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Abstract. We give a complete characterization of the classes of weight functions
for which the higher rank Haar wavelet systems are unconditional bases in weighted norm
Lebesgue spaces. Particulary it follows that higher rank Haar wavelets are unconditional bases
in the weighted norm spaces with weights which have strong zeros at some points. This shows
that the class of weight functions for which higher rank Haar wavelets are unconditional bases
is much richer than it was supposed.

1. Introduction. The wavelet analysis, since its creation, has been used in many areas
of applied mathematics. The main idea is simple: find a function (wavelet or wavelet function)
defined in R or in Rd so that the system of its dilations and translations constitute a complete
orthonormal system (ONS) in L2(R) or in L2(Rd). Previously that idea was used by A. Haar
for constructing a complete ONS in L2([0, 1]) such that the expansion of any continuous
function on [0, 1] converges uniformly. In the univariate case the simplest dilation is the
dyadic dilation. Thus for the simplest case a function g ∈ L2(R) is a wavelet if {gk,j : k, j ∈
Z}, where gk,j (x) := 2k/2g(2kx − j) is a complete ONS in the space L2(R).

Weighted norm inequalities have been studied by Hardy and Littlewood [17],
Babenko [3], Hirschman [22], Gaposhkin [13], Edwards [9], Chen [4], Helson and Szegö [19]
and others. Probably M. Rosenblum [40] was the first one who obtained a complete charac-
terization of weight functions for which a certain weighted norm inequality holds. Afterwards
B. Muckenhoupt [38] proved that the Hardy-Littlewood maximal function is a bounded oper-
ator Lp(R, ψ) → Lp(R, ψ), 1 ≤ p < ∞ if and only if ψ satisfies condition (Ap): for every
interval I ⊂ R

|I |−1
∫
I

ψ dt

[
|I |−1

∫
I

ψ−1/(p−1)dt

]p−1

≤ Bp ,

Bp is independent of I . The last result boosts investigations in the harmonic analysis and
related areas, several important weighted norm inequalities were obtained for weights which
satisfy (Ap) condition. It is clear that if ψ satisfies condition (Ap), p > 1 then the function
ψ−1/(p−1) is locally integrable, hence, if f ∈ Lp(R, ψ) is locally integrable. The character-
ization of weight functions w for which families of some operators related with generalized
Fourier series are uniformly bounded in weighted norm Lp(w) spaces gives classes of weight
functions which are different from (Ap) (see [29]). Particularly, w−1/(p−1) are not integrable
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on some intervals. Interestingly discussed cases came together when we study the class of
weight functions w ≥ 0 for which a given wavelet system {gk,j : k, j ∈ Z} is a basis in a
certain sense or unconditional basis in the weighted norm space Lp(R, w), 1 ≤ p < ∞. Let
us distinguish two cases:

(α): w−1/(p−1) is locally integrable.
(β): w−1/(p−1) is not locally integrable.

In terms of the above cases we can classify the publications related with the study of weight
functions for which a given wavelet system is an unconditional basis in the weighted norm
space Lp into two main groups. In [10], [11],[12], [1], [2] and others the study is done with
some restrictions which reduce it to the case (α). While in [35], [45] and [32] the aim is to
give a complete description without any additional restrictions.

Unfortunately in these papers the case (β) is not considered. It should be mentioned
that in [11] the description of the class of all weight functions w for which the dyadic Haar
wavelet system is an unconditional basis in weighted norm space Lp(R, w), 1 ≤ p < ∞
was formulated. The proof of the mentioned result follows easily from the results obtained
in [28]. Remarkably that class of weight functions contain weights which correspond to both
cases (α) and (β). At this point it would be appropriate to bring a citation from [1]: “we have
to say that, as it was pointed out by our referee in a previous version of this article, we are
unable to prove, without some extra condition on the weight, the implication (D1)⇒ (D3) in
[35] which givesAp as necessary condition for the fact that the Daubechies wavelet system is
an unconditional basis for Lp(dμ). Actually for the Daubechies case our result is contained
in Corollary 2 and we are only able to show that Ap is necessary under the extra assumption
of the local integrability ofw−1/(p−1).” The purpose of the present paper is to shed some light
on the doubts expressed by authors in [1].

To give a preliminary idea about the main subject of our study let us suppose that for a
given weight function w there exist some functions h such that

(a)
∫
R
gk,j (x)h(x)dx = 0 for all k, j ∈ Z;

(b) h
w

∈ Lp′
(R, w), 1/p + 1/p′ = 1.

Then any non trivial function h
w

as linear continuous functional will be a non trivial element

in the dual space Lp
′
(R, w). Moreover, this functional vanishes on all gk,j : k, j ∈ Z .

Hence our wavelet system is not complete in the space Lp(R, w). A necessary condition for
completeness of the system {gk,j : k, j ∈ Z} in the spaceLp(R, w) is the following condition:
h
w
/∈ Lp′

(R, w). Thus if we are going to describe all weight functionsw for which the system
{gk,j : k, j ∈ Z} is a basis in a certain sense in Lp(R, w), we have to consider all those weight
functions w for which the condition (b) is not true. For our study we will use the technique
by which similar questions were studied for incomplete systems in the weighted norm spaces
(see [26], [27], [28]). We also will show that the conditions (a) and (b) are not hypothetical
cases.

If we are going to study the wavelet system in Lp(R, w) it will be natural to suppose that

g ∈ L1(R) ∩ Lmax(p,p′)(R) .
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On the other hand the purpose of the present paper is not to obtain the most general results.
Hence, instead of the last restriction we will suppose that g ∈ L1(R) ∩ L∞(R). It is well
known that if a wavelet g ∈ L1(R) ∩ L2(R) then its Fourier transform ĝ should vanish at the
origin and thus the constant functions satisfy to condition (a). Which means that if someone
has studied the formulated question without describing the class of functions for which the
condition (a) holds and without considering weighted norm spaces Lp(R, w) with weights w
which does not satisfy the condition (b), then his proof is not complete.

In order to show that the question under consideration is not a technical problem we
revise the study done in [32] consisting of characterization of all weight functions w for
which the Haar wavelet system for m-dilations, m = 2, 3, . . . is an unconditional basis in
Lp(R, w). We have modified a little bit the definition of the higher rank Haar wavelets given
in [32] to make it real valued. It should be considered that we are complementing the results
obtained in [32] with results which correspond to the case (β). From the corollary of the main
theorem of the last section it follows that higher rank Haar wavelets are unconditional bases in
the weighted norm spaces Lp(R, w), wherew(x) = |x|r, r > p−1, which shows that higher
rank Haar wavelets are unconditional bases for weight functions from the case (β). For the
convenience of the reader we give complete proofs of all results giving preference to classical
methods.

We would like to add one more remark related with the given above citation from [1].
One can say that Daubechies wavelets are smooth so probably the question which we study
for the higher rank Haar wavelets is different for the Daubechies wavelets. Here we would
like to share our intuition about this question because at this moment we have no intention
to continue the research in this area. It should be mentioned that in [10], [11] there were
obtained all necessary tools for the study of the problem for the spline wavelets. Particularly
it was obtained the subspace of the functions h for which (a) holds which depends on the
smoothness of the splines. The last fact gives some hint for the Daubechies wavelets: it seems
that the solution depends also from the smoothness. The present paper is not a survey article
and we do not pretend to give a detailed review of all publications related with weighted
norm inequalities. Some publications have been dedicated to the decompositions in terms of
scaling and wavelet functions (e.g. [23], [24] and others). In those cases the weight functionw
satisfies the condition (α) and the phenomenon which we are studying is not present. Review
of some other results on weighted norm inequalities can be find in [39].

In Section 2 we prove an inequality for the orthogonal wavelet systems which particularly
shows that in the case of general orthogonal wavelet systems the set of nontrivial functions
h for which the condition (a) holds is not empty. In Section 3 we give all preliminary results
which will be used for our study. Next two sections are dedicated to themth rank Haar system
on [0, 1]. The results of these sections have certain interest.

It should be mentioned that they are used for proofs given in the last section, where the
main results for the higher rank Haar wavelets are obtained. As in the case of the dyadic Haar
wavelet the solution of the problem is obtained combining two cases on the interval [0, 1]:
the description of weight functions w for which the mth rank Haar system by {hl (x)}∞l=0 and
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{hl (x)}∞l=1 are unconditional bases in Lp([0, 1], w), 1 < p < ∞.

2. An inequality for wavelet type systems. If w ≥ 0 be a weight function on R, i.e.
a non negative locally integrable function then we write φ ∈ Lp(R, w), 1 ≤ p < ∞ if φ :
R → C is measurable on R and the norm is defined by

‖φ‖Lp(R,w) :=
(∫

R

|φ(t)|pw(t)dt
) 1
p

< +∞ .

For a g ∈ L2(R) and m = 2, 3, . . . we will denote

gk,j,m(x) := mk/2g(mkx − j), k, j ∈ Z .(1)

In this paper we will use a slightly modified version of the classical definition of the Fourier
transform. For a function f ∈ L1(R) ∩ L2(R) we put

f̂ (y) =
∫
R

f (x)e−2πixydx .

The characteristic function of a set E is denoted by χE and N0 = N ∪ {0}.
The following lemma is a well known result (cf. [8], p. 132; [20], p. 71).

LEMMA 2.1. The system {h(· − j) : j ∈ Z}, where h ∈ L2(R), is an orthonormal
system if and only if ∑

j∈Z
|̂h(t + j)|2 = 1 for a.e. t ∈ R .

As an obvious corollary of the above lemma we have that if g ∈ L2(R) is a wavelet then
|̂g(t)| ≤ 1 a.e. on R.

THEOREM 2.2. Let g ∈ L2(R) and m = 2, 3, . . . . Suppose that the system {gk,j,m :
k ∈ N0, j ∈ Z} is orthonormal. Then

∞∑
k=0

|̂g(m−kx)|2 ≤ 1 .(2)

PROOF. It is easy to check that

ĝk,j,m(y) = m−k/2ĝ(m−ky)e−2πijm−ky .(3)

It is well known that for any interval I ⊂ R, |I | = 1 the trigonometric system {e−2πijy}j∈Z
is a complete orthonormal system in L2(I). Hence, for any k ∈ Z and Δ ⊂ R, |Δ| = mk

the system {m−k/2e−2πijm−ky}j∈Z will be a complete orthonormal system in L2(Δ). Thus for
any f ∈ L2(R) such that suppf̂ ⊆ I, |I | = 1 we will have that

S0(f, x) =
∑
j∈Z

∫
R

f (t)g0,j,m(t)dtg0,j,m(x) =
∑
j∈Z

∫
I

f̂ (t )̂g(t)e2πij t dt g0,j,m(x) .
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Which yields

Ŝ0(f, ·)(y) =
∑
j∈Z

∫
I

f̂ (t )̂g(t)e2πij t dt ĝ(y)e−2πijy = f̂ (y)|̂g(y)|2

if y ∈ I . It should be observed that the last equality holds because f̂ (·)̂g(·) ∈ L2(I) which is
true because of Lemma 2.1. If for any k ∈ N we put

Sk(f, x) =
∑
j∈Z

∫
R

f (t)gk,j,m(t)dtgk,j,m(x)

in the same way we obtain that

Ŝk(f, ·)(y) = f̂ (y)|̂g(m−ky)|2 if y ∈ I .(4)

By the orthogonality of the system {gk,j,m : k ∈ N0, j ∈ Z} we have that

Sk(f, ·)⊥ Sk′ (f, ·) in L2(R) if k �= k′ .

Hence, ∫
R

|
l∑

k=0

Sk(f, x)|2dx =
l∑

k=0

∫
R

|Sk(f, x)|2dx =
l∑

k=0

∫
R

|Ŝk(f, ·)(y)|2dy

=
∫
R

l∑
k=0

|Ŝk(f, ·)(y)|2dy =
∫
R

|f̂ (y)|2
∣∣∣∣ l∑
k=0

|̂g(m−ky)|2
∣∣∣∣2dy .

By (4) we have that∫
I

|f̂ (y)|2
∣∣∣∣ l∑
k=0

|̂g(m−ky)|2
∣∣∣∣2dy =

∫
I

l∑
k=0

|Ŝk(f, ·)(y)|2dy

≤
∫
R

l∑
k=0

|Ŝk(f, ·)(y)|2dy .

By the above relations and Bessel’s inequality we obtain that∫
I

|f̂ (y)|2
∣∣∣∣ l∑
k=0

|̂g(m−ky)|2
∣∣∣∣2dy ≤

∫
R

|
l∑

k=0

Sk(f, x)|2dx

≤ ‖f ‖2
L2(R)

=
∫
I

|f̂ (y)|2dy .
The last inequality can be interpreted as follows. Let

μl(y) =
l∑

k=0

|̂g(m−ky)|2 if y ∈ I .

Then for any l ∈ N the multiplicative operator Tl(φ)(y) = μl(y)φ(y) is a bounded operator
L2(I) → L2(I) with the norm less than or equal to 1. Which is true if and only if μl(y) ≤
1. �
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By a simple modification of the last part, related with the application of the Bessel in-
equality and the proof of Theorem 2.2 we obtain the following

THEOREM 2.3. Let h(ν) ∈ L2(R), 1 ≤ ν ≤ μ and m = 2, 3, . . . . Suppose that the
system {h(ν)k,j,m : k ∈ N0, j ∈ Z, 1 ≤ ν ≤ μ} is orthonormal. Then

∞∑
k=0

μ∑
ν=1

|ĥ(ν)(m−kx)|2 ≤ 1 .

We formulate the following corollary for g ∈ L1(R) ∩ L2(R). In the general case a
similar result can be proved using the concept of points of approximate continuity (cf. [5],
[6]).

COROLLARY 2.4. Let g ∈ L1(R)∩L2(R) andm = 2, 3, . . . . Suppose that the system
{gk,j,m : k ∈ N0, j ∈ Z} is orthonormal. Then the continuous function ĝ vanishes at the
origin, ĝ(0) = 0.

PROOF. Let ĝ(0) �= 0.Without loss in generality we can suppose that ĝ(0) > 0.Which
yields that ĝ(y) is greater than ĝ(0)/2 in a neighborhood of the origin. The last condition
contradicts to (2). �

By Corollary 2.4 we have that when for g ∈ L1(R)∩L2(R) andm = 2, 3, . . . the system
{gk,j,m : k ∈ N0, j ∈ Z} is orthonormal then the set of nontrivial functions h defined on R

such that

(a)m

∫
R

gk,j,m(x)h(x)dx = 0 for all k, j ∈ Z

is not empty. Hence, having in mind that the constant function belongs to L∞(R) we obtain

COROLLARY 2.5. Let {g(ν)}μν=1 ⊂ L1(R) ∩ L2(R) and m = 2, 3, . . . . If the system

{g(ν)k,j,m : k ∈ Z, j ∈ Z, 1 ≤ ν ≤ μ} is orthonormal then it cannot be complete in L1(R).

3. Preliminary results.
3.1. On M-sets. Further in this section we will consider thatm ≥ 2 is a fixed natural

number. Let M = M(m) := {[ j−1
mk
,
j

mk
] : k ∈ Z, j ∈ Z}. Further, the parameter m will

be omitted to make the notation understandable. We will assume that any m-adic rational
point ξ = j

mk
, k ∈ Z, j ∈ Z is “split” into two distinct points ξl and ξr characterized by the

following conditions: for any −∞ < a < ξ < b < +∞ we have

ξl ∈ (a, ξ ], ξl /∈ [ξ, b), and ξr ∈ [ξ, b), ξr /∈ (a, ξ ] .
Hence, there can be easily established one to one correspondence between any y ∈ R and the
sequences {Δj(y)}∞j=−∞ ⊂ M such that

Δj+1(y) ⊂ Δj(y) for all j ∈ Z and |Δj(y)| = m−j .

When talking about the neighborhoods of the points ξl and ξr , we will understand some in-
tervals (a, ξ) and (ξ, b), respectively. The measure of the set of all m-adic rational points is
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equal to zero, hence, this assumption will not affect the results that we are going to consider.
In the last section we need concept of M-neighborhoods of +∞ and −∞. For j ∈ N0 we
put

Δj(+∞) = R+ \ [0,mj ], and Δj(−∞) = R− \ [−mj, 0] ,(5)

where R+ = [0,+∞) and R− = (−∞, 0]. If B is a family of sets then for some set E we
use the following notation B ∩ E = {G ∩ E : G ∈ B}.

3.1.1. Maximal function. Let

MMf (x) = sup
x∈Δ,Δ∈M

1

|Δ|
∫
Δ

|f (t)|dt, f ∈ L1
loc(R) .(6)

Let us consider also a maximal function with respect to a weight function ω defined by the
following equation

MM,ωf (x) = sup
x∈Δ,Δ∈M

1

ω(Δ)

∫
Δ

|f (t)|ω(t)dt, f ∈ L1
loc(R, ω) ,(7)

where ω(Δ) = ∫
Δ
ω(t)dt .

PROPOSITION 3.1. Let ω(x) ≥ 0 for x ∈ R, ω ∈ L1
loc(R) and let f ∈ L1

loc(R, ω).
Then for any λ > 0

ω({t ∈ R : MM,ωf (t) > λ}) ≤ 1

λ

∫
R

|f (t)|ω(t)dt .(8)

PROOF. If x ∈ Ωλ(f ) := {t ∈ R : MM,ωf (t) > λ} then for some Δ ∈ M such that
x ∈ Δ

1

ω(Δ)

∫
Δ

|f (t)|ω(t)dt > λ .

Observe that among all intervals which have the above properties there exists Δx ∈ M with
maximal ω-measure. Thus, having in mind that M is numerable we can find a sequence of
mutually disjoint intervals {Δν} ⊂ M so that Ωλ = ⋃∞

ν=1Δν . �

We also have

PROPOSITION 3.2. Let ω(x) ≥ 0 for x ∈ R, ω ∈ L1
loc(R). Then for any f ∈

L
p

loc(R, ω), p > 1 ∫
R

MM,ωf (t)
pω(t)dt ≤ 2pp

p − 1

∫
R

|f (t)|pω(t)dt .(9)

PROOF. Following the proof of the corresponding result for the Lebesgue measure
(see [42], p.7) we split f into two parts, f = f1 + f2, where f1(x) = f (x) if |f (x)| ≥
λ
2 and f1(x) = 0 otherwise. Then we have |f (x)| ≤ |f1(x)| + λ

2 . Hence, MM,ωf (x) ≤
MM,ωf1(x)+ λ

2 andΩλ(f ) ⊆ Ωλ
2
(f1). Thus by Proposition 3.1 we have that

ω(Ωλ(f )) ≤ 2

λ

∫
R

|f1(t)|ω(t)dt = 2

λ

∫
Ωλ

2
(f )

|f (t)|ω(t)dt .(10)
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Afterwards we have to use the following equality for any measurable function g : R → R∫
R

|g(t)|pω(t)dt = p

∫
R

∫
[0,|g(t)| ]

λp−1dλω(t)dt

= p

∫ +∞

0
λp−1ω({t : |g(t)| > λ})dλ .

Hence, by (10) we obtain∫
R

MM,ωf (t)
pω(t)dt ≤ 2p

∫ +∞

0
λp−2

∫
Ωλ

2
(f )

|f (t)|ω(t)dtdλ

= 2p
∫
R

|f (t)|ω(t)
∫ 2|f (t)|

0
λp−2dλ dt = 2pp

p − 1

∫
R

|f (t)|pω(t)dt
�

3.1.2. Calderón-Zygmund decomposition for m-adic intervals. We need a modi-
fied version for the Calderón-Zygmund decomposition (see [43]) for them-adic intervals. Let
f ∈ L1[0, 1], f ≥ 0 and let λ > 0 is such that∫

[0,1]
f (t)dt < λ .

At the first step we takem intervals {Ik}mk=1 ⊂ M∩ [0, 1] such that |Ik | = 1
m
, 1 ≤ k ≤ m and⋃m

k=1 Ik = [0, 1]. Let {Ikl }m1
l=1 ⊂ {Ik}mk=1 be all those intervals for which ηIkl > λ, 1 ≤ l ≤

m1 < m, where

1

|I |
∫
I

f (t)dt := ηI .

Those intervals are renamedG1, . . . ,Gm1 . Clearly,

λ <
1

|Gl |
∫
Gl

f (t)dt ≤ mλ .(11)

If ηIk ≤ λ for all 1 ≤ k ≤ m then we put m1 = 0. On the next step we repeat the same
procedure on any of those intervals that were not renamed. The collection of all m-adic inter-
vals which are separated on the second step are renamedGm1+1, . . . ,Gm2 . For those intervals
the condition (11) holds again. On the νth step all m-adic intervals which are separated are
renamed Gmν−1+1, . . . ,Gmν . If no any interval is separated then we put mν+1 = mν . This
procedure produces a collection of disjointm-adic intervals {Gl} for which the condition (11)
holds and

|Ω | =
∑
l

|Gl | < 1

λ

∑
l

∫
Gl

f (t)dt ≤ 1

λ

∫
[0,1]

f (t)dt ,(12)

where Ω = ⋃
l Gl and for any I ∈ M ∩ [0, 1], I ⊂ Ωc := [0, 1] \Ω we have that ηI ≤ λ.

The collection {Gl} will be called Calderón-Zygmundm-adic decomposition at level λ. Let

g(x) = f (x)χΩc(x)+
∑
l

ηGlχGl (x) and b(x) = f (x)− g(x) .(13)
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We skip the details of the proof of the following

PROPOSITION 3.3. Let f ∈ L1[0, 1], and let λ > 0 be such that
∫
[0,1] |f (t)|dt < λ.

Then there exists a family of disjoint sets {Gl}l∈ϒ ⊂ M such that

|f (x)| ≤ λ a.e. on Ωc, where Ω =
⋃
l∈ϒ

Gl ,(14)

(12) is true and for any l ∈ ϒ holds (11). Moreover, f (x) = g(x)+ b(x), where g is defined
by (13) and the following conditions hold:

|g(x)| ≤ mλ a.e. on [0, 1];(15)

‖g(x)‖pp ≤ (mλ)p−1‖f ‖1 for all 1 ≤ p < ∞;(16)

∫
Gl

b(t)dt = 0 for all l ∈ ϒ .(17)

For dyadic intervals a similar result was obtained by C. Watari [44].
3.1.3. Classes of Mp, p ≥ 1 weights.

DEFINITION 3.4. We say that a non negative locally integrable function ω satisfies the
condition Mp, p ≥ 1 if

ω(Δ)

[ ∫
Δ

ω
− 1
p−1 (t)dt

]p−1

≤ Cp|Δ|p ∀Δ ∈ M ,(18)

where Cp > 0 is independent of Δ ∈ M. For p = 1 it is understood that[∫
Δ

ω
− 1
p−1 (t)dt

]p−1

:= ‖ω−1‖L∞(Δ).

We say that ω satisfies the condition Mp(G), whereG ⊂ R if (18) holds for allΔ ∈ M∩G.
The reader should observe that the conditions Mp([0, 1]) and Mp((0, 1]) are distinct. In the
second case the intervals [0, 2−j ], j ∈ N should be excluded when one checks the inequality
(18). The following lemma is obvious.

LEMMA 3.5. Let ω satisfy the condition Mp, p > 1 then ψ = ω
− 1
p−1 satisfies the

conditionMp′ , where 1
p

+ 1
p′ = 1.

We follow the ideas given in [7] to prove the following result.

PROPOSITION 3.6. Let ω(x) ≥ 0 for x ∈ R, ω ∈ L1
loc(R). Then for any f ∈

L
p

loc(R, ω), p > 1 ∫
R

MMf (t)pω(t)dt ≤ Bp

∫
R

|f (t)|pω(t)dt ,(19)

for some Bp > 0 independent of f if and only if ω satisfies the conditionMp.
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PROOF. Suppose that (19) is true. For anyΔ ∈ M we have by (6) that

1

|Δ|
∫
Δ

|f (t)|dtχΔ(x) ≤ MMf (x) .

Hence, by (19) we have that(
1

|Δ|
∫
Δ

|f (t)|dt
)p
ω(Δ) ≤ Bp

∫
R

|f (t)|pω(t)dt .

Letting f (t) = ω
− 1
p−1 (t)χΔ(t) we obtain (18) with Cp = Bp. To prove the opposite assertion

one has to use Proposition 3.1 and the following

LEMMA 3.7. Let ω satisfy the conditionMp, p > 1 then there exists ε > 0 such that
ω satisfies the conditionMp−ε .

We skip the rest of the proof because the proof in [7] works with small changes. �

DEFINITION 3.8. We say that a non negative locally integrable function ω satisfies the
condition M∞ if there exists C > 0 and δ > 0 such that for anyΔ ∈ M and any measurable
subset E ⊆ Δ

ω(E)

ω(Δ)
≤ C

( |E|
|Δ|

)δ
.(20)

We skip the detailed proofs of the following two lemmas because the corresponding proofs in
[7] for Ap weights work with obvious changes.

LEMMA 3.9. Let ω satisfy the condition Mp, p > 1 then there exist r > 0 and C >

0 such that (
1

|Δ|
∫
Δ

ω(x)1+r
) 1

1+r ≤ C
ω(Δ)

|Δ| ∀Δ ∈ M .(21)

LEMMA 3.10. Let ω satisfy the condition Mp for some p > 1 then ω satisfies the
conditionM∞.

We need also the following related with M-neighborhoods of +∞ and −∞ (see (5)).

LEMMA 3.11. Let ω satisfy the conditionMp for some p > 1 then

ω /∈ L(Δj (+∞)), ω /∈ L(Δj (−∞)), ∀j ∈ N0 .

PROOF. We prove the assertion for the neighborhoods of +∞. For this purpose we
observe that there exists Cp > 0 such that for any j ∈ N0

ω(Δ−j−1) ≤ Cpω(Δ−j−1 \Δ−j ) .(22)

For any j ∈ N0 and any locally integrable function f ≥ 0 we have that MMf (x) ≥
m−j ∫

[0,mj ] f (t)dt if x ∈ [0,mj ]. By Proposition 3.6 we obtain that(
m−j

∫
[0,mj ]

f (t)dt

)p
ω([0,mj ]) ≤ Bp

∫
[0,mj ]

f (t)pω(t)dt .
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Putting j + 1 instead of j in the above inequality and letting f be the characteristic function
of the set Δ−j−1 \Δ−j we obtain the inequality (22). If ω ∈ L(Δj0(+∞)) then for any ε >
0 there exists N ∈ N such that ∫

[mN,+∞)

ω(t)dt < ε .

Which leads to a contradiction with the condition (22). Evidently the proof for the neighbor-
hoods of −∞ is similar. �

DEFINITION 3.12. Let ω ≥ 0 be a weight function defined on R+. We will say that ω
satisfies the condition My

p(R
+), p ≥ 1 for some y ∈ R+ if

ω(Δj (y))

[∫
R+\Δj (y)

ω
− 1
p−1 (t)dt

]p−1

≤ Cp|Δj(y)|p ∀j ∈ Z ,(23)

where Cp > 0 is independent of j ∈ Z.

We will not formulate the definition of the condition My
p(R

−) because it is clear from
the context.

DEFINITION 3.13. Let ω ≥ 0 be a weight function defined on Δ, where Δ ∈ M,

|Δ| = ml . We will say that ω satisfies the condition My
p(Δ), p ≥ 1 for some y ∈ Δ if

ω(Δj (y))

[∫
Δ\Δj (y)

ω
− 1
p−1 (t)dt

]p−1

≤ Cp|Δj(y)|p ∀j > l ,(24)

where Cp > 0 is independent of j .

LEMMA 3.14. Let w ≥ 0 be a weight function defined on [0, 1] such that w satisfies
the conditionMy

p([0, 1]) for some y ∈ [0, 1] and 1 < p < ∞. Then there exists qp > 1 such
that ∫

[0,1]\Δj+1(y)

w
− 1
p−1 (t)dt

(∫
[0,1]\Δj(y)

w
− 1
p−1 (t)dt

)−1

≥ qp

for all j ∈ N.

PROOF. For any j ∈ N we have that∫
[0,1]\Δj+1(y)

w
− 1
p−1 (t)dt

(∫
[0,1]\Δj(y)

w
− 1
p−1 (t)dt

)−1

≥ 1 +
∫
Δj (y)\Δj+1(y)

w
− 1
p−1 (t)dt

(∫
[0,1]\Δj(y)

w
− 1
p−1 (t)dt

)−1

≥ 1 +
∫
Δj (y)\Δj+1(y)

w
− 1
p−1 (t)dt

(
w(Δj (y))

) 1
p−1

C
− 1
p−1

p |Δj(y)|−
p
p−1

≥ 1 + |Δj(y) \Δj+1(y)|
p
p−1C

− 1
p−1

p |Δj(y)|−
p
p−1 ≥ 1 + C

− 1
p−1

p

(
m− 1

m

) p
p−1

.
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Putting qp = 1 + C
− 1
p−1

p (m−1
m
)

p
p−1 we finish the proof. �

Following three lemmas will be used in the last section. In the proofs we will use the
following notation: aE = {at : t ∈ E}.

LEMMA 3.15. Let ω ≥ 0 satisfy the condition Mp(R
+), p > 1 with a constant

Cp > 0. Then for any N ∈ N the weight function ωN(x) := ω(mNx) satisfies the condi-
tionMp([0, 1]) with the same constant Cp.

PROOF. For any E ∈ M ∩ [0, 1] we have

ωN(E)

[ ∫
E

ω
− 1
p−1

N (t)dt

]p−1

= m−N
∫
mNE

ω(x)dx

[
m−N

∫
mNE

ω
− 1
p−1 (x)dx

]p−1

≤ m−pNCp |mNE|p = Cp|E|p .
We have used that mNE ∈ M. �

LEMMA 3.16. Let N ∈ N and let y ∈ [0,mN ]. Suppose that ω ≥ 0 satisfies the
condition Mp([0,mN ] \ {y}), p > 1 with a constant Cp > 0. Then the weight function
ωN(x) := ω(mNx) satisfies the condition Mp([0, 1] \ {yN }) with the same constant Cp,
where yN = m−Ny.

PROOF. For any E ∈ M ∩ ([0, 1] \ {yN }) we observe that the interval mNE ∈ M ∩([0,mN ] \ {y}). The rest of the proof is the same as above. �

LEMMA 3.17. Let N ∈ N and let y ∈ [0,mN ]. Suppose that ω ≥ 0 satisfies the
conditionMy

p([0,mN ]), p > 1 with a constant Cp > 0. Then the weight function ωN(x) :=
ω(mNx) satisfies the conditionMyN

p ([0, 1]) with the same constant Cp , where yN = m−Ny.

PROOF. For any j ∈ N we have

ωN(Δj (yN))

[ ∫
[0,1]\Δj(yN)

ω
− 1
p−1

N (t)dt

]p−1

= m−N
∫
Δj−N (y)

ω(x)dx

[
m−N

∫
[0,mN ]\Δj−N (y)

ω
− 1
p−1 (x)dx

]p−1

≤ m−pNCp |Δj−N(y)|p = Cp |Δj(y)|p .
�

3.2. Higher rank Haar wavelets. We bring the definition of higher rank Haar
wavelets without recalling the general theory of multiresolution analysis. For relations of
these type of wavelets with p-adic analysis see [33]. Let ϕ(x) = χ[0,1](x) and let

V (m) = span{ϕ1,j,m(x) : 0 ≤ j ≤ m− 1}(25)
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for any m = 2, 3, . . . . Afterwards, let {h(ν)(x) : 0 ≤ ν ≤ m− 1} be an orthonormal basis in
V (m) such that h(0)(x) = ϕ(x). The system

H(m) = {h(ν)k,j,m(x) : k ∈ Z; j ∈ Z; 1 ≤ ν ≤ m− 1} ,(26)

where

h
(ν)
k,j,m(x) = mk/2h(ν)(mkx − j)(27)

will be called m-th rank Haar system. Sometimes we will use also the following notation

h
(ν)
Δ := h

(ν)
k,j,m(x) when Δ =

[ j
mk
,
j + 1

mk

]
.(28)

The orthogonality of the system (26) is obvious.

THEOREM 3.18. The system H(m) is complete in Lp(R), 1 < p < ∞.

PROOF. Let p, 1 < p < ∞ be fixed. It is easy to observe that the proof will be finished
if we show that for any ϕ1,j,m(x), 0 ≤ j ≤ m − 1 and any ε > 0 there exists a finite linear

combination Pj of functions {h(ν)k,l,m(x) : k ∈ Z \ N0; l ∈ Z; 1 ≤ ν ≤ m − 1} such that
‖ϕ1,j,m − Pj‖Lp(R) < ε.

Let l ∈ N be such that m1/2ml(1/p−1) < ε. We set

V (l)(m) = span{ϕ1,j,m(x) : 0 ≤ j ≤ ml+1 − 1} .
It is clear that dimV (l)(m) = ml+1. Let us show by induction that there are exactlyml+1 − 1
functions from the system {h(ν)k,j,m(x) : 1 ≥ k ≥ −l+1; j ∈ Z; 1 ≤ ν ≤ m−1} with supports

in [0,ml].
If l = 0 then it is obvious. Suppose that for some μ ∈ N we have that the number of

functions from the system

{h(ν)k,j,m(x) : 1 ≥ k ≥ −μ+ 1; j ∈ Z; 1 ≤ ν ≤ m− 1}(29)

with supports in [0,mμ] is equal to mμ+1 − 1. Then it is clear that there are (mμ+1 − 1)m
functions from the system (29) that have their supports in [0,mμ+1]. Note that the functions
{h(ν)−μ,0,m(x) : 1 ≤ ν ≤ m − 1} vanish outside the closed interval [0,mμ+1]. Thus we have

(mμ+1 − 1)m+ m− 1 = mμ+2 − 1 mutually orthogonal functions in (29) which have their
supports in [0,mμ+1].

Let {gi}ml+1−1
i=1 be all functions from the system

{h(ν)k,j,m(x) : 1 ≥ k ≥ −l + 1; j ∈ Z; 1 ≤ ν ≤ m− 1}
that have their supports in [0,ml]. Evidently {gi}ml+1−1

i=1 ⊂ V (l)(m).

Let g0(x) = χ[0,ml](x). Then g0 ∈ V (l)(m) and g0 is orthogonal to all elements of

{gi}ml+1−1
i=1 . Hence, {gi}ml+1−1

i=0 is a basis in V (l)(m) and

ϕ1,j,m =
ml+1−1∑
i=0

a
(j)
i gi , where a

(j)

0 = m−l
∫

[0,ml]
ϕ1,j,m(t)dt .
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Thus we obtain that for any 0 ≤ j ≤ m− 1∥∥∥∥ϕ1,j,m −
ml+1−1∑
i=1

a
(j)

i gi

∥∥∥∥
Lp(R)

=
∥∥∥∥a(j)0 g0

∥∥∥∥
Lp(R)

= m1/2ml(1/p−1) < ε .

�

4. m-th rank Haar system on [0, 1]. Let h0(x) ≡ 1 for x ∈ [0, 1]. For any n ∈ N

we have a unique representation

n = mk + j − 1, where k ∈ N, 1 ≤ j ≤ mk ,(30)

and

mk = 1 +m+m2 + · · · +mk−1, m1 = 1 .(31)

For any 1 ≤ ν ≤ m− 1 we put

h(ν)n (x) = h
(ν)
k,j−1,m(x) forx ∈ [0, 1] .

Afterwards we enumerate the functions in the following way

hl (x) = h(l)(x) for 1 ≤ l ≤ m− 1;(32)

hl (x) = h(ν)n (x) for l = ν + n(m− 1), n ∈ N .(33)

We denote the mth rank Haar system by H(m) = {hl (x)}∞l=0. We also let

μ0 = 0, μ1 = μ0 +m− 1, . . . , μk+1 = μk + (m− 1)mk, . . . .(34)

The following lemma is the analogue of Schauder’s lemma for the classical Haar system
(see [41]). For any f ∈ L1[0, 1] and for any 1 ≤ j ≤ mk, k ∈ N we put

Θμk+j (m−1)(f, x) =
μk∑
l=0

al(f )hl (x)+
j−1∑
s=0

m−1∑
ν=1

a
(ν)
k,s,m(f )h

(ν)
k,s,m(x) ,

where

al(f ) =
∫

[0,1]
f (t)hl (t)dt; a

(ν)
k,s,m(f ) =

∫
[0,1]

f (t)h
(ν)
k,s,m(t)dt .

LEMMA 4.1. Let f ∈ L1[0, 1] and let 1 ≤ j ≤ mk, k ∈ N0. Then the partial sum
Θμk+j (m−1)(f, x) is constant on any interval from the collection of sets{[

s

mk+1
,
s + 1

mk+1

]
: 0 ≤ s ≤ jm− 1

}
,(35)

{[
l

mk
,
l + 1

mk

]
: j ≤ l ≤ mk − 1

}
.(36)

Moreover, for anyΔ from (35) or from (36)

Θμk+j (m−1)(f, x) = 1

|Δ|
∫
Δ

f (t)dt for x ∈ Δ .(37)
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PROOF. At first we show that the assertion of the lemma is true for Θμk (f, x), k ∈ N0.
Indeed,

span{hl , 0 ≤ l ≤ mk − 1} = V (m) ,

where V (m) is defined by (25). Hence, for any Δ from (36) with j = 1 we have that for x ∈
Δ

Θμk (f, x) =
mk−1∑
l=0

∫
[0,1]

f (t)ϕk,l,m(t)dt ϕk,l,m(x) = 1

|Δ|
∫
Δ

f (t)dt .

Afterwards we observe that in the general case

Θμk+j (m−1)(f, x) = Θμk+1(f, x) if x ∈
[
0,

j

mk

]
and

Θμk+j (m−1)(f, x) = Θμk (f, x) if x ∈
[ j
mk
, 1
]
.

Which finishes the proof. �

By Lemma 4.1 we obtain the following corollaries.

COROLLARY 4.2. For any m = 2, 3, . . . the system H(m) is a basis in any space
Lp[0, 1], 1 ≤ p < ∞.

PROOF. By Lemma 4.1 as in the case of the classical Haar system we have that

‖Θμk+j (m−1)‖Lp→Lp ≤ 1 for all 1 ≤ j ≤ mk, k ∈ N .

To finish the proof we have to check that liml→∞ |al(f )|‖hl‖Lp[0,1] = 0. We skip the techni-
cal details because afterwards we are going to return to the similar question in the weighted
norm case. �

COROLLARY 4.3. For any f ∈ L1[0, 1] the Fourier series of f with respect to the
system H(m), m = 2, 3, . . . converges almost everywhere to f on [0, 1].

PROOF. For every x ∈ [0, 1] which is a Lebesgue point of f we have that

lim
k→∞Θμk (f, x) = f (x) .

Afterwards we observe that |al(f )||hl(x)| ≤ CMM(f, x) which finishes the proof. �

For any k ∈ N0 and any 1 ≤ j ≤ mk consider the kernel

Kkj (t, x) =
μk∑
l=0

hl (t)hl(x)+
j−1∑
s=0

m−1∑
ν=1

h
(ν)
k,s,m(t)h

(ν)
k,s,m(x) .(38)

Let {Gi : 1 ≤ i ≤ mk + j (m − 1)} be mutually disjoint sets from (35) and (36). Further in
the paper we will need the following result.
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LEMMA 4.4. Let k ∈ N0 and 1 ≤ j ≤ mk . Then the kernel

Kkj (t, x) = 1

|Gi | for (t, x) ∈ G2
i , 1 ≤ i ≤ mk + j (m− 1);(39)

and

Kkj (t, x) = 0, if (t, x) ∈ [0, 1]2 \
mk+j (m−1)⋃

i=1

G2
i .

PROOF. We have that {|Gi |−1/2χGi (x)}m
k+j (m−1)

i=1 is an orthonormal system of func-
tions. From Lemma 4.1 it follows that the orthonormal system of functions {hl (x)}μkl=0 ∪
{h(ν)k,s,m(x) : 0 ≤ s ≤ j − 1, 1 ≤ ν ≤ m − 1} can be obtained from the set of functions

{|Gi |−1/2χGi (x)}m
k+j (m−1)

i=1 by an orthogonal transformation. Hence,

Kkj (t, x) =
mk+j (m−1)∑

i=1

|Gi |−1/2χGi (t)|Gi |−1/2χGi (x)

=
mk+j (m−1)∑

i=1

|Gi |−1χGi (t)χGi (x) .

�

DEFINITION 4.5. We say that a system of functions {φk}∞k=1 ⊂ L∞[0, 1] is total with
respect to L1[0, 1] if∫

[0,1]
f (t)φk(t)dt = 0 for all k ∈ N for some f ∈ L1[0, 1](40)

if and only if f = 0 a.e. on [0, 1].
By Lemma 4.1 it follows immediately

COROLLARY 4.6. The system H(m), m = 2, 3, . . . is total with respect to L1[0, 1].
THEOREM 4.7. For any m = 2, 3, . . . the system H(m) is an unconditional basis in

any space Lp[0, 1], 1 < p < ∞.

The reader can find well known facts about unconditional bases in [36]. For any sequence
ε = {εl}∞l=0, where ε = ±1 we consider an operator Iε : L1[0, 1] → L0[0, 1] defined as
follows Iε(f, x) = ∑∞

l=0 εlal(f )hl .

PROPOSITION 4.8. The operator Iε is of weak-(1, 1) type.

PROOF. We adopt the idea of the proof given in [44]. Let f ∈ L∞[0, 1] and suppose
that λ > ‖f ‖1. Without loss in generality we can suppose that f ≥ 0 (see [42], pp. 21–
22). By Proposition 3.3 we write f (x) = g(x) + b(x), where g satisfies the condition (15).



WAVELETS IN WEIGHTED NORM SPACES 583

The system H(m) is a complete orthonormal system. Hence, Iε : L2[0, 1] → L2[0, 1] is an
isometry. Thus by the Tchebychev inequality we will have

|{x ∈ [0, 1] : |Iε(g, x)| > λ}| ≤ 1

λ2

∫
[0,1]

g2(x)dx ≤ m

λ
‖g‖L1[0,1] ≤ m

λ
‖f ‖L1[0,1] ,(41)

where the last inequality follows by (16).Afterwards, we apply the following property of m-
adic intervals. If Δ1,Δ2 ⊂ M then only two relations are possible or Δ1 ∩ Δ2 = ∅ or one
of those intervals is a subset of another interval. By the definition of the system H(m) and by
(17) it is easy to deduce that Iε(b, x) = 0 for x ∈ Ωc. Thus by (12) and (41) we obtain

|{x ∈ [0, 1] : |Iε(f, x)| > λ}| ≤ m+ 1

λ
‖f ‖L1[0,1] .(42)

From the last inequality readily follows that for any f ∈ L1[0, 1] the series
∑∞
l=0 εlal(f )hl

converges in measure on [0, 1]. Observe that in the proof of the inequality (42) the condition
f ∈ L∞[0, 1] was used only to claim the existence of Iε(f, x). Hence, the proof is complete.

�

The analogue of Proposition 4.8 for the Haar system was obtained by S. Yano [47].

PROOF. By Proposition 4.8 and the Marcinkiewicz interpolation theorem (see [48]) we
obtain that H(m) is an unconditional basis in Lp[0, 1], 1 < p ≤ 2. Afterwards by duality we
finish the proof of Theorem 4.7. �

For the system H(m) we put

Gm(f, x) =
( ∞∑
l=0

|al(f )hl(x)|2
) 1

2

, where f ∈ L1[0, 1] .

For the operatorGm : L1[0, 1] → L0[0, 1] the following proposition holds.

PROPOSITION 4.9. The operatorGm is of weak-(1, 1) type.

PROOF. Let f = ∑N
l=0 alhl be any polynomial with respect to the system H(m) and

let ε = {εl}Nl=0 be any Rademacher sequence. By a well known inequality (see [25],p.8) we
have that for any 0 < α < 1 and any x ∈ [0, 1]

P(Iε(f, x) > αGm(f, x)) >
1

3
(1 − α)2 .

Observe that Gm(Iε(f, ·), x) = Gm(f, x) for any Rademacher sequence ε. For any λ > 0 we
have that if for some x ∈ [0, 1] Iε(f, x) > αGm(f, x) and Gm(f, x) > λ

α
then Iε(f, x) > λ.

Hence, by Proposition 4.8 we finish the proof for the polynomials with respect to the system
H(m).

For arbitrary f ∈ L1[0, 1] we have that the sequence Gm(Θn(f, ·), x) is an increasing
sequence which a.e. converges to Gm(f, x). Hence,

|{Gm(f, x) > λ}| = lim
n→+∞ |{Gm(Θn(f, ·), x) > λ}|
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<
C

λ
sup
n

‖Θn(f, ·)‖L1[0,1] ≤ C1

λ
‖f ‖L1[0,1] .

�

By standard arguments (see [46]) one can derive from Theorem 4.7 that for all 1 < p <

∞
Bp‖f ‖Lp[0,1] ≤ ‖Gm(f, ·)‖Lp [0,1] ≤ Cp‖f ‖Lp[0,1] ,(43)

where Bp > 0, Cp > 0 are independent of f ∈ Lp[0, 1].
4.1. Haar wavelet systems as unconditional bases in Lp(R), 1 < p < ∞ . From

Theorem 4.7 we easily derive

THEOREM 4.10. For any m = 2, 3, . . . the system H(m) is an unconditional basis in
any space Lp(R), 1 < p < ∞.

Further we will use the following notations: R+ = [0,+∞), R− = (−∞, 0] and Z+ =
R+ ∩Z having in mind the agreement introduced in Subsection 3.1. For technical reasons we
divide the system H(m) into two parts:

H+(m) = {h(ν)k,j,m(x) : k ∈ Z; j ≥ 0; 1 ≤ ν ≤ m− 1} ,(44)

H−(m) = {h(ν)k,j,m(x) : k ∈ Z; j ≤ −1; 1 ≤ ν ≤ m− 1} .(45)

We are going to show that the systems H+(m), H−(m) are unconditional bases respectively
in the spaces Lp(R+) and Lp(R−), 1 < p < ∞. Let us prove the following

THEOREM 4.11. For any m = 2, 3, . . . the system H+(m) is an unconditional basis
in any space Lp(R+), 1 < p < ∞.

PROOF. Let f ∈ Lp(R+) and let Ω ⊂ Z × Z+ be a finite set. For any 1 ≤ ν ≤ m− 1
consider the sum

S
(ν)
Ω (f, x) =

∑
(k,j)∈Ω

c
(ν)
kj (f )h

(ν)
k,j,m(x) ,

where

c
(ν)
kj (f ) =

∫
R+
f (t)h

(ν)
k,j,m(t)dt .

Let N ∈ N be such that for all (k, j) ∈ Ω h
(ν)
k,j,m(x) = 0 if x ∈ [mN,+∞). Consider

the dilation operator DN(φ)(x) = m
N
2 φ(mNx). It is clear that DN(h

(ν)
k,j,m) ∈ H(m) for any

h
(ν)
k,j,m which satisfies to the above conditions if we consider the restriction on [0, 1] of the

image of the operator. Thus

DN(S
(ν)
Ω (f, ·))(x) =

∑
(k,j)∈Ω

c
(ν)
kj (f )DN(h

(ν)
k,j,m)(x)
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on [0, 1] is a finite linear combination of elements from H(m). We also have that if (k, j) ∈
Ω

c
(ν)
kj (f ) =

∫
[0,mN ]

f (t)h
(ν)
k,j,m(t)dt =

∫
[0,1]

DN(f )(t)DN(h
(ν)
k,j,m)(t)dt .

Hence,DN(S
(ν)
Ω (f, ·))(x) on [0, 1] coincides with the sum of a subsequence of the expansion

of the function DN(f ) with respect to the system H(m). By Theorem 4.10 we obtain that
there exists Cp > 0 which depends only on p such that∫

[0,1]
|DN(S(ν)Ω (f, ·))(t)|pdt ≤ C

p
p

∫
[0,1]

|DN(f )(t)|pdt

which yields

‖S(ν)Ω (f, ·)‖Lp(R+) ≤ Cp‖f ‖Lp(R+) .

�

It is clear that in a similar way we can check thatH−(m) is an unconditional basis in any
space Lp(R−), 1 < p < ∞. Thus we the proof of Theorem 4.10 is finished.

4.2. m-th rank Haar system in Lp([0, 1], w), 1 ≤ p < ∞ .

THEOREM 4.12. For any m = 2, 3, . . . the system H(m) is a basis in the weighted
norm space Lp([0, 1], w), 1 ≤ p < ∞ if and only if w satisfies the conditionMp([0, 1]).

PROOF. By Corollary 4.6 we easily obtain that the system H(m) is complete in
Lp([0, 1], w), 1 ≤ p < ∞. Suppose that w satisfies the condition Mp([0, 1]). Then it
is evident that

χ[0,1]
w

∈ Lp′
([0, 1], w), where

1

p
+ 1

p′ = 1 .

Hence, the system H(m) = {hl (x)}∞l=0 is minimal in Lp([0, 1], w) and its conjugate system
is the system H∗(m) = { 1

w(x)
hl (x)}∞l=0. Thus for any f ∈ Lp([0, 1], w), the coefficients of

its expansion with respect to the system H(m) are equal to

bl(f ) =
∫

[0,1]
f (t)

1

w(t)
hl (t)w(t)dt =

∫
[0,1]

f (t)hl (t)dt = al(f ) .

Hence, for any k ∈ N and 1 ≤ j ≤ mk the partial sums of the mentioned expansion with
indices μk + j (m− 1) coincide with Θμk+j (m−1)(f, x) (see the beginning of Section 4). By
Lemma 4.1 it follows easily that

‖Θμk+j (m−1)(f, ·)‖Lp([0,1],w) ≤ C‖f ‖Lp([0,1],w) ,(46)

where C = C(w,p,m) is independent of f . If we prove that

lim
l→+∞ |bl(f )|‖hl‖Lp([0,1],w) = 0(47)
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then it will follow that (46) holds for all n ∈ N. Which yields that the system H(m) is a basis
Lp([0, 1], w).We have that bl(f ) = ∫

[0,1][f (t)−P(t)]hl (t)dt for anyP(t) = ∑l−1
k=0 dkhk(t).

If hl(x) = h
(ν)
k,j,m(x) for x ∈ [0, 1] and Δ = [ j

mk
,
j+1
mk

] then

|bl(f )|‖hl‖Lp([0,1],w) ≤ ‖f − P‖Lp([0,1],w)
∥∥∥∥h(ν)k,j,m
w

1
p

∥∥∥∥
Lp

′
(Δ)

‖h(ν)‖L∞([0,1])m
k
2 [w(Δ)] 1

p

≤ ‖f − P‖Lp([0,1],w)‖h(ν)‖2
L∞([0,1])m

k[w(Δ)] 1
p

[ ∫
Δ

w
− 1
p−1

] 1
p′

≤ ‖f − P‖Lp([0,1],w)‖h(ν)‖2
L∞([0,1])C

1
p
p .

The last inequality yields (47) because the system H(m) is complete in Lp([0, 1], w). To
prove the necessity suppose that the system H(m) is a basis in the weighted norm space
Lp([0, 1], w), where 1 ≤ p < ∞.

Let H∗(m) = {h∗
l (x)}∞l=0 be the conjugate system of the basis H(m). Then we have that∫

[0,1]
[h∗

0(t)w(t)− 1]hl (t)dt = 0 for all l ∈ N0 .

Hence, h∗
0(t) = 1

w(t)
∈ Lp′

([0, 1], w). Thus we obtain that

h∗
l (x) = hl(x)

w(x)
for all l ∈ N0 .

Thus for any f ∈ Lp([0, 1], w) n-th partial sums of its expansion with respect to the basis
H(m) coincide with Θn(f, x). By Lemma 4.1 it follows that for some C ≥ 1 such that for
any Δ ∈ M

sup
1

|Δ|p
∣∣∣∣ ∫
Δ

f (t)dt

∣∣∣∣pw(Δ) ≤ Cp ,

where the supremum is taken over all ‖f ‖Lp([0,1],w) ≤ 1. The last inequality easily yields
(18) with Cp = Cp. �

The prove of the following result technically is much more complicated. The main line
of our proof is close to the one given in [16](see also [7] and [28], [10]).

THEOREM 4.13. For any m = 2, 3, . . . the system H(m) is an unconditional basis in
the weighted norm space Lp([0, 1], w), 1 < p < ∞ if and only if w satisfies the condition
Mp([0, 1]).

LEMMA 4.14. Let w be a weight function which satisfies the condition M∞([0, 1]).
Then for any λ > 0, any 0 < γ < 1 and for any f ∈ L1[0, 1]

w({x ∈ [0, 1] : Gm(f, x) >2λ and MMf (x) ≤ γ λ})
≤ Cγ δw({x ∈ [0, 1] : Gm(f, x) > λ}) ,
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where C > 0 is independent of f , λ > 0 and γ > 0, while δ > 0 is the corresponding
constant from Definition 3.8.

In the formulation of the following assertion we use the agreement formulated in Sub-
section 3.1.

LEMMA 4.15. For any f ∈ L1[0, 1] and any λ > 0 there exists a finite or denumer-
able set of disjoint closed intervals {Δk}k∈ϒ such that the set

Eλ(f ) = {x ∈ [0, 1] : Gm(f, x) > λ} =
⋃
k∈ϒ

Δk .(48)

PROOF. According to our agreement for any x ∈ [0, 1] there exists a unique sequence
of closed intervals Γk(x) ⊂ M such that Γk(x) ⊂ Γk−1(x) for all k ∈ N and |Γk(x)| =
m−k,

⋂∞
k=0 Γk(x) = x. For any x0 ∈ Eλ(f ) there exists k(x0) ∈ N0 so that Γk(x0)(x0) ⊆

Eλ(f ) and Γk(x0)−1(x0) at least contains a point which does not belong to Eλ(f ). Indeed, if
Gm(f, x0) > λ then there exists N ∈ N such that

[Gm(f, x0)]2 ≥
N∑
l=0

|al(f )hl (x0)|2 > λ2 .

Hence, for some ν ∈ N the sum
∑N
l=0 |al(f )hl(x0)|2 is constant on Γν(x0). Which means

that Γν(x0) ⊆ Eλ(f ). The number k(x0) will be the smallest index for which the last relation
holds. Afterwards, one observes that maxx∈Eλ(f ) |Γk(x)(x)| := μ0 exists. There exist only
finitely many disjoint intervals in the set {Γk(x)(x) : x ∈ Eλ(f )} with length equal to μ0.
Let Δj(1 ≤ j ≤ n1) be all such intervals. Let E2 = Eλ(f ) \ (⋃n1

j=1Δj
)

and repeat the
same procedure taking E2 instead of Eλ(f ). Thus step by step we construct the finite or
denumerable set of disjoint closed intervals {Δk}k∈ϒ which satisfy the conditions of lemma.

�

PROOF OF LEMMA 4.14. Let Δl be an arbitrary closed interval from (48). At the first
step we have to prove the following relation∣∣{x ∈ Δl : Gm(f, x) > 2λ and MMf (x) ≤ γ λ

}∣∣ ≤ Cγ |Δl| ,(49)

where C > 0 is independent of f ,λ,γ and Δl . Suppose that there is at least a point yl ∈ Δl

such that MMf (yl) ≤ γ λ. Otherwise there is nothing to prove. Let Δ∗
l ∈ M be the interval

which satisfies the following conditions: Δ∗
l ⊃ Δl, |Δ∗

l | = m|Δl|. Let f (x) = f1(x)+f2(x),
where

f1(x) = (
f (x)− fΔ∗

l

)
χΔ∗

l
(x), fΔ = 1

|Δ|
∫
Δ

f (t)dt, Δ ∈ M
and f2(x) = f (x)− f1(x). By Proposition 4.9 we have that∣∣∣∣{Gm(f1, x) >

λ

2

}∣∣∣∣ ≤ 2C1

λ
‖f1‖L1[0,1] = 4C1

λ

∫
Δ∗
l

|f (t)|dt(50)

≤ 4mC1

λ
|Δl|MMf (yl) ≤ 4mC1γ |Δl | .
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On the other hand we have that |Δ∗
l | = m−κ for some κ ∈ N0. Thus for all 0 ≤ l ≤ μκ

we have that al(f ) = al(f2), which yields Gm(f2, x) = Gm(Θμκ (f, ·), x) if x ∈ Δ∗
l . There

exists at least one point zl ∈ Δ∗
l such that Gm(f, zl) ≤ λ. Thus if x ∈ Δ∗

l then

Gm(f2, x) = Gm(Θμκ (f, ·), x) ≤ Gm(f, zl) ≤ λ .

We have that if x ∈ Δ∗
l then

Gm(f, x) ≤ Gm(f1, x)+Gm(f2, x) ≤ Gm(f1, x)+ λ .

Hence, by (50) we finish the proof of (49).
We have that the weight function w satisfies the condition M∞([0, 1]). Thus we obtain

that

w({x ∈ Δl : Gm(f, x) > 2λ andMMf (x) ≤ γ λ}) ≤ Cγ δw(Δl)

where C > 0 is independent of f , λ > 0, γ > 0 and Δl . Hence, by Lemma 48 we finish the
proof. �

PROOF OF THEOREM 4.13. The necessity follows from Theorem 4.12. Suppose that
w satisfies the condition Mp([0, 1]). By Lemma 4.14 we derive∫

[0,1]
G
p
m(f, x)w(x)dx = p2p

∫ +∞

0
λp−1w({x ∈ [0, 1] : Gm(f, x) > 2λ})dλ

≤ Kp

∫ +∞

0
λp−1w({x ∈ [0, 1] : MMf (x) > γλ})dλ

+KpCγ
δ

∫ +∞

0
λp−1w({x ∈ [0, 1] : Gm(f, x) > λ})dλ .

Let γ0 > 0 be such that KpCγ δ0 <
1
2 . Then we obtain that∫

[0,1]
G
p
m(f, x)w(x)dx ≤ 2Kpγ

−p
0

∫
[0,1]

M
p

Mf (x)w(x)dx .

By Proposition 3.6 we finish the proof. �

5. The system H0(m) = {hl (x)}∞l=1 in Lp([0, 1], w) . In this section we will use the
following result (see [26]–[30])

THEOREM 5.1. Let {fn}∞n=1 ⊆ L∞(E) be an orthonormal system of real-valued func-
tions defined on a measurable set E, 0 < |E| < +∞ and suppose that {fn}∞n=1 is total with
respect to L1(E). Let, furthermore, N ∈ N and w ∈ L1(E) be a weight function. For the
system {fn}∞n=N+1 to be closed and/or minimal it is necessary and sufficient that the following
conditions 1) and/or 2), respectively, are satisfied:

1) any function of the form (w)−1 ∑N
n=1 cnfn, where cn(1 ≤ n ≤ N) are real numbers,

belongs to Lp
′
(E,w) if and only if every cn is zero;
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2) for every k (k = N + 1, N + 2, . . . ) there exist uniquely determined real numbers
b
(k)
n (1 ≤ n ≤ N) such that the function

gk = 1

w

[ N∑
n=1

b(k)n fn + fk

]
belongs to Lp

′
(E,w)

( 1
p

+ 1
p′ = 1

)
.

The following two lemmas are easy consequences of Theorem 5.1. We skip the details
of the proofs because they are similar to the case of the Haar system [31].

LEMMA 5.2. For anym = 2, 3, . . . the systemH0(m) is complete in a weighted norm
space Lp([0, 1], w), 1 ≤ p < ∞ if and only if there exists at least one point y ∈ [0, 1] such
that

1

w
/∈ L 1

p−1 (Δj (y)) for all j ∈ N .(51)

LEMMA 5.3. For any m = 2, 3, . . . the system H0(m) is minimal in a weighted norm
space Lp([0, 1], w), 1 ≤ p < ∞ if and only if 1

w
∈ L1([0, 1]) or for a point y ∈ [0, 1]

1

w
∈ L 1

p−1 ([0, 1] \Δj(y)) for all j ∈ N .(52)

By Lemmas 5.2 and 5.3 it follows easily

LEMMA 5.4. For any m = 2, 3, . . . the system H0(m) is complete and minimal in a
weighted norm space Lp([0, 1], w), 1 ≤ p < ∞ if and only if there exists only one point y ∈
[0, 1] such that the conditions (51), (52) hold.

Further in this section we will suppose that the weight functionw satisfies the conditions
(51) and (52). Hence, the system H0(m) is complete and minimal in the weighted norm
space Lp([0, 1], w), 1 ≤ p < ∞ with the unique conjugate system H∗

0(m). By Theorem 5.1
applied for our case it is easy to see that the system H∗

0(m) = {h∗
l (x)}∞l=1 is defined by the

following equations:

h∗
l (x) = hl (x)− hl(y)

w(x)
.(53)

For any f ∈ Lp([0, 1], w) and for any 1 ≤ j ≤ mk, k ∈ N we put

Θ
(0)
μk+j (m−1)(f, x) =

μk∑
l=1

cl(f )hl (x)+
j−1∑
s=0

m−1∑
ν=1

c
(ν)
k,s,m(f )h

(ν)
k,s,m(x) ,(54)

where

cl(f ) =
∫

[0,1]
f (t)h∗

l (t)dt; c
(ν)
k,s,m(f ) =

∫
[0,1]

f (t)[h(ν)k,s,m(t)− h
(ν)
k,s,m(y)]dt .

Let Δkj (y) be the interval from the collection of sets (35), (36) such that y ∈ Δkj (y).
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LEMMA 5.5. For any f ∈ Lp([0, 1], w) and for any 1 ≤ j ≤ mk, k ∈ N we have that
Θ
(0)
μk+j (m−1)(f, x) is constant on any interval from the collection of sets (35), (36). Moreover,

Θ
(0)
μk+j (m−1)(f, x) = − 1

|Δkj (y)|
∫

[0,1]\Δkj (y)
f (t)dt for x ∈ Δkj (y) ,(55)

and for any Δ from (35) or from (36) which does not coincide with Δkj (y)

Θ
(0)
μk+j (m−1)(f, x) = 1

|Δ|
∫
Δ

f (t)dt for x ∈ Δ .(56)

PROOF. In the proof we use the notation of Lemma 4.4. LetΔ be any interval from the
collection of sets (35), (36) such that Δ ∩Δkj (y) = ∅. Then we have that

Θ
(0)
μk+j (m−1)(f, x) =

∫
[0,1]

f (t)[K̃kj (t, x)− K̃kj (y, x)]dt

=
mk+j (m−1)∑

i=1

∫
Gi

f (t)[Kkj (t, x)−Kkj (y, x)]dt ,

where K̃kj (t, x) = Kkj (t, x) − 1, hence, K̃kj (t, x) − K̃kj (y, x) = Kkj (t, x) − Kkj (y, x).
Suppose that Gν = Δkj (y) and take any i0 �= ν, 1 ≤ i0 ≤ mk + j (m − 1). Then by
Lemma 4.4 we obtain that for x ∈ Gi0 we obtain that

mk+j (m−1)∑
i=1

∫
Gi

f (t)[Kkj (t, x)−Kkj (y, x)]dt =
∫
Gi0

f (t)Kkj (t, x)dt

= 1

|Gi0 |
∫
Gi0

f (t)dt .

On the other hand if x ∈ Gν by Lemma 4.4 we will have that

Θ
(0)
μk+j (m−1)(f, x) =

mk+j (m−1)∑
i=1,i �=ν

∫
Gi

f (t)[Kkj (t, x)−Kkj (y, x)]dt

= − 1

|Gν |
mk+j (m−1)∑
i=1,i �=ν

∫
Gi

f (t)dt = − 1

|Gν |
∫

[0,1]\Gν
f (t)dt .

�

Lemma 3.14 and Lemma 5.4 easily yield

LEMMA 5.6. Let w ≥ 0 be a weight function defined on [0, 1] such that w satisfies
the conditionMy

p([0, 1]) for some y ∈ [0, 1] and 1 < p < ∞. Then the conditions (51), (52)
hold and the systemH0(m) is complete and minimal in a weighted norm space Lp([0, 1], w).

THEOREM 5.7. For any m = 2, 3, . . . the system H0(m) is a basis in the weighted
norm space Lp([0, 1], w), 1 < p < ∞ if and only if there exists a point y ∈ [0, 1] such that
w satisfies the conditionsMp([0, 1] \ {y}) andMy

p([0, 1]).
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PROOF. Necessity. If the systemH0(m) is a basis in the weighted norm spaceLp([0, 1],
w) then it is a complete minimal system in Lp([0, 1], w). Then we will have that for any f ∈
Lp([0, 1], w) and for any 1 ≤ j ≤ mk, k ∈ N the partial sum operators are uniformly bounded

sup
1≤j≤mk,k∈N

∥∥Θ(0)
μk+j (m−1)

∥∥
Lp([0,1],w)→Lp([0,1],w) := M0 ≤ Bp ,

where Bp > 0. We have that

M0 ≥ max
1≤i≤mk+j (m−1)

sup
‖f ‖Lp(Gi ,w)≤1

∥∥Θ(0)
μk+j (m−1)

∥∥
Lp([0,1],w) .

If Gi ∩Δkj (y) = ∅ then by Lemma 5.5 we will have that

sup
‖f ‖Lp(Gi ,w)≤1

∥∥Θ(0)
μk+j (m−1)

∥∥
Lp(Gi,w)

= 1

|Gi | sup
‖f ‖Lp(Gi ,w)≤1

∣∣∣∣ ∫
Gi

f (t)dt

∣∣∣∣w(Gi) 1
p

= |Gi |−1w(Gi)
1
p
∥∥w− 1

p
∥∥
Lp

′
(Gi)

.

If Gν = Δkj (y) then in the same way as above we obtain that

|Δkj (y)|−pw(Δkj (y))
(∫

Δkj (y)

w
− 1
p−1 dt

)p−1

≤ B
p
p .

Sufficiency. By Lemma 5.6 we have that the system H0(m) is complete and minimal in
a weighted norm space Lp([0, 1], w). Hence, by Lemma 5.5 we obtain that for any f ∈
Lp([0, 1], w) and for any 1 ≤ j ≤ mk, k ∈ N∫

[0,1]
|Θ(0)

μk+j (m−1)(f, t)|pw(t)dt =
∑

1≤i≤mk+j (m−1)
i �=ν

∣∣∣∣ 1

|Gi |
∫
Gi

f (t)dt

∣∣∣∣p ∫
Gi

w(t)dt

+
∣∣∣∣ 1

|Gν |
∫

[0,1]\Gν
f (t)dt

∣∣∣∣p ∫
Gν

w(t)dt ≤ B
p
p

∫
[0,1]

|f (t)|pw(t)dt .

The last inequality follows because w satisfies the conditions Mp([0, 1] \ {y}) and
My

p([0, 1]). To finish the proof we have to show that liml→∞ |cl(f )|‖hl (·)‖Lp([0,1],w) = 0.
We skip the details because a similar result we have proved for the proof of Theorem 4.12. �

In the case p = 1 we have the following result.

THEOREM 5.8. For any m = 2, 3, . . . the system H0(m) is a basis in the weighted
norm space L1([0, 1], w), if and only if 1

w
/∈ L∞([0, 1]) and there exists a point y ∈ [0, 1]

such that w satisfies the conditionsM1([0, 1] \ {y}) andMy

1([0, 1]).
We will not give the details of the proof because it is similar to the proof of Theorem 5.7.

The main theorem of this section is the following

THEOREM 5.9. If the system H0(m),m = 2, 3, . . . is a basis in the weighted norm
space Lp([0, 1], w), 1 < p < ∞ thenH0(m) is an unconditional basis in the same space.
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PROOF. By Theorem 5.7 we have that there exists y ∈ [0, 1] such that the weight func-
tion w satisfies the conditions Mp([0, 1] \ {y}) and My

p([0, 1]). For any f ∈ Lp([0, 1], w)
there exists a unique sequence {al(f )}∞l=1 such that

f =
∞∑
l=1

al(f )hl .(57)

The coefficients which correspond to the functions h(ν)Δj (y) in the series (57) we denote by bjν .
We split formally the series (57) into two parts

∞∑
l=1

al(f )hl =
∞∑
j=0

m−1∑
ν=1

bjν(f )h
(ν)
Δj (y)

+
∑ ′

al(f )hl ,(58)

where by
∑′ we have denoted the series obtained after excluding the terms which are present

in the first series.
For any k ∈ N0 let Gkl ⊂ M, 1 ≤ l ≤ m − 1 be mutually disjoint intervals such that

|Gkl | = m−k−1, 1 ≤ l ≤ m− 1 and Δk(y) = Δk+1(y) ∪⋃m−1
l=1 Gkl .

By Theorem 4.13 we easily obtain that the series
∑ ′

al(f )hl converges unconditionally
in Lp(Gkl, w) for any k ∈ N and for all 1 ≤ l ≤ m − 1. Hence, if we check that the
series

∑ ′
al(f )hl converges in Lp([0, 1], w) we will have that it converges unconditionally

in Lp([0, 1], w). Thus the proof of theorem will be finished if we prove that the first series on
the right hand side of the equality (58) converges unconditionally in Lp([0, 1], w).

Recall that we are using the notation introduced in (28). Let

F(x) =
∞∑
j=0

m−1∑
ν=1

bjν(f )h
(ν)
Δj (y)

(x) = dlk if x ∈ Gkl(59)

for all k ∈ N0 and 1 ≤ l ≤ m− 1. By Lemma 5.5 we have that

dlk = 1

|Gkl|
∫
Gkl

f (t)dt, for x ∈ Gkl .

The weight function w satisfies the condition Mp([0, 1] \ {y}). Hence,∫
[0,1]

|F(x)|pw(x)dx =
∞∑
k=0

m−1∑
l=1

|dlk|pw(Gkl)

≤
∞∑
k=0

m−1∑
l=1

|Gkl |−p
∫
Gkl

|f (t)|pw(t)dt
(∫

Gkl

w(t)
− 1
p−1 dt

)p−1

w(Gkl)

≤ Cp

∫
[0,1]

|f (t)|pw(t)dt .

The system H0(m) is a basis in the weighted norm space Lp([0, 1], w). Hence, the first se-
ries in the right hand side of the equality (58) converges in Lp([0, 1], w). Thus to finish the
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proof of Theorem 5.9 we have to prove that the series in (59) converges unconditionally in
Lp([0, 1], w).

For any j ∈ N0 we have that

m−1∑
ν=1

bjν(f )h
(ν)
Δj (y)

(x) = dlj = 1

|Gjl |
∫
Gjl

f (t)dt ,

for x ∈ Gjl, 1 ≤ l ≤ m− 1 and

m−1∑
ν=1

bjν(f )h
(ν)
Δj (y)

(x) := −cj = −
m−1∑
l=1

dlj , for x ∈ Δj+1(y) .

Let {γl}m−1
l=0 be a collection of numbers such that

m−1∑
l=0

γ 2
l = 1 and

m−1∑
l=0

γl = 0 .(60)

We put

ξj (x) = |Δj+1(y)|− 1
2

[
γ0χΔj+1(y)(x)+

m−1∑
l=1

γlχGjl (x)

]
(61)

and

αj (f ) =
∫

[0,1]
f (t)[ξj (t)− |Δj+1(y)|− 1

2 γ0]dt(62)

= − γ0√|Δj+1(y)|
∫

[0,1]\Δj+1(y)

f (t)dt +
∫

[0,1]\Δj+1(y)

f (t)ξj (t)dt

= |Δj+1(y)| 1
2

m−1∑
l=1

(γl − γ0)d
l
j − γ0√|Δj+1(y)|

∫
[0,1]\Δj(y)

f (t)dt

= |Δj+1(y)| 1
2

(m−1∑
l=1

(γl − γ0)d
l
j − γ0

j−1∑
s=0

mj−s−1cs

)
.

LEMMA 5.10. For any ε = {εj }∞j=0 let

F ∗
ε (x) =

∞∑
j=0

εjαj ξj (x) .(63)

Then for all k ∈ N and x ∈ Δk(y) \Δk+1(y)

|F ∗
ε (x)| ≤ 2

k∑
s=0

m−1∑
l=1

|dls| + 1

m− 1

k−1∑
s=0

mk−s |cs | .
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PROOF. By (61) and (62) we obtain that for x ∈ Gkν, 1 ≤ ν ≤ m− 1

|F ∗
ε (x)| ≤

k∑
j=0

|αjξj (x)| = |γ0|
k−1∑
s=0

m−1∑
l=1

|γl − γ0||dls| + |γν |
m−1∑
l=1

|γl − γ0||dlk|

+
k−1∑
j=1

j−1∑
s=0

mj−s−1|cs | ≤ 2
k∑
s=0

m−1∑
l=1

|dls | +
k−1∑
j=1

j−1∑
s=0

mj−s−1|cs |

≤ 2
k∑
s=0

m−1∑
l=1

|dls| + 1

m− 1

k−1∑
s=0

mk−s |cs | .

�

LEMMA 5.11. For any f ∈ Lp([0, 1], w), 1 < p < ∞ and any ε = {εj }∞j=0 the
function F ∗

ε ∈ Lp([0, 1], w) and
‖F ∗

ε ‖Lp([0,1],w) ≤ C′
p‖f ‖Lp([0,1],w) ,

where C′
p > 0 is independent of f and ε.

PROOF. By Lemma 5.10 we have that∫
Δk(y)\Δk+1(y)

|F ∗(x)|pw(t)dt ≤ 4p
( k∑
s=0

m−1∑
l=1

|dls|
)p
w(Δk(y))

+ 2p

(m− 1)p

(
[w(Δk(y))]

1
p

k−1∑
s=0

mk−s |cs |
)p
.

Afterwards write

|Δs+1(y)|
m−1∑
l=1

|dls| [w(Δk(y))]
1
p

≤
(∫

Δs(y)\Δs+1(y)

|f (t)|pw(t)dt
) 1
p
(∫

Δs(y)\Δs+1(y)

w(t)
− 1
p−1 dt

) 1
p′

[w(Δk(y))]
1
p

≤ C
1
p
p

(∫
Δs(y)\Δs+1(y)

|f (t)|pw(t)dt
) 1
p |Δk(y)| .

Hence, we obtain that

k∑
s=0

m−1∑
l=1

|dls | [w(Δk(y))]
1
p ≤ C

1
p
p

(∫
Δs(y)\Δs+1(y)

|f (t)|pw(t)dt
) 1
p 1

mk−s
.

Now we apply the following lemma which is a consequence of Theorem 274 from [18].
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LEMMA 5.12. Let u = {uj }∞j=0 and v = {vj }∞j=0 be numerical sequences such that

u ∈ l1 and v ∈ lp, p > 1. Then the Cauchy product w = {wn}∞n=0, wn = ∑n
j=0 un−j vj of

the sequences u and v belongs to lp. Moreover ‖w‖lp ≤ ‖u‖l1‖v‖lp .
Which gives us the convergence of the series

∞∑
k=1

( k∑
s=0

m−1∑
l=1

|dls |
)p
w(Δk(y)) ≤ 2pCp

∫
[0,1]

|f (t)|pw(t)dt .

To finish the proof of Lemma 5.11 we have to show that

∞∑
k=1

(
[w(Δk(y))]

1
p

k−1∑
s=0

mk−s |cs |
)p

< +∞ .(64)

We have that (
k−1∑
s=0

m−s−1|cs |
)p

≤
( k−1∑
s=0

m−1∑
l=1

(∫
Gsl

|f (t)|pw(t)dt
) 1
p
(∫

Gsl

w(t)
− 1
p−1 dt

) 1
p′ )p

≤
( k−1∑
s=0

(∫
Δs(y)\Δs+1(y)

|f (t)|pw(t)dt
) 1
p

×
(∫

Δs(y)\Δs+1(y)

w(t)
− 1
p−1 dt

) 1
p′ )p

.

Recall that w satisfies My
p([0, 1]). By Lemma 3.14 we obtain that

mk
(∫

Δs(y)\Δs+1(y)

w(t)
− 1
p−1 dt

) 1
p′
w(Gkl)

1
p

≤ C
1
p
p

(∫
Δs(y)\Δs+1(y)

w(t)
− 1
p−1 dt

) 1
p′ [ ∫

[0,1]\Δk(y)
ω

− 1
p−1 (t)dt

]− 1
p′

≤ C
1
p
p q

− k−s
p

p .

If we write

k−1∑
s=0

mk−s−1|cs |w(Gkl)
1
p

≤ C
1
p
p

k−1∑
s=0

(∫
Δs(y)\Δs+1(y)

|f (t)|pw(t)dt
) 1
p

q
− k−s

p
p
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and put vj = (
∫
Δj (y)\Δj+1(y)

|f (t)|pw(t)dt) 1
p , uj = q

− j
p

p then by Lemma 5.12 we will obtain

∞∑
k=1

( k−1∑
s=0

mk−s−1|cs |
)p
w(Gkl) ≤ CpBp

∫
[0,1]

|f (t)|pw(t)dt .

�

Lemma 5.11 yields the convergence of the series

∞∑
j=0

ε
(ν)
j bjν(f )h

(ν)
Δj (y)

for any 1 ≤ ν ≤ m − 1 and for all ε(ν) = {ε(ν)j }∞j=0, where ε(ν)j = ±1. Moreover, we obtain
that for some Bp > 0∥∥∥∥ ∞∑

j=0

m−1∑
ν=1

ε
(ν)
j bjν(f )h

(ν)
Δj (y)

∥∥∥∥
Lp([0,1],w)

≤ Bp‖f ‖Lp([0,1],w) .

�

6. Higher rank Haar wavelets in Lp(R, ω). Let ω ≥ 0 be a locally integrable func-
tion defined on R. In this section we study the phenomenon described in the introduction with
respect to the higher rank Haar wavelet systems H(m),m = 2, 3, . . . . Let χ−(x) = χR−(x)
and χ+(x) = χR+(x). The following result is the first step in that direction.

LEMMA 6.1. For any m = 2, 3, . . . let H(m) be the wavelet system defined by (26)
and (27). Let Um be the linear subspace of locally integrable functions ξ on R such that∫

R

ξ(t)h
(ν)
k,j,m(x)(t)dt = 0 ∀j, k ∈ Z, 1 ≤ ν ≤ m− 1 .(65)

Then dimUm = 2 and χ−, χ+ as vectors constitute a basis in Um.

PROOF. It is clear that if we prove that a locally integrable function ξ such that ξ(x) =
0 if x ∈ R− and holds (65) if and only if ξ = cχ+ for some c ∈ R then the proof will be
finished. By Corollary 4.6 we have that the system H(m), m = 2, 3, . . . is total with respect
to L1[0, 1]. Hence, by definition of the system H(m) and by (65) it follows that∫

[0.1]
ξ(t)hl (t)dt = 0 for all l ∈ N .

Which yields that ξ(x) = c h0(x) for x ∈ [0, 1]. We finish the proof by induction. Suppose
that for some N ∈ N it is true that if ξ is a locally integrable function such that ξ(x) = 0 if
x ∈ R− and (65) is true then ξ(x) = c0 if x ∈ [0,mN ], where c0 ∈ R. If ξ is a function
which satisfies to all mentioned conditions then by definition of the system H(m) it follows
that the functions ξν(x) = ξ(x − νmN), 1 ≤ ν ≤ m− 1 also satisfy to those conditions. Thus
by our supposition it follows that ξν(x) = cν if x ∈ [0,mN ], where cν ∈ R. Hence, ξ(x) =
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cν if x ∈ [νmN, (ν + 1)mN ], 0 ≤ ν ≤ m − 1. Afterwards we observe that the functions
h(ν)(mN+1x), 1 ≤ ν ≤ m− 1 belong to the system H(m), which yields∫ mN+1

0
ξ(x)h(ν)(mN+1x)dx = 0 for all 1 ≤ ν ≤ m− 1 .

After a change of the variable we have that∫ 1

0
ξ(m−N−1t)h(ν)(t)dt = 0 for all 1 ≤ ν ≤ m− 1 .

By definition of the functions h(ν), 1 ≤ ν ≤ m − 1 we obtain that ξ(m−N−1x) = c if x ∈
[0, 1]. �

It is convenient to continue our study considering the systems H+(m), H−(m) respec-
tively in the spaces Lp(R+, ω) and Lp(R−, ω). It is easy to see some sort of symmetry
between those systems. Thus it would be sufficient to study the system H+(m) in the space
Lp(R+). In fact we have proved the analogue of the above lemma for the system H+(m)
which is formulated as follows.

LEMMA 6.2. Let U+
m be the linear subspace of locally integrable functions ξ on R+

such that ∫
R+
ξ(t)h

(ν)
k,j,m(x)(t)dt = 0 ∀k ∈ Z,∀j ∈ Z+, 1 ≤ ν ≤ m− 1 .(66)

Then dimU+
m = 1 and χ+ ∈ U+

m .

We need the analogues of Lemmas 5.2, 5.3 for this case.

LEMMA 6.3. The system H+(m) is complete in Lp(R+, ω), 1 ≤ p < ∞ if and only
if

χ+

ω
/∈ L 1

p−1 (R+) .(67)

PROOF. Suppose that H+(m) is complete in Lp(R+, ω). If g = χ+
ω

∈ L 1
p−1 (R+) then

g ∈ Lp′
(R+, ω), where 1

p
+ 1

p′ = 1. Thus∫
R+

g(t)h
(ν)
k,j,m(x)(t)ω(t)dt = 0 ∀k ∈ Z,∀j ∈ Z+, 1 ≤ ν ≤ m− 1 .(68)

Which yields that H+(m) is not complete in Lp(R+, ω). Which is a contradiction.

Suppose that χ
+
ω
/∈ L 1

p−1 (R+). IfH+(m) is not complete in Lp(R+, ω) then there exists

g ∈ Lp
′
(R+, ω) such that (68) holds. By Lemma 6.3 it follows that g(t)ω(t) = cχ+(t) a.e.

on R+, where c ∈ R. We came to a contradiction which finishes the proof. �

From Lemma 6.3 it follows that
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LEMMA 6.4. The system H+(m) is complete in Lp(R+, ω), 1 ≤ p < ∞ if and only
if there exists at least one point y ∈ [0,+∞] such that

1

w
/∈ L 1

p−1 (Δj (y)) for all j ∈ N .(69)

We also have

LEMMA 6.5. The system H+(m) is minimal in Lp(R+, ω), 1 ≤ p < ∞ if and only if

For any h(ν)k,j,m(x) ∈ H+(m) there exists a coefficient a(ν)k,j,m such that

g
(ν)
k,j,m = a

(ν)
k,j,mχ

+ + h
(ν)
k,j,m

ω
∈ L 1

p−1 (R+) .
(M)

PROOF. Suppose that the system H+(m) is minimal in Lp(R+, ω). Then there exists a
system {g(ν)k,j,m : k ∈ Z, j ∈ Z+, 1 ≤ ν ≤ m− 1} byorthogonal to H+(m). Hence, if for some
ν0, 1 ≤ ν0 ≤ m − 1 we fix any l ∈ Z and any μ ∈ Z+ then for all k ∈ Z, j ∈ Z+ and 1 ≤
ν ≤ m− 1 ∫

R+
[g(ν0)
l,μ,m(x)ω(x)− h

(ν0)
l,μ,m(x)]h(ν)k,j,m(x)dx = 0.(70)

By Lemma 6.2 we obtain that

g
(ν0)
l,μ,m = a

(ν0)
l,μ,mχ

+ + h
(ν0)
l,μ,m

ω
∈ L 1

p−1 (R+) .

The proof of sufficiency is direct. We easily check that the system {g(ν)k,j,m : k ∈ Z, j ∈
Z+, 1 ≤ ν ≤ m− 1} is biorthogonal to H+(m). �

From Lemma 6.5 it follows easily that

LEMMA 6.6. The system H+(m) is minimal in Lp(R+, ω), 1 ≤ p < ∞ if and only if
there exists at most one point y ∈ [0,+∞] such that (69) holds.

By Lemmas 6.3 and 6.5 we obtain immediately

LEMMA 6.7. The system H+(m) is complete and minimal in Lp(R+, ω), 1 ≤ p <

∞ if and only if conditions (67) and (M) hold.

Lemmas 6.4 and 6.6 yield

LEMMA 6.8. The system H+(m) is complete and minimal in Lp(R+, ω), 1 ≤ p <

∞ if and only if there exists a unique point y ∈ [0,+∞] such that the condition (69) holds.
If we analyze the proofs of results which brought us the last lemma then it is not hard to

see that the following result also holds.

LEMMA 6.9. The system H−(m) is complete minimal in Lp(R−, ω), 1 ≤ p < ∞ if
and only if there exists a unique point y ∈ [−∞, 0] such that the condition (69) holds.

Lemma 6.8 and Lemma 6.9 easily yield
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LEMMA 6.10. The system H(m) is complete and minimal in Lp(R, ω), 1 ≤ p < ∞
if and only if there exists a unique point y+ ∈ [0,+∞] and a unique point y− ∈ [−∞, 0]
such that the condition (69) holds for both of those points.

The following lemma will be used in the proof of the main result of the present section.

LEMMA 6.11. Let {φj }μj=1, {ψj }μj=1 be some measurable functions defined on a mea-
surable set E and let

K(x, t) =
μ∑
j=1

φj (x)ψj (t) (x, t) ∈ E × E .

Furthermore, for a given real valued orthogonal matrix

A =
(
aij

)
1≤i≤μ
1≤j≤μ

let fk(x) = ∑μ
i=1 aikφi(x), gk(x) = ∑μ

i=1 aikψi(t). If we consider a new kernel Φ(x, t) =∑μ
k=1 fk(x)gk(t) then

K(x, t) = Φ(x, t) for (x, t) ∈ E × E .

PROOF. We have

Φ(x, t) =
μ∑
k=1

μ∑
i=1

aikφi(x)

μ∑
ν=1

aνkψν(t)

=
μ∑
i=1

μ∑
ν=1

φi(x)ψν(t)

μ∑
k=1

aνkaik

=
μ∑
ν=1

φν(x)ψν(t) = K(x, t) .

�

We are going to apply Lemma 6.11 in the proof of the next theorem. As {φj }μj=1 and

{fk}μk=1 we will take two orthonormal bases in V (m) considered in Subsection 3.2. Concretely
we will consider the following orthonormal bases of V (m) : {h(ν)(x) : 0 ≤ ν ≤ m − 1} and
{ϕ1,j,m(x) : 0 ≤ j ≤ m− 1}.

THEOREM 6.12. For any m = 2, 3, . . . the system H+(m) is an unconditional basis
in the weighted norm space Lp(R+, ω), 1 < p < ∞ if and only if there exists a point y ∈
[0,+∞] such that:
If y �= +∞ then ω satisfies the conditionMp(R

+ \ {y}) and the conditionMy
p(R

+);
If y = +∞ then ω satisfies the conditionMp(R

+).
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PROOF. Suppose that H+(m) is an unconditional basis in the weighted norm space
Lp(R+, ω), 1 < p < ∞. Then H+(m) is complete minimal in Lp(R+, ω) and there exists
a unique point y ∈ [0,+∞] such that the condition (69) holds. First consider the case y =
+∞. In this case the uniqueness of the point y means that for any h(ν)k,j,m(x) ∈ H+(m)

g(ν)k,j,m = h
(ν)
k,j,m

ω
∈ L 1

p−1 (R+) .(71)

The proof of the necessity can be easily completed following the scheme of the proof of
Theorem 4.12.

If y ∈ [0,+∞) then by Lemma 6.5 the system byorthogonal toH+(m) is defined by the
following equations:

g(ν)k,j,m(t) = h
(ν)
k,j,m(t)− h

(ν)
k,j,m(y)χ

+(t)
ω(t)

(72)

for all k ∈ Z, j ∈ Z+ and 1 ≤ ν ≤ m− 1.
LetΔ = Δl+1(y) and letΔl(y) = Δl(0)+jym−l , where jy ∈ N0. For f ∈ Lp(R+, w),

consider the sum

m−1∑
ν=1

c
(ν)
l,jy,m

(f ) h
(ν)
l,jy ,m

(x)

=
m−1∑
ν=0

∫
R+
f (t)g

(ν)
k,jy ,m

(t)ω(t)dt h
(ν)
l,jy ,m

(x)− c
(0)
l,jy,m

(f ) h
(0)
l,jy ,m

(x)

=
∫
R+
f (t)

m−1∑
ν=0

g
(ν)
k,jy ,m

(t)h
(ν)
l,jy ,m

(x)ω(t)dt − c
(0)
l,jy,m

(f ) h
(0)
l,jy ,m

(x) ,

where h(0)l,jy ,m(x) = χΔl(y)(x) and

g
(0)
k,j,m(t) = h

(0)
k,j,m(t)− h

(0)
k,j,m(y)χ

+(t)
ω(t)

.

By Lemma 6.11 it follows that∫
R+
f (t)

m−1∑
ν=0

g(ν)k,jy ,m(t)h
(ν)
l,jy ,m

(x)ω(t)dt(73)

=
∫
R+
f (t)

m−1∑
j=0

ϕl+1,jy+j,m(x)ψl,j,m(t)ω(t)dt ,(74)

where

ψl,j,m(t) = ϕl+1,jy+j,m(t)− ϕl+1,jy+j,m(y)χ+(t)
ω(t)

.
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Thus we obtain that if x ∈ Δl+1(y) then

m−1∑
ν=1

c
(ν)
l,jy ,m

(f ) h
(ν)
l,jy ,m

(x) = −ml+1
∫
R+\Δl+1(y)

f (t)dt −ml
∫
R+\Δl(y)

f (t)dt .

If f (t) ≥ 0 for t ∈ R+ then it follows that for x ∈ Δl+1(y)∣∣∣∣m−1∑
ν=1

c
(ν)
l,jy,m

(f ) h
(ν)
l,jy ,m

(x)

∣∣∣∣≥ |Δl+1(y)|−1
∣∣∣∣∫

R+\Δl+1(y)

f (t)dt

∣∣∣∣ .
Afterwards in the same way as in the proof of Theorem 5.7 we obtain that for some Bp > 0
and for all l ∈ Z

|Δl(y)|−pω(Δl(y))
(∫

R+\Δl(y)
ω

− 1
p−1 dt

)p−1

≤ B
p
p .

LetElj ∈ M, 1 ≤ j ≤ m−1 be mutually disjoint intervals such that |Elj | = m−1|Δl(y)|, 1 ≤
l ≤ m− 1 and Δl(y) = Δl+1(y) ∪⋃m−1

j=1 Elj . By (73) we obtain that if f (t) = 0 when x ∈
R+ \Δl(y) then

m−1∑
ν=1

c
(ν)
l,jy,m

(f ) h
(ν)
l,jy ,m

(x) = |Elj |−1
∫
Elj

f (t)dt if x ∈ Elj (1 ≤ j ≤ m− 1) .

Which yields

|Elj |−pω(Elj )
(∫

Elj

ω
− 1
p−1 dt

)p−1

≤ B
p
p for any l ∈ Z and 1 ≤ j ≤ m− 1 .

Let Δ ∈ M, |Δ| = m−l−1 be such that Δ ∩ Δl(y) = ∅. We consider the interval Δ∗ ∈
M, |Δ∗| = m−l be such that Δ ⊂ Δ∗. Let = Δl(0)+ k∗m−l , where k∗ ∈ N0.

For f ∈ Lp(R+, w) consider the sum

m−1∑
ν=1

c
(ν)
l,k∗,m(f ) h

(ν)
l,k∗,m(x) .

Using the same idea as above we show that if x ∈ Δ then

m−1∑
ν=1

c
(ν)
l,k∗,m(f ) h

(ν)
l,k∗,m(x) = |Δ|−1

∫
Δ

f (t)dt − |Δ∗|−1
∫
Δ∗
f (t)dt .

Thus if f (t) = 0 for t ∈ R+ \Δ it follows that

m−1∑
ν=1

c
(ν)
l,k∗,m(f ) h

(ν)
l,k∗,m(x) = m− 1

m
|Δ|−1

∫
Δ

f (t)dt

and the proof of the necessity is completed easily.
The proof of the sufficiency will be given following the same idea as in proof of The-

orem 4.10. By Lemma 6.8 we have that the system H+(m) is complete and minimal in
Lp(R+, ω). Let G+(m) = {g(ν)k,j,m : k ∈ Z, j ∈ Z+, 1 ≤ ν ≤ m − 1} be the conjugate sys-
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tem of the basis H+(m). Suppose that ω satisfies the condition Mp(R
+). Then the system

G+(m) is defined by the equations (71). Let f ∈ Lp(R+, ω) and let Ω ⊂ Z × Z+ be a finite
set. Moreover, let N ∈ N be such that h(ν)k,j,m(x) = 0 if x ∈ [mN,+∞) for all (k, j) ∈ Ω .
For any 1 ≤ ν ≤ m− 1 consider the sum

S
(ν)
Ω (f, x) =

∑
(k,j)∈Ω

c
(ν)
kj (f )h

(ν)
k,j,m(x) ,(75)

where

c
(ν)
kj (f ) =

∫
R+
f (t)h

(ν)
k,j,m(t)dt .

Applying Lemma 3.15 as in the proof of Theorem 4.10 we obtain that

‖S(ν)Ω (f, ·)‖Lp(R+,ω) ≤ Bp‖f ‖Lp(R+,ω) ,

where Bp > 0 is independent of f and Ω .

If y ∈ [0,+∞) then we take N ∈ N so that h(ν)k,j,m(x) = 0 if x ∈ [mN,+∞) for all

(k, j) ∈ Ω and y ∈ [0,mN ]. By Lemma 6.5 the system G+(m) is defined by the equations
(72). In this case the coefficients of the sum (75) are defined as follows:

c
(ν)
kj (f ) =

∫
R+
f (t)

[
h
(ν)
k,j,m(t)− h

(ν)
k,j,m(y)

]
dt .

We write f (t) = f1(t) + f2(t), where f1(t) = f (t)χ[0,mN ](t). By Lemma 3.16 and
Lemma 3.17 in the same way as above we obtain that

‖S(ν)Ω (f1, ·)‖Lp(R+,ω) ≤ Bp‖f1‖Lp(R+,ω) ,

where Bp > 0 is independent of f1 and Ω . The proof will be complete if we show that

‖S(ν)Ω (f2, ·)‖Lp(R+,ω) ≤ B∗
p‖f2‖Lp(R+,ω) ,

where B∗
p > 0 is independent of f2 and Ω . We have that

S
(ν)
Ω (f2, x) =

∑
(k,j)∈Ω

c
(ν)
kj (f2)h

(ν)
k,j,m(x)

= −
∫

[mN,+∞)

f (t)dt
∑

(k,j)∈Ω
h
(ν)
k,j,m(y)h

(ν)
k,j,m(x) .

Let f ∗
N(t) = m−Nχ[0,mN ](t) then∑
(k,j)∈Ω

h
(ν)
k,j,m(y)h

(ν)
k,j,m(x) =

∑
(k,j)∈Ω

∫
R+
f ∗
N(t)[h(ν)k,j,m(t)− h

(ν)
k,j,m(y)]dt h(ν)k,j,m(x)

= S
(ν)
Ω (f ∗

N, x) .

Thus we have that

‖S(ν)Ω (f2, ·)‖Lp(R+,ω) =
∣∣∣∣ ∫[mN,+∞)

f (t)dt

∣∣∣∣‖S(ν)Ω (f ∗
N , ·)‖Lp(R+,ω)
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≤ ‖f2‖Lp(R+,ω)

[ ∫
[mN,+∞)

ω(t)
− 1
p−1 dt

] 1
p′
Bp‖f ∗

N‖Lp(R+,ω)

= Bpm
−N
[ ∫

[mN,+∞)

ω(t)
− 1
p−1 dt

] 1
p′ [ ∫

[0,mN ]
ω(t)dt

] 1
p ‖f2‖Lp(R+,ω) .

Using that ω satisfies the condition My
p(R

+) we complete the proof. �

It is easy to check that any function ωr(x) = xr if r > p − 1 satisfies the condition
M0

p(R
+) and the condition Mp((0,+∞)).

COROLLARY 6.13. Let 1 < p < ∞ and let ωr(x) = |x|r if r > p − 1. Then the
system H+(m) is an unconditional basis in the weighted norm space Lp(R+, ωr ).

THEOREM 6.14. For any m = 2, 3, . . . the system H(m) is an unconditional basis in
the weighted norm space Lp(R, ω), 1 < p < ∞ if and only if there exist two points y1 ∈
[0,+∞], y2 ∈ [−∞, 0] such that:
If y1 �= +∞ then ω satisfies the conditionMp(R

+ \ {y1}) and the conditionMy1
p (R

+);
If y1 = +∞ then ω satisfies the conditionMp(R

+);
If y2 �= +∞ then ω satisfies the conditionMp(R

− \ {y2}) and the conditionMy2
p (R

−);
If y2 = −∞ then ω satisfies the conditionMp(R

−);
COROLLARY 6.15. Let 1 < p < ∞ and let ωr(x) = |x|r if r > p − 1. Then the

system H(m) is an unconditional basis in the weighted norm space Lp(R, ωr).
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