(Sn).

Let S = ∐
n Sn be the disjoint union of the Sn. The product Teichmüller space T eich(S)

is the set of sequences t = {tn}∞n=1 such that tn belongs to T eich(Sn) for each n and

sup{dn(0n, tn) : n ≥ 1} < ∞ .

The basepoint of T eich(S) is the sequence 0 = {0n} whose nth term is the basepoint of
T eich(Sn). It is well-known that T eich(S) is a complex Banach manifold. The Teichmüller
distance on T eich(S), denoted by dT is given by:

dT (t, s) = sup
n

{dn(tn, sn)}

where t = {tn} and s = {sn} are two points in T eich(S). For more details about product
Teichmüller space, see §7 in [5] or §5 in [15]. For the reader’s convenience we note the
following fact, which will be useful in our discussion.

LEMMA 7. Let X be a connected complex Banach manifold and, for each n ≥ 1, let
fn be a holomorphic map of X into T eich(Sn). For each x in X, let f (x) be the sequence
{fn(x)}. If f (x0) belongs to T eich(S) for some x0 in X, then f (x) also belongs to T eich(S)
for all x in X, and the map x �→ f (x) from X to T eich(S) is holomorphic.

For a proof see Corollary 7.6 in [5] or Corollary 5.5 in [15].
For each n ≥ 1, let πn be the forgetful map pE,En from T (E) to T eich(Sn) and let pn

be the forgetful map pEn+1,En from T eich(Sn+1) to T eich(Sn). (The map pn is the same as
the puncture-forgetting map in classical Teichmüller theory.)

It is clear that

(7.1) πn = pn ◦ πn+1 for all n ≥ 1.

Since each forgetful map πn preserves basepoints, Lemma 7 implies that the sequence
{πn(τ)} belongs to T eich(S) for each τ in T (E) and that the map π : T (E) → T eich(S)

defined by setting

π(τ) = (π1(τ ), . . . , πn(τ ), . . . ) for all τ ∈ T (E)
is holomorphic. Equation (7.1) implies that π maps T (E) into the closed subset

T ′ = {x = (x1, x2, . . . ) ∈ T eich(S) : pn(xn+1) = xn for all n ≥ 1}
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of T eich(S).

PROPOSITION 10. The map π is a homeomorphism from T (E) onto T ′.

See Theorem 7.1 in [15].

7.2. A proposition. Let φ : V ×E → Ĉ be a tame quasiconformal motion, where V
is a simply connected Hausdorff space with a basepoint x0. We assume that E is an infinite
closed set in Ĉ such that 0, 1, and ∞ are in E. LetE1, E2, . . . , En, . . . be a sequence of finite
subsets of E such that

{0, 1,∞} ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · ·
and

⋃∞
n=1 En is dense in E. For each n ≥ 1, let Sn = Ĉ \ En. Let S = ∐

n Sn be the disjoint
union of the Sn, and T eich(S) denote its product Teichmüller space. Let φn : V × En → Ĉ

be φ restricted to V × En. So, φn : V × En → Ĉ is a tame quasiconformal motion of the
finite set En. By Lemma 2, φn is also a quasiconformal motion. Therefore, by Proposition
9, each φn gives a unique basepoint preserving continuous map fn : V → T (En) such
that f ∗

n (ΨEn) = φn. Note that each T (En) is naturally identified with T eich(Sn). Define
f = (fn). Then the following proposition shows that f is a map of V to T eich(S).

PROPOSITION 11. For each x in V , f (x) is in T eich(S) and the map f : V →
T eich(S) is continuous.

PROOF. There exists a neighborhood N(x0), and a continuous map gx0 : N(x0) →
M(C) such that φ(x, z) = wgx0 (x)(z) for all x in N(x0) and for all z in E (and therefore, for
zn in En for each n ≥ 1). Note that gx0 maps x0 to 0 in M(C). For each n ≥ 1, there exists a
basepoint preserving continuous map fn : V → T (En) such that f ∗

n (ΨEn) = φn.
We see that PEn ◦ gx0 = fn for all n ≥ 1. Indeed, p̂n : T (En) → Yn is the holomorphic

universal covering (Proposition 8) and it follows from f ∗
n (ΨEn) = φn that p̂n(PEn ◦gx0(x)) =

p̂n(fn(x)) for any x ∈ N(x0). Thus, for a curve γ ⊂ N(x0) connecting x0 and x, PEn ◦gx0(γ )

and fn(γ ) are lifts of the same curve p̂n(fn(γ )) in Yn. Furthermore, PEn ◦ gx0(x0) = fn(x0)

because both PEn ◦gx0 and fn are basepoint preserving maps. It follows from the monodromy
theorem of coverings (cf. [21] Chapter 2) that PEn ◦ gx0(x) = fn(x) and we obtain that
PEn ◦ gx0 = fn on N(x0).

Since the quasiconformal map wgx0 (x) determines the point fn(x), we have

dn(fn(x0), fn(x)) ≤ logK(wgx0 (x)) (n ∈ N)

from the definition of the Teichmüller distance. Therefore, we conclude that

sup
n

{dn(fn(x0), fn(x))} ≤ logK(wgx0 (x)) < ∞.

This implies that f (x) is in T eich(S) for any x in N(x0).
From the same argument as above, we see that

dn(fn(x), fn(x
′)) ≤ logK(wgx0(x) ◦ (wgx0 (x

′))−1),
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for every n ∈ N. Since gx0 : N(x0) → M(C) is continuous, we see that f = (fn) is
continuous in N(x0).

Next, we will show that f (x) is in T eich(S) for any x ∈ V . We take a curve γ : [0, 1] →
V with γ (0) = x0 and γ (1) = x. For each γ (t) (t ∈ [0, 1]), there exists a neighborhood
N(γ (t)) of γ (t) and a continuous map g̃t : N(γ (t)) → M(C) such that

(7.2) φ(y, z) = wg̃t (y)(z)

for each y ∈ N(γ (t)) and z ∈ E.
Since γ : [0, 1] → V is continuous, we may take an open covering I0, I1, . . . , Ik of

[0, 1] such that Ii−1 ∩ Ii is a subinterval of [0, 1], and γ (Ii) ⊂ N(γ (si)) for some si ∈ Ii

(i = 0, 1, . . . , k). Put gi := g̃si , then the map ϕi,n defined by

(7.3) Ii � t �→ [gi (t)]En ∈ T (En)
is continuous. Now, we compare fn ◦ γ |I0 and ϕ1,n on I0 ∩ I1.

We use the space Yn given in Proposition 8 and the holomorphic universal covering
p̂n : T (En) → Yn again. Because of (7.2), we have p̂n(fn ◦ γ (t)) = p̂n(ϕ1,n(t)) for every
t ∈ I0 ∩ I1. It means that fn ◦ γ (I0 ∩ I1) and ϕ1,n(I0 ∩ I1) are lifts of the same curve in Yn.
Therefore, there exists an element χ of the mapping class group of the surface Ĉ \ En such
that

χ ◦ ϕ1,n = fn ◦ γ on I0 ∩ I1.
Thus, a map F1 : I0 ∪ I1 → T (En) defined by

F1 =
{
fn ◦ γ on I0

χ ◦ ϕ1,n on I1

is continuous on I0 ∪ I1. Furthermore, p̂n(F1(t)) = p̂n(fn ◦ γ (t)) for any t ∈ I0 ∪ I1 and we
conclude that F1 = fn ◦ γ on I0 ∪ I1 from the monodromy theorem.

Now, we take points t1 in I0 ∩ I1 and t2 in I1 ∩ I2. Since χ is an isometry with respect to
the Teichmüller distance, we have

dn(F1(t1), F1(t2))= dn(χ(ϕ1,n(t1)), χ(ϕ1,n(t2)))

= dn(ϕ1,n(t1), ϕ1,n(t2))

= dn([g1(t1)]En, [g1(t2)]En) .
Noting that g1 is independent of n, we see that there exists a constant d12 > 0 not depending
on n such that

dn(fn(γ (t1)), fn(γ (t2))) = dn(F1(t1), F1(t2)) ≤ d12 .

By continuing the same argument for ti ∈ Ii−1 ∩ Ii (i = 3, 4, . . . , k), we have

dn(fn(γ (ti−1), fn(γ (ti))) ≤ d(i−1)i

for some constant d(i−1)i > 0. Therefore, we conclude that

dn(fn(x0), fn(x))= dn(fn(γ (0)), fn(γ (1)))
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≤
k+1∑
i=1

dn(fn(γ (ti−1)), fn(γ (ti))) (t0 = 0, tk+1 = 1)

≤
k+1∑
i=1

d(i−1)i < ∞ for n ≥ 1 .

This implies that f (x) = (fn(x)) belongs to T eich(S). Similarly, we can prove the continuity
of f . �

7.3. Proof of Theorem II. Let φ : V × E → Ĉ be a tame quasiconformal motion,
where V is a simply connected Hausdorff space with a basepoint x0.

First, observe that if F andG are two basepoint preserving continuous maps from V into
T (E) such that F ∗(ΨE) = G∗(ΨE) = φ, then by Lemma 5 it follows that F = G. Thus, if a
basepoint preserving continuous map F : V → T (E) exists with F ∗(ΨE) = φ, then it must
be unique.

We now show the existence of such a map. For each n ≥ 1, the restriction φn of φ to
V ×En is a tame quasiconformal motion of the finite set En (as in §7.2). By Lemma 2, φn is
also a quasiconformal motion. By Proposition 9, each φn gives a unique basepoint preserving
continuous map fn : V → T (En) such that f ∗

n (ΨEn) = φn for each n ≥ 1. Let f = (fn). By
Proposition 11, f is a basepoint preserving continuous map from V into T eich(S). It is clear
that φn+1 extends φn. Therefore, by Proposition 7, we have pn ◦ fn+1 = fn for all n ≥ 1.
Therefore, f maps V into T ′. By Proposition 10, π maps T (E) homeomorphically onto T ′.
Hence, there exists a unique map F : V → T (E) such that f = π ◦ F . The map F clearly
preserves basepoints, and is also continuous.

Next, observe that πn ◦ F = fn for each n ≥ 1. It follows by Proposition 7 that F ∗(ΨE)
extends f ∗

n (ΨEn) = φn for each n. Therefore, F ∗(ΨE) = φ on V × ⋃∞
n=1 En. Since

⋃
n En

is dense in E, it follows by Lemma 3 that F ∗(ΨE) = φ on V ×E. �
7.4. Corollaries. We give the proofs of the Corollaries of Theorem II.

PROOF OF COROLLARY 1. By Theorem II, there exists a (unique) basepoint preserving
continuous map F : V → T (E) such that F ∗(ΨE) = φ. Consider the Douady-Earle section
s : T (E) → M(C) given in Definition 8. By Proposition 3, the map s is basepoint preserving
and is continuous. Let F̃ = s ◦ F . Define φ̃ : V × Ĉ → Ĉ as follows:

φ̃(x, z) = wF̃ (x)(z) for all (x, z) ∈ V × Ĉ .

Since F̃ is a basepoint preserving continuous map, it follows by Proposition 1 that φ̃ is a
quasiconformal motion.

Finally, for all (x, z) ∈ V × E, we have
F ∗(ΨE)(x, z) = ΨE(F(x), z) = ΨE(PE(s(F (x)), z) = ΨE(PE(F̃ (x)), z)

= wF̃(x)(z) = φ̃(x, z). This shows that φ̃ extends φ. �

As usual, E is an infinite closed set in Ĉ, and 0, 1, and ∞ belong to E. Let G be a group
of Möbius transformations such that E is invariant under the action of G. For each g in G,
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there exists a biholomorphic map ρg : T (E) → T (E) which is defined as follows: for each
μ in M(C),

(7.4) ρg ([wμ]E) = [̂g ◦ wμ ◦ g−1]E
where ĝ is the unique Möbius transformation such that ĝ ◦wμ ◦ g−1 fixes the points 0, 1, and
∞.

It follows from the definition that, for each g in G, ρg is basepoint preserving.

DEFINITION 10. We defineM(C)G and T (E)G as follows:

M(C)G := {μ ∈ M(C) : (μ ◦ g)
ḡ ′
g ′ = μ a.e. on C for each g ∈ G}

and

T (E)G := {t ∈ T (E) : ρg (t) = t for each g ∈ G} .
The next proposition shows the conformal naturality of the Douady-Earle section s :

T (E) → M(C).

PROPOSITION 12. If t ∈ T (E)G, then s(t) ∈ M(C)G.

See [9] or [10] for a proof.
In the next proposition, B is a path-connected Hausdorff space with a basepoint x0. The

proof is exactly the same as in the proof of Proposition 4.10 in [10], where it was proved for
quasiconformal motions. We include it for the reader’s convenience.

PROPOSITION 13. Let φ : B × E → Ĉ be a tame quasiconformal motion, where
B is a path-connected Hausdorff space with a basepoint. Suppose there exists a basepoint
preserving continuous map f : B → T (E) such that f ∗(ΨE) = φ. Then, φ : B × E → Ĉ is
G-equivariant if and only if f maps B into T (E)G.

PROOF. Suppose f maps B into T (E)G. Let g ∈ G, x ∈ V , and f (x) = PE(μ). So,
φ(x, z) = ΨE(f (x), z) = wμ(z) for all z in E, and φ(x, g(z)) = wμ(g(z)) for all z in E.

Now, ρg (f (x)) = f (x) implies that

[wμ]E = [θx(g) ◦ wμ ◦ g−1]E
where θx(g) is the unique Möbius transformation such that θx(g) ◦ wμ ◦ g−1 fixes 0, 1, and
∞. This means that θx(g) ◦ wμ ◦ g−1 = wμ on E. Therefore, we have

θx(g)
(
wμ(z)

) = wμ
(
g(z)

)
for all z ∈ E .

We conclude that φ(x, g(z)) = θx(g)(φ(x, z)) for all z in E, and so, φ satisfies Equation
(1.3).

Next, suppose the tame quasiconformal motion φ satisfies Equation (1.3). Let x ∈ B and
f (x) = [wμ]E . For x ∈ B, and g ∈ G, there exists a Möbius transformation θx(g) such that

φ(x, g(z)) = θx(g)(φ(x, z)) for all z ∈ E .
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Since f (x) = [wμ]E , we have φ(x, g(z)) = wμ(g(z)) for all z in E. Therefore,wμ(g(z)) =
θx(g)(w

μ(z)) for all z ∈ E. We conclude that wμ = θx(g) ◦ wμ ◦ g−1 on E. Since the
quasiconformal map wμ fixes 0, 1, and ∞, it follows that θx(g) ◦wμ ◦ g−1 fixes 0, 1, and ∞.

By definition of ρg , we have

ρg ([wμ]E) = [̂g ◦ wμ ◦ g−1]E
where ĝ is the unique Möbius transformation such that ĝ ◦ wμ ◦ g−1 fixes 0, 1, and ∞. It
follows that ĝ = θx(g). Therefore, we have

f (x) = [wμ]E and ρg (f (x)) = [θx(g) ◦ wμ ◦ g−1]E .

Since f is continuous, and ρg is holomorphic for each g in G, it follows that ρg ◦ f is a
continuous map for each g in G. Also, since f and ρg are both basepoint preserving, we
have f (x0) = ρg (f (x0)). And since wμ = θx(g) ◦ wμ ◦ g−1 on E, we have ΨE(f (x), z) =
ΨE(ρg (f (x)), z) for all z in E. It follows by Lemma 5 that f (x) = ρg (f (x)) for any x in B.
This means, that f maps B into T (E)G. �

PROOF OF COROLLARY 2. We use the arguments in the proof of Theorem 2. By The-
orem II, there exists a basepoint preserving continuous map F : V → T (E) such that
F ∗(ΨE) = φ. By Proposition 3, there exists a basepoint preserving continuous map s from
T (E) to M(C) such that PE ◦ s is the identity map on T (E). Let F̃ = s ◦ F . Define
φ̃ : V × Ĉ → Ĉ as follows:

φ̃(x, z) = wF̃(x)(z) for all (x, z) ∈ V × Ĉ .

As in the proof of Theorem 2 it is clear that φ̃ extends φ, and φ̃ is a quasiconformal motion.
Since φ is G-equivariant, it follows by Proposition 13 that F : V → T (E)G. By Proposi-
tion 12, F̃ : V → M(C)G. This shows that φ̃ is G-equivariant. �

8. Appendix. In the following discussion, let E be any set (not necessarily closed) in
Ĉ. The blanket assumption that 0, 1, and ∞ belong to E holds. Following Definition 3, we
can introduce the concept of continuous motion of E (also given in [17]).

DEFINITION 11. LetX be a connected Hausdorff space with a basepoint x0, and let E
be a set in Ĉ such that E contains the points 0, 1, and ∞. A normalized continuous motion of
E over X is a continuous map φ : X ×E → Ĉ such that:

(i) φ(x0, z) = z for all z in E, and
(ii) for each x in X, the map φ(x, ·) is a homeomorphism of E onto its image, that fixes

the points 0, 1 and ∞.

PROPOSITION 14. Let φ : X×E → Ĉ be a quasiconformal motion of E where X is a
connected Hausdorff space with a basepoint x0. Then φ can be extended to a quasiconformal
motion of the closure E over X. Furthermore, φ : X × E → Ĉ is a continuous motion.
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PROOF. The idea of the proof given here is inspired by the proof of the λ-lemma in
[14]. However, our proof is quite modified, since the parameter space here is any connected
Hausdorff space.

The proof is divided into four steps.
We first show that φ is jointly continuous onX×E. In the second step, we prove that for

any x ∈ X, φx(·) = φ(x, ·) is locally uniformly continuous on E. Thus, φx can be extended
to a continuous function φx on E. In the third step, we prove that

φ(x, z) = φx(z) : X ×E → Ĉ

is a quasiconformal motion extending φ. From the first step we know that φ is jointly contin-
uous on X × E. Since φx is injective and continuous on E, which is a compact subset in Ĉ,
it is a homeomorphism from E onto φx(E). This implies that φ is a continuous motion, and
thus φ is also a continuous motion. For the reader’s convenience, we include all details.

STEP 1: φ is a jointly continuous map on X × E. For each x ∈ X, there exists a
neighborhoodUx of x such that

ρ(φx(a, b, c, d), φy(a, b, c, d)) < 1

holds for any y ∈ Ux and for any quadruple (a, b, c, d) of distinct points in E. Since φ is
normalized and (z, 1, 0,∞) = z, we have

ρ(φx(z), φy(z)) < 1

for any z( �= 0, 1,∞) ∈ E and y ∈ Ux . Therefore, for any z ∈ E \ {0,∞}, there exists a
constant C = C(|φx(z)|) > 0 such that

(8.1) 0 < C−1 ≤ |φy(z)| ≤ C ,

holds for any y ∈ Ux , since φy(1) = 1.
Now, we divide X into two parts X0 and X1 = X \X0, where

X0 = {x ∈ X | φx(·) is continuous on E} .
We will show that X = X0. First, we show that X0 is open. We show that Ux ⊂ X0 for
x ∈ X0. Since φx is continuous on E, for each z ∈ E \ {∞} and ε > 0 there exists δ > 0 such
that |φx(z)−φx(z′)| < ε if |z− z′| < δ. From (8.1), we have for the constant C = C(|φx(z)|)
above,

|φx(z′, 0, z,∞)| =
∣∣∣∣φx(z)− φx(z

′)
φx(z)

∣∣∣∣ ≤ C|φx(z)− φx(z
′)| < Cε ,

when z is in E \ {0,∞}. Since ρ(φx(z′, 0, z,∞), φy(z
′, 0, z,∞)) < 1 for y ∈ Ux and

φx(z
′, 0, z,∞) → 0 as ε → 0, there exists a constantD1 = D1(C, ε) > 0 such that

(8.2)

∣∣∣∣φy(z)− φy(z
′)

φy(z)

∣∣∣∣ = |φy(z′, 0, z,∞)| ≤ D1 ,

and D1 → 0 as ε → 0. It is because the hyperbolic metric ρ(z)|dz| on C \ {0, 1} diverges as
z → 0.
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It follows from (8.1) and (8.2) that

(8.3) |φy(z)− φy(z
′)| ≤ CD1 → 0 (ε → 0) .

Therefore, φy is continuous on E \ {0,∞} for y ∈ Ux . Permuting the role in {0, 1,∞}, we
see that φy is continuous on E for y ∈ Ux and X0 is an open set.

Next, we will show that X1 is open. For x ∈ X1, we show that Ux ⊂ X1.
Take z ∈ E where φx is not continuous. By the same reason as above, we may assume

that z is in E \ {0,∞}. Since φx is not continuous on E, there exist a constant ε0 > 0 and a
sequence {zn}∞n=1 ⊂ E converging to z such that

|φx(z)− φx(zn)| ≥ ε0 (n = 1, 2, . . . ) .

Thus, from (8.1) we have

|φx(zn, 0, z,∞)| =
∣∣∣∣φx(z)− φx(zn)

φx(z)

∣∣∣∣ ≥ C−1ε0 .

Since ρ(φx(zn, 0, z,∞), φy(zn, 0, z,∞)) < 1, there exists a constant D2 = D2(C, ε0) > 0
such that

|φy(zn, 0, z,∞)| =
∣∣∣∣φy(z)− φx(zn)

φy(z)

∣∣∣∣ ≥ D2 .

By using (8.1) again, we obtain

|φy(z)− φy(zn)| = |φy(zn, 0, z,∞)||φy(z)| ≥ C−1D2 > 0 .

Hence, φy is not continuous at z andX1 is open. Therefore, we conclude thatX = X0 because
x0 ∈ X0.

Finally, we show that φ : V ×E → Ĉ is jointly continuous. Take a point (x, z) ∈ V ×E
and ε > 0. We may assume that z �= 0,∞ by the same reason as above. We take a point
z0( �= 0,∞, z) in E and fix it. We also take ε′ > 0 sufficiently small so that |φx(z)− w| < ε

if ρ((φx(z), 0, φx(z0),∞), (w, 0, φx(z0),∞)) < ε′, where (a, b, c, d) is the cross-ratio of
distinct 4 points a, b, c and d .

Since φ : X × E → Ĉ is a quasiconformal motion of E, there exists a neighborhood U
of x in X such that

ρ(φx(z, 0, z0,∞), φy(z, 0, z0,∞)) < ε′

for any y ∈ U . Thus, we have

|φx(z)− φy(z)| < ε .
By the same argument as in (8.3), we see that

|φy(z)− φy(z
′)| < ε

if z′ belongs to a sufficiently small neighborhoodN of z. Therefore, for (y, z′) ∈ U × N , we
have

|φx(z)− φy(z
′)| ≤ |φx(z)− φy(z)| + |φy(z)− φy(z

′)| < 2ε.
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Hence, we conclude that φ is a jointly continuous map on X × E.

STEP 2: For each x ∈ X, φx is locally uniformly continuous and thus can be continu-
ously extended to E. Consider

EN := E ∩
{

1

N
≤ |z| ≤ N

}
for every positive integer N . Since φx is continuous on E and φx(0) = 0 and φx(∞) = ∞,
there exists a constant C̃ = C̃(x,N) > 0 such that we have

(8.4) 0 < C̃−1 ≤ |φx(z)| ≤ C̃

for every z ∈ EN . Hence, we see that there exists a constant C′ = C′(x,N) > 0 such that

(8.5) 0 < C′−1 ≤ |φy(z)| ≤ C′

holds for any y ∈ Ux for any z ∈ EN .
Now, we divide X into two parts X′

0 and X′
1 = X \X′

0, where

X′
0 = {x ∈ X | φx(·) is uniformly continusous on EN } .

We will show that X = X′
0. First, we show that X′

0 is open.
Since φx is uniformly continuous on EN , for any ε > 0 there exists δ > 0 such that

|φx(z)− φx(z
′)| < ε whenever |z− z′| < δ for two points z, z′ ∈ EN . From (8.5), we have

|φx(z′, 0, z,∞)| =
∣∣∣∣φx(z)− φx(z

′)
φx(z)

∣∣∣∣ ≤ C′|φx(z)− φx(z
′)| < C′ε .

Since ρ(φx(z′, 0, z,∞), φy(z
′, 0, z,∞)) < 1 for y ∈ Ux , there exists a constant D′

1 =
D′

1(C
′, ε) > 0 such that

(8.6) |φy(z′, 0, z,∞)| =
∣∣∣∣φy(z)− φy(z

′)
φy(z)

∣∣∣∣ ≤ D′
1 ,

and D′ → 0 as ε → 0. It follows from (8.5) and (8.6) that

|φy(z)− φy(z
′)| ≤ C′D′

1 → 0 (ε → 0) .

Therefore, φy is uniformly continuous on EN for y ∈ Ux and X′
0 is an open set.

Next, we will show that X′
1 is open. For x ∈ X′

1, we show that Ux ⊂ X′
1. Since

φx is not uniformly continuous on EN , there exist a constant ε0 > 0 and two sequences
{zn}∞n=1, {z′n}∞n=1 ⊂ EN such that

|zn − z′n| → 0 (n → ∞)

but

|φx(zn)− φx(z
′
n)| ≥ ε0 (n = 1, 2, . . . ) .

Thus, from (8.5) we have

|φx(z′n, 0, zn,∞)| =
∣∣∣∣φx(zn)− φx(z

′
n)

φx(zn)

∣∣∣∣ ≥ C′−1ε0 .
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Since ρ(φx(z′n, 0, zn,∞), φy(z
′
n, 0, zn,∞)) < 1, there exists a constant D′

2 = D′
2(C

′, ε0) >

0 such that

|φy(z′n, 0, zn,∞)| =
∣∣∣∣φy(zn)− φx(z

′
n)

φy(zn)

∣∣∣∣ ≥ D′
2 .

By using (8.5) again, we obtain

|φy(zn)− φy(z
′
n)| = |φy(z′n, 0, zn,∞)||φy(zn)| ≥ C′−1D′

2 > 0 .

Hence, φy is not uniformly continuous on EN and X1 is open. Therefore, we conclude that
X = X′

0 because x0 ∈ X′
0.

Letting N → ∞, we see that φx is locally uniformly continuous on E \ {0,∞}(=⋃∞
N=1 EN). Since we may permute the role in {0, 1, ∞}, φx is locally uniformly continuous

on E.

Since φx is locally uniformly continuous on E, it can be continuously extended to φx on
E. Define a map

φ : X ×E → Ĉ

by

φ(x, z) = φx(z) .

STEP 3: φ : X × E → Ĉ is a quasiconformal motion. We first show that φx is
injective on E for every x ∈ X. The proof is done by the same technique as in Steps 1 and 2.
Moreover, it suffices to show the claim only for E \ {0,∞} because the argument works on E
by permuting the role in {0, 1,∞} as before.

We set

X′′
0 = {x ∈ X | φx is injective on E}

and X′′
1 = X \ X′′

0 . We show that Ux ⊂ X′′
0 for x ∈ X′′

0 as before. Take any y ∈ Ux and
two distinct points z, z′ ∈ E. It suffices to show that φy(z) �= φy(z

′) when z or z′ ∈ E \ E.
Suppose that z ∈ E \ E and z′ ∈ E. Then, there exists a sequence {zn}∞n=1 ⊂ E \ {z′}
converging to z. Since φx is injective, there exists a constant ε0 > 0 such that

|φx(z′)− φx(zn)| = |φx(z′)− φx(zn)| ≥ ε0

for any n ∈ N. Hence, we may use the same argument in proving the openness of X1 in Step
1 and we obtain

|φy(z′)− φy(zn)| = |φy(zn, 0, z′,∞)||φy(z′)| ≥ C−1D2 > 0 ,

for some constants C,D2 which are independent of n. Thus, by taking the limit, we conclude
that φy(z) �= φy(z

′). The same argument shows that φy(z) �= φy(z
′) for two distinct points

z, z′ in E − E.
The openness of X′′

1 is shown by the same way. For x ∈ X′′
1 , we take y ∈ Ux . Since

φx is not injective, we have two distinct points z, z′ ∈ E with φx(z) = φx(z
′). Suppose that
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z ∈ E \ E and z′ ∈ E. Then, there exists a sequence {zn}∞n=1 ⊂ E converging to z. Since φx
is continuous on E, we have

|φx(zn)− φx(z
′)| = |φx(zn)− φx(z

′)| → 0 (n → ∞) .

Now, we use the same argument in proving the openness of X0 in Step 1 and we obtain

|φy(zn)− φy(z
′)| = |φy(zn)− φy(z

′)| → 0 (n → ∞) .

Therefore, y ∈ X′′
1 and X′′

1 is open. Since x0 ∈ X′′
0 , we have X = X′′

0 as desired.
Let zi ∈ E (i = 1, 2, 3, 4) be four distinct points. Then, there exists sequences {zni }∞n=1 ⊂

E converging to zi . Since φ is a quasiconformal motion of E over X, for any ε > 0 and for
any x ∈ X, there exists a neighborhoodUx(ε) such that

ρ(φx(z
n
1, z

n
2 , z

n
3, z

n
4), φy(z

n
1 , z

n
2, z

n
3 , z

n
4)) <

ε

2
holds for any y ∈ Ux(ε) and for all n ∈ N. Taking the limit as n → ∞, we obtain

ρ(φx(z1, z2, z3, z4), φy(z1, z2, z3, z4)) ≤ ε

2
< ε .

We have shown that φ is a quasiconformal motion of E over X.

STEP 4: φ and φ are both continuous motions. Since E ⊆ Ĉ is closed and thus com-
pact and since φx : E → Ĉ is continuous for any x ∈ X, the image φx(E) ⊆ Ĉ is closed and
thus compact. Since φx is also injective on E,

φ
−1
x : φx(E) → E

is continuous. We conclude that

φx : E → φx(E)

is a homeomorphism. From Steps 1 and 3, we know that φ is jointly continuous on X × E,
thus φ is a continuous motion. Since it is an extension of φ, we conclude that φ is also a
continuous motion. �
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