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Abstract. A result of Korányi that describes the structure of the space of polynomial
solutions to the Heisenberg Laplacian operator is generalized to the canonical central sys-
tems on the block Heisenberg groups. These systems of differential operators generalize the
Heisenberg Laplacian and, like it, admit large algebras of conformal symmetries. The main
result implies that in most cases all polynomial solutions can be obtained from a single one by
the repeated application of conformal symmetry operators.

1. Introduction. The theorem of Korányi that is referred to in the title concerns the
structure of the space of polynomial solutions to a certain partial differential equation. The
genealogy of results of this type traces back to observations made by mathematicians such
as Maxwell, Sylvester, and Clebsch in their investigations of harmonic polynomials. Dowker
has recently written a beautiful account of this work, with numerous references to the original
sources [1]. In order to provide context for Korányi’s result and the results reported here, we
shall briefly describe some of the simplest aspects of this classical story.

LetΔ = ∂2
1 +· · ·+∂2

n be the Laplacian acting on the polynomial ringA = C[x1, . . . , xn]
and let H ⊂ A denote the subspace of solutions to the equationΔ•ϕ = 0. (Here and below, we
use • to denote the action of a differential operator on a function.) The operators xi∂j − xj∂i

for 1 ≤ i < j ≤ n act on A and preserve H. They span a Lie algebra isomorphic to
so(n,C) (we shall work throughout with complex coefficients, since the real form makes no
essential difference when we are considering polynomial solutions). Let E = x1∂1+· · ·+xn∂n
be the Euler operator and define Di = xi(2 − n − 2E) + ‖x‖2∂i for 1 ≤ i ≤ n. The
operatorsDi are obtained by conjugating the operators ∂i by the Kelvin transform K given by
(Kϕ)(x) = ‖x‖2−nϕ(x/‖x‖2); in particular, they commute with one another. Together with
the copy of so(n,C) already described, the operators ∂1, . . . , ∂n,D1, . . . ,Dn, and 2 −n− 2E
span a Lie algebra isomorphic to so(n+ 2,C). We shall denote this algebra by r. The action
of r on A preserves H so that H becomes a module for the universal enveloping algebra U(r).
If n = 1 or n ≥ 3 then this module is irreducible. Let us assume that n ≥ 3. Then any
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non-zero harmonic polynomial is a U(r)-cyclic vector for H. In particular, 1 is a U(r)-cyclic
vector and it follows from this and the PBW Theorem that we have H = C[Di ]•1. That is,
every harmonic polynomial may be obtained by applying some polynomial in the operators
D1, . . . ,Dn to 1. With modern tools, this assertion can be proved in a few lines. A dimension
count shows that the representation of ϕ ∈ H in the form ϕ = ψ(D)•1 cannot be unique and
the desire to make it so in an interesting and useful way is the starting point of the Maxwell-
Sylvester theory of poles. The statement that H = C[Di]•1, which is essentially equivalent to
the statement that H is an irreducible U(r)-module, is what we would describe as the Korányi
theorem for this situation.

The Heisenberg Laplacian �w, wherew is a complex parameter, is a differential operator
on the Heisenberg group. It has been extensively studied, initially because of its importance in
complex analysis [2]. It may be considered as a perturbation of the Euclidean Laplacian along
the center of the Heisenberg group. Korányi [11] considered the polynomial solutions to the
Heisenberg Laplacian. In this situation there are analogues of the Kelvin transform and of the
Lie algebra r described for the Laplacian in the previous paragraph. Korányi showed that the
polynomial 1 is a U(r)-cyclic vector for the module of polynomial solutions to �w, provided
that w avoids a countable set of bad values. The proof is analytic, relying crucially on the
fact that �w is hypoelliptic, and is substantially harder than in the case of the Laplacian. Sub-
sequently, the author gave an algebraic proof of Korányi’s theorem, and also determined the
structure of the U(r)-module of polynomial solutions when w takes one of the bad values [6].
Korányi’s theorem provides one approach to understanding the space of polynomial solutions
to the Heisenberg Laplacian. It is also possible to write an explicit basis of polynomial solu-
tions expressed in terms of Jacobi polynomials [4].

Both the Laplacian and the Heisenberg Laplacian admit a large algebra of conformal
symmetries, although both were first considered for reasons unconnected with this property.
From the perspective of Lie theory, it is natural to begin with a candidate algebra of confor-
mal symmetries and then systematically to construct operators that admit this algebra. This
procedure will, of course, yield known examples such as the Laplacian and the Heisenberg
Laplacian, but will often place these examples into families most of whose members were
previously unknown. It emerges that it is most natural to consider systems of differential
operators, without restricting the number of operators that may occur, so that systems consist-
ing of a single operator become the exception rather than the rule. The author undertook the
task of finding a general Lie-theoretic framework for the Heisenberg Laplacian [7] and, as a
consequence, found what are here called the canonical central systems. One may attempt to
generalize the methods that have been used to study the polynomial solutions of the Heisen-
berg Laplacian to these more general systems. It currently appears that the explicit approach
that was mentioned above succeeds only for a limited class of the new systems [8]. The pur-
pose of the current work is to show that, in contrast, a Korányi theorem can be obtained for
one of the three infinite families of canonical central systems. It is expected that this will also
be true for the other two infinite families and for the exceptional system. The main results are
Theorem 5.1, which is the Korányi theorem for the systems here considered, and Theorem 5.2,
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which gives a converse to the Korányi theorem for these systems.
To prove the two results described in the previous paragraph we use a method which

differs both from the analytic method of Korányi [11] and the algebraic method previously
used by the author in a special case [6], neither of which appears to generalize. It is based on
a model for the solution space of the canonical central system that we call the initial model.
If the reader is prepared to countenance multidimensional time then the initial model may be
thought of as the space of initial conditions for solutions to the canonical central system. The
initial model exists provided that the parameter w does not lie in a certain set of bad values.
The determination of this set of bad values required a substantial amount of work [7, 9], as
did the demonstration that the canonical central system is free of integrability conditions [9]
so that the initial model contains all polynomials on the initial hypersurface. Although it is
still somewhat complicated, the initial model is sufficiently tractable that we may establish
irreducibility and reducibility results by studying the actions of subalgebras of the conformal
algebra on the initial model directly.

In Section 2 we review the general construction of the canonical central systems and ba-
sic facts about their initial models. Section 3 contains specific information about the canonical
central systems on the block Heisenberg groups. Section 4 is devoted to deriving what we call
a dual b-function identity, which plays an essential role in the proof of the main results. It
may be helpful to set this identity in context and to explain the choice of nomenclature. The
starting point for deriving a dual b-function identity is a b-function identity associated with a
prehomogeneous vector space. This identity will take the familiar form

Qj •P s11 · · ·P snn = bj (s1, . . . , sn)P
s1
1 · · ·P sj−1

j · · ·P snn ,

where P1, . . . , Pn are relatively invariant polynomials on the prehomogeneous vector space in
question, Qj is a constant coefficient differential operator derived from a relatively invariant
polynomial on the dual space, and bj is a polynomial. To obtain a dual b-function identity
from this, we conjugate the b-function identity by a suitable equivariant rational map from the
prehomogeneous vector space to its dual space. The resulting identity has the form

Dj (s)•P s11 · · ·P snn = cj (s, s1, . . . , sn)P
s1
1 · · ·P sj+1

j · · ·P snn ,(1.1)

where s is an additional parameter,Dj (s) is a differential operator (no longer having constant
coefficients), and cj is a polynomial. Of course, the simplest identity of this form is

Pj · P s11 · · ·P snn = P
s1
1 · · ·P sj+1

j · · ·P snn(1.2)

and, indeed, (1.1) is a perturbation of (1.2), in the sense that we have

lim
s→∞ s

pDj (s) = Pj

for a suitable value of p. In the present context, the operators Dj (s) that appear in the dual
b-function identity are related to raising operators in initial models of the modules whose
irreducibility we wish to investigate. The main results are then proved in Section 5. The
proofs rest mainly on the existence of the initial model and on the dual b-function identity.
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The reader who is familiar with the theory of Hermitian symmetric spaces will recognize
that the dual b-function identity that we make use of here is closely related to the evaluation
of a generalized gamma function for a certain Hermitian symmetric space. (The reader might
consult Wilson’s work [15] for a compressed account of this theory in the context of the
study of reducibility questions.) The information contained in the dual b-function identity is
usually obtained analytically in that context, whereas here it is obtained by algebraic means.
In addition, there are many prehomogeneous vector spaces besides those connected to the
Hermitian symmetric spaces that support dual b-function identities. It would be interesting to
investigate the significance of these identities from the current perspective.

The last substantive thing that remains is briefly to set our results in the context of the
theory of modules in category Op. We have avoided this language in the body of the paper
since we do not need it and its use might be an unnecessary obstacle to some readers. The
module Pw of polynomial solutions to the canonical central system is a submodule of a dual
scalar generalized Verma moduleMˇattached to the parabolic subalgebra p of sl(l+1) whose
associated Dynkin diagram is displayed near the beginning of Section 3. The block Heisen-
berg algebra is the nilradical of this parabolic. The conformal invariance of the canonical
central system guarantees that the generalized Verma module M , and hence also its dual, is
reducible. In fact, Pw is always a non-zero proper submodule of M .̌ Thus when Pw is irre-
ducible, it affords a model of the unique irreducible submodule Lˇ ⊂ M .̌ The module Lˇ is
always equal to the submodule of Pw generated by 1 ∈ Pw. In this way, our results might
be interpreted as extending the results of Suga [13] to a particular family of prehomogeneous
vector spaces of non-commutative parabolic type. From this perspective, the existence of the
initial model of Pw amounts to a vector space isomorphism Pw ∼= M1ˇ⊗M2 ,̌ where M1 and
M2 are scalar generalized Verma modules for the two standard maximal parabolic subalge-
bras of sl(l + 1) that contain p. However, this isomorphism is far from an isomorphism of
U(sl(l + 1))-modules and seems to the author to be hard to interpret in the context of gen-
eralized Verma modules, whereas it is extremely natural in the context of systems of partial
differential equations.

We wish to comment on an issue that has been raised by the referee, that of notational
persistence from section to section below. As far as possible, each section is written in a self-
contained way. In particular, incidental notation (such as dummy variables in summations)
is chosen to enhance local readability and does not persist from one section to another. Our
thanks are due to the referee for his or her careful reading of the paper, and for corrections
and suggestions for improving the exposition.

2. The canonical central systems. Canonical central systems of differential equa-
tions are defined on several families of nilpotent groups. Our main focus here is on the sys-
tems that are defined on the block Heisenberg groups, but in this section we shall summarize
the construction and some of the properties of these systems in general. As often happens,
generality promotes simplicity in describing structural features. In addition, this section will
be a useful reference for later work on the canonical central systems on other groups.
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Let R be a simple reduced root system, R+ ⊂ R a positive system, and Rs ⊂ R+
the corresponding set of simple roots. Normalize the inner product ( · , · ) on the ambient
space of R so that the long roots have squared-length 2. Let γ ∈ R+ be the highest root and
write γ = ∑

μ∈Rs nμμ. Suppose that α, β ∈ Rs are distinct and that nα = nβ = 1. Let
d(α, β) be the distance between α and β in the Dynkin graph of R. Denote by 	α and 	β
the fundamental weights dual to α and β, respectively. Let

λw = −w	α + (w + d(α, β))	β

where w is a complex parameter. Let g be a complex simple Lie algebra of type R, h ⊂ g a
Cartan subalgebra, and identify R with R(g, h). Let B be a non-degenerate invariant bilinear
form on g. The form B induces a bilinear form on h∗ which restricts to a scalar multiple of the
inner product ( · , ·) on the ambient space of R. We normalize B so that the scalar in question
is 1.

There are unique elementsH0 and Z0 in h such that α(H0) = 1, β(H0) = 1, α(Z0) = 1,
β(Z0) = −1, μ(H0) = 0, and μ(Z0) = 0 for all μ ∈ Rs \ {α, β}. These elements induce a
bigrading g = ⊕g(j, k) of g, where

g(j, k) = {X ∈ g | [H0,X] = jX, [Z0,X] = kX} ,
and g(j, k) = {0} unless (j, k) ∈ {(±2, 0), (±1,±1), (0, 0)}. There is a corresponding par-
tition R = ∪R(j, k), where μ ∈ R(j, k) if gμ ⊂ g(j, k). The subspace l = g(0, 0) is a
reductive subalgebra of g. The center of l is the span of H0 and Z0, and there is a decompo-
sition l = z(l) ⊕ lss with lss = [l, l] semisimple. Each space g(j, k) with (j, k) �= (0, 0) is
an irreducible l-module. In addition, n = g(1, 1)⊕ g(1,−1) ⊕ g(2, 0) and n̄ = g(−1, 1)⊕
g(−1,−1)⊕ g(−2, 0) are two-step nilpotent subalgebras of g. We may regard λw as a func-
tional on h. As such, it vanishes on h ∩ lss and so it may be extended uniquely to a functional
on l that vanishes on lss .

Let h0 ⊂ g0 be a split real form of h ⊂ g. If E ⊂ g is an ad(h)-invariant subspace of g
then E0 = E ∩ g0 is a real form of E. Let N be a real Lie group whose real Lie algebra is n0.
The exponential map exp : n0 → N is a diffeomorphism. We shall regardN as a subgroup of
the real Lie group Aut(g0) via the embedding

exp(X) �→
∞∑
j=0

1

j !
(
ad(X)

)j
.

The group N is nilpotent of class 2 and g(2, 0)0 is the real Lie algebra of its center. In order
to introduce coordinates on N , we define

n(X, Y, T ) = exp
(
X + Y + T − 1

2
[X,Y ])

for X ∈ g(1, 1)0, Y ∈ g(1,−1)0, and T ∈ g(2, 0)0. With this definition, N is the set of all
n(X, Y, T ), the product on N is

n(X, Y, T )n(X′, Y ′, T ′) = n(X +X′, Y + Y ′, T + T ′ + [X,Y ′]) ,
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and the inverse on N is

n(X, Y, T )−1 = n(−X,−Y,−T + [X,Y ]) .
We refer to a function on N as a polynomial function if it is a polynomial when expressed in
the coordinates X, Y , and T . To each Z ∈ n0 is associated a first-order differential operator
R(Z) on N that is determined by

(
R(Z)•ϕ

)
(n) = d

dτ

∣∣∣∣
τ=0

ϕ(n exp(τZ))

for ϕ ∈ C∞(N). The map Z �→ R(Z) is a Lie algebra homomorphism from n0 into the
algebra of differential operators onN . It extends uniquely to an algebra homomorphism from
U(n), the universal enveloping algebra of n, into the algebra of differential operators on N .

It will sometimes be helpful to have more explicit expressions for operators such as
R(Z). When this is so, we assume that root vectors Xμ have been chosen in the root spaces
in n and introduce the corresponding structure constants by [Xμ,Xν] = Nμ,νXμ+ν , with
Nμ,ν = 0 when μ + ν is not a root. For μ a root in n we let ∂μ be the corresponding
directional derivative. For example,

(∂μ•ϕ)(n(X, Y, T )) = d

dτ

∣∣∣∣
τ=0

ϕ
(
n(X + τXμ, Y, T )

)
whenμ ∈ R(1, 1). We also introduce coordinates dual to the chosen root vectors. Specifically,
we take xμ to be dual toXμ when μ ∈ R(1, 1), yν to be dual toXν when ν ∈ R(1,−1), and tζ
to be dual to Xζ when ζ ∈ R(2, 0). The operators ∂μ are then the partial derivative operators
with respect to these coordinates. With this notation in place, we have R(Xμ) = ∂μ for
μ ∈ R(1, 1) ∪ R(2, 0) and

R(Xν) = ∂ν +
∑

μ∈R(1,1)

xμNμ,ν∂μ+ν

for ν ∈ R(1,−1).
Choose a basis {Xi} for g(1, 1) and let {X̄i} be the B-dual basis of g(−1,−1). Also

choose a basis {Yj } of g(1,−1) and let {Ȳj } be the B-dual basis of g(−1, 1). Define a map
ωw : g(2, 0) → U(n) by

ωw(T ) = (
w + d(α, β)

)
T +

∑
i,j

B
(
T , [X̄i , Ȳj ]

)
XiYj ,

where w is a complex parameter. Observe that the dependence of this map on the choice of
bases for g(1, 1) and g(1,−1) is only apparent. We now set

Ωw(T ) = R
(
ωw(T )

)
and thus obtain a differential operator Ωw(T ) on N for each T ∈ g(2, 0) and w ∈ C. The
systems of differential operators that are of interest here are {Ωw(T ) | T ∈ g(2, 0)} for each
fixed w ∈ C. They may be replaced by finite systems of differential operators with the same
solutions by restricting T to run through a given basis for g(2, 0).



A GENERALIZATION OF KORÁNYI’S THEOREM 529

We refer to the systems constructed in the previous paragraph as the canonical central
systems on N . The operators in these systems are indexed by elements of the center of n, al-
though the nomenclature was actually motivated by the role that the central element Z0 plays
in obtaining them in the context of the staircase method, a more general method for construct-
ing conformally invariant systems on the nilradicals of parabolic subgroups in semisimple Lie
groups. Their construction is canonical from the datum (R, {α, β}). In fact, there are also
canonical central systems associated to such data even when α and β do not satisfy the re-
striction nα = nβ = 1, although the operators in the resulting systems have order nα+nβ . As
far as the author is aware, these higher-order canonical central systems have not yet received
any attention.

If D is an operator on functions on N then we denote the functional ϕ �→ (D•ϕ)(n) by
Dn. We have the decomposition g = n ⊕ l ⊕ n̄ and associated projection operators prn, prl,
and prn̄. For Z ∈ g there is a differential operatorΠw(Z) on N such that

Πw(Z)n = −R(
prn(Ad(n−1)Z)

) − λw
(
prl(Ad(n−1)Z)

)
(2.1)

for all n ∈ N . The mapΠw affords a representation of g in the space of differential operators
on N in the sense that Πw([Z1, Z2]) = [Πw(Z1),Πw(Z2)] for all Z1, Z2 ∈ g. It will be
useful to have explicit expressions for Πw(Z) with Z ∈ n. These may be derived from the
general expression forΠw(Z) given above or by noting that when Z ∈ n the operatorΠw(Z)
coincides with the natural left action of Z on functions on N . By either method, it emerges
that Πw(Xν) = −∂ν for ν ∈ R(1,−1) ∪ R(2, 0) and

Πw(Xμ) = −∂μ −
∑

ν∈R(1,−1)

yνNμ,ν∂μ+ν

for μ ∈ R(1, 1).
Each Πw(Z), Z ∈ g, is a conformal symmetry of the canonical central system. To

express this generalized symmetry property as an equation, let {Tk} be a basis for g(2, 0).
Then, for all Z ∈ g, we have

[Πw(Z),Ωw(Tk)] =
∑
p

Cw(Z)
p
kΩw(Tp) ,

where the coefficientsCw(Z)
p
k are polynomial functions onN . For present purposes, the main

consequence of this property is that the operators Πw(Z) preserve the subspace of solutions
to the canonical central system in any suitable space of smooth functions on N . In this way,
the solution space of the canonical central system becomes a module for U(g) via Πw .

Let Pw denote the subspace of solutions to the canonical central system inside the space
of polynomials on N . We regard Pw as a U(g)-module via Πw as explained above. Note that
the constant polynomial 1 belongs to Pw.

PROPOSITION 2.1. The submodule of Pw generated by 1 is irreducible and large. In
particular, Pw is indecomposable.
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PROOF. It suffices to show that if ϕ ∈ Pw \ {0} then the submodule of Pw generated by
ϕ contains 1. This is clear from the expressions for Πw(Z), Z ∈ n, that were given above.
The operators Πw(Xζ ), ζ ∈ R(2, 0), may be applied to ϕ as necessary to obtain a non-zero
polynomial independent of all tζ . Then the operators Πw(Xν), ν ∈ R(1,−1), and Πw(Xμ),
μ ∈ R(1, 1), may be used to obtain a non-zero constant polynomial. �

Let res : Pw → C[g(1, 1)⊕ g(1,−1)] be defined by

res(ϕ)(X, Y ) = ϕ(n(X, Y, 0))

and denote the image of res by P̃w. We regard the variables tζ , ζ ∈ R(2, 0), as (multiple)
times, so that the map res sends a polynomial solution to the canonical central system to its
initial data. We say that w lies in the uniqueness set if res is injective and otherwise that w
lies in the non-uniqueness set. The non-uniqueness set is always a subset of Z. It has been
determined for each canonical central system (see [7] and [9]) and will be recalled below for
the systems on the block Heisenberg groups.

Assume now thatw lies in the uniqueness set. Then we may define an action Π̃w of U(g)
on P̃w by

Π̃w(Z)•ψ = res
(
Πw(Z)•ϕ

)
,

where ϕ ∈ Pw is chosen to satisfy res(ϕ) = ψ . Note that Π̃w(Z) need not be (the restriction
to P̃w of) a differential operator on the space of polynomials on g(1, 1) ⊕ g(1,−1). In fact,
Π̃w(Z) is a differential operator for Z ∈ n̄ ⊕ l but not for general Z ∈ g. The operator
Π̃w(Z) does always belong to a suitable localization of the algebra of differential operators
on g(1, 1)⊕ g(1,−1). When w lies in the uniqueness set, this construction gives a model of
the module Pw in the space P̃w. We refer to this as the initial model of this module.

It is expected that we always have P̃w = C[g(1, 1) ⊕ g(1,−1)] when w lies in the
uniqueness set, although this equality definitely fails in some cases when w lies in the non-
uniqueness set. One may express this by saying that the canonical central system is free of
integrability conditions when w lies in the uniqueness set. This expectation has been con-
firmed for the canonical central systems on the block Heisenberg groups [9, Theorem 6.5].
We shall use this fact below without further comment.

The existence of roots α and β with the property assumed here implies that R is of type
A, D, or E6. In particular, R is always simply laced. Any two roots may be chosen for α and
β when R is of type A. When R is of type D, there are three choices of α and β available.
When R is of type E6, there is a unique choice of α and β available. The block Heisenberg
groups arise when R is of type A.

3. The systems of Type A. Fix l ≥ 2 and choose a, b ≥ 1 such that a + b ≤ l. Let
c = l − a − b + 1. We work in the Lie algebra g = sl(l + 1) with the standard choice of
Cartan subalgebra and standard model for the root system. In this model, the simple roots
are αj = εj − εj+1 and we choose α = αa and β = αa+b in the general construction. This
choice of simple roots may be indicated as usual by striking out the roots α and β in the
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Dynkin diagram, as shown below.

α1 αa αa+b αl

Note that d(α, β) = b.
The Lie algebra l consists of block-diagonal matrices of the form diag(A1, A2, A3) with

A1 ∈ Mat(a), A2 ∈ Mat(b), and A3 ∈ Mat(c) and tr(A1) + tr(A2) + tr(A3) = 0. Here
Mat(m, n) denotes the space of m-by-n matrices and Mat(n) is an abbreviation of Mat(n, n).
The weights 	α and 	β are given by

	α = 1

l + 1

(
(b + c)(ε1 + · · · + εa)− a(εa+1 + · · · + εl+1)

)
,

	β = 1

l + 1

(
c(ε1 + · · · + εa+b)− (a + b)(εa+b+1 + · · · + εl+1)

)
.

When interpreted as characters of l, these weights have the simpler expressions

	α(diag(A1, A2, A3)) = tr(A1) ,

	β(diag(A1, A2, A3)) = −tr(A3) .

The non-uniqueness set for these systems was determined in [9, Theorem 2.1], which com-
pleted the partial determination in [7, Theorem 5.4]. For consistency, we denote the non-
uniqueness set by σ(F ). (It is, in fact, the spectrum of a locally finite operator on a free
module over a polynomial ring, and this is the origin of the notation.) We have

σ(F ) =
{

−(a − 1)+ N if b ≥ a,

−b + N if b < a.

Recall that if w /∈ σ(F ) then the initial model P̃w of the module Pw is available.
The elements of the Lie algebra n have the form⎡

⎣0 X T

0 0 Y

0 0 0

⎤
⎦

with X ∈ Mat(a, b), Y ∈ Mat(b, c), and T ∈ Mat(a, c). The Lie bracket is⎡
⎣

⎡
⎣0 X T

0 0 Y

0 0 0

⎤
⎦ ,

⎡
⎣0 X′ T ′

0 0 Y ′
0 0 0

⎤
⎦

⎤
⎦ =

⎡
⎣0 0 XY ′ −X′Y

0 0 0
0 0 0

⎤
⎦

and a brief calculation reveals that

n(X, Y, T ) =
⎛
⎝Ia X T

0 Ib Y

0 0 Ic

⎞
⎠ .

We refer to the group N consisting of all n(X, Y, T ) as a block Heisenberg group. If we take
a = c = 1 then we obtain a group isomorphic to the standard real Heisenberg group. Let
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X = [xij ], Y = [yjk], and T = [tik], so that xij , yjk , and tik afford a system of coordinates
on N .

We can write out the operators in the canonical central system on the block Heisenberg
group explicitly in the coordinates that were just introduced. To this end, define

Δik =
b∑
j=1

∂2

∂xij ∂yjk

for 1 ≤ i ≤ a and 1 ≤ k ≤ c. For i and k in the same ranges, let

Ω
[w]
ik = Δik − w

∂

∂tik
+

∑
1≤p≤a
1≤q≤b

xpq
∂2

∂xiq∂tpk
,

wherew is the parameter introduced above. The canonical central system on the block Heisen-
berg group N consists of the operatorsΩ [w]

ik for all 1 ≤ i ≤ a and 1 ≤ k ≤ c. The parameter
w may be omitted from the notation when it does not need to be emphasized. When a = c = 1
(and only then) the canonical central system consists of a single operator, the Heisenberg ul-
trahyperbolic operator [6]. It is a real form of the Heisenberg Laplacian operator studied by
Folland and Stein [2] and many subsequent authors.

For 1 ≤ i ≤ a and 1 ≤ k ≤ c define

ϕik =
∑

1≤j≤b
xij yjk .

Let

Ex =
∑

1≤i≤a
1≤j≤b

xij
∂

∂xij

and

Ey =
∑

1≤j≤b
1≤k≤c

yjk
∂

∂yjk

be the Euler operators associated to g(1, 1) and g(1,−1), respectively. If 1 ≤ r ≤ a and
1 ≤ s ≤ b then let

X̄rs =
⎡
⎣ 0 0 0
Esr 0 0
0 0 0

⎤
⎦

where Esr denotes the elementary matrix with 1 in the (s, r)-place and zeros elsewhere. If
1 ≤ r ≤ b and 1 ≤ s ≤ c then let

Ȳrs =
⎡
⎣0 0 0

0 0 0
0 Esr 0

⎤
⎦ .
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The matrices X̄rs are a basis for g(−1,−1) and the matrices Ȳrs are a basis for g(−1, 1).

LEMMA 3.1. For 1 ≤ r ≤ a and 1 ≤ s ≤ b we have

Πw(X̄rs) = −wxrs +
∑

1≤m≤a
1≤n≤b

xrnxms
∂

∂xmn
−

∑
1≤q≤c

trq
∂

∂ysq
.

If in addition w /∈ σ(F ) then
Π̃w(X̄rs) = −wxrs +

∑
1≤m≤a
1≤n≤b

xrnxms
∂

∂xmn
.

For 1 ≤ r ≤ b and 1 ≤ s ≤ c we have

Πw(Ȳrs) = (w + b)yrs +
∑

1≤m≤b
1≤n≤c

yrnyms
∂

∂ymn
−

∑
1≤i≤a

(ϕis − tis )
∂

∂xir
+

∑
1≤i≤a
1≤k≤c

yrktis
∂

∂tik
.

If in addition w /∈ σ(F ) then
Π̃w(Ȳrs) = (w + b)yrs +

∑
1≤m≤b
1≤n≤c

yrnyms
∂

∂ymn
−

∑
1≤i≤a

ϕis
∂

∂xir
.

PROOF. The proof is based on the general expression (2.1) forΠw(Z) with Z ∈ g. The
two evaluations are obtained similarly, but the second is a little more elaborate and so we shall
present that one. Let n = n(X, Y, T ). A calculation shows that

n−1Ȳrsn =
⎡
⎣0 (XY − T )Esr (XY − T )EsrY

0 −YEsr −YEsrY
0 Esr EsrY

⎤
⎦

and so prl(n
−1Ȳrsn) = diag(0,−YEsr, EsrY ) and

prn(n
−1Ȳrsn) =

⎡
⎣0 (XY − T )Esr (XY − T )EsrY

0 0 −YEsrY
0 0 0

⎤
⎦ .

Now tr(EsrY ) = yrs , and so

λw
(
prl(n

−1Ȳrsn)
) = −(w + b)yrs .

We have

(XY − T )Esr =
∑

1≤i≤a
(ϕis − tis)Eir ,

which may be regarded as an element of g(1, 1). The operator associated to this element by
the right action map R is ∑

1≤i≤a
(ϕis − tis)

∂

∂xir
.(3.1)
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Similarly,

(XY − T )EsrY =
∑

1≤p≤a
1≤n≤c

(ϕps − tps)yrnEpn

may be regarded as an element of g(2, 0) and the associated operator is∑
1≤p≤a
1≤n≤c

(ϕps − tps)yrn
∂

∂tpn
.(3.2)

Finally,

−YEsrY = −
∑

1≤j≤b
1≤n≤c

yjsyrnEjn

may be regarded as an element of g(1,−1) and the associated operator is

−
∑

1≤j≤b
1≤n≤c

yjsyrn

⎛
⎝ ∂

∂yjn
+

∑
1≤p≤a

xpj
∂

∂tpn

⎞
⎠(3.3)

= −
∑

1≤j≤b
1≤n≤c

yjsyrn
∂

∂yjn
−

∑
1≤p≤a
1≤n≤c

ϕpsyrn
∂

∂tpn
.

By adding (3.1), (3.2), and (3.3) we conclude that

R
(
prn(n

−1Ȳrsn)
) = −

∑
1≤j≤b
1≤n≤c

yjsyrn
∂

∂yjn
+

∑
1≤i≤a

(ϕis − tis)
∂

∂xir
−

∑
1≤p≤a
1≤n≤c

yrntps
∂

∂tpn
.

We now have all the evaluations required to obtain the formula forΠw(Ȳrs) given in the state-
ment. To obtain Π̃w(Ȳrs) when w /∈ σ(F ), note that the operators tps∂/∂tpn and tis∂/∂xir
give zero on restriction to T = 0 and so

Π̃w(Ȳrs) = (w + b)yrs +
∑

1≤j≤b
1≤n≤c

yjsyrn
∂

∂yjn
−

∑
1≤i≤a

ϕis
∂

∂xir

as claimed. �

We next wish to recall the notion of conjugacy for canonical central systems [9, Sec-
tion 5]. This provides a relation between the canonical central systems on the block Heisen-
berg groupN with sizes (a, b, c) and the block Heisenberg group Ň with sizes (c, b, a). It is
based on the existence of the automorphism g �→ ǧ of SL(l+ 1) given by ǧ = J1(g

−1)�J−1
1 ,

where � denotes the transpose and

J1 =
⎛
⎝ 0 0 Ic

0 −Ib 0
Ia 0 0

⎞
⎠ .
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This automorphism maps N to Ň ; indeed, a calculation shows that

ň(X, Y, T ) =
⎛
⎝Ic Y� (XY − T )�

0 Ib X�
0 0 Ia

⎞
⎠ .

It induces automorphisms of the various objects associated to SL(l + 1). We denote all
of these automorphisms by the same symbol. If Z = diag(A1, A2, A3) ∈ l then Ž =
diag(−A�

3 ,−A�
2 ,−A�

1 ) ∈ ľ and so

λ̌w(Ž) = −wtr(−A�
3 )− (w + b)tr(−A�

1 )

= (w + b)tr(A1)+wtr(A3)

= λ−w−b(Z) .

This motivates us to define w̌ = −w − b so that λ̌w̌(Ž) = λw(Z) for all w and all Z ∈ l.
Given a smooth function ϕ on N , we define a smooth function ϕ̌ on Ň by ϕ̌(ň) =

ϕ(n). It follows from the intinsic nature of the constructions (and may be verified by routine
calculation) that

Π̌w̌(Ž)•ϕ̌ = (
Πw(Z)•ϕ

)ˇ(3.4)

and

Ω̌
[w̌]
ki

•ϕ̌ = (
Ω

[w]
ik

•ϕ
)ˇ.(3.5)

Note that ϕ̌ is a polynomial on Ň if and only if ϕ is a polynomial on N . It follows from this
and (3.5) that the map ϕ �→ ϕ̌ is a linear isomorphism from Pw to P̌w̌. It then follows from
(3.4) that this linear isomorphism is a U(g)-module isomorphism along the automorphism
u �→ ǔ of U(g). In particular, U(g)-submodules of Pw correspond to U(g)-submodules of P̌w̌
under this isomorphism, and the lattice of submodules in Pw is isomorphic to the lattice of
submodules in P̌w̌ . It may be worth mentioning that the initial models of Pw and P̌w̌ do not
correspond under this isomorphism. In fact, restriction to the set T = 0 in P̌w̌ corresponds to
restriction to the set T = XY in Pw .

4. A Dual b-Function Identity. Let a, b ≥ 1 and n = min{a, b}. Let uij with 1 ≤
i ≤ a and 1 ≤ j ≤ b be variables, and denote by ∂ij the partial derivative with respect to uij .
Let U = [uij ] and ∂ = [∂ij ] be the indicated a-by-bmatrices. IfM is any matrix, I is a subset
of the set of row indices of M , and J is a subset of the set of column indices of M , then we
let M[I, J ] denote the submatrix ofM formed with the rows from I and the columns from J .
We abbreviateM[I, I ] to M[I ]. For 1 ≤ j ≤ n, define j ′ = n− j + 1. For 1 ≤ i ≤ n, let

Δi = detU [{1, . . . , i}]
and

Δ∗
i = det ∂[{1′, . . . , i ′}] .
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It will be convenient to extend the definition of Δi by setting Δ0 = 1. We shall make use of
formal powers P s with P ∈ C[urs]. As usual, the action of the partial derivatives is extended
to such formal powers by defining ∂ij •P s = sP s(∂ij •P)/P .

The identity stated in Theorem 4.1 has been attributed to Mikio Sato (see [14, p. 150], for
example). The usual reference that is quoted for it is the notes prepared by Takuro Shintani of
a course given by Sato [12].

THEOREM 4.1 (b-Function Identity). For 1 ≤ m ≤ n we have

Δ∗
m

•(Δs11 · · ·Δsnn )=sn(sn + sn−1 + 1) · · · (sn + · · · + sm′ +m− 1)Δs11 · · ·Δsn−1
n−1Δ

sn−1
n Δn−m .

Let s be a parameter. For 1 ≤ p ≤ a and 1 ≤ q ≤ b we define

Dpq = supq +
∑

1≤i≤a
1≤j≤b

upjuiq∂ij .(4.1)

The following could of course be proved by direct computation. The alternative proof
we offer should partially explain our interest in the operatorsDpq .

LEMMA 4.2. The operatorsDpq commute with one another.

PROOF. First suppose that s /∈ Z. After substituting uij = xij , we have Dpq =
Π̃−s (X̄pq) by Lemma 3.1. Now

[g(−1,−1), g(−1,−1)] ⊂ g(−2,−2) = {0}
and so g(−1,−1) is an abelian subalgebra of g. Since Π̃−s is a representation of g, it follows
that the operators Dpq mutually commute. We may remove the restriction that s /∈ Z by
noting that [Dp1q1,Dp2q2] is polynomial in s and vanishes when s /∈ Z. Thus it is identically
zero. �

In order to prepare for the proof of the Dual b-Function Identity, we digress to discuss
the relationship between the operators ∂pq andDpq when a = b = n. In order to describe this
relationship it is convenient to work with the algebra A = C[s, uij ,Δ−1

n ,Δ−s
n ,Δ

s
n], which is

also a module for the Weyl algebra of C[uij ] in the usual way. Let

J =

⎛
⎜⎜⎜⎜⎜⎝

1
1

. .
.

1
1

⎞
⎟⎟⎟⎟⎟⎠

and for an invertible n-by-n matrix M define M̊ = J (M−1)�J . In particular, U = [uij ] ∈
Mat(n,A) is invertible and so we obtain a matrix Ů ∈ Mat(n,A). We write this matrix as
Ů = [̊uij ]. The entries in U−1 = [ũij ] are given by

ũij = (−1)i+jΔ−1
n detU [{j }c, {i}c] ,(4.2)
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where I c = {1, . . . , n} \ I for I ⊂ {1, . . . , n}, and ůij = ũj ′i′ . The map uij �→ ůij extends
to an algebra automorphism of A such that s̊ = s, (Δ−s

n )̊ = Δsn, and (Δsn)̊ = Δ−s
n . Note that

we have ϕ̊˚= ϕ for all ϕ ∈ A.

LEMMA 4.3. For 1 ≤ m ≤ n we have Δ̊m = Δn−mΔ−1
n .

PROOF. From the definition of Δm we obtain

Δ̊m = det Ů [{1, . . . ,m}] = detU−1[{1′, . . . ,m′}] .
We now appeal to Jacobi’s Identity for the minors of an inverse matrix (see [3, p. 21]) to
conclude that

Δ̊m = Δ−1
n detU [{1′, . . . ,m′}c] = Δ−1

n detU [{1, . . . , n−m}] = Δn−mΔ−1
n ,

as required. �

We next define an τ : A → A by τ (ϕ) = Δ−s
n ϕ̊. The map τ is a linear automorphism

(but not an algebra automorphism) and τ ◦ τ is the identity. Suppose that E : A → A is a
linear map. Then we may define a linear map τ (E) : A → A by τ (E) = τ ◦ E ◦ τ . This
definition is chosen so that τ (E)τ(ϕ) = τ (Eϕ) for all ϕ ∈ A. As we observed above, the
Weyl algebra of C[uij ] acts on A and so for each element δ in the Weyl algebra we obtain a
linear map τ (δ) : A → A. Note that we have τ (δ1δ2) = τ (δ1)τ (δ2) for all δ1 and δ2 in the
Weyl algebra.

LEMMA 4.4. For 1 ≤ i, j ≤ n we have τ (∂ij ) = −Di′j ′ .

PROOF. The entries of U−1 = [ũij ] are a coordinate system on the space of invertible
n-by-n matrices and so we may consider the corresponding partial derivatives ∂̃ij . By the
Chain Rule, we have

∂ij =
∑

1≤p,q≤n

∂ũpq

∂uij
∂̃pq .

By Laplace’s Expansion and (4.2), we have

∂ij •Δn = (−1)i+j detU [{i}c, {j }c] = ũj iΔn .

It will briefly be convenient to make use of the Iverson bracket [10] to express certain rela-
tionships; recall that if Φ is a boolean expression then [Φ] is defined to be 1 when Φ evalutes
to True and to be 0 when Φ evaluates to False. With this notation, we have

∂ij • detU [{q}c, {p}c] = [i �= q][j �= p](−1)i+j+[i>q]+[j>p] detU [{i, q}c, {j, p}c] .
The extra sign factors arise because the index of the i th row is decreased by 1 in the submatrix
U [{q}c, {p}c] if i > q , and similarly with the j th column. By Jacobi’s Identity, we have

detU [{i, q}c, {j, p}c] = (−1)i+j+p+qΔn detU−1[{j, p}, {i, q}]
and so

∂ij • detU [{q}c, {p}c] = [i �= q][j �= p](−1)p+q+[i>q]+[j>p]Δn detU−1[{j, p}, {i, q}]
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= (−1)p+qΔn
∣∣∣∣ũj i ũjq

ũpi ũpq

∣∣∣∣ .
Note that the 2-by-2 determinant is identically zero if i = q or if j = p, and that sign changes
appear when we switch rows and columns to write detU−1[{j, p}, {i, q}] in this form if i > q
or if j > p. This accounts for the disappearance of the Iverson brackets in the final expression.
By combining these evaluations with (4.2) and simplifying, we obtain

∂ũpq

∂uij
= −ũj i ũpq +

∣∣∣∣ũj i ũjq

ũpi ũpq

∣∣∣∣
= −ũpiũjq

so that

∂ij = −
∑

1≤p,q≤n
ũpi ũjq ∂̃pq .

The fact that (U−1)−1 = U then implies that

∂̃ij = −
∑

1≤p,q≤n
upiujq∂pq

and hence that

∂̊ij = −
∑

1≤p,q≤n
upj ′ui′q∂pq .(4.3)

For ϕ ∈ A we have

τ (∂ij )•ϕ = (τ∂ij τ )(ϕ)

= τ
(
∂ij •(Δ−s

n ϕ̊)
)

= τ
( − sΔ−s

n ũji ϕ̊ +Δ−s
n ∂ij •ϕ̊

)
= Δ−s

n

( − sΔsn(ũji )̊ ϕ +Δsn(∂ij •ϕ̊)̊
)

= −sui′j ′ϕ + ∂̊ij •ϕ
= −Di′j ′ •ϕ ,

and so τ (∂ij ) = −Di′j ′ , as claimed. Note that in this last calculation we have used the fact
that (U−1)̊ = JU�J , so that (ũji )̊ = ui′j ′ , the evaluation of ∂̊ij given in (4.3), and the
definition of Di′j ′ given in (4.1). �

This ends the digression relating the operators ∂ij and Dij , so we now drop the assump-
tion that a = b and return to the general case. Since the operators Dij commute with one
another, by Lemma 4.2, it makes sense to define an operatorΔm(D) by

Δm(D) =

∣∣∣∣∣∣∣
D11 . . . D1m
...

...

Dm1 . . . Dmm

∣∣∣∣∣∣∣
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for 1 ≤ m ≤ n.

THEOREM 4.5 (Dual b-Function Identity). Let 1 ≤ m ≤ n. Then we have

Δm(D)•
(
Δ
s1
1 · · ·Δsnn

) = cm(s)Δ
s1
1 · · ·Δsm+1

m · · ·Δsnn ,
where

cm(s) =
m∏
j=1

(s + sj + · · · + sn − j + 1) .

PROOF. As usual, it suffices to derive the identity under the restriction that s1, . . . , sn
are natural numbers and s is a negative integer satisfying s ≤ −(s1 +· · ·+sn). This is because
the dependence of both sides on s1, . . . , sn, s is polynomial and a polynomial that vanishes on
the specified set must be identically zero. It also suffices to assume that a = b = n. This is
because only the variables in the n-by-n upper-rightmost submatrix of U occur in the product
Δ
s1
1 · · ·Δsnn . Thus if 1 ≤ i1, j1 ≤ n then Di1j1

•
(
Δ
s1
1 · · ·Δsnn

)
contains only these variables.

It follows that if 1 ≤ i2, j2 ≤ n then Di2j2Di1j1
•
(
Δ
s1
1 · · ·Δsnn

)
contains only these variables,

and so on. We conclude that the operators Dij may be replaced by what they would be if
a = b = n without changing the value of the left-hand side of the proposed identity, as
claimed.

To derive the identity under the assumptions identified in the previous paragraph, we
apply the operator τ to both sides of the b-Function Identity given in Theorem 4.1. By
Lemma 4.4 we have τ (Δ∗

m) = (−1)mΔm(D) and from Lemma 4.3 we have

τ (Δ
s1
1 · · ·Δsnn )

= Δ−s
n (Δn−1Δ

−1
n )s1 · · · (Δ1Δ

−1
n )

sn−1Δ−sn
n

= Δ
sn−1
1 · · ·Δs1n−1Δ

−t
n ,

where t = s + s1 + · · · + sn. Thus the left-hand side of the b-Function Identity becomes

(−1)mΔm(D)•
(
Δ
sn−1
1 · · ·Δs1n−1Δ

−t
n

)
.(4.4)

By a similar calculation, the right-hand side of the b-Function Identity becomes

sn(sn + sn−1 + 1) · · · (sn + · · · + sm′ +m− 1)Δsn−1
1 · · ·Δsn−m+1

m · · ·Δs1n−1Δ
−t
n(4.5)

and so (4.4) and (4.5) are equal. In this equality, we replace sj by sn−j for 1 ≤ j ≤ n− 1, sn
by −(s1 + · · · + sn + s), and multiply both sides by (−1)m. The result is that

Δm(D)•
(
Δ
s1
1 · · ·Δsnn

) = cm(s)Δ
s1
1 · · ·Δsm+1

m · · ·Δsnn ,
where

cm(s) = (−1)m
( − (s1 + · · · + sn + s)

)( − (s2 + · · · + sn + s − 1)
)

· · · ( − (sm + · · · + sn + s −m+ 1)
)

= (s + s1 + · · · + sn)(s + s2 + · · · + sn − 1) · · · (s + sm + · · · + sn −m+ 1) ,

as required. �
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5. A Korányi Theorem and Its Converse. Let a, b, c ≥ 1 and definem = min{a, b}
and n = min{b, c}. The group H = SL(a) × SL(b) × SL(c) acts on the space Mat(a, b)⊕
Mat(b, c) by (g1, g2, g3)(X, Y ) = (g1Xg

−1
2 , g2Y g

−1
3 ). As in Section 3 we write xij and yjk

with 1 ≤ i ≤ a, 1 ≤ j ≤ b, and 1 ≤ k ≤ c for the standard coordinates on Mat(a, b)
and Mat(b, c), respectively. Our first task is to describe certain features of the action of H on
C[xij , yjk] ∼= C[xij ] ⊗ C[yjk]. To this end, let

Δi(x) =

∣∣∣∣∣∣∣
x11 . . . x1i
...

...

xi1 . . . xii

∣∣∣∣∣∣∣
for 1 ≤ i ≤ m and

Δk(y) =

∣∣∣∣∣∣∣
y11 . . . y1k
...

...

yk1 . . . ykk

∣∣∣∣∣∣∣
for 1 ≤ k ≤ n. For s = (s1, . . . , sm) ∈ Nm let

Δ(x)s = Δ1(x)
s1 · · ·Δm(x)sm

and for t = (t1, . . . , tn) ∈ Nn let

Δ(y)t = Δ1(y)
t1 · · ·Δn(y)tn .

Also let

Δ(x, y)(s,t) = Δ(x)sΔ(y)t .

The structure of C[xij ] as a representation of SL(a) × SL(b) may be deduced from the
GL(a)-GL(b) Duality Theorem [5, Section 2.1]. There is a decomposition

C[xij ] =
⊕
s∈Nm

Γx(s) ,

where Γx(s) ∼= Ux(s) � Vx(s) is the outer tensor product of an irreducible representation
of GL(a) having lowest weight −(	(s), 0a−m) and an irreducible representation of GL(b)
having highest weight (	(s), 0b−m). Here we have written

	(s) = (s1 + · · · + sm, s2 + · · · + sm, . . . , sm)

and are using the standard choices of torus and positive system in GL(a) and in GL(b). The
representationsUx(s) and Vx(s) remain irreducible on restriction to SL(a) and SL(b), respec-
tively. The polynomial Δ(x)s lies in Γx(s) and is simultaneously a lowest weight vector for
SL(a) and a highest weight vector for SL(b). Similarly, there is a decomposition

C[yjk] =
⊕
t∈Nn

Γy(t) ,

where Γy(t) ∼= Vy(t) � Wy(t) is the outer tensor product of an irreducible representation
of GL(b) having lowest weight −(	(t), 0b−n) and an irreducible representation of GL(c)
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having highest weight (	(t), 0c−n). The representations Vy(t) and Wy(t) remain irreducible
on restriction to SL(b) and SL(c), respectively. The polynomial Δ(y)t is simultaneously a
lowest weight vector for SL(b) and a highest weight vector for SL(c).

By combining the decompositions described in the previous paragraph we obtain a de-
composition

C[xij , yjk] =
⊕

s∈Nm, t∈Nn
Γx(s)⊗ Γy(t) .

The representation

Γx(s)⊗ Γy(t) ∼= Ux(s)�
(
Vx(s)⊗ Vy(t)

)
�Wy(t)

of H is generally reducible, since the inner tensor product Vx(s) ⊗ Vy(t) is generally so.
However, Γx(s) ⊗ Γy(t) is a cyclic U(h)-module and Δ(x, y)(s,t) is a cyclic vector in this
module. This follows from the observations that we have made above together with two well-
known general facts. The first is that the outer tensor product of cyclic vectors is cyclic in the
outer tensor product of their respective modules. The second is that if r is a simple Lie algebra,
a Cartan subalgebra and positive system are chosen for r, V1 and V2 are irreducible r-modules,
v+

1 is a highest weight vector in V1, and v−
2 is a lowest weight vector in V2 then v+

1 ⊗ v−
2 is a

U(r)-cyclic vector in V1 ⊗ V2. We apply the second fact to r = sl(b) and the representations
Vx(s) and Vy(t), and then the first fact to the representationsUx(s), Vx(s)⊗Vy(t), andWy(t).

Recall that the initial model of Pw exists provided that w /∈ σ(F ), where

σ(F ) =
{

−(a − 1)+ N if b ≥ a ,

−b + N if b < a .

Similarly, the initial model of the space P̌w̌ of polynomial solutions to the conjugate system
exists provided that w̌ /∈ σ(F̌ ), where w̌ = −w − b and

σ(F̌ ) =
{

−(c − 1)+ N if b ≥ c ,

−b + N if b < c .

The set S = {w | w ∈ σ(F ) and w̌ ∈ σ(F̌ )} is always a finite interval in Z and so, except
for a finite number of w values, we may use either the initial model of Pw or the initial model
of P̌w̌ . As we noted at the end of Section 3, the lattice of submodules in Pw is isomorphic to
the lattice of submodules in P̌w̌. It follows that we may use initial models to decide on the
reducibility of Pw unless w ∈ S. This is done in the next two results.

THEOREM 5.1. Suppose that either

(1) w /∈ Z or
(2) w ∈ Z \ σ(F ) and w > n− 1 − b or
(3) w̌ ∈ Z \ σ(F̌ ) and w̌ > m− 1 − b.

Then Pw is an irreducible U(g)-module.
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PROOF. We may assume that either Condition (1) or Condition (2) holds. If, instead,
Condition (3) holds then we may apply the following argument to the conjugate system. It
follows from Proposition 2.1 that it is sufficient to show that 1 is a cyclic vector for Pw as a
U(g)-module. Since w /∈ σ(F ), the initial model P̃w is available and so it suffices to show
that 1 is a cyclic vector for P̃w as a U(g)-module. It then suffices to show thatΔ(x, y)(s,t) lies
in the U(g)-submodule of P̃w generated by 1 for all s ∈ Nm and t ∈ Nn. If this is so then, by
the discussion above, Γx(s)⊗ Γy(t) is contained in the U(g)-submodule of P̃w generated by
1 for all s ∈ Nm and t ∈ Nn, and so this submodule is equal to P̃w , as required.

The operators Π̃w(Ȳjk) commute with one another and so we may define

Δq(Ȳ ) =

∣∣∣∣∣∣∣
Π̃w(Ȳ11) . . . Π̃w(Ȳ1q)

...
...

Π̃w(Ȳq1) . . . Π̃w(Ȳqq )

∣∣∣∣∣∣∣
for 1 ≤ q ≤ n. Inspection of the formula for Π̃w(Ȳjk) given in Lemma 3.1 shows that this
operator is the sum of an operator of the same form as the operatorDjk introduced in Section 4
(with w + b in place of s and yjk in place of ujk) and an operator that is identically zero on
C[yjk]. It follows from this observation, Theorem 4.5, and an induction argument that

Δ(Ȳ )t•1 =
n∏
j=1

tj+···+tn∏
e=1

(w + b + e − j) ·Δ(y)t .

Similarly, we may define

Δq(X̄) =

∣∣∣∣∣∣∣
Π̃w(X̄11) . . . Π̃w(X̄1q)

...
...

Π̃w(X̄q1) . . . Π̃w(X̄qq)

∣∣∣∣∣∣∣
for 1 ≤ q ≤ m. Inspection of the formula for Π̃w(X̄ij ) given in Lemma 3.1 shows that this
operator is of the same form as the operator Dij introduced in Section 4 (with −w in place
of s and xij in place of uij ). Moreover, this operator commutes with multiplication by any
element of C[yjk] since it only involves derivatives with respect to the xij . It follows from
these observations, Theorem 4.5, and an induction argument that

Δ(X̄)sΔ(Ȳ )t •1 =
n∏
j=1

tj+···+tn∏
e=1

(w + b + e − j) ·Δ(X̄)s•Δ(y)t
(5.1)

=
n∏
j=1

tj+···+tn∏
e=1

(w + b + e − j) ·Δ(y)tΔ(X̄)t •1

=
m∏
j=1

sj+···+sm∏
e=1

(−w + e − j) ·
n∏
j=1

tj+···+tn∏
e=1

(w + b + e − j) ·Δ(x, y)(s,t) .
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If Condition (1) holds then the factor preceding Δ(x, y)(s,t) in (5.1) is evidently non-zero.
Thus the U(g)-submodule of P̃w generated by 1 contains Δ(x, y)(s,t) for all s ∈ Nm and
t ∈ Nn, as required. Now suppose that Condition (2) holds. By assumption, w ∈ Z \ σ(F ).
If b ≥ a then this implies that w < −(a − 1) = −(m− 1) and so −w ≥ m. If, on the other
hand, b < a then it implies that w < −b = −m and so −w > m. In either case we conclude
that −w ≥ m. The smallest factor in the product

m∏
j=1

sj+···+sm∏
e=1

(−w + e− j)(5.2)

is −w + 1 − m and it follows from what we just observed that this is at least 1. Thus the
product (5.2) is non-zero. The smallest factor in the product

n∏
j=1

tj+···+tn∏
e=1

(w + b + e − j)(5.3)

is w+ b+ 1 − n. We have assumed that w > n− 1 − b and so w+ b+ 1 − n ≥ 1. Thus the
product (5.3) is non-zero. It follows that the factor precedingΔ(x, y)(s,t) in (5.1) is non-zero.
As above, this allows us to complete the proof. �

Note that the proof of Theorem 5.1 includes an independent proof that P̃w = C[g(1, 1)⊕
g(1,−1)] for certain values ofw. This proof is simpler than the earlier proof [9, Theorem 6.5]
but cannot be extended to cover the remaining values ofw that are covered by the earlier proof.

THEOREM 5.2. Suppose that w ∈ Z and that either

(1) w /∈ σ(F ) and w ≤ n− 1 − b or
(2) w̌ /∈ σ(F̌ ) and w̌ ≤ m− 1 − b.

Then Pw is a reducible U(g)-module.

PROOF. We may assume without loss of generality that Condition (1) holds, since oth-
erwise the following argument may be applied to the conjugate system instead. Let N be
the U(g)-submodule of P̃w = C[xij , yjk] generated by 1. It suffices to show that N is a
proper submodule of P̃w. Define res : P̃w → C[yjk] by res(ϕ)(yjk) = ϕ(0, yjk). We have
res(P̃w) = C[yjk] and so it suffices to show that res(N) �= C[yjk].

Since Π̃w(n)•1 = {0} and Π̃w(l)•1 = C · 1, it follows from the PBW Theorem that we
have N = Π̃w(U(n̄))•1. By inspection of the expressions given in Lemma 3.1 for Π̃w(X̄ij )
and for Π̃w(Ȳjk) we observe that application of Π̃w(X̄ij ) raises the x-degree of a polynomial
by 1, whereas application of Π̃w(Ȳjk) leaves the x-degree unchanged. It follows that appli-
cation of the operator Π̃w([X̄ij , Ȳkl]) also raises the x-degree by 1. We conclude from this
that

res
(
Π̃w

(
g(−1,−1)U(n̄)+ g(−2, 0)U(n̄)

)
•1

) = {0}
and, since U(n̄) = U(g(−1, 1))+ g(−1,−1)U(n̄)+ g(−2, 0)U(n̄), it follows that

res(N) = res
(
Π̃w

(
U(g(−1, 1))

)
•1

) = res
(
C[Π̃w(Ȳjk)]•1

) = C[Djk]•1 ,
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where

Djk = (w + b)yjk +
∑

1≤p≤b
1≤q≤c

yjqypk
∂

∂ypq
.

Thus we are reduced to showing that C[Djk]•1 �= C[yjk].
Let r = max{1, w + b + 1} and l = max{1, 1 −w − b}. By definition, r ≥ 1 and l ≥ 1.

The hypothesis that w ≤ n− 1 − b implies that r ≤ n. By Theorem 4.5 we have

Δr(D)
l•1 =

l∏
p=1

r∏
j=1

(w + b + p − j) ·Δr(y)l .(5.4)

The smallest numerical factor that appears in (5.4) is w + b + 1 − r and from the definition
of r we have w + b + 1 − r ≤ 0. The largest numerical factor that appears in (5.4) is
w+ b+ l− 1 and from the definition of l we have w+ b+ l− 1 ≥ 0. Every integer between
w + b + 1 − r and w + b + l − 1 also occurs in the product in (5.4) and it follows that
Δr(D)

l•1 = 0. The operators Djk mutually commute and it follows from this that we have
C[Djk]•1 ⊂ ker

(
Δr(D)

l
)
. We are thus reduced to showing that ker

(
Δr(D)

l
) �= C[yjk]. Let

t be any integer such that t > r − 1 − w − b. By Theorem 4.5 we have

Δr(D)
l•Δr(y)t =

l∏
p=1

r∏
j=1

(w + b + t + p − j) ·Δr(y)t+l .(5.5)

The smallest numerical factor that appears in (5.5) is w+ b+ t + 1 − r and, by the choice of
t , this number is positive. ThusΔr(y)t /∈ ker

(
Δr(D)

l
)

and this completes the proof. �
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