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Abstract. We consider Calabi–Yau 3-folds of Borcea–Voisin type, i.e. Calabi–Yau
3-folds obtained as crepant resolutions of a quotient (S × E)/(αS × αE), where S is a K3
surface, E is an elliptic curve, αS ∈ Aut(S) and αE ∈ Aut(E) act on the period of S and
E respectively with order n = 2, 3, 4, 6. The case n = 2 is very classical, the case n = 3
was recently studied by Rohde, the other cases are less known. First, we construct explicitly a
crepant resolution, X, of (S×E)/(αS×αE) and we compute its Hodge numbers; some pairs of
Hodge numbers we found are new. Then, we discuss the presence of maximal automorphisms
and of a point with maximal unipotent monodromy for the family of X. Finally, we describe
the map En : X→ S/αS whose generic fiber is isomorphic to E.

1. Introduction. In the Nineties several constructions of Calabi–Yau 3-folds, and in
particular of mirror pairs of Calabi–Yau 3-folds, were proposed. One of them, the so called
Borcea–Voisin construction, was independently described by Borcea and by Voisin in [Bo],
[V1] respectively. The main idea is to consider a quotient of a product of Calabi–Yau varieties
of lower dimension. More precisely, one considers two pairs: (E, ιE), where E is an elliptic
curve and ιE is its hyperelliptic involution, and (S, ιS), where S is a K3 suface (i.e. a Calabi–
Yau surface) and ιS is an involution of S which does not preserve the period. The quotient
(S × E)/(ιS × ιE) is a singular 3-fold admitting a resolution which is a Calabi–Yau 3-fold.
Both Borcea and Voisin explicitly constructed such a resolution and computed the Hodge
numbers of the families of Calabi–Yau 3-folds obtained in such a way. The classification of
the involutions ιS which act on a K3 surface without fixing the period of S (and so of the
K3 surfaces that can be used in the Borcea–Voisin construction) was given by Nikulin in
[N]. Several generalizations of the Borcea–Voisin construction have been introduced in the
last years (see e.g. [CH], [R1], [R2], [D2], [G]), essentially considering desingularizations of
quotients (Y1 × Y2)/(α1 × α2), where Yi are Calabi–Yau varieties and αi ∈ Aut(Yi). In order
to obtain a Calabi–Yau variety one has to require that the automorphism αi does not fix the
period of Yi , but α1 × α2 fixes the wedge product of the periods of Y1 and of Y2.

Here we restrict our attention to Calabi–Yau 3-folds, and thus we can assume that Y1 =:
S is a K3 surface and Y2 =: E is an elliptic curve. If we require that the order of α1 and
α2 is the same, say n, then it has to be n = 2, 3, 4, 6 (for a more precise statement see
Proposition 3.2). Hence, we consider Calabi–Yau 3-folds constructed as resolution of a quo-
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tient (S × E)/(Z/nZ) for n = 2, 3, 4, 6 and we call them of Borcea–Voisin type. In case
n = 2 one obtains the “classical” and well known Borcea–Voisin construction. A systemati-
cal analysis of the case n = 3 is presented in [R1] and [D2] and uses the classification of the
non-symplectic automorphisms of K3 surfaces of order 3, described independently by Arte-
bani and Sarti, [AS1], and by Taki, [T]. Sporadic examples of the case n = 4 are analyzed
in [G], where some peculiar K3 surfaces with a non-symplectic automorphism of order 4 are
constructed and the associated Calabi–Yau 3-folds are presented. The complete classification
of the K3 surfaces with non-symplectic automorphisms of order 4 and 6 is still unknown, but
a lot of it is understood, see [AS2] for n = 4 and [D1] for n = 6. Hence several families
of Calabi–Yau 3-folds of Borcea–Voisin type obtained from quotients by automorphisms of
order 4 and 6 can be described.

Given a quotient (S × E)/(Z/nZ) as before, there could exist more then one crepant
resolution. We construct explicitly one specific crepant resolution (see Sections 4.1, 5.1, 6.1,
7.2) and we call it of type Xn. The properties of the fixed loci of α

j
S , j = 1, . . . , n − 1, on

S determine the Hodge numbers of this 3-fold. We compute these for each admissible value
of n (see Propositions 4.1, 5.1, 6.3, 7.3). Some of the Calabi–Yau 3-folds constructed have
“new” Hodge numbers (here we refer to the database [J] of the known Calabi–Yau 3-folds).

The 3-folds X of type Xn admit an automorphism induced by αS × idE . In certain cases
(see Proposition 3.7) this automorphism is a maximal automorphism for the family, i.e. it
deforms to an automorphism of the varieties which are deformations of X. Such an automor-
phism acts non-trivially on the period of X. In [R1], the maximal automorphisms which act
non-trivially on the period are analyzed. In particular, it is proved that if a family of Calabi–
Yau 3-folds admits a maximal automorphism which acts on the period as the multiplication
by an n-th root of unity, n �= 2, then the family does not admit a point with maximal unipotent
monodromy. In [R1] the families of Calabi–Yau 3-folds of Borcea–Voisin type associated
to n = 3 are considered and the ones with maximal automorphisms are classified, in order
to construct families of Calabi–Yau 3-folds without maximal unipotent monodromy. Simi-
larly, here we consider the family of Calabi–Yau 3-folds of Borcea–Voisin type associated to
n = 4, 6 without maximal unipotent monodromy (see Remarks 6.4, 7.4 and Tables 2, 4, 5).
In some of these cases we can moreover prove that the variation of Hodge structures of the
family of Calabi–Yau 3-folds of type Xn is essentially the variation of Hodge structures of a
family of curves (see Remarks 5.3, 6.5, and Example 7.9).

By construction, each variety X of type Xn is endowed with a map En : X → S/αS

whose generic fiber is an elliptic curve isomorphic to E. The study of this map is one of the
main tools of this paper (see Propositions 4.4, 5.5, 6.8, 7.5): En is an elliptic fibration (with
section) if and only if α

j

S does not fix isolated points for any j = 1, . . . , n − 1. On the other

hand, if α
j
S fixes some isolated point for a certain j , the fibers of En over the image of these

points in S/αS are the unique fibers which are not of Kodaira type, and they contain divisors.
In any case a distinguished (rational) section is naturally given. In case S/αS (i.e. the base of
the fibration) is smooth, we give a Weierstrass equation for En (see Sections 4.4, 5.2.1, 5.2.2,
6.2.1, 6.2.2, 7.3.1, 7.3.2).
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2. Preliminary results.

2.1. Calabi–Yau d-folds and their automorphisms.

DEFINITION 2.1. A Calabi–Yau d-fold is a smooth compact Kähler variety X of di-
mension d such that the canonical bundle of X is trivial and hi,0(X) = 0 if i �= 0, d .

If X is a Calabi–Yau d-fold, Hd,0(X) � C is generated by any non-trivial element in
Hd,0(X). We call period of X, denoted by ωX, a chosen non-trivial element in Hd,0(X), so
Hd,0(X) = 〈ωX〉.

Let α be an automorphism of X. Then α∗ acts on Hd(X,C) preserving the Hodge struc-
ture. In particular, α∗(ωX) = λαωX for a certain λα ∈ C∗. If λα = 1, we will say that α

preserves the period of X.

The Calabi–Yau varieties of dimension 1 are the elliptic curves, the Calabi–Yau varieties
of dimension 2 are the K3 surfaces.

2.1.1. Automorphisms of elliptic curves.

PROPOSITION 2.2 (see e.g. [ST]). Let E be an elliptic curve (i.e. a Calabi–Yau vari-
ety of dimension 1). If αE is an automorphism of E which does not preserve the period, then
α∗(ωE) = ζnωE where n = 2, 3, 4, 6. If n �= 2, then E is a rigid elliptic curve with complex
multiplication. More precisely: if n = 3, 6, then j (E) = 0; if n = 4, then j (E) = 1728.

We recall that any elliptic curve over C admits a Weierstrass equation of the form v2 =
u3 + au + b. The hyperelliptic involution, denoted by ι, acts on these coordinates in the
following way: ι : (u, v) 	→ (u,−v). It acts as the multiplication by −1 on the period.

We will denote by Eζ3 the elliptic curve with j -invariant equal to 0, and with Ei the one
with j -invariant equal to 1728.

We recall that a Weierstrass equation for Eζ3 is v2 = u3 + 1. We denote by αE : Eζ3 →
Eζ3 the automorphism αE : (u, v) 	→ (ζ3u, v) and by γE := α2

E ◦ ιE .
Similarly, a Weierstrass equation for Ei is v2 = u3 + u. We denote by αE : Ei → Ei

the automorphism αE : (u, v) 	→ (−u, iv) and we observe that α2
E = ι.

2.1.2. Automorphisms of K3 surfaces.

DEFINITION 2.3. Let S be a K3 surface. An automorphism αS ∈ Aut(S) which pre-
serves the period is called symplectic. An automorphism αS ∈ Aut(S) of finite order n := |αS |
is purely non-symplectic (of order n) if α∗S(ωS) = ζnωS , where ζn is a primitive n-th root of
unity.
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The choice of the period of a K3 surface determines a symplectic structure on S (this
motivates the previous definition of symplectic automorphism).

PROPOSITION 2.4 ([K]). Let S be a K3 surface and αS be a purely non-symplectic
automorphism of order n. Then n ≤ 66 and if n = p is a prime number, then p ≤ 19.
For every p ≤ 19 there exists at least one K3 surface admitting a purely non-symplectic
automorphism of order p.

In the following we will be interested in purely non-symplectic automorphisms of K3
surfaces of order 2, 3, 4, 6. So we recall that there is a complete classification of the K3
surfaces admitting a purely non-symplectic automorphism of prime order ([AST]) and partial
results on K3 surfaces admitting a purely non-symplectic automorphism of order 4 and 6
([AS2] and [D1] respectively).

PROPOSITION 2.5 (see e.g. [AST]). Let αS be a purely non-symplectic automorphism
of order n. Let FixαS (S) := {s ∈ S|αS(s) = s} be the fixed locus of αS . Then there are the
following possibilities:

(1) FixαS (S) is empty, in this case n = 2;
(2) FixαS (S) is the disjoint union of two curves of genus 1, in this case n = 2;
(3) FixαS (S) = C

∐k−1
i=1 Ri

∐h
j=1 Pj where Pj are isolated fixed points, C and Rj are

curves, C is the one with highest genus g(C) ≥ 0 and Rj are rational curves.

In the third case the fixed locus of αS is determined by the triple (g(C), k, h) and its
Euler characteristic is e(FixαS (S)) = h + 2k − 2g(C). If n = p is a prime number then for
every prime p ≤ 19 there exists a known finite list of admissible triples (g(C), k, h) such that
there exists at least a K3 surface admitting a non-symplectic automorphism of order p with
fixed locus associated to one of these triples.

DEFINITION 2.6. Let αS be a purely non-symplectic automorphism of order n on a
K3 surface S. Let us denote by H 2(S,C)

ζ
j
n

the eigenspace of the eigenvalue ζ
j
n for the action

of α∗S on H 2(S,C). For every i ∈ Z/nZ of order n, the dimension dim(H 2(S,C)ζ i
n
) does not

depend on i and will be denoted by m. We will denote by r := dim(H 2(S,C)αS ).

PROPOSITION 2.7. Let S be a K3 surface admitting a purely non-symplectic automor-
phism αS of order n. The numbers r and m are uniquely determined by the Euler character-
istics of the fixed loci of α

j
S for j = 1, . . . , n− 1.

The dimension of the family of K3 surfaces S admitting a purely non symplectic auto-
morphism αS of order n with prescribed Euler characteristics of the fixed loci of α

j
S , j =

1, . . . , n− 1, is m− 1 if n �= 2 and is m− 2 if n = 2.

PROOF. The first statement follows immediately by the Lefschetz fixed points formula
(see (7.1)), the second one by [DK, Section 11]. �

We observe that if αS acts as ζn on the period of S, then dim(H 1,1(S)ζn) = m − 1 if
n �= 2 and dim(H 1,1(S)ζn) = m− 2 if n = 2.
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REMARK 2.8. A deformation of the pair (S, αS) is a deformation of the K3 surface
S in the family of the K3 surfaces St admitting a purely non-symplectic automorphism αt

which deforms αS . The topological properties of the fixed loci of α
j
t , j = 1, . . . , n − 1

coincide with the ones of α
j

S . Similarly, the action of α∗t on H 2(St ,Z) coincides with the one
of α∗S on H 2(S,Z). This determines the family of the deformation of the pair (S, αS) and the
dimension of this family is in fact m− 1 if n �= 2 and m− 2 if n = 2.

2.1.3. Maximal automorphisms of Calabi–Yau 3-folds.

DEFINITION 2.9. Let X → B be a family of Calabi–Yau d-folds Xt . A maximal
automorphism of such a family of Calabi–Yau d-folds is an automorphism αt of a smooth
fiber Xt which extends to the local universal deformation of Xt .

Let B be a polydisc and let X → B be a local family of Calabi–Yau 3-folds. Let us fix
t ∈ B. For a generic t ∈ B, H 3(Xt ,Q) � H 3(Xt ,Q). If αt is an automorphism of Xt , then
α∗

t
acts on H 3(Xt ,Q) for any t . If αt is a maximal automorphism for the family, the action

of α∗
t

on H 3(Xt ,Q) is induced by the automorphism αt of Xt . In particular, the action of α∗t
preserves the Hodge structure of H 3(Xt ,Q), i.e. α∗t = α∗

t
is compatible with the variation

of the Hodge structures of Xt . Thus, the action of α∗t on ωXt does not depend on t , i.e. there
exists a non-zero complex number λ such that α∗t (ωXt ) = λ(ωXt ) for the generic t ∈ B.

PROPOSITION 2.10 ([R1, Theorem 8]). Let Xt be a Calabi–Yau 3-fold and let αt ∈
Aut(Xt) be a maximal automorphism of the family of Xt . If αt acts on the period of Xt with
finite order then either it acts trivially or with one of the following orders: 2,3,4,6 (i.e. the
value λ associated to αt is one of the followings: 1,−1, ζ k

3 , k = 1, 2,±i, ζ h
6 , h = 1, 5).

PROPOSITION 2.11 ([R1, Theorem 7]). Let Xt be a Calabi–Yau 3-fold and let αt ∈
Aut(Xt) be a maximal automorphism of the family of Xt . If αt acts with order 3, 4 or 6 on the
period, then the family of Xt does not admit a point with maximal unipotent monodromy.

The previous Proposition is used in several papers (see e.g. [R1], [GvG], [G]) to con-
struct explicit examples of Calabi–Yau 3-folds without maximal unipotent monodromy. We
observe that there exist also families of Calabi–Yau 3-folds without maximal unipotent mon-
odromy which do not admit a maximal automorphism acting on the period as described in
Proposition 2.11, see [CvS].

2.2. Elliptic fibrations on 3-folds. Let Y be a 3-fold. We now define the notion of
elliptic fibration. Since several 3-folds we construct in the following do not admit an elliptic
fibration, but have a natural map whose generic fiber is an elliptic curve, we also give a
less restrictive definition (the one of almost elliptic fibration) which is useful to describe our
situation.

DEFINITION 2.12. Let Y be a 3-fold and R be a surface. We will say that a surjective
map with connected fibers E : Y → R is an elliptic fibration if:

(1) the generic fiber of E is a smooth genus one curve;
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(2) a section of E is given, i.e. there exists a map s : R→ Y such that E ◦ s = id;
(3) all the fibers of E are of dimension 1.

DEFINITION 2.13. Let Y be a 3-fold and R be a (possibly singular) surface. We will
say that a surjective map with connected fibers π : Y → R is an almost elliptic fibration if:

(1) the generic fiber of π is a smooth genus one curve;
(2) a rational section is given, i.e. there exists a rational map s : R ��� Y such that

π ◦ s = id on the domain of s.

REMARK 2.14. We observe that if π : Y → R is an almost elliptic fibration, then
we do not require that all the fibers have dimension 1, and in fact we accept the presence of
divisors contained in a fiber.

2.3. Hirzebruch surfaces. In the following we will construct elliptic fibrations on
Calabi–Yau 3-folds whose bases are one of the following surfaces: P2, P1 × P1 or Fn, the
Hirzebruch surface. For this reason we recall some results on the Hirzebruch surfaces.

Let Fn denote the Hirzebruch surface Fn := P(OP1(−n)⊕OP1), n ∈ N. These surfaces
are toric varieties, whose fan has four edges ([F])

vs = (1, 0) , vt = (−1, n) ,

vy = (0,−1) , vz = (0, 1) ,

and four maximal cones
Cone(vs, vz) , Cone(vz, vt ) ,

Cone(vt , vy) , Cone(vy, vs) .

We can describe Fn also as a quotient space ([CLS, §5]): it is the quotient of C4
(s,t,y,z) � {s =

t = 0, y = z = 0} by the action of C∗ ×C∗

(λ, μ)(s, t, y, z) = (λs, λt, λnμy,μz)

and so we can use (s : t : y : z) as global homogeneous toric coordinates on Fn.
From the fan we can also see that the Picard group of Fn is generated by the four divisors Ds ,
Dt , Dy and Dz, with the relations

Ds ≡ Dt , Dy ≡ nDt +Dz ,

and so

PicFn = Z ·Dt ⊕ Z ·Dz .

The intersection properties of these divisors are D2
t = 0, D2

z = −n and DtDz = 1. We
observe that D2

y = n and so we call Dy the positive curve, and Dz the negative curve.
We recall KFn = −(n+ 2)Dt − 2Dz.

REMARK 2.15. Every Hirzebruch surface admits an automorphism of order d , for
every d ∈ N, whose quotient is another Hirzebruch surface. Indeed let us consider

α : (s : t : y : z) 	−→ (s : t : ζdy : z) ,
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where ζd denotes a d-th primitive root of unity. Then α is an automorphism of order d on Fn,
whose fixed locus consists of the two disjoint rational curves y = 0 and z = 0 respectively.

The quotient of Fn by the action of this automorphism is another Hirzebruch surface:

q : Fn −→ Fdn

(s : t : y : z) 	−→ (s : t : yd : zd) .

In particular, F2n is the quotient of Fn by the involution (s : t : y : z) 	−→ (s : t : −y : z).

3. Calabi–Yau 3-folds of Borcea–Voisin type. Here we describe the main construc-
tion of this paper and we summarize some of our main results (see Propositions 3.4, 3.7,
3.9).

At least in the cases n = 2 and n = 3 the construction is well known, and in particular it
was introduced in case n = 2 by Borcea and by Voisin, see [Bo] and [V1] respectively. In case
n = 3 it is extensively studied by Rohde in [R1]. Several generalizations of such construction
are proposed, see for example in [D2] and [G]. Here we describe one of them.

First we recall an essential result on the existence of certain crepant resolutions. Let Z

be a 3-fold with trivial canonical bundle and let G be a finite group of automorphisms of Z

which preserves the period. This implies that for every g ∈ G, the action of g∗ on the tangent
space at a fixed point is represented by a diagonal matrix in SL(3). Under this condition the
following holds:

PROPOSITION 3.1 ([Y], [Ba]). The singular 3-fold Z/G admits a crepant resolution.
If a crepant resoltuion of Z/G is a Calabi–Yau 3-fold, then every crepant resolution of Z/G

is a Calabi–Yau and the Hodge numbers of every crepant resolution do not depend on the
specific resolution that we are considering.

PROPOSITION 3.2. Let S be a K3 surface admitting a purely non-symplectic auto-
morphism αS of order n such that α∗S(ωS) = ζnωS . Let E be an elliptic curve admitting an
automorphism αE such that α∗E(ωE) = ζnωE . Then n = 2, 3, 4, 6 and (S ×E)/(αS × αn−1

E )

is a singular variety which admits a desingularization which is a Calabi–Yau 3-fold.

PROOF. The condition on n follows by Proposition 2.2.
The 3-fold S×E has trivial canonical bundle and a generator of H 3,0(S×E,C) is ωS ∧ωE .
By construction αS × αn−1

E preserves the period, hence there exists a crepant resolution of
(S×E)/(αS×αn−1

E ), i.e. a resolution with trivial canonical bundle, by Proposition 3.1. Since
H 2,0(S × E) = 〈ωS 〉 and H 1,0(S × E) = 〈ωE〉 are not preserved by αS × αn−1

E , and since
hi,0 are birational invariant for any i, the Hodge numbers h1,0 and h2,0 of any resolution of
(S × E)/(αS × αn−1

E ) are trivial. Hence there exists a resolution of (S × E)/(αS × αn−1
E )

which is a Calabi–Yau 3-fold. �

DEFINITION 3.3. Any crepant resolution of (S × E)/(αS × αn−1
E ) will be called a

Calabi–Yau 3-fold of Borcea–Voisin type (associated to (S, αS,E, αE)).

PROPOSITION 3.4. The Hodge numbers of any Calabi–Yau 3-fold of Borcea–Voisin
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type associated to (S, αS,E, αE) depend only on the topological properties of the fixed loci
of α

j
S , for j = 1, . . . , n− 1.

This Proposition follows immediately by the computations of the Hodge numbers of X

done in Propositions 4.1, 5.1, 6.3, 7.3 for n = 2, 3, 4, 6 respectively. Anyway it is based on a
general idea:

Let ˜
(S ×E)/(αS × αn−1

E ) be a crepant resolution of (S × E)/(αS × αn−1
E ). Since

˜
(S × E)/(αS × αn−1

E ) is a Calabi–Yau 3-fold, h0,0 = h3,0 = 1 and h1,0 = h2,0 = 0.
The numbers h1,1 and h2,1 depend on the action of αS × αn−1

E on S × E. They are the
sum of two contributions: one comes from the desingularization of the singular locus of
(S ×E)/(αS × αn−1

E ), the other comes from the cohomology of S ×E which is invariant for

αS × αn−1
E . Since the fixed loci of α

j
E , j = 1, . . . , n − 1 are uniquely determined by n, the

fixed loci of (αS × αn−1
E )j depend only the properties of the fixed loci of α

j
S . The part of the

cohomology which comes from the cohomology of S × E can be computed in this general
setting:

H 1,1(S × E)αS×αn−1
E = (H 0,0(S)⊗H 1,1(E))αS×αn−1

E ⊕ (H 1,1(S)⊗H 0,0(E))αS×αn−1
E

= (H 0,0(S)⊗H 1,1(E))⊕ (
H 1,1(S)αS ⊗H 0,0(E)

) ;
H 2,1(S × E)αS×αn−1

E = (H 2,0(S)⊗H 0,1(E))αS×αn−1
E ⊕ (H 1,1(S)⊗H 1,0(E))αS×αn−1

E

=
(
H 2,0(S)

ζn−1
n
⊗H 0,1(E)

)
⊕ (

H 1,1(S)ζn ⊗H 1,0(E)
)

.

(3.1)

With the notation introduced in Definition 2.6, the dimension of these spaces are 1 + r and
m − 1 respectively. By Proposition 2.7, r and m depend only on the properties of the fixed
loci of α

j
S .

DEFINITION 3.5. Let us consider the automorphism αS×idE ∈ Aut(S×E). It clearly
commutes with αS ×αn−1

E and so descends to an automorphism αX of any Calabi–Yau 3-fold
X which desingularizes (S × E)/(αS × αn−1

E ).

3.1. Borcea–Voisin maximal families. By choosing a K3 surface S with a non-
symplectic automorphism αS and an elliptic curve E with an automorphism αE as in Propos-
tion 3.2, we produce a Calabi–Yau 3-fold, X, of Borcea–Voisin type associated to (S, αS,E,

αE). We now consider the family of Calabi–Yau 3-folds which deform X. By the Tian–
Todorov theorem, the dimension of such a family is h2,1(X). In general not all the members
of this family are of Borcea–Voisin type.

Let us now consider a deformation of the pair (S, αS) to a pair (St , αt ). It induces a
deformation of the quadruple (S, αS,E, αE) which induces a deformation of X to Xt , which
is a crepant resolution of (St×E)/(αt×αn−1

E ). Similarly each deformation of the pair (E, αE)

induces a deformation of X.
The deformations of (S, αS,E, αE) are the deformations of (S×E,αS ×αn−1

E ) induced
by the deformations of the pair (S, αS) and by the deformations of (E, αE).
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DEFINITION 3.6. Let X be a Calabi–Yau 3-fold of Borcea–Voisin type associated to
(S, αS,E, αE). The family of X is a Borcea–Voisin maximal family if the generic deformation
of X is induced by a deformation of (S, αS,E, αE).

PROPOSITION 3.7. Let n = |αS | and let FX be the family of X.

(1) If h2,1(X) = m− 1, then FX is Borcea–Voisin maximal.
(2) If FX is Borcea–Voisin maximal, then αX is a maximal automorphism and αX(ωX) =

ζnωX.
(3) If FX is Borcea–Voisin maximal and n = 3, 4, 6, then FX does not admit maximal

unipotent monodromy.
(4) If FX is Borcea–Voisin maximal and n = 3, 4, 6, then the variation of the Hodge

structures of FX depends only on the variation of the Hodge structures of the family
of S.

PROOF. The dimension of the family of K3 surfaces S admitting the purely non-
symplectic automorphism αS of order n is m − 1 if n �= 2 and m − 2 if n = 2 (see Propo-
sition 2.7). The dimension of the family of elliptic curves E admitting the automorphism αE

as considered is 1 if n = 2, and 0 otherwise. Let us consider the deformations of the quadru-
ple (S, αS,E, αE). They are given by the deformations of (S, αS) plus the deformations of
(E, αE). So the dimension of the deformations space of (S, αS,E, αE) is m−1 = (m−2)+1
if n = 2 and m− 1 = m− 1+ 0 otherwise.

The dimension of the family FX is h2,1(X). So, if h2,1(X) = m − 1, the generic de-
formation of X is induced by a deformation of (S, αS,E, αE) and so FX is a Borcea–Voisin
maximal family. Then the automorphism αX is maximal (since it is defined on every deforma-
tion of (S ×E)/(αS × αn−1

E )). By the Proposition 2.11, if FX is Borcea–Voisin maximal and
n = 3, 4, 6, then FX does not admit maximal unipotent monodromy. If n = 3, 4, 6, then E

is a rigid curve. Moreover, if FX is a Borcea–Voisin maximal family, H 3,0(X)⊕H 2,1(X) =(
H 2,0(S)⊕H 1,1(S)ζn

)⊗H 1,0(E) = (
H 2,0(S)⊕H 1,1(S)ζn

)⊗C hence the variation of the
Hodge structures of FX depends only on the variation of the Hodge structures of S. �

Under certain hypothesis, if S is a K3 surface with a purely non-symplectic automor-
phism, the variation of the Hodge structures of S is essentially the variation of the Hodge
structures of a family of curves. So, if we are in case (4) of the previous proposition and more-
over the variation of the Hodge structures of S depends only on the variation of the Hodge
structures of a family of curves, then the variation of the Hodge structures of X is essentially
the variation of the Hodge structures of a family of curves. In particular the Picard–Fuchs
equation of X is the Picard–Fuchs equation of a family of curves. Examples of this phenom-
enon are given in [GvG], [G], in Remarks 5.3, 6.4, and in Section 7.5.

REMARK 3.8. Let us assume that the family of X is a Borcea–Voisin maximal family.
We recall that X is a desingularization of (S × E)/(αS × αn−1

E ) where S lies in the family of
the K3 surfaces admitting a non-symplectic automorphism αS with certain properties. Let us
assume that every K3 surface in the family of S admits an automorphism σ which commutes
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with αS . Then σ × idE ∈ Aut(S × E) induces a maximal automorphism of the family of X

(which is in general not equal to αX).

PROPOSITION 3.9. Let X be a Calabi–Yau 3-fold of Borcea–Voisin type and FX its
family. If α

j
S ∈ Aut(S) does not fix curves of positive genus for every j = 1, . . . , n − 1, then

FX is a Borcea–Voisin maximal family.
There exists at least one Borcea–Voisin maximal family for every n = 2, 3, 4, 6.

PROOF. The first statement follows by Proposition 3.7 and by the computations of the
Hodge numbers of X in Propositions 4.1, 5.1, 6.3, 7.3 for n = 2, 3, 4, 6 respectively. It is
known that there exist purely non-symplectic automorphisms αS of order 2, 3 and 4 such that
α

j
S does not fix curves of positive genus for every j = 1, . . . , n−1 (see [N], [AS1],[AS2] and

[G] respectively; for n = 4 see also Table 2, 4 and Remark 6.4). In case n = 6 we construct
an explicit example in Section 7.5. �

3.2. Fibrations on Calabi–Yau 3-folds of Borcea–Voisin type. In the next sections
we will construct explicitly one crepant resolution X of (S×E)/(αS ×αn−1

E ) and so a partic-
ular Calabi–Yau 3-fold of Borcea–Voisin type, called of type Xn. In the following proposition
we summarize some geometric properties of these 3-folds.

PROPOSITION 3.10. Let Gn : X → E/αn−1
E � P1 and En : X → S/αS be the maps

induced on X by (S × E)/(αS × αn−1
E ) → E/αn−1

E and (S × E)/(αS × αn−1
E ) → S/αS

respectively. Let g : E→ E/αn−1
E and q : S → S/αS be the quotient maps.

The map Gn is an isotrivial fibration in K3 surfaces. The fiber G−1
n (g(P )) is reducible if

and only if P ∈ E is a point with non-trivial stabilizer for the action of αE on E and the fixed
locus of αS is non empty.

The map En is an almost elliptic fibration. More precisely:

• the fiber E−1
n (q(Q)) is isomorphic to E if and only if Q ∈ S has trivial stabilizer for

the action of αS on S;
• the fiber E−1

n (q(Q)) is singular of dimension 1 if and only if Q ∈ S has a non-trivial

stabilizer for the action of αS on S, but Q is not an isolated fixed point for α
j
S for any

j = 1, . . . , n− 1; in this case E−1
n (q(Q)) is of Kodaira type;

• the fiber E−1
n (q(Q)) contains a divisor if and only if Q ∈ S is an isolated fixed point

for α
j
S for at least one j ∈ {1, . . . , n− 1}.

PROOF. The fibers of Gn are clearly equidimensional and the smooth ones are isomor-
phic to S. The ones which are not smooth contain divisors which come from the resolution of
(S × E)/(αS × αn−1

E ) and hence project to points in E/αn−1 which are branch points.
The map En will be considered in the Propositions 4.4, 5.5, 6.8, 7.5. �

We observe that En is an elliptic fibration if and only if α
j
S does not fix isolated points for

every j ∈ {1, . . . , n− 1}. For example, this surely happens if n = 2.
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4. The “original” Borcea–Voisin construction: order 2. In this section we assume
|αS | = |αE| = 2. We present the explicit construction of a crepant resolution, of type X2, of
(S × E)/(αS × αE) following [V1, Section 1].

4.1. The construction of Calabi–Yau 3-folds of type X2. Let S be a K3 surface with
a non-symplectic involution ιS . These K3 surfaces are classified in [N]. The fixed locus of ιS

on S is either empty or consists of N (disjoint) curves, and ιS linearizes near the fixed locus
to the matrix diag(−1, 1). Let E be an elliptic curve and ιE its hyperelliptic involution. The
fixed locus of ιE consists of 4 points, P1, P2, P3 and P4, and clearly the local action of ιE near
the fixed points is −1. Thus, the fixed locus of ι := ιS × ιE on S × E consists of 4N disjoint
curves and the local action near the fixed locus linearizes to diag(−1, 1,−1). The singularities
of (S ×E)/ι are the images of the curves in S ×E fixed by ι and a crepant resolution of such
singularities can be obtained blowing up each of these curves. More precisely the following
diagram commutes:

ι � S ×E
β← S̃ × E � ι̃

↓ ↓
(S ×E)/ι ← ˜(S × E)/̃ι � X

(4.1)

where β : S̃ × E → S × E is the blow up of S × E in the fixed locus Fixι(S × E), ι̃ is
the involution induced on S × E by ι and the vertical arrows are the quotient maps. Thus, a
desingularization of (S×E)/ι is constructed blowing up the fixed locus Fixι(S×E) and then
considering the quotient by the induced automorphism.

In order to compute the Hodge numbers of the Calabi–Yau 3-fold we first observe that

Hi(S̃ × E) = Hi(S ×E), i = 0, 1,

H 2(S̃ × E) = H 2(S ×E)
⊕⊕4N

i=1H
0(Di),

H 3(S̃ × E) = H 3(S ×E)
⊕⊕4N

i=1H
1(Di), (cf. [V1]) ,

where Di is the exceptional divisor over the fixed curve Ci blowed up, and is isomorphic to a
P1-bundle over Ci .
Since S̃ ×E/̃ι is a smooth quotient of S̃ × E, the cohomology groups of X coincide with

the invariant part of the cohomology groups of S̃ × E under ι̃. We notice that the exceptional

divisors over the fixed locus of ι are clearly invariant under ι̃ in S̃ × E.

PROPOSITION 4.1 (cf. [V1]). Let S be a K3 surface admitting a non-symplectic invo-
lution ιS fixing N curves and let N ′ = ∑

Ci∈FixιS
(S) g(Ci). Let E be an elliptic curve and ιE

its hyperelliptic involution. The Hodge numbers of any crepant resolution of (S×E)/(ιS×ιE),
and in particular the ones of X, are

h0,0 = h3,0 = 1, h1,0 = h2,0 = 0, h1,1 = 1+ r + 4N, h2,1 = m− 1+ 4N ′ .

Equivalently
h1,1 = 11+ 5N − N ′ = 5+ 3r − 2a ,

h2,1 = 11+ 5N ′ −N = 65− 3r − 2a ,
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where a is defined by the following property: (H 2(S,Z)ιS )∨/(H 2(S,Z)ιS ) � (Z/2Z)a .

The proposition follows immediately by the construction of X of type X2 given before,
by (3.1) and by the following known relations among (r, a) and (N,N ′): N = 1

2 (r − a + 2),
N ′ = 1

2 (22− r − a), cf. [V1].

REMARK 4.2. If N ′ = 0, the automorphism ιX induced on X by ιS× idE is a maximal
automorphism, by Proposition 3.7.

REMARK 4.3. If N ′ = 0 any automorphism σS commuting with ιS induces a maximal
automorphism of X by Remark 3.8. In [GS] it is proved that, if ιS is such that N ′ = 0, then S

admits at least one symplectic involution, σS . So, if N ′ = 0, we obtain at least one maximal
automorphism of X (in fact an involution) preserving the period of X. We observe that there
exists a crepant resolution of the quotient of X by such an automorphism which is a Calabi–
Yau 3-fold, and it is again of Borcea–Voisin type. However it is not in general a deformation
of X.

4.2. The elliptic fibration. We now consider the map E2 : X → S/ιS (cf. Propo-
sition 3.10), which turns out to be an elliptic fibration on X, a Calabi–Yau of type X2, and
whose analogues will be considered in the following sections.

PROPOSITION 4.4. Let E2 : X → S/ιS be the natural map induced on X by (S ×
E)/(ιS × ιE)→ S/ιS .

The map E2 : X → S/ιS is an isotrivial elliptic fibration whose general fiber is isomor-
phic to E. Let us consider the quotient map q : S → S/ιS . Let us assume that S is generic in
the family of K3 surfaces with the non-symplectic involution ιS (i.e. ρ(S) = r). The fiber FP

of E2 over P ∈ S/ιS is singular if and only if P is in the branch locus of q : S → S/ιS and in
this case FP is of type I∗0 . The Mordell–Weil group of this fibration is generically trivial.

PROOF. Since ιS does not fix isolated points, the quotient S/ιS is smooth. The generic
fiber of the map E2 : X → S/ιS is an elliptic curve isomorphic to E by construction. The
discriminant locus of E2 is the branch locus of q : S → S/ιS and so is isomorphic to FixιS (S).
Any of its components is a copy of a curve C fixed by ιS . By the construction of X we
introduce four P1-bundles over C for each curve C, which are in fact the blow up of C×Pi ⊂
S × E, i = 1, 2, 3, 4. Thus, if we consider the fiber FP over a point P of q(C) we find the
strict transform of E, which is a rational curve, and 4 rational curves which are the fibers over
the point P of the four P1-bundles over C � q(C). Hence we find exactly a fiber of type I∗0 .

�

REMARK 4.5. The automorphism αX defined in Definition 3.5 is the hyperelliptic in-
volution on the elliptic fibration E2 : X→ S/ιS .

4.3. Non-symplectic automorphisms of order 2 on K3 surfaces. Every pair (S, ιS),
where S is a K3 surface admitting a non-symplectic involution ιS , can be described in one of
the following ways:
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(1) S is the minimal resolution of the double cover of P2 branched over a (possibly sin-
gular) sextic and ιS is induced on S by the cover involution;

(2) S is an elliptic fibration with section and ιS is induced by the hyperelliptic involution
on each smooth fiber;

(3) S is the minimal resolution of the double cover of P1 × P1 branched over a (possibly
singular) curve of bi-degree (4, 4) and ιS is induced on S by the cover involution.

In the second case, and more precisely if S is generic among the K3 surfaces admitting an
elliptic fibration with section, S/ιS is the Hirzebruch surface F4. Indeed, S can be embedded
in P(OP1(4)⊕OP1(6)⊕OP1) with a Weierstrass equation y2z = x3+ f8(s : t)xz2+ f12(s :
t)z3, where f8(s : t) ∈ H 0(P1,OP1(8)) and f12(s : t) ∈ H 0(P1,OP1(12)). The quotient by
the hyperelliptic involution corresponds to the projection of the K3 surface S from the constant
section (x : y : z) = (0 : 1 : 0) on the surface y = 0. This defines a 2 : 1 covering of F4

(y = 0 is a surface isomorphic to F4), branched along (x3+f8(s : t)xz2+f12(s : t)z3)z = 0.
So the branch divisor in F4 is 12Dt + 4Dz and is the disjoint union of the curve Dz, which
corresponds to the section of the elliptic fibration on S, and of the curve 12Dt + 3Dz which
is the image of the trisection passing through the points of order 2 of the elliptic fibration on
S. The first is a rational curve, the latter has genus 10. In particular the surface S admits the
following equation w2 = (x3 + f8(s : t)xz2 + f12(s : t)z3)z, where (s : t : x : z) are the
coordinates of F4 introduced in Section 2.3 (more precisely, x was y with the notation of the
Section 2.3).

Hence a (possibly singular) model of S has one of the following equations:

(1) w2 = f6(x0 : x1 : x2), where (x0 : x1 : x2) are coordinates of P2;
(2) w2 = (x3 + f8(s : t)xz2 + f12(s : t)z3)z, where (s : t : x : z) are coordinates of F4;
(3) w2 = f4,4((x0 : x1), (y0 : y1)), where ((x0 : x1), (y0 : y1)) are coordinates of

P1 × P1;

and in all these cases ιS acts trivially on all the coordinates but w and changing the sign of w.

4.4. Equations. Let us now assume that E has the following equation v2 = u3 +
au + b and S is the double cover of P2 branched along a sextic V (f6(x0 : x1 : x2)). An
equation for a singular model of X2 is

(4.2) Y 2 = X3 + af 2
6 (x0 : x1 : x2)X + bf 3

6 (x0 : x1 : x2)

where the functions Y := vw3, X := uw2 are invariant for ιS × ιE : ((w, (x0 : x1 :
x2)), (v, u)) 	→ ((−w, (x0 : x1 : x2)), (−v, u)).

Similarly, if S is a double cover of F4(s:t :x:z), a Weierstrass equation for the elliptic
fibration E2 : X→ F4 is

Y 2 = X3 + a(x3 + f8(s : t)xz2 + f12(s : t)z3)2z2X

+b(x3 + f8(s : t)xz2 + f12(s : t)z3)3z3 .
(4.3)

If S is the double cover of P1×P1 branched along the curve V (f4,4((x0 : x1), (y0 : y1))),
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an equation for a singular model of X2 is

(4.4) Y 2 = X3 + af 2
4,4((x0 : x1), (y0 : y1))X + bf 3

4,4((x0 : x1), (y0 : y1)) .

If V (f6(x0 : x1 : x2)) and V (f4,4((x0 : x1), (y0 : y1))) are smooth, then (4.2), (4.3),
(4.4) are Weierstrass equations for the elliptic fibrations E2 : X2 → P2, E2 : X2 → F4

E2 : X2 → P1 × P1 described in Proposition 4.4 respectively and the results of such a
proposition can be directly checked on the equation.

5. Quotient of order 3.
5.1. The construction of Calabi–Yau 3-folds of type X3. Let S be a K3 surface

admitting a non-symplectic automorphism αS of order 3. Such K3 surfaces are classified
in [AS1], [T]. The fixed locus of αS consists of n isolated points and of k curves and the
linearization of αS near the fixed locus is diag(ζ 2

3 , ζ 2
3 ) and diag(ζ3, 1) respectively.

Let Eζ3 and its automorphism of order 3, αE , be as in Section 2.1.1. The automorphism
αE fixes 3 points on Eζ3 and its local action near the fixed locus is the multiplication by ζ3.
Let α be the automorphism αS × α2

E of S × E. The fixed locus of α on S × E consists of 3n

points and 3k curves, and the linearization of α near the fixed locus is diag(ζ 2
3 , ζ 2

3 , ζ 2
3 ) and

diag(ζ3, 1, ζ 2
3 ) respectively. As in the case of the involutions one can construct a desingular-

ization of (S × E)/α by blowing up S × E in the fixed locus of α to obtain a variety S̃ × E

such that the induced automorphism α̃ fixes only divisors, and then considering the quotient
˜(S × E)/α̃, but in this case one has to contract some divisors on ˜(S ×E)/α̃ in order to obtain

a Calabi–Yau 3-fold. One finds that it suffices to blow up once the fixed points, introducing
a copy of P2 as exceptional divisor. The situation is a little bit more complicated in the case
of fixed curves: one has to blow up the fixed curve C, introducing a divisor D1 which is a
P1-bundle over C, and the induced automorphism fixes two disjoint sections (copies of C) on
D1. Hence, one has to blow up these 2 copies of C introducing two other exceptional divisors
D2, D3, which are again P1-bundles over C. The induced automorphism fixes only divisors
and then the quotient by it is smooth. The image of the divisor D1 under the quotient has to
be contracted to obtain a smooth Calabi–Yau 3-fold.

Globally, we introduce 3n exceptional divisors isomorphic to P2 over the 3n fixed points,
and 6k exceptional divisors which are P1-bundles over Ci , two for each fixed curve Ci . A
more detailed construction of the crepant resolution of (S ×E)/α of type X3 can be found in
[CH] and [R1], see also [S].

Examples of Calabi–Yau 3-folds constructed in this way are studied in [R1] and [GvG].

PROPOSITION 5.1. Let S be a K3 surface admitting a non-symplectic automorphism
αS of order 3, fixing n isolated points and k curves. Let us denote by C the curve of highest
genus fixed by αS and by g(C) its genus. Let Eζ3 be the elliptic curve with Weierstrass form
v2 = u3 + 1 and αE : (v, u)→ (v, ζ3u). Then any crepant resolution of (S ×E)/(αS × α2

E)

is a Calabi–Yau 3-fold with Hodge numbers

h0,0 = h3,0 = 1 , h1,0 = h2,0 = 0 ,

h1,1 = r + 1+ 3n+ 6k , h2,1 = m− 1+ 6g(C) .
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Equivalently

h1,1 = 7+ 4r − 3a and h2,1 = 43− 2r − 3a

where a is defined by the following property: (H 2(S,Z)αS )∨/(H 2(S,Z)αS ) � (Z/3Z)a .
In particular, the Euler characteristic is 2(h1,1 − h2,1) = −72+ 12r .

PROOF. The proposition follows immediately by the construction of the Calabi–Yau of
type X3, by the fact that r+2m = 22 = dim(H 2(S,C)) and by the following relations among
the pair (r, a) and the invariant (g(C), k, n) describing the fixed locus FixαS (S) of αS on S:
g(C) = (22− r − 2a)/4, k = (6+ r − 2a)/4, n = r/2 − 1 ([AS1, Section 2]). �

Let X be a Calabi–Yau of type X3.

REMARK 5.2. If g(C) = 0, then h2,1(X) = m − 1. So, by Proposition 3.7 the au-
tomorphism αX is a maximal automorphism of the family of Calabi–Yau 3-folds X, and this
family does not admit maximal unipotent monodromy. For this reason, the families of Calabi–
Yau 3-folds constructed in this way are analyzed both in [R1] and [GvG].

REMARK 5.3. More precisely, in [GvG] it is proved that every K3 surface S such that
g(C) = 0 and k ≥ 3 is birational to (D × Eζ3)/(Z/3Z) where D is an appropriate curve.
Hence the Calabi–Yau 3-fold X is birational to (D × Eζ3 × Eζ3)/(Z/3Z)2. Using that the
curve Eζ3 is rigid, one proves that the variation of the Hodge structures of X depends only on
the variation of the Hodge structures of the curve D, see [GvG]. We will see in the following
that this result generalizes to other Calabi–Yau’s of type Xn.

REMARK 5.4. If g(C) = 0 and k ≥ 3, then S admits also a symplectic automorphism
σ of order 3 which commutes with αS , as proved in [GS]. So we are in the assumption of
Remark 3.8 and thus both αS × idE ∈ Aut(S ×E) and σ × id ∈ Aut(S ×E) induce maximal
automorphisms of the family of X; the first one does not preserve the period, the second one,
denoted by σX, preserves the period. In particular there exists a crepant resolution, Y , of
X/σX which is again a Calabi–Yau 3-fold. Since S/σ is birational to a K3 surface admitting
a non-symplectic automorphism of order 3, Y is birational to a Calabi–Yau 3-fold of type X3.

5.2. (Almost) elliptic fibrations. Let αS be a non-symplectic automorphism of S of
order 3 which fixes n isolated points and k curves. Let X be the Calabi–Yau 3-fold of type X3

associated to S. Let us consider the map E3 : X → S/αS induced on X by (S × E)/(αS ×
α2

E) → S/αS . Moreover we consider the quotient map qS : S → S/αS and we recall
that S/αS has exactly n singular points, the image of the n isolated fixed points on S. We
will assume (S, αS) to be generic in the family of K3 surfaces S with the non-symplectic
automorphism of order 3 αS (i.e. ρ(S) = r).

PROPOSITION 5.5. The map E3 : X → S/αS is an almost elliptic fibration whose
general fiber is isomorphic to Eζ3 and it is an elliptic fibration if and only if n = 0. The fiber
FP of E3 over P ∈ S/αS is of dimension 1 if and only if P is a smooth point and is singular
if and only if P is in the branch locus of q : S → S/αS . In particular:
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FIGURE 1. The fiber over a singular point of S/αS .

• if P is a singular point of S/αS , the fiber FP consists of a rational curve which meets
three disjoint copies of P2, each in 1 point (see Figure 1);
• if P is a smooth point of S/αS in the branch locus of q , then FP is a fiber of type

IV ∗.

The Mordell–Weil group of this fibration is generically equal to Z/3Z.

PROOF. Again the proof follows directly by the construction of X. Let us denote by Ri

the 3 fixed points of αE on E. We denote by P ′ ∈ S a point such that q(P ′) = P . If P ′ ∈ S

is an isolated fixed point of αS (i.e., P is a singular point of S/αS ), the points P ′ × Ri , are
isolated fixed points of αS × α2

E . On each of them we introduce a P2. Moreover, the image of
the strict transform of P ′ ×Eζ3 is a rational curve which is a component of the fiber FP over
P .

Similarly, one constructs the reducible fiber over P if P ′ lies on a curve C′ fixed by αS .
In this case P is a smooth point of S/αS . In order to construct X, we introduce six P1-bundles
over C′, 2 on each curve C′ ×Rj , j = 1, 2, 3. Considering the fiber of these P1-bundles over
P ′ × Rj we obtain 3 copies of A2 (where A2 is a configuration of 2 rational curves meeting
in a point). Moreover, there is a component of the fiber FP , which consists of the image of
the strict transform of P ′ × Eζ3 . It meets in one point one of the two rational curves of each
configuration of type A2. Hence we obtain a configuration of (−2)-curves which corresponds
to a fiber of Kodaira type IV ∗.

The (rational) sections are the image of the strict transform of the divisors S × Rj . It is
immediate to show that they are sections if S/αS is smooth and rational sections otherwise. �

REMARK 5.6. The automorphism αX defined in Definition 3.5 is induced by the com-
plex multiplication of order 3 on each smooth fiber of the fibration.

We now give a Weierstrass equation of E3 in case S/αS is smooth. This implies that αS

has no isolated fixed points, i.e. n = 0. By Proposition 5.5, this condition is equivalent to the
condition that E3 is an elliptic fibration.

By [AS1], [T] there exist exactly two families of K3 surfaces admitting a non-symplectic
automorphism of order 3 which do not fix isolated points. Each of these families is 9 dimen-
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sional. They are characterized by the number of fixed curves of αS on S. If αS fixes exactly
one curve on S, then S/αS � P1 × P1 and if αS fixes exactly 2 curves on S, then S/αS � F6.

5.2.1. Weierstrass equation of E3 if S/αS � P1×P1. Let S be a K3 surface admitting
a non-symplectic automorphism of order 3 whose fixed locus consists of exactly one curve.
In this case the fixed curve has genus 4 and an equation for S is ([AS1, Proposition 4.7]){

f2(x0 : x1 : x2 : x3) = 0
f3(x0 : x1 : x2 : x3)+ x3

4 = 0
(5.1)

where the polynomials fn(x0 : x1 : x2 : x3) are generic homogeneous polynomials of degree
n. In this case αS is induced by the projectivity (x0 : x1 : x2 : x3 : x4) → (x0 : x1 : x2 :
x3 : ζ3x4). It is now clear that S is a 3 : 1 cover of a quadric, V (f2(x0 : x1 : x2 : x3)) ⊂ P3,
branched along the curve V (f2(x0 : x1 : x2 : x3)) ∩ V (f3(x0 : x1 : x2 : x3)) ⊂ P3. More
intrinsically, S is the triple cover of P1 × P1 branched along a curve of bidegree (3, 3), i.e. S

admits an equation of type w3 = f3,3((x0 : x1), (y0 : y1)) and we can assume αS : (w, ((x0 :
x1), (y0 : y1))) 	→ (ζ3w, ((x0 : x1), (y0 : y1))).

So a Weierstrass equation for the elliptic fibration described in Proposition 5.5 is

Y 2 = X3 + f 4
3,3((x0 : x1), (y0 : y1)) ,

where the functions Y := vw6, X := uw4 are invariant for αS × α2
E . We can directly check

that the reducible fibers of this elliptic fibration are of type IV ∗ and that there are 3 sections:
the one at infinity and the sections (X, Y ) 	→ (0,±f 2

3,3((x0 : x1), (y0 : y1))) which have
order 3.

5.2.2. Weierstrass equation of E3 if S/αS � F6. Let S be a K3 surface admitting a
non-symplectic automorphism of order 3 whose fixed locus consists of exactly 2 curves. In
[AS1, Proposition 4.2] it is proved that S admits an isotrivial elliptic fibration whose equation
is y2 = x3 + f12(t) where f12(t) is a polynomial of degree 12 without multiple roots. The
automorphism αS in this case is (x, y, t) 	→ (ζ3x, y, t). The fixed curves are the section
of this elliptic fibration (which is of course rational) and the bisection y2 = f12(t). Using
the homogeneous coordinates in P(OP1(4) ⊕ OP1(6) ⊕ OP1), the surface S has equation
y2z = x3 + f12(s : t)z3 and so we see that the projection from the constant section (x : y :
z) = (1 : 0 : 0) defines a 3 : 1 cover of the surface x = 0, which is the Hirzebruch surface
F6. Using the coordinates (s : t : y : z) on F6 introduced in Section 2.3, the branch locus is
given by the two disjoint curves z = 0, i.e. the negative curve of F6, which corresponds to the
section of the elliptic fibration, and y2 = f12(s : t)z2 which corresponds to the bisection.
Observe that S admits a birational model S′ in OF6(4Dt + Dz), whose equation is w3 =
(y2 − f12(s : t)z2)z. The birational morphism

S −→ S′
(s, t, x, y, z) 	−→ (w, (s : t : y : z)) = (x, (s : t : y : z))

is compatible with the non-symplectic automorphism αS , in the following sense: via this
birational morphism, αS induces on S′ the covering transformation αS ′ : (w, (s : t : y :



532 A. CATTANEO AND A. GARBAGNATI

z)) 	−→ (ζ3w, (s : t : y : z)) which is non-symplectic.
The functions Y := vw6 and X := uw4 are then invariant for αS ′ × α2

E and satisfy

Y 2 = X3 + (y2z− f12(s : t)z3)4 ,

which is a Weierstrass equation for the elliptic fibration E3 : X3 → S/αS � F6 in
P(OF6(−2KF6)⊕OF6(−3KF6)⊕OF6).

6. Quotient of order 4.

6.1. The construction of Calabi–Yau 3-folds of type X4. Let Ei be the elliptic curve
admitting an automorphism, αE , of order 4 such that α∗E(ωE) = iωE . We recall that α2

E is the
hyperelliptic involution and thus fixes 4 points. Among these points, two are switched by αE

and two are fixed. We denote by Pi , i = 1, 2 the points such that αE(Pi) = Pi and by Qj ,
j = 1, 2 the points such that α2

E(Qj ) = Qj and αE(Q1) = Q2.
Let S be a K3 surface admitting a purely non-symplectic automorphism of order 4, αS .

Such K3 surfaces are not completely classified, but a lot of them are studied and listed in
[AS2]. The fixed locus of αS consists of points and curves. Of course FixαS (S) ⊂ Fixα2

S
(S).

Since α2
S is a non-symplectic involution of S and thus fixes only curves, all the points fixed by

αS lie on curves fixed by α2
S .

The automorphism αS can act in three different ways on each curve fixed by α2
S . We call:

(1) curves of first type: the curves which are fixed by αS (and thus of course also by α2
S),

we denote by Ki these curves and by k their number;
(2) curves of second type: the curves which are fixed by α2

S and are invariant by αS , we
denote by Bi these curves and by b their number;

(3) curves of third type: the curves fixed by α2
S and sent to another curve by αS , we

denote by (A′i , A′′i ) the pairs of these curves, assuming that αS(A′i ) = A′′i , and we
denote by a the number of these pairs.

The properties of the locus with non-trivial stabilizer for the action of αS on S are de-
scribed by the numbers (N, g(D), a, b, k, n1, n2) defined here:

DEFINITION 6.1. The automorphism α2
S fixes N curves. We will denote by D the

curve of highest genus fixed by α2
S and by g(D) it genus. The automorphism αS fixes k curves

and n1 + n2 isolated points; n2 of them lie on D. The isolated fixed points of αS lie on the b

curves (of second type) which are fixed by α2
S and are invariant for αS . The automorphism αS

switches a pairs of curves (of third type) fixed by α2
S .

REMARK 6.2. The isolated fixed points of αS lie on curves of second type and αS is
an involution of each of these curves. Clearly N = k + b + 2a.

Let α := (αS × α3
E) ∈ Aut(S × Ei). In order to construct a crepant resolution of

the quotient (S × Ei)/α we make two following quotients: first we consider the quotient
(S ×Ei)/α

2 (it is of the type described in Section 4.1) which admits a crepant resolution X′;
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then we consider the crepant resolution of the quotient X′/α′ where α′ is the automorphism
induced by α on X′.

Let β1 : S̃ ×Ei → S × Ei be the blow up of S × Ei in the fixed locus of α2, i.e. in 4N

curves. The automorphism α ∈ Aut(S × Ei) induces an automorphism α̃ on S̃ ×Ei , indeed

outside of the exceptional locus the 3-folds S × Ei and S̃ ×Ei are isomorphic and thus α̃ is
identified with α. We claim that there is a global automorphism α̃ which extends this action:
to prove this it suffices to consider the action in a neighborhood of the exceptional locus.

Since the local action of α2 near the fixed locus is represented by the diagonal matrix
diag(−1, 1,−1), locally we are blowing up C3

(x,y,z)
in x = z = 0. Hence, locally the blow

up is identified with C̃3
(x,y,z) := V (bx = az) ⊂ C3

(x,y,z) × P1
(a:b). On the exceptional locus

the action of α̃ depends on the type of curve that we blow up. Let us denote by D1, D2,
(D′3,D′′3 ) the exceptional divisors over a curve of first type, over a curve of second type,
over a pair of curves of third type respectively. The automorphism α linearizes as (i, 1,−i)

near the curves of the first type: locally we are considering a copy of C3
(x,y,z) with the action

(x, y, z) → (ix, y,−iz). This induces the map ((x, y, z); (a : b)) → ((ix, y,−iz); (a :
−b)) on C̃3

(x,y,z). So, α̃ preserves the exceptional divisor D1 and acts as ((x, y, z); (a : b))→
((ix, y,−iz); (a : −b)) in the neighborhood of D1 which can be identified with V (bx =
az) ⊂ C(x:y:z) × P1

(a:b). Similarly, we could have argued that since α∗ preserves the tangent
directions, α̃ is well defined in a neighborhood of D1.

The automorphism α linearizes as diag(−i,−1,−i) near the fixed points on the curves
of the second type: locally we are considering a copy of C3

(x,y,z) with the action (x, y, z)→
(−ix,−y,−iz). This induces the map ((x, y, z); (a : b)) → ((−ix,−y,−iz); (a : b)) on

C̃3
(x,y,z). Similarly, we could have argued that since α∗ preserves the tangent directions, α̃ is

well defined in a neighborhood of D2.
The automorphism α switches pairs of curves of the third type, so α̃ switches the divisors

D′3 and D′′3 .

So, globally α induces an automorphism α̃ on S̃ × Ei .

Let us denote by X′ the smooth 3-fold S̃ × Ei/α̃
2. We observe that X′ is the crepant

resolution of (S × Ei)/α
2 constructed in Section 4.1. Since X′ is a resolution of quotient of

S̃ × Ei by α̃2, α̃ induces an automorphism (of order 2) on X′. We call it α′. It has order 2 and
preserves the period of X′ because α preserves the period of S × Ei . The local action of α′
near the fixed locus can be linearized to diag(−1, 1,−1). Thus, in order to construct a crepant
resolution of X′/α′ it suffices to blow up X′ in the fixed locus of α′ and then to consider the
quotient by the automorphism induced by α′ on the blow up. We denote by X the crepant
resolution obtained in this way and we will say that it is of type X4. We have the following
commutative diagram:
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S × Ei

��

S̃ × Ei
β1��

π1
��

S × Ei/α
2

��

S̃ ×Ei/α̃
2 = X′��

��

X̃′β2��

π2

��
S × Ei/α X′/α′�� X̃′/α̃′ = X��

(6.1)

where β1 is the blow up of S × Ei in Fixα2(S × E), β2 is the blow up of X′ in Fixα′(X′) and
all the vertical arrows are the quotient maps and are 2 : 1.

PROPOSITION 6.3. Let S be a K3 surface with a purely non-symplectic automorphism
αS , such that α∗S(ωS) = iωS . Let us denote by m := dim(H 2(S,Z)i ) = dim(H 2(S,Z)−i )

and by r := dim(H 2(S,Z)αS ).
Let X be a crepant resolution of (S ×Ei)/(αS × α3

E).
If α2

S fixes two elliptic curves, then the Hodge numbers of X are hj,0 = 1, if j = 0, 3,
hj,0 = 0, if j = 1, 2, h1,1 = 19+ r = 25, h2,1 = m− 1+ 8 = 13.

If the fixed locus of α2
S does not consist of two elliptic curves, let us denote by D the

curve of highest genus fixed by α2
S . There are the following two possibilities: 1) D is of the

first type; 2) D is of the second type.
The Hodge numbers of X are:

hj,0 = 1 if j = 0, 3, hj,0 = 0 if j = 1, 2,

h1,1 = 1+ r + 7k + 3b + 2(n1 + n2)+ 4a, h2,1 = m− 1+ 7g(D), in case 1)
h1,1 = 1+ r + 7k + 3b + 2(n1 + n2)+ 4a, h2,1 = m+ 2g(D)− n2/2, in case 2) .

Equivalently,

h1,1 = 22+ 17k + 5a − 10g(D), h2,1 = 4− k − a + 8g(D), in case 1)

h1,1 = 102−7n2−2g(D)
4 + 17k + 5a, h2,1 = 18−n2+10g(D)

4 − k − a, in case 2) .

In particular χ(X) = 36 + 36k − 36g(D) + 12a in case 1), χ(X) = 42 − 3n2 − 6g(D) +
36k + 12a in case 2) and χ(X) = 24 if α2

S fixes 2 elliptic curves.

PROOF. We make the proof in case α2
S does not fix two curves of genus 1. The remain-

ing case is analogous.
By Proposition 3.1, the Hodge numbers of a crepant resolution of (S × Ei)/α do not

depend on the crepant resolution. Hence we compute them for the resolution described by
Diagram (6.1). Let us denote by Dtot the divisor which is the sum of all the divisors introduced
by the crepant resolution of (S × Ei)/α. It is the disjoint union of a certain number of P1-
bundles over curves. We apply [V2, Théorèm 7.3.1], see also [G, Proposition 7], obtaining

Hj(X) = Hj(S × Ei), j = 0, 1 ;
Hj(X) = Hj(S × Ei)

α ⊕Hj−2(Dtot ), j = 2, 3 .
(6.2)
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We already computed (H 2(S ×Ei))
α and (H 3(S ×Ei))

α , see (3.1), obtaining dim((H 2(S ×
Ei))

α) = r + 1 and dim((H 3(S ×Ei))
α) = dim(H 3,0(S ×Ei))+ dim((H 2,1(S ×Ei))

α)+
dim((H 1,2(S×Ei))

α)+dim((H 0,3(S×Ei))) = 1+ (m−1)+ (m−1)+1= 2m. For j = 2,
dim(H 0(Dtot )) is the number of disjoint divisors introduced by the resolution of the singular
quotient. For j = 3, we need to compute dim(H 1(Dtot )) and since Dtot is a disjoint union of
certain P1-bundles over certain curves, dim(H 1(Dtot )) is the sum of the genera of the basis
of these P1-bundles. So, in order to find the Hodge numbers of X we have to compute the
number of divisors introduced by the resolution of (S×Ei)/α and to consider the basis of the
P1-bundles introduced by this resolution.

Step 1: Description of the resolution of the singularities.
Let K be a curve of the first type on S × Ei , i.e. a fixed curve for α. Then it is a fixed

curve for α2 and so it is in the locus blown up by β1. This introduces a divisor D1 in S̃ × Ei ,
which is the projectivization of the normal bundleNK/(S×Ei) and is a P1-bundle over K . Since
locally near K the action of α is diag(i, 1,−1), the action restricted to the normal bundle has
two different eigenvalues, i and −1. This splits the normal bundle in two eigenspaces which
can not be interchanged by α. Each of these two eigenspaces determines a section of the

exceptional divisor D1, which is a fixed curve for the action of α̃ on D1 ⊂ S̃ × Ei . The
automorphism α̃2 acts as the identity on D1, so π1 : D1 → π1(D1) is a 1 : 1 map and π1(D1)

is isomorphic to D1. The action of α′ on π1(D1) coincides with the action of α̃ on D1 and
hence α′ fixes two curves on π1(D1), which are sections of a P1-bundle over K , so they are
two copies of K . Hence β2 blows up two copies of K introducing 2 other divisors D′1 and D′′1
which are P1-bundles over K . The action of α̃′ on D′1 and D′′1 is the identity, so π2(D

′
1) � D′1

and π2(D
′′
1 ) � D′′1 . Hence there are 3 divisors (π2(β

−1
2 (π1(D1)), π2(D

′
1), π2(D

′′
1 )) which are

P1-bundles over K and which are mapped by β1π
−1
1 β2π

−1
2 to the curve K . We observe that

π2(β
−1
2 (π1(D1))) intersects both π2(D

′
1) and π2(D

′′
1 ) in a curve isomorphic to K and that

π2(D
′
1) ∩ π2(D

′′
1 ) = ∅.

Let B be a curve of the second type on S × Ei , i.e., it is fixed by α2 and α restricts
to an involution on B with nB fixed points. The blow up β1 introduces a divisor D2 over B

which is a P1-bundle over B. The local action of α̃ on D2 was computed before (in local

coordinates over C̃3
(x,y,z)): α̃ acts on the basis of the P1-bundle D2 as α acts on B. For each

point V ∈ B such that α(V ) = V , α̃ fixes all the fiber of D2 over V . There are nB fibers
of D2 which are fixed by α̃, i.e. nB rational curves in D2 which are fixed by α̃. Since α̃2

is the identity on D2, D2 � π1(D2) and α′ fixes nB rational curves on π1(D2). For each
of these curves β2 introduces an exceptional divisor which is preserved by π2. In order to
resolve the singularities of X′/α′ we introduce nB divisors which are P1-bundles over P1.
Moreover, since α is an involution on B, α is non-trivial on the basis of β−1

2 (π1(D2)), and
thus π2(β

−1
2 (π1(D2))) is a P1-bundle over B/α. Hence, in order to resolve the singularities

of (S × Ei)/α over the image of B, we introduced the divisor π2(β
−1
2 (π1(D2))) which is a

P1-bundle over B/α and nB divisors which are P1-bundles over P1.
Let (A′, A′′) be a pair of curves of the third type on S × Ei , i.e. both A′ and A′′
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are fixed by α2 and α(A′) = A′′. Since α interchanges A′ and A′′, A′ � A′′. The blow
up β1 introduces two divisors D′3 and D′′3 over A′ and A′′ respectively and both of them are
P1-bundles over A′ � A′′. These divisors are interchanged by α̃ and fixed by α̃2. So the
two divisors β−1

2 (π1(D
′
3)) ⊂ X′ and β−1

2 (π1(D
′′
3 )) ⊂ X′ are isomorphic to D′3 and D′′3 and

they are interchanged by α′. Hence π2(β
−1
2 (π1(D

′
3))) = π2(β

−1
2 (π1(D

′′
3 ))) is a divisor on

X, isomorphic to D′3 and so it is a P1-bundle over A′ � A′′. Hence in order to resolve the
singularities of (S × Ei)/α over the image of the pair (A′, A′′) we introduced one divisor,
π2(β

−1
2 (π1(D

′
3))), which is a P1-bundle over A′.

Step 2: Computation of the exceptional divisors and of the Hodge numbers of X.
In order to compute the Hodge numbers of X, we need to count the number of curves of

each type that appear on S × Ei :

(1) for each curve K ⊂ S which is of the first type for αS , the curves K ×P1 ⊂ (S×Ei)

and K×P2 ⊂ (S×Ei) are of the first type for α and the pair of curves (K×Q1,K×
Q2) is a pair of curves of the third type for α;

(2) for each curve Bi ⊂ S which is of the second type for αS , the curves B × P1 ⊂
(S×Ei) and B ×P2 ⊂ (S×Ei) are of the second type for α and there are nB points
fixed by α on each of them. The pair (B × Q1, B × Q2) ⊂ (S × Ei) is a pair of
curves of the third type for α;

(3) for each pair of curves (A′, A′′) ⊂ S which is a pair of curves of the third type
for αS , the pairs (A′ × P1, A

′′ × P1), (A′ × P2, A
′′ × P2), (A′ × Q1, A

′′ × Q2),
(A′ ×Q2, A

′′ ×Q1) are of the third type for α.

So the locus with non-trivial stabilizer for the action of α on S × Ei is the following: there
are 2k curves of the first type; 2b curves of the second type and k + b + 4a pairs of curves of
the third type.

Let us denote by nBi for i = 1, . . . , b the number of points on Bi which are fixed by αS .
For each curve Bi of the second type, both Bi × P1 and Bi × P2 contain nBi points fixed by
α. Moreover

∑b
i=1 nBi = n1 + n2 is the number of the isolated fixed points for αS on S. So

the number of the isolated fixed points of α on S ×Ei is 2(n1 + n2) = 2
∑b

i=1 nBi .
The number of exceptional divisors of X which arise by the desingularization of (S ×

Ei)/α is 3(2k)+ 2b + 2(
∑b

i=1 nBi )+ k + b + 4a = 7k + 3b + 4a + 2(n1 + n2). Hence

h1,1(X) = 1+ r + 7k + 3b + 4a + 2(n1 + n2) .

We recall that D is the curve with highest genus fixed by α2
S . If D is of the first type,

then D×P1 and D×P2 are curves of the first type and (D×Q1,D×Q2) is a pair of curves
of third type, so the resolution of (S×Ei)/α introduces 7 divisors which are P1-bundles over
D, hence

h2,1(X) = m− 1+ 7g(D) .

If D is of the second type, then D × P1 and D × P2 are curves of the second type and
(D×Q1,D×Q2) is a pair of curves of third type, so the resolution of (S×Ei)/α introduces
2 divisors which are P1-bundles over D/α, and 1 divisor which is a P1-bundle over D, hence
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h2,1(X) = m−1+2g(D/α)+g(D). By Riemann–Hurwitz, g(D/α) = 1
2 (g(D)+1−n2/2),

so

h2,1(X) = m− 1+ 2g(D) + 1− n2/2 = m+ 2g(D)− n2/2 .

Step 3: the Hodge numbers depend on (k, a, g(D), n2).
By [AS2, Theorem 1.1] and [AS2, Proposition 1], one obtains the following relations:

r = 1

2
(12+k+2a+b−g(D)+4h), m = 1

2
(12−k−2a−b+g(D)), n1+n2 = 2h+4

where h = ∑
C⊆FixαS(S)(1 − g(C)). Moreover we observe that if D is of the first type h =

(k − 1) + (1 − g(D)) = k − g(D), n2 = 0, n1 = 2h + 4, b = n1/2; if D is of the second
type, h = k, n1 + n2 = 2h+ 4, b = n1/2+ 1. �

REMARK 6.4. If g(D) = 0, then h2,1(X) = m − 1. So, by Proposition 3.7, if D is
rational αX is a maximal automorphism of the family of Calabi–Yau 3-folds of X, and this
family does not admit maximal unipotent monodromy. Some of these families were already
constructed in [G] (the ones corresponding to lines 12 - 13 - 15 - 16 - 18 of Table 2).

Any other automorphism on S commuting with αS induces a maximal automorphism of
X. In particular if X admits an isotrivial elliptic fibration with fibers isomorphic to Ei (this
surely happens for some S, for example in many cases constructed in [G]), then S admits a
symplectic involution (the translation by the 2-torsion section of this elliptic fibration) and
thus X admits a maximal automorphism of order 2 preserving the period.

REMARK 6.5. In [G] it is proved that some K3 surfaces admitting a non-symplectic
automorphism of order 4 such that D is a rational curve (with the notation of Proposition 6.3),
are birational to the quotient (C × Ei)/(Z/4Z) where C is a certain curve of positive genus.
As a consequence one obtains that X is birational to (C × Ei × Ei)/(Z/4Z) and thus the
variation of the Hodge structures of X depends only on the variation of the Hodge structures
of the curve C, see also Remark 5.3. Here we can extend this result to each K3 surface
admitting a non-symplectic automorphism αS of order 4 such that D is a rational curve and
αS is the cover automorphism of a 4 : 1 map S → P2. Indeed, if S is a 4 : 1 cover of P2 the
branch locus consists of a plane quartic curve Q, which is fixed by αS . Since D is rational,
Q is quite singular (it could also be reducible) and in particular it admits at least either one
node or a cusp, say in the point P ∈ Q. The pencil of lines through P in P2 induces a
pencil of curves on S. The general member of this pencil is a 4 : 1 cover of P1 branched
in 2 points of order 4 and two points of order 2, thus it is isomorphic to Ei . So, the pencil
of lines through P in P2 induces an isotrivial elliptic fibration on S whose general fiber is
isomorphic to Ei . Hence there exists a curve C such that S is birational to (C ×Ei)/(Z/4Z),
X to (C × Ei ×Ei)/(Z/4Z) and the variation of the Hodge structures of X depends only on
the one of the curve C.

REMARK 6.6. Let S be a K3 surface, which is a 4 : 1 cover of P2 and let αS be the

cover automorphism. The branch locus of S
4:1−→ P2 is a possibly singular quartic curve Q. Let

us denote by x the number of nodes of Q, by y the number of cusps of Q and by z the number
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of the components of Q. Then the properties of the fixed locus of αS are the following: D

is a curve of first type and is the component of Q of highest genus, k = z, N = k + x + y,
n = 2(x+ y), a = y. Hence the Calabi–Yau 3-folds of type X4 constructed by S are the ones
described in lines 2, 3, 4, 5, 7, 8, 11, . . . , 19 of Table 2. In particular the Calabi–Yau 3-folds
which are of the type described in Remark 6.5 are the ones of lines 12, . . . , 19 of Table 2.

REMARK 6.7. There exists at least three different Calabi–Yau 3-folds of Borcea–
Voisin type which are rigid and admit an automorphism acting as ζ4 = i on ωX (see lines 18,
19 of Table 2 and line 5 of Table 4). Since these Calabi–Yau 3-folds are rigid, H 3(X,Q) � Q2

and the Hodge structure is given by the decomposition in eigenspaces for the action of αX (i.e.
for the action of ·i on Q2 � Q(i)). These Calabi–Yau 3-folds are associated to the same K3
surface S (the unique K3 surface admitting a non-symplectic involution, α2

S , whose fixed lo-
cus consists of 10 rational curves). On this S there are at least 3 automorphisms αS ∈ Aut(S)

of order 4 such that α2
S fixes 10 rational curves and for each of them the Borcea–Voisin con-

struction gives a different Calabi–Yau 3-fold. For example, S admits both a 4 : 1 cover of P2

branched along 4 lines and a 4 : 1 cover of P2 branched along a quartic with three cusps. The
cover automorphisms in these two cases are different and have different fixed loci (these are
associated to the Calabi–Yau 3-folds in lines 18 and 19 in Table 2).

6.2. (Almost) elliptic fibrations. Let X be a Calabi–Yau 3-fold of type X4. Let us
consider the map E4 : X → S/αS induced on X by (S × Ei)/(αS × α3

E) → S/αS . We
consider the quotient map qS : S → S/αS and we recall that S/αS has exactly n1 + n2

singular points, the images of the n1 + n2 isolated fixed points on S. We will assume (S, αS)

to be generic in the family of K3 surfacesS with the non-symplectic automorphism of order 4
αS (i.e. ρ(S) = 22− 2m).

PROPOSITION 6.8. The map E4 : X → S/αS is an almost elliptic fibration whose
general fiber is isomorphic to Ei and it is an elliptic fibration if and only if n1 + n2 = 0. The
fiber FR of E4 over R ∈ S/αS is of dimension 1 if and only if R is a smooth point, and is
singular if and only if R is in the branch locus of q : S → S/αS . In particular:

• If q−1(R) consists of two points, the fiber FR is of type I∗0 ;
• If q−1(R) consists of one point and R ∈ S/αS is smooth, the fiber FR is of type III∗;
• If R is a singular point of S/αS , the fiber FR consists of 2 rational curves meeting in

a point and two disjoint divisors which are P1-bundles over P1, and which intersect
both the same rational curve in one point (see Figure 2).

The Mordell–Weil group of this fibration is generically equal to Z/2Z.

PROOF. With the same notation as in the previous section, we denote by E ′ : X′ → S/α2
S

the map induced on X′ by (S × Ei)/(α
2
S × α2

E) → S/α2
S and by F ′R the fiber of E ′ over

R ∈ S/α2
S . Moreover we denote by q ′ : S → S/α2

S the quotient map.
Let R ∈ S/αS be such that q−1(R) = {R1, R2} ⊂ S. This implies q ′(Ri) = Ri , i = 1, 2
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FIGURE 2. The fiber over a singular point of S/αS .

and so the fibers F ′Ri
are of type I∗0 , by Proposition 4.4. The automorphism induced by αS on

S/α2
S switches R1 and R2. So α′ switches FR1 and FR2 and thus FR is a fiber of type I∗0 .
Let R ∈ S/αS be a smooth point such that q−1(R) = R1 ∈ S. This implies that there

exists a curve K ⊂ S such that R1 ∈ K and K ⊂ FixαS (S). The fiber F ′R of E ′ is of type I∗0
(by Proposition 4.4). Two of the components with multiplicity one (those which are fibers of
the P1-bundles introduced by β1 over K ×Q1 and K ×Q2 respectively) are switched by α′.
The automorphism α′ acts as an involution on the other 2 components of multiplicity 1 and
fixes two points on each of them. So the fiber FR of E4 is a fiber of type III∗ and 7 of its 8
components are fibers of the seven P1-bundles over K introduced by the blow ups β1 and β2.
The other component is the image of the strict transform of Ei .

Let R ∈ S/αS be a singular point. Then q−1(R) = R1, R1 is an isolated fixed point for
αS and it lies on a curve B fixed by α2

S . The fiber F ′R of E ′ is of type I∗0 (by Proposition 4.4).
Two of the components of multiplicity 1 of I∗0 are switched by α′ (the ones which are fibers
of the P1-bundles introduced by β1 over B×Q1 and B×Q2 respectively). The other two are
fibers of the P1-bundles introduced by β1 over B × P1 and B × P2. These curves are fixed
by α′ and so β2 is a blow up of each of these curves. Hence the fiber FR consists of a rational
curve which is the image of the strict transform of Ei , of a rational curve which is the image
of the two rational curves switched by α′ and of 2 divisors, which are exceptional divisors of
β2 and are P1-bundles over P1. In particular it contains 2 curves and 2 divisors (see Figure 2).

The (rational) sections are the images of S × P1 and S × P2 under the rational map
π2 ◦ β−1

2 ◦ π1 ◦ β−1
1 . One of them can be chosen as zero section. The other is a section of

order 2, indeed if P1 is the zero of the elliptic curve Ei , then P2 has order 2 on Ei . �

REMARK 6.9. The automorphism αX defined in Definition 3.5 is induced by the com-
plex multiplication of order 4 on each smooth fiber of the fibration.

We now give the Weierstrass equations of E4 in case the base S/αS is smooth. This is
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equivalent to require that αS has no isolated fixed points, i.e. n1 + n2 = 0. We observe that in
this case E4 is an elliptic fibration, by Proposition 6.8.

By [AS2, Proposition 1], n1+n2 = 0 implies h = −2 where h =∑
C∈FixαS

(S)(1−g(C))

(h is the same as α in [AS2]). We already noticed that if D is of the second type h = k, i.e. h

is the number of curves fixed by αS . Since k ≥ 0, if n1+n2 = 0, then D is of first type. In this
case −2 = h = k + 1− g(D), which implies g(D) ≥ 3. By [AS2, Theorem 4.1], g(D) ≤ 3.
So n1 + n2 = 0 implies that D is of the first type and g(D) = 3. There exist exactly two
families of K3 surfaces admitting a non-symplectic automorphism of order 4 fixing a curve
of genus 3, and the difference among these cases is that in one case D is hyperelliptic while
in the other it is not. These families are respectively 5 and 6 dimensional. We now consider
both these situations.

6.2.1. Weierstrass equation of E4 if S/αS � P2. If D is not a hyperelliptic curve,
the K3 surface is a 4 : 1 cover of P2 branched along a smooth quartic. Let us denote by
Q the smooth quartic in P2, which is the zero locus of f4(x1 : x2 : x3). The equation of
S is t4 = f4(x1 : x2 : x3). The automorphism αS : S → S is the cover automorphism
(t : x1 : x2 : x3) 	→ (it : x1 : x2 : x3).

The variables Y := vt9, X := ut6, defined on S × Ei , are invariant for αS × α3
E and

satisfy

(6.3) Y 2 = X3 +Xf 3
4 (x1 : x2 : x3) .

Moreover, the map ((v, u), (t, x0 : x1 : x2))→ ((X, Y ), (x1 : x2 : x3)) is 4 : 1 on S×Ei

and thus (6.3) is the Weierstrass equation of the elliptic fibration E4 : X → S/αS described
in Proposition 6.8. Since the discriminant locus has equation 
 = f 9

4 (x1 : x2 : x3) all the
singular fibers are of type III∗. This in fact agrees with Proposition 6.8.

6.2.2. Weierstrass equation of E4 if S/αS � F4. We now assume that αS fixes a hy-
perelliptic curve of genus 3 on S. We first briefly recall the construction of S as 4 : 1 cover
of F4 given in [A, Section 2]. Then we deduce an equation for the elliptic fibration E4 in this
case.

Let C be a hyperelliptic curve of genus 3. Then C is defined by an equation of the form
y2 = f8(s : t) with f8 ∈ H 0(P1,OP1(8)) in the line bundle OP1(4), where (s : t) are
coordinates on P1 while y is a coordinate on the fiber. We embed OP1(4) in P5 as the cone on
the rational normal curve in P4 = {x5 = 0} with vertex (0 : 0 : 0 : 0 : 0 : 1). Blowing up this
cone in the singular point gives us the Hirzebruch surface F4. The toric resolution of OP1(4)

(with coordinates (s : t : y)) is F4 with coordinates (s : t : y : z) as in Section 2.3. With this
coordinates, an equation for C is

C : y2 = f8(s : t)z2 .

Let F̃4 be the double cover of F4 branched along C, and S the double cover of F̃4 branched
along the strict transforms of C and Dz. Then S is a K3 surface, which is a 4 : 1 covering
of F4. Moreover the covering automorphism fixes the strict transform of C and swithces the
strict transforms of Dz.
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Introducing a new coordinate η, an equation for F̃4 is η2 = y2 − f8(s : t)z2 and so an
equation for S is {

ξ2 = ηz

η2 = y2 − f8(s : t)z2 .

The covering automorphism is (η, ξ, (s : t : y : z)) 	−→ (−η, iξ, (s : t : y : z)).
The surface S admits a model S′ in OF4(2Dt + Dz), with equation w4 = (y2 − f8(s :

t)z2)z2, and the birational morphism

S → S′
(η, ξ, (s : t : y : z)) 	−→ (w, (s : t : y : z)) = (ξ, (s : t : y : z))

is compatible with αS and the covering transformation αS ′ : (w, (s : t : y : z)) 	−→ (iw, (s :
t : y : z)).

On the product S′ × E the functions Y := vw9

z3 and X := uw6

z2 are invariant under the
action of the morphism α. Moreover they satisfy the relation

Y 2 = X3 + (y2 − f8(s : t)z2)3z2X ,

which is an equation for the Weierstrass model of E4 : X → S/αS in P(OF4(−2KF4) ⊕
OF4(−3KF4)⊕OF4).

7. Quotient of order 6. Let us consider the elliptic curve Eζ3 introduced in Sec-
tion 2.1. We already observed that its Weierstrass equation is v2w = u3 + w3 and that it has
an automorphism γE : (u : v : w)→ (ζ 2

3 u : −v : w), whose square is γ 2
E = αE .

We consider a K3 surface S which admits a purely non-symplectic automorphism γS of
order 6. As shown in Proposition 3.2 there exists a desingularization of (S ×Eζ3)/(γS × γ 5

E)

which is a Calabi–Yau. Observe that, since S admits both a non-symplectic automorphism
of order 3 (γ 2

S ) and one of order 2 (γ 3
S ), one can construct from S special members of the

families of Calabi–Yau 3-folds of type X2 and of type X3 described in Sections 4.1 and 5.1
respectively. In [R3], the author analyzes the consequence of this fact on Calabi–Yau 3-folds
constructed from some special K3 surfaces S.

First we recall some properties of the loci with non-trivial stabilizer for γE and γS . The
automorphism γE fixes only the point 0E . The automorphism γ 3

E fixes four points 0E , P1, P2

and P3 and the points Pi , i = 1, 2, 3 form an orbit for the action of γE . The automorphism
γ 2
E fixes 3 points: 0E , Q1 and Q2 and γE(Q1) = Q2.

7.1. Preliminaries on purely non-symplectic automorphisms of order 6 on a K3
surface. The purely non-symplectic automorphism of order 6 are not completely classified.
Some results on the fixed locus of a non-symplectic automorphism of order 6 are given in
[D1]. Here we need to give a more precise description not only of the fixed locus of the
purely non-symplectic automorphism, but also of the loci with non-trivial stabilizer for the
action of the automorphism.

Let γS ∈ Aut(S) be a purely non-symplectic automorphism of order 6 on S. Following
[D1], we observe that the fixed locus of γS consists of disjoint curves and of isolated fixed
points. We will say that an isolated fixed point for γS is of type (r, s) if the action of γS
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near the point linearizes to diag(ζ r
6 , ζ s

6 ). Up to the power of γS and the choice of the local
coordinates for the linearization, there are only two different types of isolated fixed point for
γS : the type (2, 5) and the type (3, 4). There is at most a curve with positive genus in the fixed
locus of γS and we denote the curve with highest genus by D.

The loci with non-trivial stabilizer for γS can be described in the following way. We call:

(1) curves of first type: the curves which are fixed by γS (and thus of course also by γ 2
S

and by γ 3
S ); we denote by Li these curves and by l their number;

(2) curves of second type: the curves which are fixed by γ 3
S and are invariant for γS ; we

denote by Ui these curves and by u their number. The automorphism γS could have
some isolated fixed points on these curves and this point could be both of type (2, 5)

and of type (3, 4);
(3) curves of third type: the curves fixed by γ 3

S and sent to another curve by γS ; we
denote by (A′i , A′′i , A′′′i ) the triples of these curves, assuming that γS(A′i ) = A′′i and
γS(A′′i ) = A′′′i , and we denote by a the number of these triples;

(4) curves of the fourth type: the curves fixed by γ 2
S and invariant for γS ; we denote

by Wi these curves and by w their number. The automorphism γS could have some
isolated fixed points on these curves and all of them are of type (3, 4);

(5) curves of fifth type: the curves fixed by γ 2
S and sent to another curve by γS ; we denote

by (B ′i , B ′′i ) the pairs of these curves, assuming that γS(B ′i ) = B ′′i , and we denote by
b the numbers of these pairs;

(6) points of fifth type: the isolated points fixed by γ 2
S and switched by γS . We denote by

2n′ their number.

The properties of the locus with non-trivial stabilizer for the action of γS on S are de-
scribed by the numbers (N, g(F1), g(F2), k, n, g(G), l, p2,5, p3,4, g(D), u,w) defined here:

DEFINITION 7.1. The automorphism γ 3
S fixes N curves. We denote by F1 and F2 the

curves with highest genus fixed by γ 3
S .

The automorphism γ 2
S fixes k curves and n isolated points. We denote by G the curve

with highest genus fixed by γ 2
S .

The automorphism γS fixes l curves, p2,5 points of type (2, 5) and p3,4 points of type
(3, 4). We denote by D the curve of highest genus fixed by γS .

The isolated fixed points of γS lie on the u curves (of second type) which are fixed by γ 3
S

and are invariant for γS .
The isolated fixed points of γS of type (3, 4) lie also on the w curves (of fourth type)

which are fixed by γ 2
S and are invariant for γS .

The isolated fixed points of γS of type (2, 5) are isolated fixed points also for γ 2
S .

REMARK 7.2. The isolated fixed points of type (3, 4) lie on the intersection among
curves of the second type and curves of the fourth type.

We have N = l + u+ 3a and k = l + 2b +w, n = p2,5 + 2n′.
By [D1, Theorem 4.1], 2p2,5 + p3,4 − 6l = 6.
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Since γ 3
S is an involution, if g(F1) �= 0 and g(F2) �= 0, then g(F1) = g(F2) = 1.

Moreover if g(D) �= 0, then D ≡ G ≡ F1.

7.2. The construction of Calabi–Yau 3-folds of type X6. We now construct an ex-
plicit crepant resolution of (S × Eζ3)/(γS × γ 5

E) considering two following quotients, us-
ing a procedure similar to the one of Section 6.1. Let us denote by γ := γS × γ 5

E and by

b1 : ˜S × Eζ3 → S × Eζ3 the blow up of S × Eζ3 in the fixed locus of γ 3, which consists

of disjoint rational curves. We claim that γ induces an automorphism γ̃ on ˜S ×Eζ3 . As in
Section 6.1, it suffices to consider the definition of γ̃ locally near the locus blown up by b1.

Since the local action of γ 3 near the fixed locus is represented by the diagonal matrix
diag(−1, 1,−1), locally we are blowing up C3

(x,y,z) in x = z = 0. Hence, locally the blow

up is identified with C̃3
(x,y,z) := V (bx = az) ⊂ C3

(x,y,z) × P1
(a:b). If a curve C is fixed by

γ , then b1 introduces an exceptional divisor on it and since γ respects the tangent directions
it extends to an automorphism γ̃ on the exceptional divisor. Equivalently, one can observe
that the local action of γ is (x, y, z) 	→ (ζ6x, y, ζ 5

6 z) which induces the map ((x, y, z); (a :
b)) 	→ ((ζ6x, y, ζ 5

6 z); (a : ζ 4
6 b)) on C̃3

(x,y,z). If C is a curve fixed by γ 3 and leaved invariant
by γ , then either γ has no fixed points on C or it has some fixed points. In the first case since
γ respects the tangent directions and move all the points of C, it lifts to an automorphism
γ̃ of the exceptional divisor over C. In the latter case, the local action of γ near the fixed
points is diagonalized either by diag(ζ 5

6 , ζ 2
6 , ζ 5

6 ) or by diag(ζ 3
6 , ζ 4

6 , ζ 5
6 ). In both the cases one

observes that γ induces an automorphism γ̃ on the exceptional divisors lifting the action of γ

respectively to ((x, y, z); (a : b)) 	→ ((ζ 5
6 x, ζ 2

6 y, ζ 5
6 z); (a : b)) or to ((x, y, z); (a : b)) 	→

((ζ 3
6 x, ζ 4

6 y, ζ 5
6 z); (a : ζ 2

6 b)) on C̃3
(x,y,z)

. If C is a curve fixed by γ 3 and γ (C) = C′ �= C,

then C′ is a curve fixed by γ 3. So b1 introduces an exceptional divisor both on C and C′ and
γ̃ is well defined, since it send the exceptional divisor over C to the one over C′, respecting

the tangent directions. So γ defines an automorphism γ̃ on ˜S ×Eζ3 . Let us now denote by

X′ the quotient ˜S ×Eζ3/γ̃
3. Thus, X′ is a crepant resolution of (S × Eζ3)/γ

3 and it carries
an automorphism of order 3 induced by γ̃ and denoted by γ ′. The automorphism γ ′ is an
order 3 automorphism of X′ which preserves the period of X′, which is 3-fold with trivial
canonical bundle. In Section 5.1 we already constructed a crepant resolution of the quotient
of smooth threefold with trivial canonical bundle by automorphism of order 3 which preserves
the period. Applying this construction to (X′, γ ′), we obtain a crepant resolution of X′/γ ′,
which will be denoted by X and will be called a 3-fold of type X6. By construction this
is a crepant resolution also of the singular 3-fold (S × Eζ3)/γ . The construction of X is
summarized by the following diagram:
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S ×Eζ3

��

˜S × Eζ3

b1��

π1
��

S × Eζ3/γ
3

��

˜S × Eζ3/γ̃
3 = X′��

��

X̃′b2��

π2

��
S ×Eζ3/γ X′/γ ′a1�� X̃′/γ̃ ′a2�� φ �� X

where b1 is the blow up of S × Eζ3 in Fixγ 3(S × Eζ3), b2 is the blow up of X′ in Fixγ ′(X′),
the maps π1 and π2 are 2 : 1 and 3 : 1 respectively and φ is a contraction. Indeed, in order to
construct a crepant resolution of the singularities of type A2, we introduce three exceptional
divisors, we make the quotient and then we contract the image of one of these divisors (cf.
Section 5.1). The maps a1 and a2 are defined by the commutativity of the diagram. The map
φ ◦ a−1

2 ◦ a−1
1 : (S × Eζ3)/γ → X is the crepant resolution of the quotient (S ×Eζ3)/γ .

PROPOSITION 7.3. Let us denote by m := dim(H 2(S,Z)−ζ3) = dim(H 2(S,Z)−ζ 2
3
)

and r := dim(H 2(S,Z)γS ). With the notation above, the Hodge numbers of X are the follow-
ing:

hj,0 = 1 if j = 0, 3, hj,0 = 0 if j = 1, 2 ,

h1,1 = r + 1+ 2l + 2N − 2a + 4k − 2b + 3n′ + 3p2,5 + p3,4

h2,1 =
⎧⎨
⎩

m− 1+ 8g(D)+ g(F2/γS)+ g(F2), if g(D) ≥ 1
m− 1+ 2g(G/γS)+ 2g(G)+ g(F1/γS)

+g(F1)+ g(F2/γS)+ g(F2), if g(D) = 0 .

PROOF. The proof is similar to the one of Proposition 6.3: we denote by Dtot the divisor
which is the sum of all the exceptional divisors of the crepant resolution X of (S×Eζ3)/γ . By
(6.2) and (3.1), we have h1,1(X) = r + 1+ h0,0(Dtot ) and h2,1(X) = m− 1+ h1,0(Dtot ). In
order to compute hi,j (Dtot ) we describe explicitly the divisors introduced by the resolution.

Step 1: Description of the resolution of the singularities.
Let L be a curve of the first type on S × Eζ3 , i.e. a fixed curve for γ . Then it is a fixed

curve for γ 3 and so it is in the locus blown up by b1. This introduces a divisor D1 on ˜S × Eζ3 ,
which is the projectivization of the normal bundle NL/(S×Ei) and is a P1-bundle over L. Since
locally near L the action of γ is diag(ζ6, 1, ζ 5

6 ), the action restricted to the normal bundle has
two different eigenvalues, ζ6 and ζ 5

6 . This splits the normal bundle in two eigenspaces which
can not be interchanged by γ . Each of these two eigenspaces determines a section of the

exceptional divisor D1, which is a fixed curve for the action of γ̃ on D1 ⊂ ˜S × Eζ3 . The
automorphism γ̃ 3 acts as the identity on D1, so π1 : D1 → π1(D1) is a 1 : 1 map and
π1(D1) is isomorphic to D1. The action of γ ′ on π1(D1) coincides with the action of γ̃ on
D1 and hence γ ′ fixes two curves on π1(D1) which are section of a P1-bundle over L, so
they are two copies of L and we call them L(1) and L(2). These two curves are fixed by γ ′,
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which is an automorphism of order 3. Hence b2 introduces 3 exceptional divisors on L(i),
i = 1, 2 , denoted by D

′(i)
1 , D

′′(i)
1 , D

′′′(i)
1 which are P1-bundles over L(i) � L. The action

of γ̃ ′ on D
′(i)
1 , D

′′(i)
1 and D

′′′(i)
1 is the identity, so π2(D

′(i)
1 ) � D

′(i)
1 , π2(D

′′(i)
1 ) � D

′′(i)
1 and

π2(D
′′′(i)
1 ) � D

′′′(i)
1 . As we discussed in Section 5.1, one of the three divisors D

′(i)
1 D

′′(i)
1 ,

D
′′′(i)
1 is contracted by φ (in fact the divisors which has non-trivial intersection with both

the others, say D
′′′(i)
1 ). Hence for each curve L of the first type on S × Eζ3 we have the

following 5 divisors on X, φ(π2((b
−1
2 (π1(D1)))), φ(π2(D

′(1)
1 )), φ(π2(D

′′(1)
1 )), φ(π2(D

′(2)
1 )),

φ(π2(D
′′(2)
1 )) which are P1-bundles over a curve isomorphic to L and are mapped by b1 ◦

π−1
1 ◦ b2 ◦ π−1

2 ◦ φ−1 to the curve L.
Let U be a curve of the second type on S × Eζ3 , i.e., it is fixed by γ 3 and γ restricts

to an order 3 automorphism on U . We say that an isolated fixed point for γ on S × Eζ3 is
of type (a, b) if the local action of γ near the point is diag(ζ a

6 , ζ b
6 , ζ 5

6 ). The automorphism
γ restricted to U has (p2,5)U fixed points which are of type (2, 5) for γ and (p3,4)U fixed
points which are of type (3, 4) for γ . The blow up b1 introduces a divisor D2 over U which
is a P1-bundle over U . The local action of γ̃ on D2 was computed before: γ̃ acts on the
basis of the P1-bundle D2 as γ acts on U . Let V ⊂ U be an isolated fixed point for γ . If
V is of type (2, 5), then it is an isolated fixed point for γ and γ̃ fixes all the fiber over V .
Hence γ̃ fixes (p2,5)U fibers of D2. Since γ̃ 3 is the identity on D2, D2 � π1(D2) and γ ′
fixes (p2,5)U rational curves on π1(D2). For each of these curves b2 introduces 3 exceptional
divisors which are preserved by π2 and φ contracts one of them, so φ ◦ π2 ◦ b−1

2 introduces
2 divisors for each fibers of D2 fixed by γ ′. If V is of type (3, 4), then V lies on a curve
of fourth type. One can explicitly consider the local action of γ̃ on D2 and near the fiber
over V : we already observed that it is ((x, y, z); (a : b)) 	→ ((ζ 3

6 x, ζ 4
6 y, ζ 5

6 z); (a : ζ 2
6 b)) on

C̃3
(x,y,z) := V (bx = az) ⊂ C3

(x,y,z) × P1
(a:b). So γ̃ has exactly two fixed points (i.e. (0 : 1),

(1 : 0) ⊂ P1
(a:b)) on the fiber of D2 over V ∈ U . One of this point, (1 : 0), lies on a curve

in ˜S × Eζ3 which is the strict transform of a curve of fourth type on S × Eζ3 , locally given
by y = z = 0. Since we will blow up this curve, we do not have to blow up (1 : 0). The
point (0 : 1) is an isolated fixed point for γ̃ 2 and so it will be an isolated fixed point for γ ′ on
X′. Hence, this is an isolated fixed point for an automorphism of order 3 on X′. We already
observed in Section 5.1 that it suffices to blow up once this type of points in order to have a
smooth quotient. So b2 introduces an exceptional divisor for every point of type (3, 4) on U

and this divisor is isomorphic to P2.
To recap, for every curve U of the second type, we introduced the following divisors

in order to resolve the singularities of (S × Eζ3)/γ : π2(β
−1
2 (π1(D2))) which is a P1-bundle

over U/γ , 2(p2,5)U divisors which are P1-bundles over P1 and (p3,4)U divisors which are
isomorphic to P2.

Let (A′, A′′, A′′′) be a triple of curves of the third type on S × Eζ3 , i.e. A′, A′′ and
A′′′ are fixed by γ 3 and {A′, A′′, A′′′} is an orbit for γ . The blow up b1 introduces three
divisors D′3, D′′3 and D′′′3 over A′, A′′ and A′′′ respectively and all of them are P1-bundles
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over A′ � A′′ � A′′′. These divisors are interchanged by γ̃ and fixed by γ̃ 3. So the divisors
b−1

2 (π1(D
′
3)) ⊂ X′, b−1

2 (π1(D
′′
3 )) ⊂ X′ and b−1

2 (π1(D
′′′
3 )) ⊂ X′ are isomorphic to D′3, D′′3 ,

D′′′3 and they are permuted by γ ′. Hence φ(π2(b
−1
2 (π1(D

′
3)))) = φ(π2(b

−1
2 (π1(D

′′
3 )))) =

φ(π2(b
−1
2 (π1(D

′′′
3 )))) is a divisor on X, isomorphic to D′3 and so it is P1-bundle over A′ �

A′′ � A′′′. Thus in order to resolve the singularities of (S×Eζ3)/γ over the image of the triple
(A′, A′′, A′′′) we introduced one divisor φ(π2(b

−1
2 (π1(D

′
3)))), which is a P1-bundle over A′.

Let W be a curve of the fourth type on S × Eζ3 , i.e. a curve fixed by γ 2 and invariant

for the action of γ . Let W̃ be the strict transform of W in ˜S × Eζ3 . The automorphism

γ̃ ⊂ Aut( ˜S ×Eζ3) restricts to an involution of W̃ . Let W ′ ⊂ X′ be the image of W̃ under π1.
It is a curve isomorphic to W/γ . The curve W ′ is a fixed curve for γ ′ (which is an order 3
automorphism on X′), so b2 introduces three divisors on it, D′4, D′′4 and D′′′4 . Each of them is
a P1-bundle over W/γ � W ′ and γ ′ acts as the identity on each of them. So π2(D

′
4) � D′4,

π2(D
′′
4 ) � D′′4 and π2(D

′′′
4 ) � D′′′4 , and φ is the contraction of one of these divisors (say D′′′4 ).

Thus, there are the two divisors φ(π2(D
′
4)) � D′4 and φ(π2(D

′′
4 )) � D′′4 which arise from the

desingularization of the image of W in (S ×Eζ3)/γ . Both these divisors are P1-bundles over
W/γ .

Let (B ′, B ′′) be a pair of curves of the fifth type on S × Eζ3 , i.e. both B ′ and B ′′ are
fixed by γ 2 and γ (B ′) = B ′′. Let us denote by B̃ ′ and B̃ ′′ the strict transform of B ′ and B ′′

on ˜S × Eζ3 . Since γ (and γ 3) interchanges B ′ and B ′′, B̃ ′ � B̃ ′′ and π1(B̃ ′) = π1(B̃ ′′) is a
curve in X′, denoted by B ′. We observe that B ′ � B ′′. Now the automorphism γ ′ is an order
3 automorphism on X′ which fixes the curve B ′. So b2 introduces three divisors D′5, D′′5 and
D′′′5 on B ′ and then φ ◦ π2 contracts one divisors among π2(D

′
5), π2(D

′′
5 ) and π2(D

′′′
5 ) (say

π2(D
′′′
5 )). Hence in order to resolve the singularities of (S × Eζ3)/γ which are image of B ′,

we introduced two divisors φ(π2(D
′
5)) and φ(π2(D

′′
5 )). Both of them are P1-bundles over a

curve isomorphic to B ′.
Let (V ′, V ′′) be a pair of points of fifth type on S×Eζ3 , i.e. both V ′ and V ′′ are isolated

fixed points for γ 2 and γ (V ′) = V ′′. The point π1(b
−1
1 (V ′))(= π1(b

−1
1 (V ′′))) ∈ X′ is an

isolated fixed points for γ ′. So b2 introduces a divisor, isomorphic to P2 on π1(b
−1
1 (V ′)). The

automorphism γ ′ is the identity on this divisor, so it is preserved by φ ◦ π2. Hence, for each
pair of points of the fifth type we introduced a divisor isomorphic to P2 in order to resolve the
singularities of (S ×Eζ3)/γ .

Step 2: Computation of the exceptional divisors and the Hodge numbers of X.
In order to compute the Hodge numbers of X, we need to count the number of curves

and points of each type that appear on S × Ei :

(1) for each curve L ⊂ S which is of the first type for γS , the curve L× 0E ⊂ (S ×Eζ3)

is of the first type for γ , the triple (L×P1, L×P2, L×P3) ⊂ (S×Eζ3) is a triple of
curves of third type for γ , the pair (L×Q1, L×Q2) ⊂ (S ×Eζ3) is a pair of curves
of fifth type for γ ;

(2) for each curve U ⊂ S which is of the second type for γS , the curve U × 0E is of the
second type for γ , the triple (U × P1, U × P2, U × P3) ⊂ (S × Eζ3) is a triple of
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curves of the third type for γ , there is no power γ j of γ such that the curves U ×Q1

and U ×Q2 are fixed by γ j ;
(3) for each triple (A′, A′′, A′′′) ⊂ S of curves of the third type for γS , the 4 triples (A′ ×

0E,A′′ ×0E,A′′′ ×0E), (A′ ×P1, A
′′ ×P2, A

′′′ ×P3), (A′ ×P2, A
′′ ×P3, A

′′′ ×P1),
(A′ × P3, A

′′ × P1, A
′′′ × P2) are triples of curves of the third type for γ ;

(4) for each curve W ⊂ S of the fourth type for γS , the curve W × 0E is of the fourth
type for γ , and the pair (W ×Q1,W ×Q2) is a pair of curves of the fifth type for γ ;

(5) for each pair (B ′, B ′′) ⊂ S of curves of fifth type for γS , the 3 pairs (B ′ × 0E,B ′′ ×
0E), (B ′ × Q1, B

′′ × Q2) and (B ′ × Q2, B
′′ × Q1) are pairs of curves of the fifth

type for γ ;
(6) for each point V ∈ S which is an isolated fixed point for γS , the point V × 0E is an

isolated fixed points for γ , {V ×P1, V ×P2, V ×P3} is an orbit for γ , and if V is of
type (2, 5) then the pair (V ×Q1, V ×Q2) is a pair of points of the fifth type for γ ;

(7) for each pair of points (Z′, Z′′) ⊂ S of fifth type, i.e., switched by γS and which are
isolated fixed points for γ 2

S , the pair of points (Z′×0E,Z′′×0E), (Z′×Q1, Z
′′×Q2)

and (Z′ ×Q2, Z
′′ ×Q1) are pairs of points of fifth type.

So the locus with non-trivial stabilizer for the action of γ on S × Eζ3 is the following:
there are l curves of the first type; u curves of the second type, l + u+ 4a triples of curves of
the third type; w curves of the fourth type; l +w + 3b pairs of curves of the fifth type.

Moreover there are p2,5 + p3,4 isolated fixed points for γ and p2,5 + 3n′ pairs of points
of the fifth type.

So the number of divisors of X which arise by the desingularization of (S × Ei)/α is
(5l)+(u+2p2,5+p3,4)+(l+u+4a)+(2w)+2(l+w+3b)+p2,5+3n′ = 8l+2u+3p2,5+
p3,4+4a+4w+6b+3n′ = 8l+2(N−l−3a)+3p2,5+p3,4+4a+4(k−l−2b)+6b+3n′ =
2l + 2N − 2a + 4k − 2b + 3p2,5 + p3,4 + 3n′. So,

h1,1(X) = r + 1+ 2l + 2N − 2a + 4k − 2b + 3p2,5 + p3,4 + 3n′ .

In order to compute h2,1(X), we recall that it is the sum of the dimension of the invariant
part of H 2,1(S × Eζ3) for γ and the dimension of H 1,0(Dtot ). Since the divisors which are
P1-bundles over P1 and which are P2 have a trivial h1,0, it suffices to identify the divisors in
Dtot which are P1-bundles over curves of positive genus (and in this case, h1,0 of a P1-bundle
is the genus of its basis). They arise form the resolution of singularities caused by curves in S

which have a non-trivial stabilizer for γS and have a positive genus.
Let us assume that γS fixes one curve of positive genus, denoted by D. If g(D) ≥ 2, then

γ is the unique curve of positive genus with a non-trivial stabilizer for γS and D/γS � D.
If g(D) = 1, then γ 3

S fixes either D as unique curve of positive genus, or D and F2, both of
genus 1. The curve D × 0E ⊂ S × Eζ3 is a curve of the first type and in order to resolve the
singularity of (S × Eζ3)/γ image of D × 0E we introduce 5 divisors which are P1-bundles
over D. The triple of curves (D × P1,D × P2,D × P3) is of the third type, and in order to
resolve the singularity of (S ×Eζ3)/γ which is the common image of D × Pi , i = 1, 2, 3 we
introduce 1 divisor which is a P1-bundle over D. The pair of curves (D × Q1,D × Q2) is
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of the fifth type, and in order to resolve the singularity of (S × Eζ3)/γ which is the common
image of D ×Qj , j = 1, 2 we introduce 2 divisors which are P1-bundles over D. Moreover,
F2 × 0E is a curve of second type for γ and thus the resolution introduces one divisor which
is a P1-bundle over F2/γS (and could introduce other divisors which have for sure h1,0 = 0);
the triple (F2 × P1, F2 × P2, F2 × P3) ⊂ (S × Eζ3) is a triple of curves of the third type for
γ and thus the resolution introduces 1 divisor which is a P1-bundle over F2. So if γS fixes a
curve D of positive genus (and possibly γ 3

S fixes F2 of genus either 1 or 0) then

h2,1(X) = m− 1+ 8g(D)+ g(F2/γS)+ g(F2) .

If γS does not fix curves of positive genus, then we denote by G the curve with highest
genus fixed by γ 2

S and by F1 and F2 the two curves with highest genus fixed by γ 3
S . The curve

G is a curve of the fourth type on S, so: G × 0E is of fourth type and thus the resolution of
(S ×Eζ3)/γ introduces 2 P1-bundles over G/γ to resolve the singularity which is the image
of G × 0E; the pair (G × Q1,G × Q2) is a pair of curves of fifth type for γ and thus the
resolution of (S × Eζ3)/γ introduces 2 P1-bundles over G to resolve the singularity which
is the image of G × Q1. The curves Fi , i = 1, 2 are of second type for γS , so Fi × 0E

are of second type and thus the resolution of (S × Eζ3)/γ introduces 1 P1-bundle over Fi/γ

(and possibly other divisors with trivial h1,0) to resolve the singularity which is the image of
Fi × 0E; the triple (Fi × P1, Fi × P2, Fi × P3) is a triple of curves of third type for γ and
thus the resolution of (S × Eζ3)/γ introduces 1 P1-bundle over Fi to resolve the singularity
which is the image of Fi × P1. So, in this case

h2,1(X) = m− 1+ 2g(G/γS)+ 2g(G)+ g(F1/γS)+ g(F1)+ g(F2/γS)+ g(F2) .

�

REMARK 7.4. We observe that h2,1(X) = m − 1 if and only if both γ 2
S and γ 3

S do
not fix curves of positive genus. This happens for at least one family of K3 surfaces, the one
constructed in Example 7.9. If h2,1(X) = m − 1, then the family of X is Borcea–Voisin
maximal and does not admit maximal unipotent monodromy (cf. Proposition 3.7).

7.3. (Almost) elliptic fibrations. We consider the map E6 : X → S/γS and we
denote by FZ the fiber of such a fibration over a point Z ∈ S/γS . We consider the map
E ′ : X′ → S/γ 3

S and we denote by F ′Z the fiber of such a fibration over a point Z ∈ S/γ 3
S .

Moreover we consider the quotient maps qS : S → S/γS and q ′ : S → S/γ 3
S . We observe

that S/γS has p2,5 + n′ singularities of type A2.
We will assume (S, γS) to be generic in the family of K3 surfaces S with the non-

symplectic automorphism of order 6 γS (i.e. ρ(S) = 22− 2m).

PROPOSITION 7.5. The map E6 : X → S/γS is an almost elliptic fibration whose
general fiber is isomorphic to Eζ3 . The fiber FZ of E6 over Z ∈ S/γS has dimension 1 if and
only if Z is a smooth point which is not the image of a point of type (3, 4) and is singular if
and only if Z is in the branch locus of q : S → S/γS . In particular:

• If q−1(Z) consists of 3 points, FZ is of type I∗0 ;
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FIGURE 3. Non-Kodaira fibers of E6 over the image of a point of type (3, 4) and (2, 5) respectively.

• If q−1(Z) consists of 2 points and Z ∈ S/γS is smooth, FZ is of type IV ∗;
• If q−1(Z) consists of 2 points and Z ∈ S/γS is singular, FZ contains three disjoint

copies of P2 and a rational curve meeting each P2 in a point (see Figure 1);
• If q−1(Z) consists of 1 point and Z ∈ S/γS is a smooth point which is not the image

of a point of type (3, 4), FZ is of type II∗;
• If q−1(Z) consists of 1 point and Z ∈ S/γS is the image of a point of type (3, 4), FZ

contains seven rationals curves and a divisor D � P2 (see Figure 3(a));
• If q−1(Z) consists of 1 point and Z ∈ S/γS is singular, FZ contains two rational

curves and three divisors, one of them is isomorphic to P2, the other are P1-bundles
over P1 (see Figure 3(b)).

The Mordell–Weil group of this fibration is generically trivial.

PROOF. If q−1(Z) = {Z1, Z2, Z3}, then the stabilizer of Zi ∈ S is the involution γ 3
S .

So the fibers of E ′ : X′ → S/γ 3 over q ′(Zi), i = 1, 2, 3, are 3 fibers of type I∗0 constructed
as in Proposition 4.4. They are identified in the quotient by γ ′.

If q−1(Z) = {Z1, Z2}, then γ 3
S (Z1) = Z2 and q ′(Z1) = q ′(Z2). So the fiber F ′

q ′(Z1)
co-

incides with the fiber F ′
q ′(Z2)

and they are isomorphic to Eζ3 . Now the order 3 automorphism
γ ′ fixes the point q ′(Z1) = Z and the fiber over this point can be constructed as in Proposi-
tion 5.5. In particular, if Z ∈ S/γS is smooth, FZ is a fiber of type IV ∗, while if Z ∈ S/γS is
singular, it contains three copies of P2.

If q−1(Z) = {Z1}, then γ 3
S (Z1) = Z1. So the fiber F ′

q ′(Z1)
is a fiber of type I∗0 . Let us

denote by E the component of multiplicity 2 of this fiber (it is the quotient by γ 3 of the strict



550 A. CATTANEO AND A. GARBAGNATI

transform by b1 of Z1 × Eζ3 ⊆ S × Eζ3 ). Three of the four components with multiplicity 1
are permuted by γ ′ (the ones corresponding to the points Z1 × Pi ∈ Z1 × Eζ3 , i = 1, 2, 3),
the other is invariant (it is the one corresponding to the point Z1×O ∈ Z1×Eζ3 ). We denote
by C1, C2, C3 and C4 the four simple components of the fiber of type I∗0 and we assume
that γ ′(C1) = C1. We now describe FZ according with the following three possibilities: i)

Z ∈ S/γS is smooth and not the image of a point of type (3, 4); ii) Z ∈ S/γS is the image of
a point o type (3, 4); iii) Z ∈ S/γS is singular.

Let us now assume that Z ∈ S/γS is smooth and that it is not the image of a point of type
(3, 4). On the invariant component γ ′ acts as an automorphism of order 3 with 2 fixed points,
one of them is the intersection point with the component of multiplicity 2. So b2 blows up
these two points. Since Z is smooth, these points lie on curves fixed by γ ′, so we introduce
2 rational curves on each point. Moreover there is a point of E which is fixed by γ ′ (it is the
image of the point Z1×R1 ∈ Z1×Eζ3 ) and again it lies on a curve fixed in X′. So, in order to
resolve it, we introduce two other rational curves in this fiber. To recap, the fiber FZ contains
the image of the strict transform of E. It intersects: a rational curve which is the image of C2

(and of C3 and C4); a tree of 5 rational curves which corresponds to C1; a tree of 2 rational
curves which corresponds to the point Z1×R1 ∈ Z1×Eζ3 . The fiber FZ is then of type II∗.

Let Z ∈ S/γS be the image of a point of type (3, 4). The automorphism γ ′ fixes 2 points
on C1, one of them is the intersection of C1 and E and is an isolated fixed point. The other lies
on a curve of fixed points. Hence b2 introduces a copy of P2 over the isolated fixed point and
a tree of two rational curves (fibers of P1-bundles) over the other fixed point on C1. Moreover,
there is a point of E, which is fixed by γ ′ and which lies on a curve of fixed points intersecting
transversally E. So, b2 introduces a tree of two rational curves (fibers of P1-bundles) on this
point. To recap: the fiber FZ contains the image of the strict transform of E. It intersects one
rational curve, image of C2 (and of C3 and C4); a copy of P2, which intersects also a tree of 3
rational curves and which corresponds to C1; a tree of 2 rational curves which correspond to
the point Z1×R1 ⊂ Z1×Eζ3 . Thus, we get a configuration of curves as shown in Figure 3(a).

Finally, let us now assume that Z ∈ S/γS is singular. The automorphism γ ′ acts as
the identity on C1. So b2 blows up this rational curve introducing divisors which are all
contained in the fiber FZ . In particular, on X we have 2 P1-bundles over P1 meeting along
the base. Moreover there is a point of E, which is fixed by γ ′ (it is the image of the point
Z1 × R1 ∈ Z1 × Eζ3 ) and it is an isolated fixed point for γ ′ on X′. So in order to resolve it
we introduce a copy of P2. To recap, the fiber FZ contains the image of the strict transform of
E, which intersects: one rational curve which is the image of C2 (and of C3 and C4); two P1-
bundles which correspond to C1; one P2 which corresponds to the point Z1×R1 ∈ Z1×Eζ3

(see Figure 3(b)).
The (rational) section is the image of S×O under the rational map φ◦π2◦b−1

2 ◦π1◦b−1
1 .
�

REMARK 7.6. We observe that E6 would be an elliptic fibration if and only if n′ =
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p3,4 = p2,5 = 0, but this never happens. Indeed by [D1, Theorem 4.1], p3,4 = p2,5 = 0
implies 6l = −6, which is absurd.

REMARK 7.7. This is the first case where we get 2-dimensional fibers over smooth
points of the base surface. The reason why this happens is the following: around a point of
type (3, 4), a local equation for the Weierstrass model of the fibration is

y2 = x3 + s3t4 ,

and so the origin is a singular point, which is not of cDV type ([Re, Cor. 2.10]). But then to
resolve it we must introduce divisors in the corresponding fibre.

REMARK 7.8. The automorphism γX induced on X by γS × id (cf. Definition 3.5) is
induced by the complex multiplication of order 6 on each smooth fiber of the fibration.

7.3.1. Weierstrass equation of E6 if S/γS � P2. The almost elliptic fibration E6 has a
smooth base if and only if n = 0 (where n is the number of isolated fixed points of the non-
symplectic automorphism of order 3, i.e. αS = γ 2

S ). Hence we are interested in particular in
this situation. We already observed (Section 5.2.1) that there are two 9-dimensional families
of K3 surfaces admitting a non-symplectic automorphism of order 3 without isolated fixed
points. We now focus our attention on one of these families (the other will be analyzed in the
next section).

Let us assume αS = γ 2
S fixes only 1 curve. Then it has genus 4, and S admits a projective

model as complete intersection of a quadric and a cubic in P4 as in (5.1). Since γ 2
S has no

isolated fixed points, p2,5 = 0 and thus, by [D1, Theorem 4.1], we obtain l = 0, p3,4 = 6. So
γS fixes exactly 6 points. We now apply the Lefschtez fixed points formula in order to compute
the dimension of the family of K3 surfaces admitting a purely non-symplectic automorphism
of order 6 whose square fixes only one curve. We observe that γ ∗S acts on H 2(S,C) and we
denote by m := dim(H 2(S,C))ζ i

6
, i = 1, 5, r := dim(H 2(S,C))1, a := dim(H 2(S,C))

ζ
j
6

,

j = 2, 4, b := dim(H 2(S,C))−1. The Lefschetz fixed points formula states that

(7.1)
4∑

i=0

tr
(
γ ∗S |Hi(S,C)

)
= χ(FixγS (S)) .

We obtain 2 + m − a − b + r = 6. Moreover we apply the same formula to γ 2
S and obtain

2−m− a + b + r = −6. Since dim(H 2(S,C)) = 22, we have also 2m+ 2a + b + r = 22.
We recall that m, a, b, r are non negative integers (they are the dimension of vector spaces),
m ≥ 1 (because H 2,0(S) ⊂ H 2(S,C)ζ6 ) and r ≥ 1 because there exists at least one invariant
class. So the unique possibilities for (m, a, b, r) are (7, 3, 1, 1) and (6, 4, 0, 2). Since the
dimension of the moduli space of the K3 surfaces with the required properties is m − 1, we
proved that it is at most 6 (in particular not all the K3 surfaces admitting a non-symplectic
automorphism αS of order 3 fixing one curve admit a purely non-symplectic automorphism
γS of order 6 such that γ 2

S = αS ).
Here we show that there exists at least a 6-dimensional family of K3 surfaces with a
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purely non-symplectic automorphism of order 6 whose square fixes one curve of genus 4,
specializing the family given in (5.1). Indeed the complete intersections in P4 given by the
system {

f2(x0 : x1 : x2) +x2
3 = 0

f3(x0 : x1 : x2) +x3
4 = 0

(7.2)

are generically smooth and hence K3 surfaces. The projective dimension of such a family is
6 and every member of this family clearly admits an automorphism of order 6, induced by
γP4 : (x0 : x1 : x2 : x3 : x4)→ (x0 : x1 : x2 : −x3 : ζ 2

3 x4). We will denote by S the generic
K3 surface with equation (7.2) and by γS the automorphism induced by γP4 on S. Observe
that V (f2(x0 : x1 : x2)+ x2

3) is a quadric in P3 and thus it is isomorphic to P1 × P1. Denote
by R3 := V (f3(x0 : x1 : x2)+ x3

4). We have the following diagram:

S

π2

2:1
�����

����
����

����
��

6:1

��

π1

3:1
������

����
����

����
���

V (f2(x0 : x1 : x2)+x2
3) � P1 × P1

2:1 �����
����

����
����

�
R3 := V (f3(x0 : x1 : x2)+x3

4)

3:1������
����

����
���

P2
(x0:x1:x2)

Hence S/γS � P2. The fixed locus FixγS (S) consists of 6 points, as we expect. The fixed
locus of γ 2

S consists of a curve of genus 4, as we required, and the fixed locus of γ 3
S is the

3 : 1 cover of the rational curve V (f2(x0 : x1 : x2)) ⊂ P2
(x0:x1:x2)

branched along the six
points V (f2(x0 : x1 : x2)) ∩ V (f3(x0 : x1 : x2)).

In order to exhibit S as 6 : 1 cover of P2 we introduce the variable w := ix3x4 and thus
an equation of S in OP2(2) is

w6 = f2(x0 : x1 : x2)
3f3(x0 : x1 : x2)

2

and γS : (w, (x0 : x1 : x2)) 	→ (−ζ 2
3 w, (x0 : x1 : x2)).

From the equation of S we deduce a Weierstrass equation for the almost elliptic fibration
described in Proposition 7.5:

Y 2 = X3 + f2(x0 : x1 : x2)
3f3(x0 : x1 : x2)

4 ,

where the functions Y := vw15

f 6
2 f 3

3
, X := uw10

f 4
2 f 2

3
are invariant for γS × γ 5

E .

7.3.2. Weierstrass equation of E6 if S/αS � F12. The second family of K3 surfaces
admitting a non-symplectic automorphism of order 6 such that n = 0, consists of the family
of K3 surfaces, S, admitting an isotrivial elliptic fibration whose equation is y2 = x3+f12(t)

where f12(t) is a generic polynomial of degree 12 without multiple roots. The non-symplectic
automorphism we consider is γS : (x, y, t)→ (ζ 2

3 x,−y, t). We analyze the generic case (i.e.
n = 0, i.e. f12(t) has no multiple roots) showing that in this case S is a 6 : 1 cover of F12 and
giving an equation for the almost elliptic fibration E6 in this case.
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TABLE 1. Fixed loci of γS on singular fibers.

μt fiber Ft FixγS (S) Fixγ 2
S
(S) Fixγ 3

S
(S)

1 II 1 pt. - -
2 IV 1 pt. 1 pt. -
3 I∗0 2 pts. 1 pt. 1 curve
4 IV ∗ 3 pts. 1 curve, 3 pts. 1 curve
5 II∗ 1 curve, 7 pts. 2 curves, 4 pts. 4 curves

Let S have equation y2z = x3+f12(s : t)z3 in P(OP1(4)⊕OP1(6)⊕OP1), and consider
the morphism to F12 given by (s : t : x : y : z) 	−→ (s : t : x3 : z3). Observe that this is the
composition of the 2 : 1 covering S −→ F4 described in Section 4.3 with the 3 : 1 covering
F4 −→ F12 described in Section 2.3, hence it is a 6 : 1 covering. Observe also that S admits
a birational model S′ in OF12(10DT + DZ), with equation w6 = X2(X + f12(S : T )Z)3Z:
the birational morphism

S −→ S′
(s : t : x : y : z) 	−→ (w, (S : T : X : Z)) = (xyz, (s : t : x3 : z3))

is compatible with γS , since it induces on S′ the covering automorphism γS ′ : w→ −ζ 2
3 w.

The functions η := vw15

X3(X+f12(S:T )Z)6 , ξ := uw10

X2(X+f12(S:T )Z)4 defined on S′ × Eζ3 are

invariant for γS ′ × γ 5
E and satisfy

η2 = ξ3 +X4(X + f12(S : T )Z)3Z5

which is a Weierstrass equation for X in P(OF12(−2KF12)⊕OF12(−3KF12)⊕OF12).

7.4. Invariants of the fixed loci of γ
j

S for some K3 surfaces. In [D1] some non-
symplectic automorphisms of order 6 on K3 surfaces are classified. In particular, Dillies
considers the case where S is an elliptic K3 surface with the following Weierstrass equation
y2 = x3 + f12(t), where f12(t) is a polynomial of degree 12 which does not admit roots of
multiplicity greater than 5, and the automorphism of order 6 is (x, y, t) 	→ (ζ3x,−y, t). In
order to compute the Hodge numbers of the Calabi–Yau X of type X6, we want to describe the
fixed loci of γS , γ 2

S and γ 3
S according to the variation of f12(t). Let t be a zero of f12(t), μt the

multiplicity of such zero, Ft the fiber of y2 = x3 + f12(t) over t . The automorphism γS fixes
the zero section; the automorphism γ 2

S fixes the zero section and the bisection y2 = f12(t) (in
some cases this can split in 2 distinct sections); the automorphism γ 3

S fixes the zero section
and the trisection x3 = −f12(t) (in some cases this can split either in a section and a bisection
or in three sections). All the other fixed curves are components of the reducible fibers. In
Table 1 we give the number of isolated points and of components which are fixed by γ

j

S on
the singular fibers. We do not compute the points which are fixed on the fiber but lie on curves
(sections or multi-sections) fixed by the automorphism.

Moreover we need to compute explicitly the numbers r := dim(H 2(S,C)γS ) and m :=
dim(H 2(S,C))−ζ3 . This computation is done by applying the Lefschetz fixed points formula
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to γS , γ 2
S and γ 3

S (cf. Section 7.3.1). With all these information, one can compute the invari-
ants related to the automorphism described in [D1]. The results of these computations are
shown in Table 5.

7.5. A family of Calabi–Yau 3-folds of type X6 without maximal unipotent mon-
odromy. We now construct another example of a K3 surface admitting a non-symplectic
automorphism of order 6 by specializing y2 = x3 + f12(t). The peculiarity of this exam-
ple is that the family of Calabi–Yau 3-folds constructed does not admit maximal unipotent
monodromy, since it satisfies the condition of Remark 7.4.

EXAMPLE 7.9. Let us assume f12(t) = t4(t−1)3(t+1)3(t−λ)2 with λ �= 0,±1. The
elliptic K3 surface whose Weierstrass equation is y2 = x3 + t4(t − 1)3(t + 1)3(t − λ)2 has 4
reducible fibers: F0 is of type IV ∗, F1 and F−1 are of type I∗0 , Fλ is of type IV . Applying the
results described in Section 7.4, one obtains that γS fixes one rational curve (the zero section)
and 8 isolated points (3 on F0, 2 on Fi for i = 1,−1 and 1 on Fλ). The automorphism γ 2

S

fixes 3 rational curves (the zero section, the bisection y2 = t4(t − 1)3(t + 1)3(t −λ)2 and one
component of F0) and 6 isolated points (3 on F0, 1 on Fi for i = 1,−1, λ). The automorphism
γ 3
S fixes 5 rational curves (the zero section, the trisection x3 = −t4(t − 1)3(t + 1)3(t − λ)2,

1 component of each fiber Fi , i = 0, 1,−1). So the Euler characteristic of the fixed loci of
γS , γ 2

S and γ 3
S are 8, 12, 10 respectively. Applying the Lefschetz fixed points formula one

computes r = 11 and m = 2. So the family of K3 surfaces admitting a non-symplectic
automorphism of order 6, such that the fixed loci of all its powers are as described, is 1-
dimensional. Since also the family of K3 surfaces admitting an elliptic fibration with equation
y2 = x3 + t4(t − 1)3(t + 1)3(t − λ)2 is 1-dimensional, these two families coincide.

We observe that the family of K3 surfaces described is obtained also as the minimal
model of the quotient (Eζ3 × C)/(γE × γC), where C is a 6 : 1 cover of P1

t with equation
w6 = t4(t − 1)3(t + 1)3(t −λ)2 and γC is the cover automorphism γC : (w, t) 	→ (−ζ3w, t).
As in Remark 5.3 this implies that the variation of the Hodge structures both of the family of
S and of the family of X depend only on the variation of the Hodge structures of C.

8. Appendix: the Tables. In this appendix we summarize the properties of the Calabi–
Yau constructed above, in some tables. In all the tables we give a reference to where the K3
surface S and the associated automorphism αS (or γS) are constructed, we list the properties
of the fixed locus of the automorphism and of its powers (we follow the notation introduced
before), we compute the Hodge numbers and we say whenever the family of Calabi–Yau
constructed does not admit maximal unipotent monodromy (this is denoted by MUM) and
whenever the family is “new”, in the sense that it is not contained in the list [J] of known
Calabi–Yau 3-folds. We omit the cases n = 2, 3 since they were already analyzed in previous
papers. We underline that if the column MUM is empty, this means that our argument is not
sufficient to conclude whether there is or not a point with maximal unipotent monodromy (so
we are not stating any result on the presence of points with maximal unipotent monodromy).
Clearly, if the column MUM contains “no” this means that there is no point with maximal
unipotent monodromy in the family.
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8.1. Order 4. In Table 2 we assume that the curve of highest genus, g(D), fixed by
α2

S is also fixed by αS . The first line corresponds to the assumption that α2
S fixes two elliptic

curves.

TABLE 2. Hodge numbers of X4 in case 1) Proposition 6.3.

Ref K3 m r n1 k a g(D) h1,1(X) h2,1(X) MUM new

1 [AS2, Table 1, l. 1] 6 6 4 1 0 1 25 13
2 [AS2, Table 1, l. 2] 5 7 4 1 0 1 29 11
3 [AS2, Table 1, l. 3] 4 10 6 2 0 1 46 10
4 [AS2, Table 1, l. 4] 4 8 4 1 1 1 34 10
5 [AS2, Table 1, l. 5] 3 9 4 1 2 1 39 9
6 [AS2, Table 1, l. 6] 2 10 4 1 3 1 44 8
7 [AS2, Table 2, l. 1] 7 1 0 1 0 3 9 27
8 [AS2, Table 2, l. 2] 6 4 2 1 0 2 19 19
9 [AS2, Table 2, l. 3] 6 2 0 1 1 3 14 26

10 [AS2, Table 2, l. 4] 5 5 2 1 1 2 24 18
11 [AS2, Table 2, l. 5] 4 6 2 1 2 2 29 17
12 [AS2, Table 3, l. 1] 4 10 6 1 0 0 39 3 no
13 [AS2, Table 3, l. 2] 3 13 8 2 0 0 56 2 no
14 [AS2, Table 3, l. 3] 3 11 6 1 1 0 44 2 no X
15 [AS2, Table 3, l. 4] 2 16 10 3 0 0 73 1 no
16 [AS2, Table 3, l. 5] 2 14 8 2 1 0 61 1 no
17 [AS2, Table 3, l. 6] 2 12 6 1 2 0 49 1 no X
18 [AS2, Table 3, l. 7] 1 19 12 4 0 0 90 0 no
19 [AS2, Table 3, l. 8] 1 13 6 1 3 0 54 0 no X

In Table 3 we assume that αS is an involution on the curve of highest genus, g(D), fixed
by α2

S .
In [AS2, Table 6] a list of admissible lattices associated to certain fixed loci is given.

For some of them, the corresponding family of K3 surfaces is also constructed. In particular,
all the cases listed in [AS2, Table 6] and with g = 0 are associated to a family of K3 sur-
faces, constructed in [AS2, Example 7.2]. If also α2

S does not fix curves with positive genus,
then we are in the assumption of Remark 6.4. In Table 3 we list the Calabi–Yau of type X4

corresponding to these assumptions.

REMARK 8.1. We observe that the Hodge numbers of the Calabi–Yau in Table 2, line
11 are the same of the Calabi–Yau in Table 3, line 4 and are mirrors of the ones of the Calabi–
Yau in Table 3, line 1. The Hodge numbers of the Calabi–Yau in Table 2, line 9 are the same
of the Calabi–Yau in Table 3, line 2. The Hodge numbers of the Calabi–Yau in Table 2 line 8
are self mirror.
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TABLE 3. Hodge numbers of X4 in case 2) Proposition 6.3.

Ref. K3 m r n1 n2 k a g(D) h1,1(X) h2,1(X) MUM new

1 [AS2, Table 5, l. 1] 10 2 2 2 0 0 10 17 29
2 [AS2, Table 5, l. 2] 10 2 0 4 0 0 9 14 26
3 [AS2, Table 5, l. 3] 8 6 2 4 1 0 7 32 20
4 [AS2, Table 5, l. 4] 8 6 0 6 1 0 6 29 17
5 [AS2, Table 5, l. 5] 6 10 6 2 2 0 6 53 17
6 [AS2, Table 5, l. 6] 6 10 4 4 2 0 5 50 14
7 [AS2, Table 5, l. 7] 6 10 2 6 2 0 4 47 11
8 [AS2, Table 5, l. 8] 6 10 0 8 2 0 3 44 8
9 [AS2, Table 5, l. 9] 4 14 6 4 3 0 3 68 8
10 [AS2, Table 5, l. 10] 4 14 4 6 3 0 2 65 5
11 [AS2, Table 5, l. 11] 2 18 10 2 4 0 2 89 5
12 [AS2, Table 5, l. 12] 2 18 8 4 4 0 1 86 2

TABLE 4. α fixes only isolated points, α2 fixes only rational curves.

Ref. K3 m r n1 n2 k a g(D) h1,1(X) h2,1(X) MUM new

1 [AS2, Table 6, l. 13] 5 7 2 2 0 0 0 22 4 no X
2 [AS2, Table 6, l. 18] 4 8 2 2 0 1 0 27 3 no X
3 [AS2, Table 6, l. 23] 3 9 2 2 0 2 0 32 2 no X
4 [AS2, Table 6, l. 27] 2 10 2 2 0 3 0 37 1 no X
5 [AS2, Table 6, l. 30] 1 11 2 2 0 4 0 42 0 no X

TABLE 5. Hodge numbers of X6.

n n′ k a g(G) p3,4 p2,5 l N b g(F ) r m h1,1 h2,1 MUM new

1 0 0 2 0 5 12 0 1 2 0 10 2 10 29 29
2 1 0 2 0 4 10 1 1 2 0 9 3 9 31 25
3 2 0 2 0 3 8 2 1 2 0 8 4 8 33 21
4 3 0 2 0 2 6 3 1 2 0 7 5 7 35 17
5 3 1 3 0 3 10 1 1 3 0 7 6 7 43 19
6 4 0 2 0 1 4 4 1 2 0 6 6 6 37 13
7 4 1 3 0 2 8 2 1 3 0 6 7 6 45 15
8 4 0 4 0 3 10 4 2 6 0 6 10 6 65 17
9 5 0 2 0 0 2 5 1 2 0 5 7 5 39 9

10 5 1 3 0 1 6 3 1 3 0 5 8 5 47 11
11 5 0 4 0 2 8 5 2 6 0 5 11 5 67 13
12 6 1 3 0 0 4 4 1 3 0 4 9 4 49 7
13 6 0 4 0 1 6 6 2 6 0 4 12 4 69 9
14 7 0 4 0 0 4 7 2 6 0 3 13 3 71 5
15 7 1 5 0 1 8 5 2 7 0 3 14 3 72 7
16 8 1 5 0 0 6 6 2 7 0 2 15 2 81 3
17 8 0 6 0 1 8 8 3 10 0 2 18 2 101 5
18 9 0 6 0 0 6 9 3 10 0 1 19 1 103 1

19 6 1 3 0 0 4 4 1 5 0 0 11 2 55 1 no X
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8.2. Order 6. In Table 5 we compute the Hodge numbers of Calabi–Yau 3-folds of
type X6 as in Proposition 7.3 if the K3 surface S is one the the K3 surfaces listed in [D1, Table
1 (column 1–11)]. The last line corresponds to the K3 surface constructed in Example 7.9.
We omit g(D) since it is zero for any K3 considered in the table.
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