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Abstract. The concept of “quasiconformal motion” was first introduced by Sullivan
and Thurston (in [24]). Theorem 3 of that paper asserted that any quasiconformal motion of
a set in the sphere over an interval can be extended to the sphere. In this paper, we give a
counter-example to that assertion. We introduce a new concept called “tame quasiconformal
motion” and show that their assertion is true for tame quasiconformal motions. We prove a
much more general result that, any tame quasiconformal motion of a closed set in the sphere,
over a simply connected Hausdorff space, can be extended as a quasiconformal motion of
the sphere. Furthermore, we show that this extension can be done in a conformally natural
way. The fundamental idea is to show that the Teichmiiller space of a closed set in the sphere
is a “universal parameter space” for tame quasiconformal motions of that set over a simply
connected Hausdorff space.

1. Introduction. Throughout this paper, we will use C for the complex plane, C=
C U {oo} for the Riemann sphere, I = [0, 1] for the closed unit interval and A = {z € C :
|z] < 1} for the open unit disk.

When we write V is “simply connected”, we mean that V is a path-connected topological
space and that its fundamental group is trivial (see, for example, [13] or [18]).

In their famous paper [24], Sullivan and Thurston introduced the idea of “quasiconformal
motion”. Theorem 3 of their paper claimed that every quasiconformal motion of a set in C
over I, can be extended to a quasiconformal motion of C. The first result in our paper is to give
a counter-example to that claim. We introduce a new concept, called “tame quasiconformal
motion”. We show that the claim of Theorem 3 in [24] is correct for tame quasiconformal
motions of a set in C. More generally, we show that every tame quasiconformal motion of
a setin C over a simply connected Hausdorff space (with a basepoint) can be extended to a
quasiconformal motion of C. We also show that this extension can be done in a conformally
natural way. The main idea is to show that the Teichmiiller space of a closed set E in Cisa
“universal parameter space” for tame quasiconformal motions of E over a simply connected
Hausdorff space V.
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1.1. Basic definitions. We begin with some definitions.
DEFINITION 1. Let E be a subset of C, and let X be a connected Hausdorff space
with basepoint xo. A motion of E over X isamap ¢ : X x E — C satisfying

(i) ¢(xg,z) =zforall z € E, and
(ii) for all x € X, the map ¢ (x, -) : E — C is injective.

We say that X is the parameter space of the motion ¢.

We will assume that 0, 1, and co belong to E and that the motion ¢ is normalized, i.e. 0,
1, and oo are fixed points of the - map ¢(x -) for T every x in X.

LetE C E, ¢: XXE — C and¢ X x E — C be two motions. We say that¢ extends
¢ if ¢(x, 7)) =¢(x,z) forall (x,z) € X x E.

For any motion ¢ : X x E — @, x in X, and any quadruplet of distinct points a, b, ¢, d
of points in E, let ¢« (a, b, c, d) denote the cross-ratio of the values ¢ (x, a), ¢ (x, b), ¢ (x, ¢),
and ¢ (x, d). We will often write ¢ (x, z) as ¢, (z) for x in X and z in E. So we have:

(Px (@) — ¢x(0)) (¢x (D) — Px(d))

11 x(a,b, ¢, d) =
(1.1) Px(a ¢, d) (P (@) — P (d))(dx (D) — @y (C))

for each x in X.

It is obvious that condition (ii) in Definition 1 holds if and only if ¢, (a, b, ¢, d) is a well-
defined point in the thrice-punctured sphere C \ {0, 1, oo} for all x in X and all quadruplets
a, b, c,d of distinct points in E.

Let p be the Poincaré distance on @\ {0, 1, co}. In their paper [24], Sullivan and Thurston
introduced the following definition.

DEFINITION 2. A quasiconformal motion is a motion ¢ : X x E — C of E over X
with the following additional property:

(iii) given any x in X and any ¢ > 0, there exists a neighborhood U, of x such that for
any quadruplet of distinct points a, b, ¢, d in E, we have

p(py(a,b,c,d), ¢y(a,b,c,d) <e forallyandy inU,.
We also need the definition of a continuous motion.

DEFINITION 3. A continuous motion of C over X is a motion ¢ : X x C — C such
that the map ¢ is continuous.

Recall that all motions in this paper are normalized. If ¢ is a continuous motion of @,
then each ¢,, x in X, is a map from @ to itself that fixes 0, 1, and co. Since ¢, is injective
and continuous, it is a homeomorphism of C onto itself, by invariance of domain.

Now we recall the definition of a holomorphic motion.

DEFINITION 4. Let W be a connected complex manifold with basepoint xo. A holo-
morphic motion of E over W is a motion ¢: W x E — C of E over W such that the map
¢(-,z): W — C is holomorphic for each z in E.
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REMARK 1. Suppose¢: WX E — Cisa holomorphic motion. For any quadruplet of
points a, b, ¢, d in E, the map x — ¢, (a, b, ¢, d) from W into C \ {0, 1, oo} is holomorphic.
Therefore, it is distance-decreasing with respect to the Kobayashi metrics on W and C \
{0, 1, oo}. It easily follows that ¢ is also a quasiconformal motion.

DEFINITION 5. Let X and Y be connected Hausdorff spaces with basepoints, and f be
a continuous basepoint preserving map of X into Y. If ¢ is a motion of E over Y its pullback
by f is the motion

(1.2) fr(P)(x,2) = (f(x),2) V(x,2) e X X E
of E over X.

REMARK 2. If the motion ¢ is quasiconformal or continuous, then f*(¢) has the same
property. If X and Y are complex manifolds, f is holomorphic, and ¢ is a holomorphic
motion, then so is f*(¢).

A natural question is:

Ifp:VXE— Cisa quasiconformal motion, where V is simply connected, does there
exist a quasiconformal motion 5 : V x C — C such that 5 extends ¢?

The answer is affirmative when E is a finite set. We shall discuss this in §6. However,
Theorem I of our paper shows that the answer is negative for an infinite closed set, where
V = I. This gives a counter-example to Theorem 3 in [24], where the authors claim that any
iuasiconformal motion of E over an interval can be extended to a quasiconformal motion of
C.

For this reason, we introduce the new concept of a “tame quasiconformal motion”.

DEFINITION 6. Let X be a connected Hausdorff space with a basepoint xg, and E be

a set in C (containing the points 0, 1, and 00). A tame quasiconformal motion is a motion
¢ : X x E — C of E over X with the additional property:

(iii) Given any x in X, there exists a quasiconformal map w : C—C,a neighborhood

N (x), with basepoint x, and a quasiconformal motion v : N(x) X C — CoverN (x)
such that ¢ (y, z) = ¥ (y, w(z)) forall (y,z) € N(x) x E.

Let X and Y be connected Hausdorff spaces with basepoints, and f be a continuous
basepoint preserving map of X into Y. If ¢ is a tame quasiconformal motion of E over Y its
pullback f*(¢) is a tame quasiconformal motion of E over X.

DEFINITION 7. Let¢ : X X E — Chbea (normalized) motion. Let G be a group of
Mobius transformations, such that E is invariant under G (which means g(E) = E for all g
in G). We say that ¢ is G-equivariant if and only if for each g in G, and x in X, there is a
Mobius transformation 8, (g) such that

(1.3) ¢(x, 9(2)) = (0x(9) (P (x, 2)) forall z € E.

1.2. Statements of the main results. The main purpose in this paper is to prove the
following theorems.
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THEOREM 1. There exist a closed set E (in @), with #(E) = oo, and a quasiconformal
motion ¢ : I x E — @, such that ¢ can be extended to a continuous motion of C over
1. However, for any neighborhood U about 0, ¢ CANNOT be extended to a quasiconformal
motion of C over U.

REMARK 3. We will show that a tame quasiconformal motion of a set (over a simply
connected parameter space) can always be extended to C.

For the next theorem, we assume that the set E is closed; (as usual, the points 0, 1, and
oo belong to E). Associated to each closed set E in @, there is a contractible complex Banach
manifold which we call the Teichmiiller space of the closed set E, denoted by T (E). This
was first studied by G. Lieb in his doctoral dissertation [12]. We will give precise definitions
of T(E) and a tame quasiconformal motion

Wp:T(E)x E— C

of E over the parameter space T'(E) in §4 and §5.

THEOREM II. Let¢:V X E — C be a tame quasiconformal motion. If V is a simply
connected Hausdorff space with a basepoint xo, there exists a unique basepoint preserving
continuous map F : 'V — T(E) such that F*(Wg) = ¢.

COROLLARY 1 (Extension to the Riemann Sphere). Let V be a simply connected
Hausdorff space with a basepoint, and ¢ : V x E — C be a tame quasiconformal motion.
Then, there exists a quasiconformal motion ¢ : V x C — C such that ¢ extends ¢.

Let G be a group of Mobius transformations, such that the closed set E is invariant under
G.

COROLLARY 2 (Group Equivariance). Let V be a simply connected Hausdorff space
with a basepoint, and ¢ : V x E — C be a G-equivariant tame quasiconformal motion. Then,
there exists a G-equivariant quasiconformal motion ¢ : V. x C — C such that ¢ extends ¢.

This is the analogue of Theorem 1 in [4] for tame quasiconformal motions.

Acknowledgement. We are extremely grateful to the referee for his/her very careful reading and
many valuable comments, that have helped us to substantially improve our paper. His/her suggestions
also helped us to correct several errors. We also want to thank the referee of a previous version for
suggesting the term “tame quasiconformal motions” and also for suggesting Definition 6 and Proposition
1. His/her comments also helped us to improve the presentation of Theorem I.

2. Some properties of tame quasiconformal motions. Recall that a homeomor-
phism of C is called normalized if it fixes the points 0, 1, and oo.

We use M (C) to denote the open unit ball of the complex Banach space L>°(C). Each u
in M (C) is the Beltrami coefficient of a unique normalized quasiconformal homeomorphism
wh of C onto itself. The basepoint of M (C) is the zero function.

We will need the following properties of quasiconformal motions of @, proved in [16].

PROPOSITION 1. A motion ¢: X x C — C is quasiconformal if and only if it satisfies
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(a) the map ¢y : C—Cis quasiconformal for each x in X, and
(b) the map from X to M (C) that sends x to the Beltrami coefficient of ¢y for each x in
X is continuous.

Part (b) means that the map x > u, = Ei‘) , x €X, is continuous.

PROPOSITION 2. Every quasiconformal motion of C is a continuous motion.
The following useful lemma is an immediate consequence of Definition 6.

LEMMA 1. Amotiongp : X X E — C is a tame quasiconformal motion if and only
if given any x in X, there exists a neighborhood N (x), and a continuous map g, : N(x) —
M(C) such that ¢(y, z) = w90 (z) forall (y, 7) € N(x) x E.

PROOF. Let¢ : X x E — C be a motion. Suppose, for each x in X, there exists a
neighborhood N (x), and a continuous map g, : N(x) — M(C) suchthat¢(y, z) = ng(V)(z)
for all (y,z) € N(x) x E. Setw = w%® and ¥ (y, z) = w*®(w=1(z)) in N(x) x C. It
now follows that ¢ is a tame quasiconformal motion of E over X.

Conversely, if¢ : X x E — C is a tame quasiconformal motion, then by Proposition 1,
the condition of our lemma immediately follows. O

LEMMA 2. Let ¢ : X x E — C be a tame quasiconformal motion. Then, ¢ is a
quasiconformal motion.

PROOF. The proof follows immediately from Lemma 1 and the quasi-invariance of
cross ratios (see Theorem 1 in [11]). O

LEMMA 3. Let¢ : X x E — C be a tame quasiconformal motion, where X is a
connected Hausdorff space with a basepoint. Then, for each fixed x in X, the map ¢ (x, ) :
E — Cis continuous.

PROOF. The proof follows easily from Lemma 1. o

3. Proof of theorem I. Let / = [0, 1] with O as the base point. We take 1 < r; <
Py <-o-<Ty <TFppl <--- sothatr,y1/r, — ocoasn — oo. Put X —@\(U;’lolrnu{oo})
and E = |2, C, U0, 1, 00}, where C,, = {|z| = ry}. Let o, (n € N) be a simple closed
curve in X only surrounding r2, and 2,41 as Figure 1.

FIGURE 1.
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2n+2
2n+1;

NT2n 2041

FIGURE 2.

Let Ay := {ron < |z| < rop+1} and By := {rap+1 < |z| < rop+2}. We take p, € N so
large that

Pn
3.1 lim Lx (" (o)) _
n—>00 Ly (an)

where 7, is the right Dehn twist in A, about Dy, := {|z| = ,/r2nron+1} (see Figure 2) and
£x (c) stands for the hyperbolic length of the geodesic on X homotopic to a closed curve ¢ in
X.

Foreachn € N, we define @, : I x E — @by

@, (1, 2) = zexp2min(n + 1)t — (n + 1)~V pa)

for (t,z) € [(n + 1)1, n™"] x Capy1 and @, (¢, z) = z elsewhere. Note that n(n + 1)(t —
mn+1D)"YHpy t pnast A n~land @,((n +1)7',2) = ®,(n7', 2) = z. Thus B, (¢, 2) is
continuous at n~! and (n + 1)~!. Now, we define ¢ : [ x E — C by

¢(t,z) = lim @, 0---0 P (t,2)
n—0o0

for every (¢, z) € I x E. Obviously, ¢ is a continuous motion of E over /.
CLAamM 1. ¢: I X E — C can be extended to a continuous motion @ : I x C — C.
PROOF. Weextend @, (t,z) to I x C by

logr — logra,
log rop4+1 — logra,

@, (1, re*™ %) = zexp {2711‘ nn+ Dp,(t — (n+ 1)_1)} ,
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for (t,re?™ )y e [(n+ 1)~ ', n~1] x Ay,
logr —logran+2
log p+1 — log an+2

for (¢, re?™ %) e [(n + 1), n~'] x By, and &, (¢, ) = z elsewhere. Then, we define

D, (t, re”™i?) =zexp{2ni nn+1Dp,t — @+ 1)_1)},

D(t,2) =n1_i)n;o®,, o---0®(t,z2)

for (t,z) € I x C. Clearly, this is an extension of ¢. It is also clear that @ is continuous in
I xC. Since the annuli A,, shrink to oo on C in the spherical metricasn — 0o, @ : IXxC — C
is continuous. This implies that @ is a continuous motion of C which extends ¢. O

CLAIM 2. ¢ is a quasiconformal motion of E over /.
PROOF. We define quasiconformal homeomorphisms f;fn and f;, of C as follows:
Foranyr € [(n + D=L n=1, let 6,(¢) be in [0, 1) with n(n + 1) p,t — 6,(t) € N. The
function 6, is not continuous at 7, ,, := (np, +m){n(n + Dp,)~ ' (m=0,..., py). Indeed,
lims4 7, ,, 6, (t) = 1, while 6, (Ty,,m) = 0.
(i): Forz =re?™% ¢ A,
logr —logra,
logron41 — logran

f:n (z) = zexp {2711' 0, (t)}

and for 7 = re?™® ¢ B,),
logr — logran4+2
log p+1 — log an+2

f;;(z) = zexp {27Ti Gn(t)} ,

(ii): Forz = re?™i? ¢ A,,
logr —logry,
log rop4+1 — logra,

Jin(2) =zexp {27‘[1’ 6,(t) — 1)}

and for z = re?™? € By,
logr —lograni2
logran41 —logran42
(iii): f;},(2) = f,,(2) =z forz & A, U B,.
Since lim,,_, 5 (log 2, — logry,—1) = lim,— oo (log 2,41 — logry,) = oo and 6,(¢) € [0, 1),
we see that

Jin(2) = zexp {2711' 6,(t) — 1)} ,

(32) Tim sup (K(f5) i+ )7 < v <n7l) =1
and
(3.3) Jim K(f) = lim K(f) =1,

where K (f) denotes the maximal dilatation of a quasiconformal map f.
We also see that f,5,(z) = fi,(t,z) = ¢(t,z) forz € Eandt € [(n + D71, n7!].
Moreover, fTJ;mﬁn(z) = z on C because 6, (T,,,») = 0.
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Now, we are ready to show that¢ : [ x E — Cisa quasiconformal motion. Let #p €
and ¢ > 0. If 7y # 0, then choose a positive integer n such that 7y € [(n + D=L eh.

CASE 1. #g # Tym.(m = 1,...,py — D and 1o # 0: Since K(fF, o (fi7,)7H —
1 ast — to, it follows from the uniform continuity of cross ratios under quasiconformal
deformation (see [11], the proof of the “only if” part of Theorem 1) that there exists a § > 0
such that if |t — 1p| < §, then

Io(¢t(a5 ba c, d)a ¢t0(aa ba c, d)) = p(‘]ct—j;l(a5 ba c, d)a ‘]C)f;;n(a5 ba c, d))
= ;O(f[-;l o (f[:’n)_l(atos b[()s Cl()7 dt())s (at()s bt()s Ct()v dt())) <é
for any four distinct points a, b, ¢, d in E, where a,, = f,0+n (@), by, = f,0+n (b), ¢ty = f,;;n(c)
and d;, = fiF, ().
CASE 2. t9 = Tymm forsome m (1 < m < p, — 1): Note that ¢(tp, z7) = z for any

z € E. By using (3.3) and the uniform continuity of cross ratios as above, we may find a
6 > 0 such that for any four distinct points a, b, c,d in E,

p(@i(a,b,c,d), p(a,b,c,d)) = p(ftfn(a, b,c,d),(a,b,c,d)) < ¢

iftgo <t <ty+ 6 and

p(@i(a, b, c,d), pr(a,b,c,d)) = p(ft’_n(a, b,c,d),(a,b,c,d)) < ¢

iftg—68 <t <t

CASE 3. to = n~': Inthis case, ¢ (to, -) is still the identity on E. By the same argument
as in Case 2, we see that there exists § > 0 such that for any four distinct points a, b, ¢, d in
E’

p(@i(a,b,c,d), p(a,b,c,d)) = p(ft';,(a, b,c,d),(a,b,c,d)) <¢

ifto <t < tg+ 6 and

p(¢i(a,b,c,d), ¢ya,b,c,d) =p(f , (a b, cd),(abcd)<e

iftg—68 <t < 1.
CASE 4. rp = 0: By the definition, ¢ (0, z) = z on E. Using the uniform continuity of
cross ratios again, we see from (3.2) that

p(¢i(a,b,c,d), gola, b, c,d)) = p(f(a,b,c,d), (a,b,c,d)) <¢
holds for sufficiently small # > 0 and large n € N.
Therefore, we conclude that ¢ : I x E — C is a quasiconformal motion. O

CLAIM 3. ¢ cannot be extended to a quasiconformal motion of C over any neighbour-
hood U C I about 0
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PROOF. Suppose that there exists a quasiconformal motion é of C over U which ex-
tends ¢. It follows from Proposition 1 that b C— Cisa quasiconformal map fort € U
andU >t i 4 € M (C) is continuous. Hence, there exists K > 1 such that qgt is K-
quasiconformal for any ¢ € U (taking U smaller if it is necessary).

Let N > Osuchthat1/N € U. Forany n > N, we consider F; := <j3, o ((?)(},H_l)—l)_l for
t € [(n+1)~1 n71]. Since Fuyy-1 =id and F, -1 = lim;y,1 F;, we verify that F, -1 () =
limtTn_ 1 F(atp) is homotopic to 7" () in X. (Indeed, F,-1|4, is a homeomorphism of the
annulus A, which keeps each boundary point fixed. It gives a p,-times rotation on A,. Since
F; is a family of homeomorphisms of C continuously depending on ¢, so when ¢ changes from
n+ 1D tton~!, o, moves continuously to P (o))

Now, we use the following lemma by Wolpert (see [22], [23], [25]).

LEMMA 4 (Wolpert). Let X, Y be hyperbolic Riemann surfaces and f : X — Y be a
K -quasiconformal map from X onto Y. Then, for any non-trivial and non-peripheral closed
curve o on X,

1
Eﬁx(a) =ty (f(@) = Klx(a)

holds, where £x (o) is the hyperbolic length of the geodesic on X homotopic to «.

Since dA), is K-quasiconformal, we see from Lemma 4 that
Ex (" (on)) = €x (F-1 () < K*0x(an) .

This contradicts (3.1). Thus, we have shown that ¢ cannot be extended to a quasiconfor-
mal motion of C over U. g

4. Teichmiiller space of a closed set in the sphere. By Lemma 2, every tame quasi-
conformal motion is a quasiconformal motion. In the Appendix of our paper, we show that a
quasiconformal motion of set E in @ over a connected Hausdorff space, can be extended to
the closure of E. This fact is also proved in the paper [24], where the parameter space is an
interval. It therefore follows that every tame quasiconformal motion of a set can be extended
to its closure.

Henceforth, we will always assume that E is a closed set in C (as usual, 0, 1, and oo are
in E).

One of our goals in this paper is to study the “universal property” for tame quasiconfor-
mal motions of a closed set E in @ over A. For that, we need some basic facts about the
Teichmiiller space of E, which is related to the “universal” holomorphic motion of E.

4.1. T(E) as a complex manifold. Two normalized quasiconformal self-mappings
f and g of C are said to be E -equivalent if and only if f~! o g is isotopic to the identity
rel E. The Teichmiiller space T (E) is the set of all E-equivalence classes of normalized
quasiconformal self-mappings of C.

An analytic description of 7' (E) will be more useful for our purposes. Let M(C) be
the open unit ball of the complex Banach space L*°(C). Each u in M(C) is the Beltrami
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coefficient of a unique normalized quasiconformal homeomorphism w* of C onto itself. The
basepoint of M (C) is the zero function. We define the quotient map

Pg : M(C) — T(E)

by setting Pg (1) equal to the E-equivalence class of w#, written as [w"]g. Clearly, Pr maps
the basepoint of M (C) to the basepoint of 7' (E).

In his doctoral dissertation ([12]), G. Lieb proved that T (E) is a complex Banach mani-
fold such that the projection map Pg from M (C) to T (E) is a holomorphic split submersion.
For details, the reader is referred to the paper [5].

4.2. The finite case. Let E be a finite set. Its complement E¢ = £2 is the Riemann
sphere with punctures at the points of E. Since T (E) and the classical Teichmiiller space
Teich($2) are quotients of M (C) by the same equivalence relation, T (E) can be naturally
identified with Teich($2) (see Example 3.1 in [15]). For references on standard Teichmiiller
theory, see [8] or [20].

4.3. Forgetful maps. Let E and E be two closed sets such that E C E ; as usual, O,
1, and oo belong to both E and E.If w is in M(C), then the E—equivalence class of w" is
contained in the E-equivalence class of w*. Therefore, there is a well-defined ‘forgetful map’
PEE from T(E) to T(E) such that Pg = PgpoPp. It is easy to see that this forgetful map
is a basepoint preserving holomorphic split submersion.

4.4. Teichmiiller metric on 7(E). Teichmiiller distance dys(u, v) between u and v
on M (C) is defined by

ol
-7l

dy(u,v) = tanh ™! H

The Teichmiiller metric on T (E) is the quotient metric
drg)(s,t) = inf{dy(p,v) : pand v € M(C), Pg(n) = s and Pg(v) =t}.
It is proved in [5] that the Teichmiiller metric on 7 (E) is the same as its Kobayashi metric.
4.5. Douady-Earle section. The following fact will be useful in our paper.

PROPOSITION 3. There is a continuous basepoint preserving map s from T(E) to
M (C) such that Pg o s is the identity map on T (E).

See [5] for a proof. It immediately follows that
COROLLARY 3. The Teichmiiller space T (E) is contractible.

Lett € T(E) and Pre(u) = t for uw € M(C). If ||ulloo = k, then ||s(t)]co <
max(k, c(k)) where c(k) is a constant that depends only on k and 0 < c(k) < 1. The ex-
istence of c(k) follows from Proposition 7 in [3]. For details see Sections 3.2 and 3.3 (and

especially Remark 3.6) in [9].

DEFINITION 8. The map s from T'(E) to M (C) is called the Douady-Earle section of
Pr. for the Teichmiiller space T (E).
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Let G be a group of Mobius transformations that map E onto itself. For each ¢ in G,
there exists a biholomorphic map p4 : T(E) — T (E) which is defined as follows: for each
win M(C),

(4.1) pg(wlp) =[gow" o g~ g

where 7 is the unique M&bius transformation such that g o w* o g~ ! fixes the points 0, 1, and
00.
It follows from the definition that, for each g in G, py4 is basepoint preserving.

DEFINITION 9. We define M (C)© and T(E)€ as follows:

M(@©)C :={ueMQC): (no g)z—: = a.e. on C for each g € G}
and
T(E)C :={t € T(E) : py(t) =1t foreach g € G}.
The next proposition shows the conformal naturality of the Douady-Earle section s :
T(E)— M(C).
PROPOSITION 4. Ift € T(E)C, then s(t) € M(C)°.
See [9] or [10] for a proof.
5. Universal holomorphic motion. The universal holomorphic motion Wg of E over
T (E) is defined as follows:
Ye(PE(),z) = w"(z) foru e M(C)andz € E .

The definition of Pg in §4.1 guarantees that W is well-defined. It is a holomorphic
motion since Pg is a holomorphic split submersion and © +— w*(z) is a holomorphic map
from M (C) to C for every fixed z in C (by Theorem 11 in [1]). This holomorphic motion is
“universal” in the following sense:

THEOREM 1. Let¢p : V X E — Chea holomorphic motion. If V is a simply con-
nected complex Banach manifold with a basepoint x, there is a unique basepoint preserving
holomorphic map f : V — T(E) such that {*(Wg) = ¢.

For a proof see Section 14 in [15].
Note that if E = C, then T(E£) = M(C), and the universal holomorphic motion ¥z :
M(C) x C — Cis given by:

Ya(p, z) = wh(2) for all (i, z) € M(C) x C.

We also have the following (see Corollary 6.1 in [16]). Here, V is a simply connected
complex Banach manifold with a basepoint, and E is a closed set in C (as usual, 0, 1, co are
in E).

PROPOSITION 5. Let¢ :V x E — Chea holomorphic motion. Then, there exists a
quasiconformal motion ¢ : V. x C — C such that ¢ extends ¢.
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PROPOSITION 6. Let ¢ : X x E — C be a holomorphic motion where X is a con-
nected complex Banach manifold with a basepoint xo. Then, ¢ is a tame quasiconformal
motion.

PROOF. Itis sufficient to consider a simply connected neighborhood N (xg) of the base-
point xo. By Proposition 5, there exists a quasiconformal motion 5 : N(xp) % C — C such
that a(x, 7) = ¢(x, z) forall (x, z) € N(xg) x E. Our assertion now follows by Proposition
1, and Lemma 1. O

By the above proposition, ¥g : T(E) x E — C is also a tame quasiconformal motion.
Theorem II claims that this is the universal tame quasiconformal motion of the closed set E
over a simply connected Hausdorff space.

Let B be a path-connected Hausdorff space with a basepoint xg.

LEMMA 5. Ifthe continuous maps f and g from B to T (E) satisfy:
(1) Ye(f(x),z) =WE(g(x), 2) forall x in B, and for all z in E, and
(1) f(p) = g(p) for some p in B,

then f(x) = g(x) forall x in B.

See Lemma 12.2 in [15].

Suppose E| and E; are closed subsets of C such that E{ C Eyand 0, 1, and oo are in
E1. We have the standard projections Pg, : M(C) — T(Ey) and Pg, : M(C) — T(E»).
Recall from §4.3 that there is a well-defined ‘forgetful map’ pg, g, from T (E7) to T(Eq)
such that Pg, = pg, E, o PE,, and that pg, g, is a basepoint preserving holomorphic split
submersion. Furthermore, both ¥, : T(E{) x E| — C and U, : T(Ey) x Ey — C are tame
quasiconformal motions.

PROPOSITION 7. Let f1 and f> be basepoint preserving continuous maps from B into
T (E1) and T (Ey) respectively. Then pg, g, o fo = fi ifand only if £ (WE,) extends f;"(¥E,).

See Proposition 4.7 in [10] for a proof.
In Proposition 7, if E; = E and E; = C, we get the following

COROLLARY 4. Let f1 and f>» be basepoint preserving continuous maps from B into
T (E) and M(C) respectively. Then Pg o f> = fi if and only if f5(Wg) extends f*(¥E).

6. Quasiconformal motion of a finite set. Let X be a connected Hausdorff space
with a basepoint xo and E be a closed set in C (as usual, 0, 1, and co are in E).

LEMMA 6. If¢: X X E — Cisa quasiconformal motion, for each z in E, ¢ (-, z) :
X — C is continuous.
See Lemma 4.4 in [10].

REMARK 4. Let¢p: X x E — C be a tame quasiconformal motion. By Lemma 2, ¢
is also a quasiconformal motion. Therefore, by Lemma 6, it follows that, for each z in E, the
map ¢ (-, z) : X — C is continuous.
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For the rest of this section, we assume that £ = {0, 1, o0, {1, ..., {,} wheren > 1 and
i #F¢jforl <i#j<nand{; #0,1,00forl <i < n. Recall from §4.2 that T (E) is
naturally identified with Teich(C\ E).

PROPOSITION 8 (Nag). Givenn > 0, let
Vi={zeC":zi#zjforl <i# j<nandz; #0,1foralli =1,...,n}.
There is a holomorphic universal covering p : T(E) — Y, such that

p(w"1E) = " (1), ..., w" (&) forallw e M(C).
See [19]. A proofis also given in [2].

PROPOSITION 9. Let¢p : V X E — Cbea quasiconformal motion. If V is simply
connected, there exists a basepoint preserving continuous map f : V — T(E) such that
[*(WE) = ¢.

PROOF. For x in V, let

F(x) = (¢(~x7 ;l)a LN ¢(~x7 é‘n))
Note that the basepoint of Y}, is

(#(x0, &1)s -, (0, &n)) = (C1s -+, Gn)-

By Lemma 6, F : V — Y, is a basepoint preserving continuous map. Since V is simply
connected, by Proposition 8, there exists a basepoint preserving continuous map f : V —
T(E),suchthat po f = F. Let f(x) = Pg(u) for u in M(C). It immediately follows (by
Proposition 8) that f*(Wg) = ¢. O

THEOREM 2. LetV be simply connectedandlet¢ : V X E — Chea quasiconformal
motion. There exists a quasiconformal motion ¢ : V x C — C such that ¢ extends ¢.

PROOF. By Proposition 9, there exists a basepoint preserving continuous map f : V —
T (E) such that f*(¥g) = ¢. By Proposition 3, there exists a basepoint preserving continuous
map s from T(E) to M(C) such that Pg o s is the identity map on 7' (E). Let f =50 f.
Define 5 .V x C — C as follows:

Fx,)=w W) forall(x,z) eV x C.

Since f is continuous, it follows by Proposition 1 that 5 is a quasiconformal motion.
Finally, for all (x,z) € V x E, we have
FrWE)(x, 2) = WE(f(x), 2) = WE(PE(s(f (X)), 2) = WE(PE(f (X)), 2)
= w/™(z) = ¢(x, z) which shows that ¢ extends ¢. O
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7. Proof of theorem II.

7.1. A construction. Henceforth we assume that E is an infinite closed set in C such
that 0, 1, and co are in E. Let Eq, E3, ..., E,, ... be a sequence of finite subsets of E such
that

{0,1, 0 CEiCE,C---CE, C---

and [ J02, E, is dense in E.

Foreachn > 1,let S, = C \ E,. We saw in Subsection 4.2 that T (E,) and Teich(Sy)
are naturally identified. Let 0,, be the basepoint of Teich(S,), and let d,, be the Teichmiiller
metric on Teich(S,).

Let S =[], S» be the disjoint union of the S,,. The product Teichmiiller space T eich(S)
is the set of sequences ¢ = {t,}7° ; such that #, belongs to Teich(S,) for each n and

sup{d,,(0,,t,) :n > 1} < 00.

The basepoint of Teich(S) is the sequence 0 = {0,} whose nth term is the basepoint of
Teich(S,). It is well-known that T eich(S) is a complex Banach manifold. The Teichmiiller
distance on Teich(S), denoted by dr is given by:

dr(t,s) = sup{d,(tn, sn)}

where ¢t = {f,} and s = {s,} are two points in Teich(S). For more details about product
Teichmiiller space, see §7 in [5] or §5 in [15]. For the reader’s convenience we note the
following fact, which will be useful in our discussion.

LEMMA 7. Let X be a connected complex Banach manifold and, for eachn > 1, let
fn be a holomorphic map of X into Teich(S,). For each x in X, let f(x) be the sequence
{fn GO} If f(x0) belongs to Teich(S) for some xo in X, then f(x) also belongs to Teich(S)
forall x in X, and the map x — f(x) from X to Teich(S) is holomorphic.

For a proof see Corollary 7.6 in [5] or Corollary 5.5 in [15].

For each n > 1, let 7, be the forgetful map pg g, from T (E) to Teich(S,) and let p,
be the forgetful map pg, g, from Teich(Sy+1) to Teich(S,). (The map p, is the same as
the puncture-forgetting map in classical Teichmiiller theory.)

It is clear that

(7.1) Ty, = ppomyy foral n>1.

Since each forgetful map 7, preserves basepoints, Lemma 7 implies that the sequence
{m,(7)} belongs to Teich(S) for each t in T(E) and that the map = : T(E) — Teich(S)
defined by setting

w(t) = (mi(z),...,mn(7),...) forallt € T(E)
is holomorphic. Equation (7.1) implies that 7 maps 7' (E) into the closed subset

T ={x=(x1,x2,...) € Teich(S) : py(xp11) =x, foralln > 1}
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of Teich(S).
PROPOSITION 10. The map  is a homeomorphism from T (E) onto T'.
See Theorem 7.1 in [15].

7.2. A proposition. Let¢:V X E — C be a tame quasiconformal motion, where V
is a simply connected Hausdorff space with a basepoint xo. We assume that E is an infinite
closed set in C such that 0,1,andocoarein E. Let Eq, Ea, ..., E,, ... be a sequence of finite
subsets of E such that

{0,1,c00}CEICE,C---CE, C---

and [ J°2| E, is dense in E. Foreachn > 1, let S, = C \ En. Let S =[], S» be the disjoint
union of the S,, and Teich(S) denote its product Teichmiiller space. Let ¢, : V x E;, — C
be ¢ restrictedto V x E,. So, ¢, : V X E,, — C is a tame quasiconformal motion of the
finite set £,,. By Lemma 2, ¢, is also a quasiconformal motion. Therefore, by Proposition
9, each ¢, gives a unique basepoint preserving continuous map f, : V — T(E,) such
that f¥(WEg,) = ¢,. Note that each T(E,) is naturally identified with Teich(S,). Define
f = (fn). Then the following proposition shows that f is a map of V to Teich(S).

PROPOSITION 11. For each x in V, f(x) is in Teich(S) and the map f : V —
Teich(S) is continuous.

PROOF. There exists a neighborhood N (x(), and a continuous map gy, : N(xg) —
M (C) such that ¢ (x, z) = w9 (x)(z) for all x in N(xg) and for all z in E (and therefore, for
Zp in E, for each n > 1). Note that g, maps xo to 0 in M (C). For each n > 1, there exists a
basepoint preserving continuous map f,, : V. — T (E,) such that f*(WVg,) = ¢,.

We see that Pg, o gy, = f, forall n > 1. Indeed, Dn : T(E,) — Y, is the holomorphic
universal covering (Proposition 8) and it follows from f;*(Wg,) = ¢, that p,(Pg, o Gxo (X)) =
Pn(fn(x)) forany x € N (xp). Thus, foracurve y C N(xq) connecting xo and x, Pg, 0 Gxo (V)
and f, (y) are lifts of the same curve p,(fn(y)) in ¥,. Furthermore, Pg, o gx,(x0) = fn(x0)
because both Pg, o gy, and f,, are basepoint preserving maps. It follows from the monodromy
theorem of coverings (cf. [21] Chapter 2) that Pg, o gy, (x) = f,(x) and we obtain that
Pg, o gx, = fn on N(x0).

Since the quasiconformal map w9%% @) determines the point f,(x), we have

dn(fn(x0), fu(x)) < log K (w90™))  (n € N)
from the definition of the Teichmiiller distance. Therefore, we conclude that

sup{dy (f(x0), f(x))} < log K (w%0™) < oco.

This implies that f(x) is in Teich(S) for any x in N (xp).
From the same argument as above, we see that

dn(fu (), fu (X)) < log K (w0 o (w90 ))~h),
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for every n € N. Since gy, : N(xg) — M(C) is continuous, we see that f = (f;) is
continuous in N (xg).

Next, we will show that f(x) isin Teich(S) forany x € V. We takeacurve y : [0, 1] —
V with y(0) = x¢ and y(1) = x. For each y(¢) (t € [0, 1]), there exists a neighborhood
N(y(t)) of y(¢) and a continuous map g; : N(y(t)) — M (C) such that
(7.2) $(y.2) = wi ()

foreachy € N(y(t))and z € E.
Since y : [0,1] — V is continuous, we may take an open covering Iy, I, ..., Iy of
[0, 1] such that I;_y N I; is a subinterval of [0, 1], and y(l;) C N(y(s;)) for some s; € [;
(i=0,1,...,k). Put g; := g, then the map ¢, ,, defined by
(7.3) li >t [gi(D)]g, € T(En)
is continuous. Now, we compare f,, o y|Ip and ¢ , on Ip N I;.
We use the space Y, given in Proposition 8 and the holomorphic universal covering
Dn @ T(E,) — Y, again. Because of (7.2), we have p,(f, o ¥ (t)) = pn(@1.,(t)) for every
t € IpN 1. It means that f, o y(lop N I1) and @1 ,(Ip N I7) are lifts of the same curve in ¥,,.
Therefore, there exists an element y of the mapping class group of the surface C \ E, such
that
Xo@in=faoy onlyNI.
Thus, amap Fj : Ip U I} — T(E,) defined by
Flz{fnoy on Iy
Xo@in on I

is continuous on Iy U I1. Furthermore, p,, (F1(¢)) = pn(f o y(¢)) forany ¢t € Iy U I} and we
conclude that F1 = f, o y on Iy U I1 from the monodromy theorem.

Now, we take points 1 in Io N I1 and t2 in 11 N I. Since y is an isometry with respect to
the Teichmiiller distance, we have

dn(F1(t1), F1(2)) = dn(x (01,0 (1)), x (91, (22)))
= dn (</)1,n(ll)7 wl,n(IZ))
=dy([q1(tD)]E,. [91()]E,) -

Noting that g; is independent of n, we see that there exists a constant dj» > 0 not depending
on n such that

dn(fu(y (1)), fu(y (22))) = dn(F1(11), F1(12)) < d12.

By continuing the same argumentfort; € [,_1 N I; (i =3,4,...,k), we have

dn(fu(y@iz1), fu(y (4))) < di—1)i

for some constant d(;—1); > 0. Therefore, we conclude that

dn(fn(x0), fn (X)) =dn(fu (¥ (0)), fu(y(1)))
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k+1
< da(fuy i), fuly @) (0 =051 =1)
i=1
k+1
SZd(i_l)i <oo forn>1.
i=1
This implies that f(x) = (f,(x)) belongs to T eich(S). Similarly, we can prove the continuity
of f. O

7.3. Proof of Theorem II. Let¢p : V x E — C be a tame quasiconformal motion,
where V is a simply connected Hausdorff space with a basepoint x.

First, observe that if F and G are two basepoint preserving continuous maps from V into
T (E) such that F*(Wg) = G*(¥E) = ¢, then by Lemma 5 it follows that F = G. Thus, if a
basepoint preserving continuous map F : V — T (E) exists with F*(¥g) = ¢, then it must
be unique.

We now show the existence of such a map. For each n > 1, the restriction ¢, of ¢ to
V x E, is a tame quasiconformal motion of the finite set E,, (as in §7.2). By Lemma 2, ¢,, is
also a quasiconformal motion. By Proposition 9, each ¢, gives a unique basepoint preserving
continuous map f, : V. — T(E,) such that f,"(¥g,) = ¢, foreachn > 1. Let f = (f,). By
Proposition 11, f is a basepoint preserving continuous map from V into Teich(S). It is clear
that ¢, extends ¢,. Therefore, by Proposition 7, we have p, o f,+1 = f, foralln > 1.
Therefore, f maps V into T’. By Proposition 10, 7 maps 7 (E) homeomorphically onto 7".
Hence, there exists a unique map F : V — T(FE) such that f = 7 o F. The map F clearly
preserves basepoints, and is also continuous.

Next, observe that 7, o F = f; for each n > 1. It follows by Proposition 7 that F* (W)
extends f,*(Wg,) = ¢, for each n. Therefore, F*(Wg) = ¢ on V x | Joo | E,. Since |, En
is dense in E, it follows by Lemma 3 that F*(Wg) = ¢ on V x E. O

7.4. Corollaries. We give the proofs of the Corollaries of Theorem II.

PROOF OF COROLLARY 1. By Theorem II, there exists a (unique) basepoint preserving
continuous map F : V — T (E) such that F*(¥g) = ¢. Consider the Douady-Earle section
s:T(E) > M(C) glven in Definition 8. By Proposmon 3, the map s is basepoint preserving
and is continuous. Let F = s o F. Define ¢ V x C — C as follows:

d(x.z7) = wF(x)(z) forall (x,z) € V x C.

Since F is a basepoint preserving continuous map, it follows by Proposition 1 that 5 is a
quasiconformal motion.
Finally, for all (x,z) € V x E, we have
F*(WE)(x,2) = YE(F(x), 2) = YE(PE(s(F (X)), 2) = W (Pg(F (x)), 2)
=wf®(g) = ¢(x z). This shows that ¢ extends ¢. O

As usual, E is an infinite closed set in (C, and 0, 1, and oo belong to E. Let G be a group
of Mobius transformations such that E is invariant under the action of G. For each ¢ in G,
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there exists a biholomorphic map p, : T(E) — T (E) which is defined as follows: for each
win M(C),

(7.4) pg((w1E) = [Gow" o g 'k

where § is the unique Mébius transformation such that § o w*” o g~! fixes the points 0, 1, and
0.
It follows from the definition that, for each g in G, pg4 is basepoint preserving.

DEFINITION 10. We define M (C)C and T (E)C as follows:

M(C)% = {ue M@Q): (Mog)g—/ = p a.e. on C for each g € G}
g

and
T(E)® :={t e T(E): py(t) =t foreach g € G}.

The next proposition shows the conformal naturality of the Douady-Earle section s :
T(E) — M(C).

PROPOSITION 12. Ift € T(E)°, then s(t) € M(C)C.

See [9] or [10] for a proof.

In the next proposition, B is a path-connected Hausdorff space with a basepoint xg. The
proof is exactly the same as in the proof of Proposition 4.10 in [10], where it was proved for
quasiconformal motions. We include it for the reader’s convenience.

PROPOSITION 13. Let¢ : B x E — C be a tame quasiconformal motion, where
B is a path-connected Hausdorff space with a basepoint. Suppose there exists a basepoint
preserving continuous map f : B — T (E) such that f*(Wg) = ¢. Then, ¢ : B x E — Cis
G-equivariant if and only if f maps B into T(E)©.

PROOF. Suppose f maps B into T(E)®. Let g € G, x € V, and f(x) = Pg(u). So,
¢(x,2) =WE(f(x),z) = wH(z) forall zin E, and ¢ (x, g(z)) = w"(g(z)) forall z in E.
Now, p4(f(x)) = f(x) implies that
[w*]E = [6:(9) ow" 0 g1k
where 6, (g) is the unique Mobius transformation such that 6, (g) o w# o g~ fixes 0, 1, and
0o. This means that 6, (¢g) o w* o ¢~! = w* on E. Therefore, we have

0x(9)(w"(2)) = w"(g(z)) forall z€E.

We conclude that ¢ (x, g(z)) = 6x(g9)(¢(x, z)) for all z in E, and so, ¢ satisfies Equation
(1.3).

Next, suppose the tame quasiconformal motion ¢ satisfies Equation (1.3). Let x € B and
f(x) =[wH]g. For x € B, and g € G, there exists a Mobius transformation 6, (g) such that

¢(x, 9(2)) = 0x(9)(@(x,2)) forall ze€ E.
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Since f(x) = [w*]g, we have ¢ (x, g(z)) = w"(g(z)) for all z in E. Therefore, w”(¢(z)) =

O (g)(wH(z)) for all z € E. We conclude that w* = 6(g) o w* o ¢~! on E. Since the

quasiconformal map w* fixes 0, 1, and oo, it follows that 8, (g) o w* o g‘1 fixes 0, 1, and oo.
By definition of o4, we have

pg((w1E) = [Gow" o g g

where 7 is the unique Mobius transformation such that g o w* o g_1 fixes 0, 1, and oco. It
follows that § = 6, (g). Therefore, we have

f)=[w'lg and pg(f(x) =[6x(g) ow" 0 g 5.

Since f is continuous, and p4 is holomorphic for each g in G, it follows that pg o f is a
continuous map for each g in G. Also, since f and pg are both basepoint preserving, we
have f(x0) = pg(f(x0)). And since w* = 0y(g) o w* o g~! on E, we have Wg(f(x),2) =
YE(pg(f(x)),z) forall zin E. It follows by Lemma 5 that f(x) = pg(f(x)) for any x in B.
This means, that f maps B into T (E)°. O

PROOF OF COROLLARY 2. We use the arguments in the proof of Theorem 2. By The-
orem II, there exists a basepoint preserving continuous map F : V. — T(E) such that
F*(Wg) = ¢. By Proposition 3, there exists a basepoint preserving continuous map s from
T(E) to M((C) such that Pg o s is the identity map on T (E). Let F = s o F. Define
d) V x C — C as follows:

Fx.) =wf™) forall (x,z) eV xC.

As in the proof of Theorem 2 it is clear that 5 extends ¢, and 5 is a quasiconformal motion.
Since ¢ is G-equivariant, it follows by Proposmon 13 that F : V — T(E)®. By Proposi-
tion 12, F:V>M (C)©. This shows that ¢ is G-equivariant. O

8. Appendix. In the following discussion, let E be any set (not necessarily closed) in
C. The blanket assumption that 0, 1, and co belong to E holds. Following Definition 3, we
can introduce the concept of continuous motion of E (also given in [17]).

DEFINITION 11. Let X be a connected Hausdorff space with a basepoint xo, and let £
be a set in C such that E contains the points 0, 1, and co. A normalized continuous motion of
E over X is acontinuousmap ¢ : X x £ — C such that:

(1) ¢(x0,z) = zforall zin E, and

(ii) for each x in X, the map ¢ (x, -) is a homeomorphism of E onto its image, that fixes
the points 0, 1 and co.

PROPOSITION 14. Let¢ : X x E — C be a quasiconformal motion of E where X is a
connected Hausdorff space with a basepoint xo. Then ¢ can be extended to a quasiconformal
motion of the closure E over X. Furthermore, ¢ : X x E — C is a continuous motion.
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PROOF. The idea of the proof given here is inspired by the proof of the A-lemma in
[14]. However, our proof is quite modified, since the parameter space here is any connected
Hausdorff space.

The proof is divided into four steps.

We first show that ¢ is jointly continuous on X x E. In the second step, we prove that for
any x € X, ¢.(-) = ¢(x, ) is locally uniformly continuous on E. Thus, ¢, can be extended
to a continuous function ¢, on E. In the third step, we prove that

a(x,z)=5x(z):Xxf—w’C\

is a quasiconformal motion extending ¢. From the first step we know that ¢ is jointly contin-
uous on X x E. Since Ex is injective and continuous on E, which is a compact subset in @,
it is a homeomorphism from E onto o, (E). This implies that ¢ is a continuous motion, and
thus ¢ is also a continuous motion. For the reader’s convenience, we include all details.

STEP 1: ¢ is a jointly continuous map on X x E. For each x € X, there exists a
neighborhood U, of x such that

p(¢x(a,b,c,d), py(a,b,c,d)) <1

holds for any y € Uy and for any quadruple (a, b, ¢, d) of distinct points in E. Since ¢ is
normalized and (z, 1, 0, 00) = z, we have

P($x(2), dy(2)) < 1

for any z(# 0,1,00) € E and y € Uy. Therefore, for any z € E \ {0, oo}, there exists a
constant C = C(|¢,(z)|) > 0 such that

(8.1) 0<C ' <lipy() =C,

holds for any y € Uy, since ¢y (1) = 1.
Now, we divide X into two parts X and X1 = X \ Xy, where

Xo = {x € X | ¢x(-) is continuous on E}.

We will show that X = X(. First, we show that X is open. We show that U, C Xy for

x € Xp. Since ¢, is continuous on E, for each z € E \ {oo} and ¢ > 0 there exists § > 0 such

that |y (2) — @ (2))| < €if |z —7/| < 8. From (8.1), we have for the constant C = C(|¢x (z)])

above,

$x(2) — ¢x(2))
#x(2)

when z is in E \ {0, 00}. Since p(¢x (7,0, z, 00), ¢y (z/,0,z,00)) < 1 for y € U, and

¢+ (7,0, z,00) = 0as e — 0, there exists a constant bl = D;(C, &) > 0 such that

¢y (2) — ¢y(2)
d)y (2)

and D; — 0 as e — 0. Itis because the hyperbolic metric p(z)|dz| on C\ {0, 1} diverges as

z— 0.

¢:(2', 0,2, 00)| = < Clx(2) — ¢x (2N < Ce,

(8'2) = |¢y(z/a 07 Z, Oo)l S Dl ’
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It follows from (8.1) and (8.2) that
(8.3) lpy(z) — ¢y(z)| <CD; - 0 (g — 0).

Therefore, ¢y is continuous on E \ {0, oo} for y € U,. Permuting the role in {0, 1, 0o}, we
see that ¢y is continuous on E for y € Uy and Xy is an open set.

Next, we will show that X is open. For x € X1, we show that U, C X;.

Take z € E where ¢, is not continuous. By the same reason as above, we may assume
that z is in E \ {0, oo}. Since ¢, is not continuous on E, there exist a constant &g > 0 and a
° ; C E converging to z such that

sequence {z,},
[6x(2) — Px(zn)| = €0 (n=1,2,...).

Thus, from (8.1) we have

Ox(2) — Px(2n)
¢+ (2)
Since p(¢x(zx, 0, 2, 00), ¢y (24, 0, z, 00)) < 1, there exists a constant Dy = D>(C, g9) > 0

such that

> C_lE() .

|¢X(Z}’l7 05 Z, OO)| =

|¢y(Zn’0aZa OO)lZ >D2.

‘ ¢y (2) — dx(zn)
#y(2)

By using (8.1) again, we obtain

y(2) — by (@n)| = |y (zn. 0. 2, 00) ||y (2)| = C™' D2 > 0.
Hence, ¢, is not continuous at z and X is open. Therefore, we conclude that X = X because
xg € Xo.

Finally, we show that¢ : V x E — Cis jointly continuous. Take a point (x,z) € V X E
and ¢ > 0. We may assume that z # 0, co by the same reason as above. We take a point
z0(# 0, 00, z) in E and fix it. We also take ¢’ > 0 sufficiently small so that |¢,(z) — w| < &
if p((dx(2), 0, P (20), 00), (w, 0, Px(z0), 00)) < &', where (a, b, ¢, d) is the cross-ratio of
distinct 4 points a, b, c and d.

Since¢p : X x E — Cisa quasiconformal motion of E, there exists a neighborhood U
of x in X such that

p(¢x (2,0, 20, 00), ¢y(z, 0, 20, 00)) < &’
for any y € U. Thus, we have
|px(2) — dy(2)| < €.
By the same argument as in (8.3), we see that
lpy(2) — @y ()l <&

if z’ belongs to a sufficiently small neighborhood N of z. Therefore, for (y,z’) € U x N, we
have

2 (2) = @y ()] < 19 (2) — Dy (D] + 1By (2) — ¢y ()] < 2e.
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Hence, we conclude that ¢ is a jointly continuous map on X x E.

STEP 2: For each x € X, ¢, is locally uniformly continuous and thus can be continu-
ously extended to E. Consider

Ex :=Em{% < IZISN}

for every positive integsr N - Since ¢, is continuous on E and ¢, (0) = 0 and ¢, (c0) = oo,
there exists a constant C = C(x, N) > 0 such that we have
(8.4) 0<C ' <@ =C
for every z € Ey. Hence, we see that there exists a constant C' = C’(x, N) > 0 such that
8.5) 0<C""<lpy@|=C

holds for any y € U, forany z € En.
Now, we divide X into two parts X, and X| = X \ X|,, where

X6 = {x € X | ¢x(-) is uniformly continusous on Ey}.

We will show that X = X{,. First, we show that X is open.
Since ¢, is uniformly continuous on Ey, for any ¢ > 0 there exists § > 0 such that
|px (2) — ¢x(2')| < € whenever |z — 7’| < § for two points z, z” € Ex. From (8.5), we have

@x(2) — Py ()
#x(2)
Since p(¢x(2',0,z,00), ¢y(z',0,2,00)) < 1 for y € Uy, there exists a constant D] =

D/ (C’, &) > 0 such that

lpx (2, 0, 2, 00)| = < C'lpx(z) — ¢ (2] < C'e.

(8.6) ¢y (2, 0, 2, 00)| = ‘M

¢y (2)
and D' — 0 as ¢ — 0. It follows from (8.5) and (8.6) that

lpy(2) =y (N < C'Dy — 0 (e — 0).

< Dy,

Therefore, ¢, is uniformly continuous on Ey for y € Uy and X, is an open set.

Next, we will show that X/ is open. For x € X{, we show that U, C X]. Since
¢, is not uniformly continuous on Ey, there exist a constant &g > 0 and two sequences
{za}52: {2,152, C En such that

|zn—z;l|—>0 (n - o0)
but

|px(zn) — px(z) =0 (n=1,2,...).
Thus, from (8.5) we have

O (2n) — Px (Z;l)
&« (zn)

px (2}, 0, z4, 00)| = > ' gy
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Since p(¢x(z;,, 0, 2, 00), Py(z;,, 0, 24, 00)) < 1, there exists a constant D, = D,(C’, &9) >
0 such that

|¢y(Z:1107Zn1 OO)|= zDé

‘¢y(zn) — ¢« (Z;l)
&y(zn)

By using (8.5) again, we obtain

|y (zn) — by ()| = by (2. 0, 20, 00) 1By (zn)| = C'7' Dy > 0.

Hence, ¢y is not uniformly continuous on E and X is open. Therefore, we conclude that
X = X, because xq € X,

Letting N — oo, we see that ¢, is locally uniformly continuous on E \ {0, oco}(=
U%=; En). Since we may permute the role in {0, 1, 00}, ¢ is locally uniformly continuous
on E.

Since ¢, is locally uniformly continuous on E, it can be continuously extended to ¢, on
E. Define a map

$:XxE—C
by
d(x,2) =, (2).

STEP 3: ¢ : X x E — Cisa quasiconformal motion. We first show that ¢, is
injective on E for every x € X. The proof is done by the same technique as in Steps 1 and 2.
Moreover, it suffices to show the claim only for E \ {0, co} because the argument works on E
by permuting the role in {0, 1, co} as before.

We set

X = {x € X | ¢, is injective on E}
and X| = X \ X{j. We show that U, C X for x € X[ as before. Take any y € U, and
two distinct points z, 2’ € E. It suffices to show that ¢ (z) # ¢,(z') whenz orz’ € E \ E.
Suppose that 7 € E \ E and 7/ € E. Then, there exists a sequence {za}32, C E\ {7}

converging to z. Since ¢, is injective, there exists a constant &g > 0 such that

2 (2) = b (@) = 1dx(2) — ¢px(zn)] = €0

for any n € N. Hence, we may use the same argument in proving the openness of X in Step
1 and we obtain

|6y (2) — by (@n)| = 16y (20, 0, 2, 00) |1y ()] = C™' Dy > 0,

for some constants C, D, which are independent of n. Thus, by taking the limit, we conclude
that ¢, (z) # ¢,(z'). The same argument shows that ¢, (z) # ¢, (z’) for two distinct points
7,7 inE —E.

The openness of X/ is shown by the same way. For x € X{, we take y € U,. Since
¢, is not injective, we have two distinct points z, z’ € E with ¢,(z) = ¢,(z'). Suppose that
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z€ E\ Eandz € E. Then, there exists a sequence {zn}72, C E converging to z. Since o,
is continuous on E, we have

| (2n) = 1 (2] = hx(zn) = Px (2] = 0 (n — 0).

Now, we use the same argument in proving the openness of X in Step 1 and we obtain

1By (z) = By ()] = by (z) — Py = 0 (n — 00).

Therefore, y € X/ and X7 is open. Since xo € X(j, we have X = X{ as desired.
Letz; € E (i = 1,2, 3, 4) be four distinct points. Then, there exists sequences {z;‘ Zi 1 C
E converging to z;. Since ¢ is a quasiconformal motion of E over X, for any ¢ > 0 and for
any x € X, there exists a neighborhood U, (¢) such that
£
p(x (2], 25,25, 24), ¢y (2], 25, 25, 24)) < 3
holds for any y € U,(¢) and for all n € N. Taking the limit as » — oo, we obtain

— — &
P(D:(21,22,23,24), @521, 22,23, 24)) = 5 < €.

We have shown that ¢ is a quasiconformal motion of E over X.

STEP 4: 5 and ¢ are both continuous motions. Since EC C is closed and thus com-
pact and since ¢, : E — C is continuous for any x € X, the image ¢, (E) < C is closed and
thus compact. Since ¢, is also injective on E,

4. :6.(B)>E
is continuous. We conclude that
¢ E— ¢.(E)
is a homeomorphism. From Steps 1 and 3, we know that ¢ is jointly continuous on X x E,

thus ¢ is a continuous motion. Since it is an extension of ¢, we conclude that ¢ is also a
continuous motion. i
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