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CONVERGENCE OF MEASURES PENALIZED BY GENERALIZED
FEYNMAN-KAC TRANSFORMS
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Abstract. We prove the existence of limiting laws for symmetric stable-like processes
penalized by generalized Feynman-Kac functionals and characterize them by the gauge func-
tions and the ground states of Schr̈odinger type operators.

1. Introduction. In this paper we study limit theorems for symmetric stable-like pro-
cesses on R

d penalized by normalized Feynman-Kac functionals as the weight processes.
Penalizing measures by appropriate weight processes can be understood as a change-of-

measure phenomenon and such modifications have been studied by many authors ([16, 18, 21,
25]). In penalizations, the weights play a role analogous to a Girsanov transform in which its
martingale property allows to define a new probability measure, do not allow immediately to
create a new weighted probability measure that may emerge in the limit of weight processes.
When such a limit exists, it is called the penalized probability measure associated with the
weights.

In [18], Roynette, Vallois and Yor have studied limit theorems for Wiener processes pe-
nalized by various weight processes. In [25], the authors studied limit theorems for the one-
dimensional symmetric stable process penalized by Feynman-Kac transforms with negative
(killing) additive functionals, and they called their limit theorems the Feynman-Kac penal-
izations. It turns out that their methods are not available in multi-dimensional cases. In [21],
Takeda extended their results to Feynman-Kac transforms with positive (creation) continuous
additive functionals corresponding to positive smooth measures for multi-dimensional sym-
metric stable processes on R

d by classifying associated Schrödinger operators of Feynman-
Kac semigroups into the subcritical, critical and supercritical cases, and by characterizing the
penalized measures in each cases. Recently, this result was extended to non-local Feynman-
Kac transforms by Matsuura [16].

The purpose of this paper is to extend the previous results for penalization problems to the
so-called generalized Feynman-Kac transforms. More precisely, let X = (Ω,F∞,Ft ,Xt ,Px)
be the symmetric α-stable-like process on R

d with 0 < α < 2 and (E,F) the associated
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Dirichlet form of X (see §2 for details). For a function u ∈ Fe ∩ C∞(Rd) (see §2 for the def-
inition), let Nu be the continuous additive functional (CAF in abbreviation) of zero quadratic
variation appeared in the Fukushima decomposition of u(Xt) − u(X0) (see (2.4)). Note that
Nu is not necessarily of bounded variation in general. Let μ be a positive smooth measure
on R

d and denotes the corresponding positive continuous additive functional (PCAF in ab-
breviation) of X by Aμ to emphsize the Revuz correspondence between μ and Aμ ([10]). Let
F be a bounded positive symmetric Borel function on R

d × R
d vanishing on the diagonal.

Then AFt := ∑
0<s≤t F (Xs−,Xs) is an additive functional of X. It is natural to consider the

following non-local Feynman-Kac transform by the additive functional A := Nu +Aμ +AF

of the form

(1.1) eA(t) := exp(At ) , t ≥ 0 ,

because the process X admits many CAFs which do not have bounded variations, and many
discontinuous additive functionals. We call (1.1) the generalized Feynman-Kac transform
(weight) in the sense that it involvesNu. Thus, the main contribution is to add the perturbation
by AF which is not of bounded variation in general.

Let {QA
x,t}t≥0 be the family of normalized probability measures defined as follows: for

B ∈ Fs, s ≥ 0 and x ∈ R
d

(1.2) QA
x,t (B) := 1

Ex[eA(t)]
∫

B

eA(t)(ω)Px(dω) = Ex [eA(t)1B]
Ex [eA(t)] .

In this paper we are going to study the limiting behaviour of (1.2) when t → ∞. To do this,
we will classify the associated formal Schrödinger operator of the generalized Feynman-Kac
semigroups induced by (1.1) into the subcritical, critical and supercritical cases. We charac-
terize the penalized measure of (1.2) as t → ∞ in each cases by using the gauge functions
and the ground states of the associated Schrödinger operator in the present settings, which
are motivated by [21]. However there are difficulties in accomplishing our work, compare
to the case of local (or non-local) Feynman-Kac penalizations, because our Feynman-Kac
transform is not necessarily of finite variation. Thus we cannot apply directly the methods
exposed in [16, 21] to our cases. Nevertheless, we can obtain our results by noting the recent
developments of the generalized Feynman-Kac transforms and their related topics studied in
[8, 12, 13, 14].

The remainder of the paper is organized as follows. In Section 2, we recall some basic
properties on X and review the result in [22]. In Section 3, we explain the Girsanov trans-
forms induced by the Doléan-Dade exponential martingale relative to u and F , and give the
definitions of Green-tight Kato class measures, including the construction of the ground states
of Schödinger operators in our settings. Section 4 is devoted to prove our main results (The-
orem 4.1, Theorem 4.2 and Theorem 4.3). In this section, following the ideas from [21], we
describe all penalized measures for our Feynman-Kac penalizations. To this end, an analytic
characterization of gaugeability and subcriticality for (1.1) and a modified strong Chacon-
Ornstein limit-quotient theorem for special additive functionals under time-dependent initial
measures play a crucial role (Proposition 4.1 and Proposition 4.2).



GENERALIZED FEYNMAN-KAC PENALIZATIONS 571

Throughout this paper, we use c, C, ci, Ci (i = 1, 2, . . . ) as positive constants which
may be different at different occurrences. We denote by B(Rd ) (resp. B+(Rd), Bb(Rd) and
Cb(R

d)) the set of measurable (resp. positive measurable, bounded measurable and bounded
continuous) functions on R

d .

2. Preliminaries. Let c(x, y) be a symmetric measurable function on R
d ×R

d which
is bounded between two fixed constants c2 > c1 > 0, that is, c1 ≤ c(x, y) ≤ c2 for x, y ∈ R

d .
For 0 < α < 2, define

F =
{

f ∈ L2(Rd)

∣
∣
∣
∣

∫

Rd

∫

Rd

(f (x)− f (y))2

|x − y|d+α dxdy < ∞
}

E(f, g)= 1

2

∫

Rd

∫

Rd

(f (x)− f (y))(g(x)− g(y))c(x, y)

|x − y|d+α dxdy , f, g ∈ F .

It is well known that (E,F) is a regular symmetric Dirichlet form on L2(Rd ) and hence there
is an associated symmetric Hunt process X = (Ω,F∞,Ft , Xt ,Px, ζ ) on R

d starting from
every point in R

d except for an exceptional set of zero capacity. The process X is called a
symmetric α-stable-like process. Note that X is nothing but the rotationally symmetric α-
stable process on R

d when c(x, y) = α2α−1π−d/2Γ (d+α2 )/Γ (1 − α
2 ). It is shown in [5] that

X is irreducible and conservative, and admits a locally Hölder continuous transition density
function pt (x, y) on ]0,∞[×R

d ×R
d . The latter in particular implies that X can be modified

to start from every point in R
d as a Feller process. Moreover, there are constantsC2 > C1 > 0

such that

(2.1) c

(

t−d/α ∧ t

|x − y|d+α
)

≤ pt (x, y) ≤ C

(

t−d/α ∧ t

|x − y|d+α
)

for all (t, x, y) ∈ ]0, 1]×R
d×R

d . By using the scaling property (see the proof of Proposition
4.1 in [5]), one can show that (2.1) is valid for all (t, x, y) ∈ ]0,∞[×R

d × R
d .

For β > 0, we define the β-order resolvent kernel

Rβ(x, y) =
∫ ∞

0
e−βtpt (x, y)dt , x, y ∈ R

d .

When d > α the process X is transient, hence we can define 0-order resolvent kernel
R(x, y) := R0(x, y) < ∞ for x, y ∈ R

d with x 	= y. R(x, y) is called the Green func-
tion of X. By virtue of (2.1), we can immediately check that there exist C4 > C3 > 0 such
that

(2.2)
C3

|x − y|d−α ≤ R(x, y) ≤ C4

|x − y|d−α , x, y ∈ R
d .

For a non-negative Borel measure ν, we write Rβν(x) := ∫
Rd
Rβ(x, y)ν(dy), Rν(x) :=

R0ν(x) and Rβf (x) = Rβν(x) when ν = f dx for any f ∈ B+(Rd ) or f ∈ Bb(R
d). Note

that the process X has the resolvent strong Feller property ((RSF) in abbreviation), that is,
Rβ(Bb(R

d)) ⊂ Cb(R
d ) for any β > 0.

A positive Radon measure ν is said to be of Dynkin class (resp. of Kato class) with respect
to X if supx∈Rd Rβν(x) < ∞ for some β > 0 (resp. limβ→∞ supx∈Rd Rβν(x) = 0). Denote
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by S1
D(X) (resp. S1

K(X)) the family of measures of Dynkin class (resp. of Kato class). Clearly,
S1
K(X) ⊂ S1

D(X). Note that any positive Radon measure of Dynkin class always belongs to
the family of smooth measures in the strict sense in view of Proposition 3.1 in [15]. For a
CAF A and f ∈ B+(Rd), the process f · A is defined by

(2.3) (f ·A)t :=
∫ t

0
f (Xs)dAs

which is also a CAF. We say that a PCAF Aν of X and a positive Radon measure ν are in the
Revuz correspondence if they satisfy for any t > 0, f ∈ B+(Rd ),

∫

Rd

f (x)ν(dx) =↑ lim
t↓0

1

t

∫

Rd

Ex
[(
f · Aν)

t

]
dx .

It is known that the family of equivalence classes of the set of PCAFs in the strict sense and
the family of positive smooth measures in the strict sense are in one to one correspondence
under the Revuz correspondence ([10, Theorem 5.1.4]).

Let (E,Fe) be the extended Dirichlet space of (E,F) (see [10] for the definition). Any
element f ∈ Fe admits E-quasi continuous version f̃ . Throughout this paper, we always take
E-quasi continuous version of the element of Fe, that is, we omit tilde from f̃ for f ∈ Fe.
It is known that the process X has a Lévy system (N,H) given by Ht = t and N(x, dy) =
2c(x, y)|x−y|−(d+α)dy, that is, for any non-negative Borel function φ on R

d ×R
d vanishing

on the diagonal and any x ∈ R
d ,

Ex

[∑

s≤t
φ(Xs−,Xs)

]

= Ex

[∫ t

0

∫

Rd

2c(Xs, y)φ(Xs, y)

|Xs − y|d+α dyds

]

.

To simplify notation, we will write

μφ(dx) :=
{∫

Rd

2c(x, y)φ(x, y)

|x − y|d+α dy

}

dx.

Take a function u ∈ Fe ∩ C∞(Rd ), where C∞(Rd) denotes the set of continuous func-
tions vanishing at infinity. Then the additive functional u(Xt) − u(X0) admits the following
decomposition: for all t ∈ [0,∞[

u(Xt)− u(X0) = Mu
t + Nut Px-a.s. for q.e. x ∈ R

d,(2.4)

where Mu is a square integrable martingale additive functional and Nu is a continuous addi-
tive functional (CAF in abbreviation) locally of zero energy. Note that Nut is not a process of
finite variation in general. The martingale part Mu is given by

Mu
t = lim

n→∞

{∑

s≤t
(u(Xs)− u(Xs−))1{|u(Xs)−u(Xs−)|>1/n}

−
∫ t

0

∫

{y∈Rd :|u(y)−u(Xs)|>1/n}
2c(Xs, y)(u(y)− u(Xs))

|Xs − y|d+α dyds

}

.
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Let μ〈u〉 be the Revuz measure associated with the quadratic variational processe (or the sharp
bracket PCAF) 〈Mu〉 of Mu. Then

μ〈u〉(dx) =
∫

Rd

2c(x, y)(u(x)− u(y))2

|x − y|d+α dxdy .

On account of [14, Theorem 6.2(2)], we see that under the condition μ〈u〉 ∈ S1
D(X) that (2.4)

holds for all x ∈ R
d as the strict decompositions. Note that E(f, f ) = 1

2μ〈f 〉(Rd) provided
f ∈ Fe.

Let (A,D(A)) be a lower bounded symmetric closed form on L2(Rd ). For positive
Radon measures ν2, ν1 on R

d , we set

λ(ν2, ν1) := inf

{

Aν2(f, f )

∣
∣
∣
∣ f ∈ D(Aν2),

∫

Rd

f 2dν1 = 1

}

,

where Aν(f, f ) := A(f, f ) + ∫
Rd
f 2dν. Then we have the following lemma due to Takeda

[22].

LEMMA 2.1 (cf. Lemma 3.1 and Lemma 3.2 in [22]). Let ν be another positive Radon
measure on R

d .

(1) λ(ν2 + ν, ν1 + ν) > 1 implies λ(ν2, ν1) > 1. The converse assertion holds if
λ(ν2, ν) > 0.

(2) λ(ν2 + ν, ν1 + ν) < 1 if and only if λ(ν2, ν1) < 1.

As a consequence, we see that λ(ν2 + ν, ν1 + ν) = 1 if and only if λ(ν2, ν1) = 1 provided
λ(ν2, ν) > 0.

Note that Lemma 3.1 and Lemma 3.2 in [22] are stated in the framework of rotation-
ally symmetric α-stable processes. However, their proofs remain valid for general symmetric
Markov processes.

3. Construction of ground states. Let F be a bounded positive symmetric function
on R

d × R
d vanishing on the diagonal. We say that F is in the class J 1

D(X) if μF belongs to
S1
D(X). For a bounded u ∈ Fe with μ〈u〉 ∈ S1

D(X) and F ∈ J 1
D(X), we set

Fu(x, y) := F(x, y)+ {−u(y)− (−u(x))} = F(x, y)+ u(x)− u(y)

and Gu = eF
u − 1 with identifying F 0 = F and G0 = G := eF − 1. Since (F u)2 ∈ J 1

D(X),
one can consider a purely discontinuous locally square integrable local martingale additive
functionalMFu defined by

(3.1) MFu

t = AFt +M−u
t −

∫ t

0

∫

Rd

2c(Xs, y)F (Xs, y)

|Xs − y|d+α dyds , t ∈ [0,∞[ .

Moreover, since |Gu(x, y)− Fu(x, y)| ≤ 1
2e

‖Fu‖∞|Fu(x, y)|2 and

|Gu(x, y)|2 ≤
(‖Fu‖∞e|F

u(x,y)|

2
|Fu(x, y)| + |Fu(x, y)|

)2
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≤
(‖Fu‖∞e‖F

u‖∞

2
+ 1

)2

|Fu(x, y)|2 ,

we see that Gu − Fu ∈ J 1
D(X) and (Gu)2 ∈ J 1

D(X), respectively. Therefore we can also
consider a purely discontinuous locally square integrable local martingale additive functional
MGu defined by

(3.2) MGu

t = MFu

t +
∑

s≤t
(Gu−Fu)(Xs−,Xs)−

∫ t

0

∫

Rd

2c(Xs, y)(Gu − Fu)(Xs, y)

|Xs − y|d+α dyds

for t ∈ [0,∞[. Let Yt := Exp(MGu)t be the Doléans-Dade exponential of MGu

t , that is,
Yt is the unique solution of Yt = 1 + ∫ t

0 Ys−dMGu

s for t ∈ [0,∞[, Px-a.s. Then Yt can be
represented as

(3.3) Yt = exp

(

MFu

t −
∫ t

0

∫

Rd

2c(Xs, y)(Gu − Fu)(Xs, y)

|Xs − y|d+α dyds

)

, t ∈ [0,∞[ .

Note that Yt is a positive local martingale, therefore it is a supermartingale multiplicative
functional for all t ∈ [0,∞[.

Let Y = (Ω, F̃∞, F̃t , X̃t ,PYx ) be the transformed process of X by Yt . Note that Y is
an e−2udx-symmetric Hunt process on R

d . The transition semigroup {PYt }t≥0 and the resol-
vent {RYα }α>0 of Y are defined by PYt f (x) := EYx [f (X̃t )] = Ex [Ytf (Xt)] and RYα f (x) :=
EYx [∫ ∞

0 e−αtf (X̃t )dt] = Ex [
∫ ∞

0 e−αtYtf (Xt )dt].
Let (EY ,FY ) be the Dirichlet form of Y on L2(Rd; e−2udx). Then F = FY and

(3.4) EY (ϕ,ψ) = 1

2

∫

Rd

∫

Rd

(ϕ(x)− ϕ(y))(ψ(x)− ψ(y))eF(x,y)−u(x)−u(y)c(x, y)
|x − y|d+α dxdy

for any ϕ,ψ ∈ F (cf. [12, Theorem 3.2]). In particular, Fe = FY
e . In view of these facts

combining with the boundedness of u and F , there exists a constant C := C(u, F ) > 0 such
that C−1E(ϕ, ϕ) ≤ EY (ϕ, ϕ) ≤ CE(ϕ, ϕ) for ϕ ∈ F and thus we see that Y is also a symmet-
ric α-stable-like process on R

d . Hence Y also admits a locally Hölder continuous transition
density function pYt (x, y) satisfying (2.1) for all (t, x, y) ∈ ]0,∞[×R

d × R
d . Moreover it

is easy to see that Y is transient (resp. recurrent) whenever X is so. Hence the Green kernel
RY (x, y) also satisfies the following estimate whenever d > α:

(3.5)
C5

|x − y|d−α ≤ RY (x, y) ≤ C6

|x − y|d−α , x, y ∈ R
d

for some C6 > C5 > 0.
Now we introduce some notions of Green-tight Kato class measures in the strict sence.

DEFINITION 3.1 (Green-tight Kato class measures). Let ν be a positive Radon mea-
sure on R

d and take an α ≥ 0.

(1) ν is said to be α-order Green-tight with respect to X if ν ∈ S1
K(X) and for any ε > 0

there exists a compact subsetK = K(ε) of Rd such that supx∈Rd Rα(1Kcν)(x) < ε.
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(2) ν is said to be α-order Green-tight with respect to X in the sense of Chen if for
any ε > 0 there exists a Borel subset K = K(ε) of Rd with ν(K) < ∞ and a
constant δ > 0 such that for all measurable set B ⊂ K with ν(B) < δ, supx∈Rd
Rα(1Kc∪Bν)(x) < ε.

In view of the resolvent equation, the α-order Green-tightness is independent of the
choice of α > 0. Let denote by S1

K+∞
(X) (resp. S1

CK+∞
(X)) the family of positive order Green-

tight measures (resp. the family of positive order Green-tight measures in the sense of Chen)
of X. The measure having 0-order Green-tightness is suitable to treat transient case. In this
case, 0-order Green-tightness always implies the α-order Green-tightness for α > 0. Denote
by S1

K∞(X) (resp. S1
CK∞(X)) the family of 0-order Green-tight measures (resp. the family of

0-order Green-tight measures in the sense of Chen) of X.
It is shown in [2, Proposition 2.2] that if ν ∈ S1

CK∞(X), ν is Green-bounded, i.e.,
supx∈Rd Rν(x) < ∞.

REMARK 3.1.

(1) It is known in general that S1
CK+∞

(X) ⊂ S1
K+∞
(X) and S1

CK∞(X) ⊂ S1
K∞(X) (see

[2]). However we have from (RSF) for X the equivalence between Green-tight
measures and Green-tight measures in the sense of Chen: S1

K+∞
(X) = S1

CK+∞
(X)

and S1
K∞(X) = S1

CK∞(X) ([12, Lemma 4.1]).
(2) In the transient case, let Rz(x, y) be the Green function of Doob’s R(·, z)-trans-

formed process Xz of X defined by

Rz(x, y) := R(x, y)R(y, z)

R(x, z)
, x, y ∈ R

d with x 	= y

and Rzν(x) := ∫
Rd
Rz(x, y)ν(dy). A positive Radon measure ν is said to be condi-

tionally Green-tight in the sense of Chen with respect to X if for any ε > 0 there ex-
ists a Borel subset K = K(ε) of Rd with ν(K) < ∞ and a constant δ > 0 such that
for all measurable set B ⊂ K with ν(B) < δ, sup(x,z)∈Rd×Rd ,x 	=z Rz(1Kc∪Bν)(x) <
ε (see [2]). Let denote by S1

CS∞(X) the family of conditionally Green-tight measures

in the sense of Chen. It is known in general that S1
CS∞(X) ⊂ S1

CK∞(X) (cf. [2, 7]).
For the α-stable-like process, the converse inclusions also holds from the so-called
3R-inequality: Rz(x, y) ≤ c(R(x, y) + R(y, z)) in view of (2.2). Hence we see
S1
CS∞(X) = S1

CK∞(X) = S1
K∞(X) and do not need to distinguish them in the setting

of present paper.

The next lemma is an easy consequence of [12, Corollary 5.1 and Corollary 5.2(2)] (cf.
[11, Lemma 3.3]).

LEMMA 3.1. Assume that X is transient (resp. recurrent) and μ〈u〉 + μ + μF ∈
S1
K∞(X) (resp. S1

K+∞
(X)). Then

(1) For ν ∈ S1
D(X), e

−2uν ∈ S1
D(Y).

(2) For ν ∈ S1
K(X), e

−2uν ∈ S1
K(Y).
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(3) For ν ∈ S1
K∞(X), e

−2uν ∈ S1
K∞(Y)

(
resp. ν ∈ S1

K+∞
(X), e−2uν ∈ S1

K+∞
(Y)

)
.

Consider the generalized non-local Feynman-Kac transform by the additive functionals
A := Nu + Aμ + AF of the form

(3.6) eA(t) := exp(At ) , t ≥ 0 .

The weight (3.6) defines a Feynman-Kac semigroup PAt f (x) := Ex [eA(t)f (Xt)] and it has
infinitesimal generator of the form H := L + Lu + μ + dF, where L is the generator of X
and dF denotes the measure valued operator defined by dFf := Ff (x)dx for

Ff (x) =
∫

Rd

2c(x, y)G(x, y)f (y)

|x − y|d+α dy .

Define

μ(dx) := μu,μ,F (dx) =
{∫

Rd

2c(x, y)(Gu − Fu + F)(x, y)

|x − y|d+α dy

}

dx + μ(dx) .

By (3.1) and (3.3), we then see for all t ∈ [0,∞[,
eA(t) = eu(Xt )−u(x) exp

( −Mu
t + A

μ
t + AFt

) = eu(Xt )−u(x)Yt exp
(
A
μ
t

)
(3.7)

which implies that for any x ∈ R
d and f ∈ B+(Rd),

Ex
[
eA(t)f (Xt)

] = e−u(x)EYx
[

exp
(
A
μ
t

)
(euf )(X̃t )

]
.(3.8)

It is easy to see thatμ ∈ S1
K+∞
(X) (resp.μ ∈ S1

K∞(X)) wheneverμ〈u〉 ∈ S1
K+∞
(X),μ ∈ S1

K+∞
(X)

and μF ∈ S1
K+∞
(X) (resp. μ〈u〉 ∈ S1

K∞(X), μ ∈ S1
K∞(X) and μF ∈ S1

K∞(X)) hold. Moreover

we note that if ν ∈ S1
K+∞
(X) (resp. ν ∈ S1

K∞(X)), then
∫
Rd
f 2dν ≤ ‖R1ν‖∞E1(f, f ) for

f ∈ F (resp.
∫
Rd
f 2dν ≤ ‖Rν‖∞E(f, f ) for f ∈ Fe), hence F ⊂ L2(Rd ; ν) (resp. Fe ⊂

L2(Rd ; ν)) ([19, Theorem 3.1]).
In the rest of this section, assume that X is transient. Then there exists a strictly posi-

tive continuous function g such that gdx ∈ S1
K∞(X) in view of [23, Lemma 2.4]. Thus the

transformed process Y is to be a transient e−2udx-symmetric α-stable-like process having ir-
reducibility, (RSF) and e−2ugdx ∈ S1

K∞(Y) in view of Lemma 3.1(3). Let {τt }t≥0 be the right
continuous inverse of the PCAF

Bt :=
∫ t

0
g(X̃s)ds + A

μ
t

of Y, that is, τt = inf{s > 0 | Bs > t}. Let e−2uη := e−2u(gdx + μ) be the Revuz measure
corresponding to Bt . Note that the fine and topological supports of e−2uη are equal to R

d .
Let (Y̌, e−2uη) := (Ω, X̌t ,PYx , ζ̌ ) be the time changed process of Y by the PCAF Bt , that is,
X̌t = X̃τt . Then (Y̌, e−2uη) is also transient and is an e−2uη-symmetric Hunt process on R

d

with life time ζ̌ := B∞ ([10, Theorem 6.2.1 and Theorem 6.2.3]).

LEMMA 3.2. Assume that X is transient and μ〈u〉 + μ + μF ∈ S1
K∞(X). Let η∗ :=

gdx+kμ for k ≥ 0. Then the time changed process (Y̌, e−2uη∗) is irreducible and has (RSF).
Moreover, e−2uη ∈ S1

K+∞
(Y̌, e−2uη∗).
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PROOF. This lemma can be proved by a nearly same method in [23, Lemma 2.3]. We
omit the details. �

Define the quadratic form Q by

(3.9)

Q(f, g) := E(f, g)+ E(u, f g)−
∫

Rd

f (x)g(x)μ(dx)

−
∫∫

Rd×Rd

2f (x)g(y)c(x, y)G(x, y)

|x − y|d+α dxdy .

Then it is well-defined for f, g ∈ F provided μ〈u〉 + μ + μF ∈ S1
D(X). Moreover, Q is

extended to Fe×Fe with the same expression (3.9) providedμ〈u〉 +μ+μF ∈ S1
K∞(X). Note

that for f ∈ Fe ∩ C∞(Rd), we see f eu = f (eu − 1) + f = f (euK − 1)+ f ∈ Fe, where
uK ∈ Fe such that u = uK a.e. on supp[f ]. It follows from (3.3), (3.4) and the Feynman-Kac
formula that for f ∈ Fe ∩ C∞(Rd), we have

(3.10)
EY (f eu, f eu) = Q(f, f )+

∫

Rd

f 2dμ+
∫

Rd

f 2dμGu−Fu+F

= Q(f, f )+
∫

Rd

f 2dμ .

Suppose μ〈u〉 + μ+ μF ∈ S1
K∞(X) and let us define the spectral function by

(3.11) λ(μ) := inf

{

Q(f, f )
∣
∣
∣
∣ f ∈ Fe ∩ C∞(Rd),

∫

Rd

f 2dμ = 1

}

.

By (3.10), it is easy to see that λ(μ) ≥ −1 and (3.11) is equivalent to

(3.12) λ(μ)+ 1 := inf

{

EY (f eu, f eu)
∣
∣
∣
∣ f ∈ Fe ∩ C∞(Rd ),

∫

Rd

f 2dμ = 1

}

,

in other words,

(3.13) inf

{

EY (f eu, f eu)
∣
∣
∣
∣ f ∈ Fe ∩ C∞(Rd), (λ(μ)+ 1)

∫

Rd

f 2dμ = 1

}

= 1 .

Applying Lemma 2.1 to ν1 = (λ(μ)+ 1)μ, ν = gdx and the following inequality

inf

{

EY (f eu, f eu)
∣
∣
∣
∣ f ∈ Fe ∩ C∞(Rd ),

∫

Rd

f 2gdx = 1

}

≥ inf

{∥
∥
∥RY

(
e−2ugdx

)∥
∥
∥

−1

∞

∫

Rd

f 2gdx

∣
∣
∣
∣ f ∈ Fe ∩ C∞(Rd),

∫

Rd

f 2gdx = 1

}

> 0 ,

we see that (3.13) is equivalent to

(3.14) inf

{

EY (f eu, f eu)+
∫

Rd

f 2gdx

∣
∣
∣
∣ f ∈ Fe ∩ C∞(Rd),

∫

Rd

f 2dη∗ = 1

}

= 1 ,

where η∗ := gdx + (λ(μ) + 1)μ. Therefore, by applying [23, Lemma 2.1] to the time
changed process (Y̌, e−2uη∗), there exists a minimizer φ0 ∈ Fe ∩C∞(Rd) uniquely in (3.14)
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in view of Lemma 3.2, equivalently a minimizer h ∈ Fe ∩ C∞(Rd) in (3.11) given by h =
φ0/‖φ0‖L2(Rd ;μ). Hence ‖h‖L2(Rd ;μ) = 1 and

(3.15) λ(μ) = Q(h, h) = EY (heu, heu)− 1 .

The function h on R
d is called a ground state of the quadratic form (Q,Fe). Let denote by gY

the ground state of (EY ,Fe). Then we see h = e−ugY in view of (3.12) and (3.15). Note that
gY (and hence h) can be taken to be strictly positive in a similar way of [10, Lemma 6.4.5].
Moreover, whenever λ(μ) = 0, we see that the ground state gY (and hence h) is bounded
continuous and satisfies the following estimates:

(3.16)
C7

|x|d−α ≤ gY (x) ≤ C8

|x|d−α for |x| > 1

(see Lemma 4.9, Proposition 4.16 and (4.19) in [24]).

4. Penalized measures for generalized Feynman-Kac transforms. In this section,
we study the limiting behaviour of the measure QA

x,t defined by

(4.1) QA
x,t (B) := Ex [eA(t)1B]

Ex[eA(t)] , B ∈ Fs , s ≥ 0 , x ∈ R
d ,

where eA(t) is the generalized Feynman-Kac transform given by (3.6). We shall consider the
convergence of the measure (4.1) by classifying the spectral function λ(μ) into three cases:
λ(μ) > 0, λ(μ) = 0 and λ(μ) < 0, which are corresponding to the subcriticality, criticality
and supercriticality of the Schrödinger operator H, respectively.

Note that if X is recurrent (i.e., d ≤ α), then λ(μ) = −1 in a similar way of [21, Lemma
3.2]. Indeed, we see from (3.12) that EY (f eu, f eu) ≥ (λ(μ) + 1)

∫
Rd
f 2dμ for any f ∈

F ∩C∞(Rd). As we mentioned in Section 3, Y is also recurrent if X is so. Then there exists a
sequence {fn} ⊂ F∩C∞(Rd) satisfying limn→∞ fn = 1 a.e. and limn→∞ EY (fneu, fneu) =
0 ([10, Theorem 1.6.3]). Hence if λ(μ) > −1, then μ = 0, which is contradictory. Now, we
may assume that X is transient whenever we consider the cases λ(μ) > 0 and λ(μ) = 0.

4.1. The case λ(μ) > 0. First, we note by [12, Theorem 1.2] that the following
proposition holds in view of (3.5) and Remark 3.1.

PROPOSITION 4.1. Assume μ〈u〉 +μ+ μF ∈ S1
K∞(X). Then the following are equiv-

alent:

(1) λ(μ) > 0.
(2) The functional (3.6) is gaugeable, i.e., supx∈Rd Ex [eA(∞)] < ∞.
(3) There exists a Green kernel RA(x, y) < ∞ (x, y ∈ R

d with x 	= y) of the formal
Schrödinger operator H.

The above equivalence still holds for general symmetric Markov processes under more
mild conditions on measures (see [12]).

The next result is needed because eA(t) is not monotone.
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LEMMA 4.1. Assume μ〈u〉 + μ+ μF ∈ S1
K∞(X). Then for any x ∈ R

d ,

lim
t→∞ Ex [eA(t)] = Ex [eA(∞)] .

PROOF. Since λ(μ) > 0, E·[eA(∞)] is bounded in view of Proposition 4.1. So it is
enough to show that there exists p ≥ 1 such that supt∈[0,∞[ Ex [eA(t)p] < ∞ for any x ∈ R

d .

For p ≥ 1, put Fu(p) := pFu and Gu(p) := e
Fu
(p) − 1. Define

μ(p)(dx) :=
{∫

Rd

2c(x, y)
(
Gu(p) − Fu(p) + pF

)
(x, y)

|x − y|d+α dy

}

dx + pμ(dx) .

Let

Y
(p)
t = exp

(

M
Fu
(p)

t −
∫ t

0

∫

Rd

2c(Xs, y)(Gu(p) − Fu(p))(Xs, y)

|Xs − y|d+α dyds

)

, t ∈ [0,∞[ .

We see from (3.7) that

Ex
[
eA(t)

p
] = EY

(p)

x

[

eA
μ(p)
t epu(X̃t )−pu(x)

]

≤ e2p‖u‖∞EY
(p)

x

[

sup
t∈[0,∞[

eA
μ(p)
t

]

,

and thus

(4.2) sup
t∈[0,∞[

Ex
[
eA(t)

p
] ≤ e2p‖u‖∞EY

(p)

x

[

sup
t∈[0,∞[

eA
μ(p)
t

]

for any x ∈ R
d . Set

λ(p)(μ(p)) := inf

{

Q(p)(f, f )

∣
∣
∣
∣ f ∈ Fe ∩ C∞(Rd),

∫

Rd

f 2dμ(p) = 1

}

,

where Q(p) is the quadratic form defined for pu, pμ and pF as in (3.9). Then, by way of
[12, Proposition 5.2], there exists a p0 > 1 sufficiently close to 1 such that λ(p)(μ(p)) > 0 for

any p ∈ [1, p0], hence the function EY
(p)

· [exp(A
μ(p)∞ )] is bounded for any p ∈ [1, p0]. This

supergaugeability is equivalent to the boundedness of the right hand side of (4.2) by virtue of
[12, Lemma 4.8]. �

Let gA(x) := Ex [eA(∞)] and define a martingale MF L(1)t by

L
(1)
t = gA(Xt )

gA(x)
eA(t) .

THEOREM 4.1. Assume μ〈u〉 + μ + μF ∈ S1
K∞(X). Then for any s ≥ 0 and B ∈ Fs ,

we have

(4.3) lim
t→∞

Ex [eA(t)1B]

Ex [eA(t)]
= Ex [L(1)s 1B] .

PROOF. The proof is an easy consequence of Lemma 4.1. Indeed,

Ex [eA(t)1B]

Ex [eA(t)]
= Ex

[
eA(s)1BEXs [eA(t − s)]

]

Ex [eA(t)]
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−→ Ex
[
eA(s)1BEXs [eA(∞)]

]

Ex [eA(∞)]
= Ex [L(1)s 1B]

as t → ∞. �

4.2. The case λ(μ) = 0. In this case, the following subclass of measures of S1
K∞(X)

plays a crucial role for the proof of the main theorem (cf. [21, Definition 4.2]).

DEFINITION 4.1. A measure ν ∈ S1
K(X) is said to be in the class S1

SK(X) if

sup
x∈Rd

(

|x|d−α
∫

Rd

ν(dy)

|x − y|d−α
)

< ∞ .

REMARK 4.1.

(1) The definition of the class S1
SK(X) is invariant under the Girsanov transform Yt , that

is, ν ∈ S1
SK(X) implies e−2uν ∈ S1

SK(Y), in view of Lemma 3.1.
(2) A measure ν ∈ S1

K(X)with compact support belongs to the class S1
SK(X). Moreover,

S1
SK(X) is a proper subset of S1

K∞(X). In fact, it is known that S1
SK(X) is a subset of

S1
K∞(X) and the measure μF induced by the jumping function

F(x, y) := (1 ∧ |x − y|p)
(1 + |x|2)q/2(1 + |y|2)q/2 , for p > α , q > 2d − α

belongs to S1
SK(X). However the jumping function F itself does not belong to the

class A2(X) ([16, Example 7.3 and Remark 7.4]). Here A2(X) is the class of non-
negative bounded Borel functions φ on R

d ×R
d vanishing on the diagonal such that

μφ ∈ S1
K∞(X) (in our settings) and φ ∈ A∞(X) (see [3, Definition 2.3] for details).

Now we see that the claim is true because A2(X) is a proper subset of the class of φ
such that μφ ∈ S1

K∞(X).

We say that X is Harris recurrent if
∫
D dx > 0, then Px(

∫ ∞
0 1D(Xt )dt = ∞) = 1 for

any x ∈ R
d andD ⊂ R

d .
The following notion of special AF of Harris recurrent process due to [1] and in there the

author extended the concept of special function to CAF.

DEFINITION 4.2. Let X be a Harris recurrent process. A PCAF A of X is said
to be special if for any function g ∈ B+(Rd) such that

∫
Rd

g(x)dx > 0, the function

E·[
∫ ∞

0 e−
∫ t

0 g(Xs)dsdAt ] is bounded.

Note that if X is Harris recurrent, then the AF of the form A
f
t := ∫ t

0 f (Xs)ds is to be
special for a positive bounded Borel funtion f with compact support on R

d .
Let gY be the ground state of (EY ,F) appeared in (3.16). Define the PYx -martingale MF

L by

(4.4) Lt := gY (X̃t )

gY (x)
exp

(
A
μ
t

)
.
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Let denote by YL := (Ω, F̃∞, F̃t , X̃t ,PY,Lx ) the transformed process of Y by
Lt : PY,Lx (dω) = Lt(ω) · PYx (dω).

LEMMA 4.2. Assume μ〈u〉 + μ+ μF ∈ S1
K(X). Put Aμ/gYt := ( 1

gY
·Aμ)t .

(1) YL is an e−2ug2
Y -symmetric Harris recurrent process.

(2) If μ〈u〉 + μ+ μF ∈ S1
SK(X), then Aμ/gY is a special AF with respect to YL.

PROOF. (1) First, we remark that any irreducible recurrent symmetric Markov process
satisfying (RSF) is Harris recurrent ([10, Lemma 4.8.1]). By [4, Theorem 2.6(b)] and the
positivity of Lt , we see that YL is an irreducible recurrent e−2ug2

Y -symmetric process on
R
d . Therefore it is enough to show the (RSF) of YL for the Harris recurrence of YL. Let

{RY,Lα }α>0 be the resolvent of YL. In a similar way of the proof of [6, Lemma 3.2] we have

(4.5) lim
t→0

sup
x∈Rd

EYx
[|Lt − 1|p] = 0

for any p ≥ 1. Then for f ∈ Bb(R
d) and for any α, β > 0,

∥
∥RY,Lα f − βRYβ R

Y,L
α f

∥
∥∞

≤ ∥
∥RY,Lα f − βR

Y,L
β RY,Lα f

∥
∥∞ + β

∥
∥RY,Lβ RY,Lα f − RYβ R

Y,L
α f

∥
∥∞

≤ ∥
∥RY,Lβ f − αR

Y,L
β RY,Lα f

∥
∥∞ + β

∥
∥RY,Lα f

∥
∥∞

∫ ∞

0
e−βt sup

x∈Rd
EYx [|Lt − 1|]dt

≤ β−1‖f ‖∞ + ∥
∥RY,Lα f

∥
∥∞

∫ ∞

0
e−t sup

x∈Rd
EYx [|Lt/β − 1|]dt .

By (4.5), the last term in the right hand side above converges to 0 as β → ∞ because EYx [|Lt−
1|] ≤ 2 and of the dominated convergence theorem. Now we see RY,Lα f ∈ Cb(R

d) because
βRYβ R

Y,L
α f is so, which tells us that YL satisfies (RSF).

(2) We prove that the function EY,L· [∫ ∞
0 e−

∫ t
0 g(Xs)dsdAμ/gYt ] is bounded for any g ∈

B+(Rd) such that
∫
Rd

g(x)dx > 0. Let g0(x) := g1K(x) for a compact set K of Rd . Then by
Lemma 3.1, we see that e−2ug0dx ∈ S1

K∞(Y) and also e−2uμ ∈ S1
K∞(Y) by the assumption

μ〈u〉 + μ+ μF ∈ S1
SK(X) (hence μ ∈ S1

SK(X)). Since μ satisfies λ(μ) = 0,

inf

{

Q(f, f )+
∫

Rd

f 2g0dx

∣
∣
∣
∣ f ∈ Fe ∩ C∞(Rd),

∫

Rd

f 2dμ = 1

}

> 0 ,

equivalently

inf

{

EY (f, f )+
∫

Rd

f 2e−2ug0dx

∣
∣
∣
∣ f ∈ Fe ∩ C∞(Rd),

∫

Rd

f 2e−2udμ = 1

}

>1 .(4.6)

By virtue of [2, Lemma 3.5(2) and Theorem 5.2] with Y as the underlying process, (4.6)
implies that there exists C > 0 such that

EYx

[∫ ∞

0
eA

μ
t −∫ t

0 g0(Xs)dsdAμt

]

≤ C

∫

Rd

RY (x, y)μ(dy) .
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Thus we have

EY,Lx

[∫ ∞

0
e−

∫ t
0 g(Xs)dsdAμ/gYt

]

≤ EY,Lx

[∫ ∞

0
e−

∫ t
0 g0(Xs)ds 1

gY (Xs)
dAμt

]

≤ 1

gY (x)
EYx

[∫ ∞

0
eA

μ
t −∫ t

0 g0(Xs)dsdAμt

]

≤C 1

gY (x)

∫

Rd

RY (x, y)μ(dy).

Now the proof is finished by (3.5), (3.16) and the definition of the class S1
SK(X). �

For any B ∈ Fs (s ≥ 0), define positive finite measures νt , ν, θt and θ :

νt (·) := EYx
[
eA

μ
s 1Beu(X̃t )−u(x); X̃s ∈ ·

]
and ν(·) := EYx

[
eA

μ
s 1B; X̃s ∈ ·

]
.(4.7)

θt (·) := EYx
[
eA

μ
s eu(X̃t )−u(x); X̃s ∈ ·

]
and θ(·) := EYx

[
eA

μ
s ; X̃s ∈ ·

]
.(4.8)

Also we set

ηt := gY · νt∫
Rd

gY dνt
, η := gY · ν

∫
Rd

gY dν
, κt := gY · θt∫

Rd
gY dθt

, and κ := gY · θ
∫
Rd

gY dθ
.

By the boundedness of u, it is clear that

(4.9) e−4‖u‖∞η(·) ≤ ηt (·) ≤ e4‖u‖∞η(·) , and e−4‖u‖∞κ(·) ≤ κt (·) ≤ e4‖u‖∞κ(·) .
For any PCAFs A and B of YL, define the operator

UBAf (x) := EY,Lx

[∫ ∞

0
e−Bt f (X̃t )dAt

]

for any f ∈ B+(Rd). In the particular case where At ≡ t we simply write UB . For any
function v ∈ B+(Rd ), let Mv be the operator on Bb(R

d) defined by Mv(f ) = vf . If A and
B are respectively the form of

∫ t
0 a(Xs)ds and

∫ t
0 v(Xs)ds, the UBA can be written as UvMa ,

and wheneverB is obtained from a function v, we write UvA instead of UBA . We note that there
exists a function v ∈ B+(Rd) such that 0 < v(x) ≤ 1 for any x ∈ R

d and

(4.10) Uv(f ) ≥
∫

Rd

f (x)dx

for f ∈ B+(Rd ) ([17, Proposition 4.3 of Chapter 6]).
We need the following strong Chacon-Ornstein type’s limit-quotient theorem for special

AFs under time-dependent initial probability measures.

PROPOSITION 4.2. Assume μ〈u〉 + μ + μF ∈ S1
SK(X). Let � be a positive bounded

Borel function with compact support on R
d satisfying (4.10). Then

(4.11)

∣
∣
∣
∣
∣

EY,Lηt
[
A
μ/gY
t

]

EY,Lηt
[
A�t

] −
∫
Rd
e−2u(x)gY (x)μ(dx)

∫
Rd
e−2u(x)g2

Y (x)�(x)dx

∣
∣
∣
∣
∣
−→ 0 , as t → ∞ .
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Furthermore,

(4.12)
EY,Lηt

[
A�t

]

EY,Lκt
[
A�t

] −→ 1, as t → ∞.

PROOF. For notational convenience, let ν(1) := ∫
Rd
ν(dx). We put

ν1(dx) := e−2u(x)gY (x)μ(dx) and ν2(dx) := e−2u(x)g2
Y (x)�(x)dx .

Note that ν1(1) < ∞ and ν2(1) < ∞ in view of (3.16) and [2, Proposition 2.2]. First, we
prove (4.11). Set A(1)t := ν2(1)A

μ/gY
t and A(2)t := ν1(1)A�t . Then A(1) and A(2) are also

special AFs with respect to YL and νA(1) (1) = νA(2) (1) = ν1(1)ν2(1). Here νA(1) and νA(2)
stand for the corresponding Revuz measures of A(1) and A(2), respectively. Then there is, by
virtue of [1, Proposition 3.19], a constant M > 0 such that

∣
∣EY,Lx [A(1)t ] − EY,Lx [A(2)t ]∣∣ ≤ M

for any t > 0 and x ∈ R
d . Therefore we have for any t > 0

∣
∣
∣EY,Lηt

[
A
(1)
t

]
− EY,Lηt

[
A
(2)
t

]∣
∣
∣ ≤

∫

Rd

∣
∣
∣EY,Lx

[
A
(1)
t

]
− EY,Lx

[
A
(2)
t

]∣
∣
∣ ηt (dx) ≤ M ,

equivalently ∣
∣
∣ν2(1)EY,Lηt

[
A
μ/gY
t

]
− ν1(1)EY,Lηt

[
A�t

]∣
∣
∣ ≤ M .

Dividing by ν2(1)EY,Lηt
[
A�t

]
on both side above, we have

(4.13)

∣
∣
∣
∣

EY,Lηt

[
A
μ/gY
t

]

EY,Lηt
[
A�t

] − ν1(1)

ν2(1)

∣
∣
∣
∣ ≤ M

ν2(1)E
Y,L
ηt

[
A�t

] .

By (4.9) and the Harris recurrence of YL,

(4.14) EY,Lηt

[
A�t

]
=

∫

Rd

EY,Lx
[
A�t

]
ηt (dx) ≥ e−4‖u‖∞

∫

Rd

EY,Lx
[
A�t

]
η(dx) −→ +∞

as t → ∞, and hence the right hand side of (4.13) converges to 0.
Now, we prove (4.12). This can be similarly induced through a series of lemmas to prove

[17, Theorem 6.5 of Chapter 6]. We address here the proof for reader’s convenience. Let
λ(dx) := e−2u(x)g2

Y (x)�(x)dx and λ(dx) := λ(1)−1λ(dx). To prove (4.12), it is enough to
show that for any probability measures rt , (t ≥ 0) and r such that c−1r ≤ rt ≤ cr for a
constant c > 0 and

(4.15) lim
t→∞Rt := lim

t→∞
EY,Lrt

[
A�t

]

EY,L
λ

[
A�t

] = 1.

First, we prove limt→∞Rt ≤ 1. Put ϕx(t) := EY,Lx
[
A�t

]
and ϕ(t) := EY,L

λ

[
A�t

]
. For any

ε > 0, set Dt := {x ∈ R
d | ϕx(t) < (1 + ε)ϕ(t)}. Integrating the two terms of the inequality

ϕx(t) ≥ (1 + ε)ϕ(t)1Dct (x) by λ yields λ(1)ϕ(t) ≥ (1 + ε)ϕ(t)λ(Dct ). Then we see λ(Dt ) ≥
λ(1)ε/(1 + ε). By using the integration by parts, it is easy to derive that for any f ∈ B+(Rd )

(4.16) ϕx(t)+ Uf
(
EY,L· [�(Xt)]

)
(x) = Uf

(
Mfϕ·(t)

)
(x)+ Uf �(x).
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Applying (4.16) to the functionf = �1Dt , we have ϕx(t) ≤ U�1Dt (�1Dt ϕ·(t))(x)+U�1Dt �(x).
But (�1Dt ϕ·(t))(x) < (1 + ε)ϕ(t)�1Dt and since U�1Dt (�1Dt ) = 1, we get

(4.17) ϕx(t) ≤ (1 + ε)ϕ(t)+ U�1Dt �(x).

By the resolvent equation and (4.10)

(4.18)

U�1Dt �(x) =
∑

n≥0

(
U�M�−�1Dt

)n
U��(x)

≤
∑

n≥0

(1 − λ(Dt ))
n = λ(Dt )

−1 ≤ 1 + ε

ελ(1)
:= cε .

Therefore we get

EY,Lrt

[
A�t

]
=

∫

Rd

ϕx(t)rt (dx) ≤ (1 + ε)ϕ(t)+ cε,

which implies the desired result because ϕ(t) → ∞ as t → ∞.
Now we turn to the proof of limt→∞Rt ≥ 1. For any 0 < δ < 1, set Et := {x ∈ R

d |
ϕx(t) > (1 − δ)ϕ(t)}. By virtue of (4.16), it holds that

(4.19)
ϕx(t) ≥ Uf (Mf ϕ·(t))(x)− Uf

(
EY,L· [�(Xt)]

)
(x)

≥ (1 − δ)ϕ(t)Uf (f 1Et )(x)− Uf
(
EY,L· [�(Xt)]

)
(x).

In a similar way of [17, Lemma 6.3 of Chapter 6], one can prove that there exist p, q > 0
such that Up�(p�1Et ) ≥ (1−δ)λ(1)−1λ(Et ) and

∫
Rd
(Up�(p�1Et )−Up�+q(p�1Et ))drt ≤ δ.

For f = p�+ q it then follows that

(4.20)
∫

Rd

Uf (f 1Et )drt ≥ (1 − δ)λ(1)−1λ(Et )− δ .

Note that ϕx(t) ≤ (1 − δ)ϕ(t) on Ect and ϕx(t) ≤ (1 + ε)ϕ(t) + cε (hence, it also holds on
Et ) in view of (4.17) and (4.18). Integrating ϕx(t) with respect to λ, we see

λ(1)ϕ(t)≤ (1 − δ)ϕ(t)λ(Ect )+ ((1 + ε)ϕ(t)+ cε)λ(Et )

= (1 − δ)ϕ(t)(λ(1)− λ(Et))+ ((1 + ε)ϕ(t)+ cε)λ(Et ),

hence δλ(1)ϕ(t) ≤ ((δ + ε)ϕ(t) + cε)λ(Et ). Since ϕ(t) → ∞ as t → ∞, limt→∞λ(Et ) ≥
δλ(1)/(δ + ε), and thus limt→∞λ(Et) ≥ λ(1). Hence limt→∞ λ(Et) = λ(1). It then follows
from (4.20) that limt→∞

∫
Rd
Uf (f 1Et )drt ≥ 1 − 2δ. Since EY,L· [�(Xt)] ≤ 1 for any t ≥ 0,

Uf (EY,L· [�(Xt)]) ≤ Uq1 = q−1. Now, returning to (4.19), we have limt→∞Rt ≥ (1−δ)(1−
2δ). Since δ is arbitrary, the proof is complete. �

Before stating our main result in this subsection, we note that the PYx -martingale MF L

defined in (4.4) can be rewritten as Lt = h(X̃t )
h(x)

eA(t)(Yt )
−1, where h(= e−ugY ) is the ground

state of the quadratic form (Q,Fe). Thus we can easily see that

L
(2)
t := h(Xt )

h(x)
eA(t)

is a Px-martingale MF.
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THEOREM 4.2. Assume μ〈u〉 + μ + μF ∈ S1
SK(X). Then for any s ≥ 0 and B ∈ Fs ,

we have

(4.21) lim
t→∞

Ex [eA(t)1B]

Ex [eA(t)]
= Ex [L(2)s 1B] .

PROOF. First, we note that for any B ∈ Fs, s ≥ 0

EYx
[
eA

μ
t +u(X̃t )−u(x)1B

]
= EYx

[
eA

μ
s 1Beu(X̃t )−u(x)EYX̃s

[
eA

μ
t−s

] ]
.

Indeed, by the boundedness of u, the difference between the left hand and right hand side
above is dominated by

e2‖u‖∞
∣
∣
∣EYx

[
eA

μ
t 1B

]
− EYx

[
eA

μ
s 1BEY

X̃s

[
eA

μ
t−s

]]∣
∣
∣ = 0 .

By virtue of (3.7), we then have

(4.22)

Ex [eA(t)1B] = EYx
[
eA

μ
t +u(X̃t )−u(x)1B

]

= EYx
[
eA

μ
s 1Beu(X̃t )−u(x)EYX̃s

[
eA

μ
t−s

]]

= EYνt

[
eA

μ
t−s

]
.

The right hand side of (4.22) can be represented by the special AF Aμ/gYt := ( 1
gY

· Aμ)t with

respect to YL appeared in Proposition 4.2:

(4.23)
EYνt

[
eA

μ
t−s

]
= νt (R

d )+ EYνt

[∫ t−s

0
e
A
μ

s′ dAμ
s ′

]

= νt (R
d )+

{∫

Rd

gY dνt

}

EY,Lηt

[
A
μ/gY
t−s

]
.

For a positive Borel function � with compact support on R
d , put ψ(t) := EY,Lηt

[
A�t

]
. As we

showed in (4.14), limt→∞ ψ(t) = +∞ and limt→∞ ψ(t − s)/ψ(t) = 1 for any s ≥ 0, by the
Harris recurrence of YL. By the transience of Y and the dominated convergence theorem, as
t → ∞

∫

Rd

gY (x)νt (dx) −→
∫

Rd

gY (x)ν(dx) = e−u(x)EYx
[
eA

μ
s 1BgY (X̃s)

]

and
νt (R

d)

ψ(t − s)
≤ e−2‖u‖∞ν(Rd )

ψ(t − s)
−→ 0 ,

we have

(4.24)
lim
t→∞

Ex [eA(t)1B ]

ψ(t)
= lim
t→∞

EYνt

[
eA

μ
t−s

]

ψ(t)
= lim
t→∞

EYνt

[
eA

μ
t−s

]

ψ(t − s)

ψ(t − s)

ψ(t)

= e−u(x)EYx
[
eA

μ
s 1BgY (X̃s)

] ∫
Rd
e−2u(x)gY (x)μ(dx)

∫
Rd
e−2u(x)g2

Y (x)�(x)dx

in view of (4.11) and (4.23).
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Next, let φ(t) := EY,Lκt
[
A�t

]
. In a similar way of (4.22), (4.23) and (4.24), we also have

(4.25)

lim
t→∞

Ex [eA(t)]

φ(t)
= lim
t→∞

EYθt

[
eA

μ
t−s

]

φ(t − s)

φ(t − s)

φ(t)

= e−u(x)EYx
[
eA

μ
s gY (X̃s)

] ∫
Rd
e−2u(x)gY (x)μ(dx)

∫
Rd
e−2u(x)g2

Y (x)�(x)dx

= e−u(x)gY (x)
∫
Rd
e−2u(x)gY (x)μ(dx)

∫
Rd
e−2u(x)g2

Y (x)�(x)dx
.

Hence we have by (4.12), (4.24) and (4.25) that

lim
t→∞

Ex [eA(t)1B]

Ex [eA(t)]
= lim
t→∞

Ex [eA(t)1B]

ψ(t)

(
Ex [eA(t)]

φ(t)

)−1
ψ(t)

φ(t)

= 1

gY (x)
EYx

[
eA

μ
s 1BgY (X̃s)

]
= EYx [Ls1B] = Ex [L(2)s 1B] .

The proof is complete. �

4.3. The case λ(μ) < 0. In this case, X can be transient or recurrent. As we men-
tioned in the beginning of Section 4, λ(μ) = −1 whenever X is recurrent. We will treat in
this subsection the recurrent case. The transient case can be treated in the same way of the
recurrent case.

For μ〈u〉 + μ+ μF ∈ S1
K+∞
(X) and β ≥ 0, we define

(4.26) λβ(μ) := inf

{

Q(f, f )+ β

∫

Rd

f 2dx

∣
∣
∣
∣ f ∈ F ∩ C∞(Rd),

∫

Rd

f 2dμ = 1

}

.

It is easy to see that the function λ·(μ) is increasing and concave. Moreover it satisfies
limβ→∞ λβ(μ) = ∞. Indeed, by the Stollmann-Voigt’s inequality ([19, Theorem 3.1])
with respect to (EY ,F) and the relation (3.10), we see that for f ∈ F ∩ C∞(Rd) with∫
Rd
f 2dμ = 1

Q(f, f )+ β

∫

Rd

f 2dx = EY (f eu, f eu)+ β

∫

Rd

f 2dx − 1

≥
∥
∥
∥RYβ

(
e−2uμ

)∥∥
∥

−1

∞ − 1 −→ +∞ , as β → ∞

because of e−2uμ ∈ S1
K+∞
(Y) ⊂ S1

K(Y) by Lemma 3.1(2). Then there exists β0 > 0 such that

(4.27) λβ0(μ) := inf

{

Q(f, f )+ β0

∫

Rd

f 2dx

∣
∣
∣
∣ f ∈ F ∩ C∞(Rd)

∫

Rd

f 2dμ = 1

}

= 0 .

By the same reason as we proved in the end of Section 3 there exists a minimizer h ∈ F ∩
C∞(Rd )(⊂ L2(Rd )) of (4.27), that is, λβ0(μ) = Q(h, h) + β0

∫
Rd
h2dx = EY (heu, heu) +

β0
∫
Rd
h2dx − 1 = 0. Note that h is a harmonic function in the sense that Hh = β0h. So h
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satisfies PAt h := Ex [eA(t)h(Xt )] = etHh = eβ0t h, equivalently, e−β0tPAt h = h. Therefore
we see that the MF L(3) defined by

L
(3)
t := e−β0t

h(Xt )

h(x)
eA(t)

is a Px-martingale MF.
Let Xh = (Ω,F∞,Ft , Xt ,Phx) be the transformed process of X by L(3). In view of [4,

Theorem 2.6(b)], Xh is an h2dx-symmetric recurrent process on R
d .

LEMMA 4.3. Assume μ〈u〉 + μ+ μF ∈ S1
K+∞
(X). Let h and β0 > 0 be the minimizer

and the constant appeared in (4.27), respectively. Then

(4.28) lim
t→∞ e

−β0tEx [eA(t)] = h(x)

∫

Rd

h(x)dx

for all x ∈ R
d .

PROOF. Note that e−β0tEx [eA(t)] = h(x)Ehx[1/h(Xt)]. Then we see from [9, Theorem
1] that the assertion (4.28) holds for a.e. x ∈ R

d . So, it suffices to show that (4.28) holds
for all x ∈ R

d . This can be deduced through a series of lemmas to prove [20, Corollary 4.7]
in a similar way. To this end, one may need the upper estimate of (2.1) and the fact that the
function gY := heu satisfies for any q > 1 and C10 > C9 > 0

C9

|x|d+α ≤ gY (x) ≤ C10

|x|(d+α)/q for |x| > 1 .

We omit the details. �

LEMMA 4.4. Let QA
x,t be the probability measure defined by (1.2) with the Feynman-

Kac transforms (1.1). Assume for any s ≥ 0 and x ∈ R
d ,

(4.29)
Ex [eA(t) | Fs]

Ex [eA(t)]
a.e.−→ L(3)s , as t → ∞ .

Then for any B ∈ Fs , QA
x,t (B) −→ QA

x,∞(B) := Ex [L(3)s 1B] as t → ∞.

The above result is a direct consequence of Scheffe’s lemma (cf. [18, Theorem 2.1]).
Thus under the condition (4.29) the convergence of Ex [eA(t)]−1Ex [eA(t) | Fs] also holds in
L1(Rd ).

THEOREM 4.3. Assume μ〈u〉 + μ + μF ∈ S1
K+∞
(X) (S1

K∞(X) in the transient case).

Then for any s ≥ 0 and B ∈ Fs , we have

(4.30) lim
t→∞

Ex [eA(t)1B]

Ex [eA(t)]
= Ex [L(3)s 1B] .

PROOF. The proof is an easy consequence of Lemma 4.3 and Lemma 4.4. Indeed, by
noting

Ex [eA(t) | Fs]
Ex [eA(t)] = e−β0seA(s)e

−β0(t−s)EXs [eA(t − s)]
e−β0tEx[eA(t)]
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−→ e−β0seA(s)h(Xs)
∫
Rd
h(x)dx

h(x)
∫
Rd
h(x)dx

= L(3)s as t → ∞,

and Ex [eA(t)1B]/Ex [eA(t)] = Ex [1BEx [eA(t) | Fs]/Ex [eA(t)]], we get (4.30). �
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