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Abstract. In this paper, we generalize examples of Lagrangian mean curvature flows
constructed by Lee and Wang in Cm to toric almost Calabi–Yau manifolds. To be more precise,
we construct examples of weighted Hamiltonian stationary Lagrangian submanifolds in toric
almost Calabi–Yau manifolds and solutions of generalized Lagrangian mean curvature flows
starting from these examples. We allow these flows to have some singularities and topological
changes.

1. Introduction. Recently, study of Lagrangian submanifolds acquire much impor-
tance in association with Mirror Symmetry. There are several classes of Lagrangian subman-
ifolds. For example, special Lagrangian submanifolds are defined in Calabi–Yau manifolds
by Harvey and Lawson [5] and they have an important role in the Strominger–Yau–Zaslow
conjecture [11]. A class of Hamiltonian stationary Lagrangian submanifolds is also defined in
Calabi–Yau manifolds, especially a special Lagrangian submanifold is a Hamiltonian station-
ary Lagrangian submanifold. In general, constructing explicit examples of special or Hamil-
tonian stationary Lagrangian submanifolds is difficult since these conditions are locally writ-
ten by nonlinear PDE. However some examples are constructed in the case that the ambient
Calabi–Yau manifold has symmetries, especially in C

m.
First, we introduce some previously known examples of special or Hamiltonian station-

ary Lagrangian submanifolds and Lagrangian mean curvature flows. One of examples of spe-
cial Lagrangian submanifolds in Cm constructed by Harvey and Lawson [5, III.3.A] is defined
by

Mc := {(z1, . . . , zm) ∈ C
m | Im(z1 · · · zm) = c1, |z1|2 − |zj |2 = cj (j = 2, . . . ,m)} ,

where c = (c1, . . . , cm) ∈ Rm. Note that the phase ofMc is im. We remark that if c1 = 0 and
zj = xje

iθj for xj ∈ R and θj ∈ R, then Mc is written by

{exp(θ2ζ2 + · · · + θmζm) · x ∈ C
m | x ∈ R

m, θj ∈ R, 〈μ(x), ζj 〉 = cj

2
(j = 2, . . . ,m)} ,
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where ζj := (1, 0, . . . , 0,−1, 0, . . . , 0) = e1 − ej ∈ Rm, μ(x) := 1
2 (x

2
1 , . . . , x

2
m) and

exp(v) · x = (x1e
2πiv1, . . . , xme

2πivm) for v = (v1, . . . , vm) ∈ Rm. This is a T m−1-invariant
special Lagrangian submanifold in Cm.

Next examples of special Lagrangian submanifolds in Cm are constructed by Joyce [6,
Example 9.4]. He considered a family of T 1-invariant Lagrangian submanifolds denoted by

Na1,...,am
c := { (x1e

2πia1θ , . . . , xme
2πiamθ ) ∈ C

m | θ ∈ R, a1x
2
1 + · · · + amx

2
m = c} ,

where a = (a1, . . . , am) ∈ Rm and c ∈ R, and he proved thatNa1,...,am
c is a special Lagrangian

submanifold if and only if

a1 + · · · + am = 0 .(1)

He constructed these examples by using a moment map of T 1-action on Cm. Of course, in the
same way as Mc, the Lagrangian submanifoldNa1,...,am

c can be written by{
exp(θa) · x | x ∈ R

m, θ ∈ R, 〈μ(x), a〉 = c

2

}
.

These two examples suggest that a torus action, a real structure and a moment map are
useful to construct special Lagrangian submanifolds. From this view point, the author [13]
generalized Joyce’s exampleNa1,...,am

c in Cm to in anm-dimensional toric almost Calabi–Yau
cone manifold. To be more precise, the author constructed examples of special Lagrangian
submanifolds of the form

{exp(tζ ) · p | p ∈ Mσ , t ∈ R, 〈μ(p), ζ 〉 = c}
in a toric almost Calabi–Yau cone manifold (M,ω, g, J,Ωγ ), where Mσ is the real form of
M , μ is a moment map of T m-action on M , ζ is a vector in Rm satisfying a special condition
and c is a constant. This is a T 1-invariant special Lagrangian submanifold in a toric almost
Calabi–Yau cone manifold (M,ω, g, J,Ωγ ).

This type of constructions is also effective to construct examples of Hamiltonian sta-
tionary Lagrangian submanifolds and its mean curvature flows. Actually, Lee and Wang [8]
proved that Vt defined by{

(x1e
2πiζ1s , . . . , xme

2πiζms) ∈ C
m

∣∣∣∣ 0 ≤ s ≤ 1,

m∑
j=1

ζjx
2
j = −4πt

m∑
j=1

ζj , x = (x1, . . . , xm) ∈ R
m

}

is Hamiltonian stationary Lagrangian submanifolds for all ζ ∈ Rm and c ∈ R. Furthermore,
they proved that this family {Vt }t∈R is a solution of mean curvature flow and it has a singularity
when t = 0. To be more precise, they proved that it is a solution of Brakke flow. Here Brakke
flow proposed by Brakke [3] is a weak formulation of a mean curvature flow with singularities.

A mean curvature flow is one of potential approaches to find a special Lagrangian sub-
manifold in a given Calabi–Yau manifold as the following meaning. If there exists a long
time solution of a mean curvature flow starting from a given Lagrangian submanifold and the
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flow converges to a smooth manifold, then it is a minimal Lagrangian submanifold, that is,
a special Lagrangian submanifold. Indeed, this method has more deep background related to
Mirror Symmetry proposed by Thomas and Yau [12]. Roughly speaking, they introduce a
stability condition on Lagrangian submanifolds and conjecture that the Lagrangian mean cur-
vature flow starting from a stable Lagrangian submanifold exists for all time and converges
to a special Lagrangian submanifold in its Hamiltonian deformation class. This conjecture is
called Thomas–Yau conjecture. Recently, Joyce [7] has updated the Thomas–Yau conjectures
to achieve more plausible statement. In [7], he discusses the possibility that the Lagrangian
mean curvature flow develops singularities many times even if an initial Lagrangian subman-
ifold is stable and mentions the necessity of surgeries of Lagrangian mean curvature flows.
Thus it is meaningful to construct examples of Lagrangian mean curvature flows with sin-
gularities to understand the motion of Lagrangian mean curvature flows and to develop this
program.

In this paper, we construct explicit examples of special or weighted Hamiltonian station-
ary Lagrangian submanifolds in toric almost Calabi–Yau manifolds and construct solutions
of generalized Lagrangian mean curvature flows with singularities and topological changes
starting from these examples. These examples can be considered as some kind of generaliza-
tion of examples of Lee and Wang [8] in C

m to toric almost Calabi–Yau manifolds. When the
ambient space is a general toric almost Calabi–Yau manifold, its topology is not simple and
there are many fixed points of torus action. Hence we can get examples of special or weighted
Hamiltonian stationary Lagrangian submanifolds with various topologies. Furthermore, its
generalized Lagrangian mean curvature flow develops singularities many times though exam-
ples of Lee and Wang in C

m develops a singularity once.
Note that, in this paper, we use notions of weighted Hamiltonian stationary and general-

ized Lagrangian mean curvature flow. These notions are modifications of the ordinary notions
of Hamiltonian stationary and Lagrangian mean curvature flow defined in Calabi–Yau mani-
folds to almost Calabi–Yau manifolds. See Section 4 for precise definitions.

Here we give a short description of the main results of this paper. Let (M,ω, g, J,Ωγ )
be a real 2m-dimensional toric almost Calabi–Yau manifold with torus T m action. To be more
precise, that is a toric Kähler manifold with a nonvanishing holomorphic (m, 0)-formΩγ . We
see in Section 4 that Ωγ is constructed by a vector γ in Zm which is canonically determined
by the toric structure of (M, J ). Note that we do not assume that (M,ω, g, J ) is Ricci-flat.
Since (M,ω, g, J ) is a toric Kähler manifold, there exist a moment map μ : M → 	 with
a moment polytope 	 and an anti-holomorphic and anti-symplectic involution σ : M → M ,
see Section 2 for more precise settings. We denote the fixed point set of σ by Mσ and call
it the real form of M . This is a real m-dimensional submanifold in M . Fix an integer n with
0 ≤ n ≤ m. Take a set of n vectors ζ = { ζ1, . . . , ζn } ⊂ Zm and a set of n constants
c = { c1, . . . , cn } ⊂ R and consider the set

Mσ
ζ,c := {p ∈ Mσ | 〈μ(p), ζi〉 = ci, i = 1, . . . , n}
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We assume that Mσ
ζ,c is a real (m− n)-dimensional submanifold in Mσ and Tζ := Vζ /(Vζ ∩

Zm) is isomorphic to a subtorus T n in T m, where Vζ := SpanR{ζ1, . . . , ζn}. Then we put a
real m-dimensional manifold as

(2) Lζ,c := Mσ
ζ,c × Tζ

and define a map Fζ,c : Lζ,c → M by

Fζ,c(p, [v]) := exp v · p .
Then the main theorems in this paper are the following.

THEOREM 1.1. Fζ,c : Lζ,c → M is a T n-invariant weighted Hamiltonian stationary
Lagrangian submanifold for all ζ and c, and its Lagrangian angle θζ,c : Lζ,c → R/πZ

is given by θζ,c(p, [v]) = 2π〈γ, v〉 + π
2 n (mod. π). Thus Fζ,c : Lζ,c → M is a special

Lagrangian submanifold if and only if 〈γ, ζi〉 = 0 for all i = 1, . . . , n.

THEOREM 1.2. The family of the images of {Fζ,c(t) : Lζ,c(t) → M}0≤t≤T is a solution
of generalized Lagrangian mean curvature flow with singularities and topological changes
with initial condition Fζ,c, where c(t) := { c1(t), . . . , cn(t) } and each cj (t) is given by
cj (t) := cj − 2πt〈γ, ζj 〉. Here T is the first time that Mσ

ζ,c(t) becomes empty set.

Theorem 1.1 is a summary of Theorem 4.2, Corollary 4.3 and Theorem 4.5. Theorem
1.2 is a part of Theorem 5.2.

The definitions of Lagrangian angle and weighted Hamiltonian stationary are given in
Section 4. The meaning of weighted Hamiltonian stationary is explained in Appendix A.
The notion of generalized Lagrangian mean curvature flow with singularities and topological
changes is defined in Section 5. Roughly speaking, this flow is parametrized by a smooth flow
except for some m-dimensional Hausdorff measure zero sets. In Example 6.1 of Section 6,
we see that our construction is a kind of generalization of the example of Lee and Wang [8].
In Example 6.2, we give a concrete example of generalized Lagrangian mean curvature flow
with singularities and topological changes inK

P2 , the total space of the canonical bundle over
P2.

We note that the example Mc of Harvey and Lawson is in the case when n = m − 1,
and Na1,...,am

c of Joyce, Vt of Lee and Wang and the previous work of the author in [13]
are in the case when n = 1. After finishing my work, the author learned from H. Konno
that Mironov and Panov [10] constructed examples of T n-invariant Hamiltonian stationary
Lagrangian submanifolds in m-dimensional toric varieties for 0 ≤ n ≤ m. First, Mironov
[9] constructed T n-invariant Hamiltonian stationary or minimal Lagrangian submanifolds in
C
m and CP

m. These examples can be written as the form (2) in C
m. In [10], they used

a Kähler quotient of Cm to construct new examples in toric varieties. We remark that our
method is different from theirs in the point that we use the real form and a moment map rather
than Kähler quotient, and furthermore we study the motion of generalized Lagrangian mean
curvature flows starting from these examples.
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2. Toric Kähler manifold. In this section, we fix our notations of toric Kähler geom-
etry and introduce an anti-holomorphic involution and its properties. Let T m ∼= (S1)m be an
m-dimensional real torus and (M,ω, g, J ) be a toric Kähler manifold with complex dimen-
sion m. Then T m acts on M effectively and the Kähler form ω is invariant under the action.
Let μ : M → g∗ be a moment map and 	 := μ(M) be a moment polytope, where g is a
Lie algebra of T m and g∗ is its dual. Since (M, J ) is a toric variety, there is a complex torus
T m
C

∼= (C×)m which is a complexification of T m and T m
C

acts on (M, J ) as biholomorphic
automorphisms. ThenM has an open dense T m

C
-orbit and we denote the fan of (M, J ) byΣ .

Let Σ(1) := { ρ ∈ Σ | dimρ = 1 } be the set of 1-dimensional cones in Σ . We assume that
Σ(1) is a finite set and write Σ(1) = {ρ1, . . . , ρd }. Let λi be the primitive element in Zm

that generates ρi for i = 1, . . . , d , that is, ρi = R+λi . Note that, in general,	 is not a closed
subset in g∗. For example, if we consider a toric Kähler manifold constructed by removing all
fixed points of torus action from some toric Kähler manifold, then its moment polytope has a
shape that all vertices are removed from the original polytope and this is not a closed subset.

We assume that there exist κi in R for i = 1, . . . , d so that the closure of	 is given by

	 =
d⋂
i=1

H+
λi,κi

.

Here for a nonzero vector λ in g and κ in R, we define the affine hyperplaneHλ,κ and closed
half-spaceH+

λ,κ by

Hλ,κ := {y ∈ g∗ | 〈y, λ〉 = κ} and H+
λ,κ := {y ∈ g∗ | 〈y, λ〉 ≥ κ} .

A subset F ⊂ 	 is called a face of 	 if and only if there exist a vector v in g and a constant c
such that

	 ⊂ H+
v,c and F = 	 ∩Hv,c .

We denote the set of all faces of 	 by F . Then we assume that there exists a subset G of F
such that 	 is of the form

	−
⋃
F∈G

F .

For a point y in 	, we define zy a subspace of g by

zy := SpanR{λi | y ∈ Hλi,κi }.
For example, if y is in the interior of 	 then zy is {0}. For a point p in M , if we denote the
stabilizer at p by Zp = { t ∈ T m | t · p = p }, then the Lie algebra of Zp coincides with
zμ(p). Thus, if μ(p) is in the interior of 	 then torus action is free at p, and if μ maps p to a
vertex of 	 then p is a fixed point.

Since (M, J ) is a toric variety, there exists the intrinsic anti-holomorphic involution σ :
M → M determined by the fanΣ , that is, σ 2 = id and σ∗J = −Jσ∗, where J is the complex
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structure on M . This involution satisfies σ(u · p) = u · σ(p), where u ∈ T m
C

acts on p. Let
Mσ := {p ∈ M | σ(p) = p } be the set of fixed points of σ , that is a submanifold of M with
real dimensionm, we call it the real form of M .

PROPOSITION 2.1. The involution σ : M → M is anti-symplectic, and consequently
σ is isometry.

PROOF. Let U be an open dense T m
C

-orbit. For (w1, . . . , wm) ∈ U ∼= (C×)m, we take

the logarithmic holomorphic coordinates (z1, . . . , zm) with ez
i = wi . Since ω is T m-invariant

and the action of T m is Hamiltonian, there exists a function F ∈ C∞(Rm) with the property

ω =
√−1

2

m∑
i,j=1

∂2F

∂xi∂xj
dzi ∧ dzj on U ,(3)

where zi = xi + √−1yi . (See Theorem 3.3 in Appendix 2 of [4].) On U , the involution σ
coincides with the standard complex conjugate σ(z) = z, where z = (z1, . . . , zm). Since ω
is T m-invariant, note that F is independent of the coordinates (y1, . . . , ym). Thus we have
σ ∗ω = −ω on U . Since U is open and dense in M , thus we have σ ∗ω = −ω onM . �

3. Lagrangian submanifold. In this section, we construct our examples of Lagr-
angian submanifold. First of all, let n be an integer with 0 ≤ n ≤ m. Next, take a set
of n vectors ζ = {ζi}ni=1 ⊂ g and a set of n constants c = {ci}ni=1 ⊂ R. If n = 0, we
take no vectors and no constants. We assume that {ζi}ni=1 is linearly independent. Then the
intersection of n affine hyperplanes Hζi,ci defines an (m − n)-dimensional affine plane. We
assume that this affine plane intersects in the interior of 	, and we define 	ζ,c a subset of 	
by

	ζ,c : =	 ∩
( n⋂
i=1

Hζi,ci

)

= {y ∈ 	 | 〈y, ζi〉 = ci, (i = 1, . . . , n)} .
DEFINITION 3.1. Let Vζ := SpanR{ζ1, . . . , ζn} ⊂ g. We call a point y in 	 a ζ -

singular point if and only if Vζ ∩ zy �= {0}, and if Vζ ∩ zy = {0} we call y a ζ -regular point.
We denote the set of all ζ -singular points and all ζ -regular points in 	 by 	ζ sing and 	ζ reg

respectively. Note that 	ζ reg is open dense in 	.

For a point p in M , a vector v in g generates a tangent vector at p denoted by

vp = d

dt

∣∣∣∣
t=0

exp(tv) · p .
This map g → TpM is a homomorphism. Then it is clear that y is a ζ -regular point if and
only if the restricted homomorphism Vζ → TpM is injective for p in μ−1(y). For example,
vertices of 	 are always ζ -singular points and interior points are always ζ -regular points.

DEFINITION 3.2. We call a point p in Mσ a ζ -singular point if and only if μ(p) is a
ζ -singular point, and if not, we call p a ζ -regular point. We denote the set of all ζ -singular
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points and all ζ -regular points in Mσ by Mσ
ζ sing and Mσ

ζ reg respectively. Note that Mσ
ζ reg is

open dense in Mσ .

DEFINITION 3.3. We denote the restriction of the moment map on the real form by
μσ : Mσ → R

m. We define a subset of Mσ as the pull-back of 	ζ,c by μσ by

Mσ
ζ,c : = (μσ )−1(	ζ,c)

= {p ∈ Mσ | 〈μ(p), ζi〉 = ci, i = 1, . . . , n} .
PROPOSITION 3.4. If 	ζ,c is contained in 	ζ reg, then Mσ

ζ,c is a smooth submanifold
of Mσ with dimRM

σ
ζ,c = m− n.

PROOF. We define n functions fi (i = 1, . . . , n) on Mσ by

fi(p) := 〈μ(p), ζi〉 − ci .

Then Mσ
ζ,c = {p ∈ Mσ | fi(p) = 0, i = 1, . . . , n }. By a property of the moment map, for

all p in Mσ
ζ,c, we have

dfi(p) = d〈μ, ζi〉(p) = −ω(ζi,p, ·) .
Since every point in 	ζ,c is ζ -regular, the restricted homomorphism Vζ → TpM is injective
for all p in Mσ

ζ,c. Thus {dfi}ni=1 are linearly independent 1-forms on Mσ
ζ,c. This means that

Mσ
ζ,c is a smooth submanifold of Mσ by the implicit function theorem. �

In this section, we assume that 	ζ,c is contained in 	ζ reg. Then Mσ
ζ,c is a smooth sub-

manifold of Mσ . Let exp : g → T m be the exponential map. Let Zg(∼= Zm) be a integral
lattice of g, that is a kernel of exp : g → T m and g/Zg

∼= T m. Let 1
2Zg be the set of all ele-

ments y in g such that 2y is in Zg. Then 1
2Zg/Zg

∼= {1,−1}m is a subgroup of T m considered
as all elements t in T m such that t2 = e identity element. Let Vζ = SpanR{ζ1, . . . , ζn} ⊂ g.
Now we construct a manifold Lζ,c with real dimension m.

(I) GENERIC CASE. For a generic case, let U be an open small ball in Vζ centered at
0 such that U and 1

2Zg intersect only at 0. Then we define an m-dimensional manifold Lζ,c
and a map Fζ,c : Lζ,c → M by

Lζ,c = Mσ
ζ,c × U and Fζ,c(p, v) := exp(v) · p ,

for p in Mσ
ζ,c and v in U . Then Fζ,c is injective and its image is

L′
ζ,c := {exp(v) · p | v ∈ U, p ∈ Mσ , 〈μ(p), ζj 〉 = cj , j = 1, . . . , n} .(4)

(II) UNIMODULAR CASE. If the set of vectors ζ = {ζi}ni=1 satisfies the following
unimodular condition then we can take Lζ,c as explained below.

DEFINITION 3.5. We say that ζ satisfies the unimodular condition if there exists a set
of n vectors v = {vj }nj=1 in Vζ ∩Zg such that v is a base of Vζ and v is a generator of Vζ ∩Zg

over Z.
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If ζ satisfies the unimodular condition, we replace U in the case (I) by Tζ := Vζ /(Vζ ∩
Zg) and we define an m-dimensional manifold Lζ,c and a map Fζ,c : Lζ,c → M by

Lζ,c = Mσ
ζ,c × Tζ and Fζ,c(p, [v]) := exp(v) · p ,

for p in Mσ
ζ,c and [v] in Tζ = Vζ /(Vζ ∩ Zg), this map is well defined. Since Tζ ∼= T n which

is a subtorus of T m, the product manifold Lζ,c is diffeomorphic to Mσ
ζ,c × T n. We denote the

subgroup (Vζ ∩ 1
2Zg)/(Vζ ∩ Zg) of Tζ by Kζ . Then, of course, Kζ acts on Tζ freely and Kζ

also acts on Mσ
ζ,c as

[k] · p := exp(k) · p
for [k] in Kζ and p in Mσ

ζ,c. Thus Kζ acts on Lζ,c = Mσ
ζ,c × Tζ as a diagonal action and this

action is free. Hence we have an m-dimensional manifold L̃ζ,c by

L̃ζ,c := (Mσ
ζ,c × Tζ )/Kζ .

In this case (II), Fζ,c : Lζ,c → M is not injective and one can show that Fζ,c(p1, [v1]) =
Fζ,c(p2, [v2]) if and only if there exists a [k] in Kζ such that [k] · (p1, [v1]) = (p2, [v2]).
Thus the image of Fζ,c written by

L′
ζ,c := {exp(v) · p | v ∈ Vζ , p ∈ Mσ , 〈μ(p), ζj 〉 = cj , j = 1, . . . , n}(5)

is diffeomorphic to L̃ζ,c. Note that L̃ζ,c is a T n-bundle over a smooth (m − n)-dimensional
manifoldMσ

ζ,c/Kζ .

REMARK 3.6. Here we explain the meaning of Lζ,c and the number n, that is the
number of vectors in ζ . In an m-dimensional toric Kähler manifold M , there are two typical
Lagrangian submanifolds, one is the real formMσ and the other is a torus fiber T m, and these
two LagrangiansMσ and T m intersect transverse and orthogonal just like Rm and iRm in Cm.
First, if we take n = 0 then we take no vectors ζ and no constants c. Then Lζ,c becomes
the real form Mσ , hence Lζ,c has no torus factors. On the other hand, if n is full, that is,
n = m, then Mσ

ζ,c = {pt}, thus Lζ,c is diffeomorphic to a torus fiber T m. Hence, roughly
speaking, Lζ,c is a hybrid (or interpolation) of the real form Mσ and a torus fiber T m, and n
is the dimension of torus factors in Lζ,c.

From now, we consider both cases (I) and (II) above.

THEOREM 3.7. Fζ,c : Lζ,c → M is a Lagrangian immersion.

PROOF. In this proof, we write Fζ,c by F for short. Since the case (II) is locally diffeo-
morphic to the cace (I), it is clear that we only have to prove in the case (I). First we prove
that F is an immersion map. Fix a point x = (p, v) in Lζ,c = Mσ

ζ,c × U . Then we have a
decomposition

TxLζ,c = TpM
σ
ζ,c ⊕ TvU ,

and note that TvU ∼= Vζ since U is an open ball in a vector space Vζ . Take tangent vectors
X,X1,X2 in TpMσ

ζ,c. We have

F∗X = tv∗X ,
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where we put tv := exp(v) for short, and we identify an element tv in T m with a left transition
map tv : M → M . Take vectors Y, Y1, Y2 in TvU ∼= Vζ . We have

F∗Y = tv∗Yp .

Here Yp is the tangent vector at p generated by Y ∈ Vζ ⊂ g. Since g is torus-invariant, that
is, t∗v g = g , we have

g(F∗X,F∗Y ) = g(tv∗X, tv∗Yp) = (t∗v g)(X, Yp) = g(X, Yp) .(6)

Note that σ∗X = X since X is tangent to the real form, and σ∗Yp = −Yp since the
direction of the curve of the exponential map generated by Y is reversed by σ because of the
reration σ(u·p) = u−1 ·p for all u in T m. Since σ is isometry, that is σ ∗g = g , by Proposition
2.1, we have

g(X, Yp) = (σ ∗g)(X, Yp) = g(σ∗X, σ∗Yp) = −g(X, Yp) ,

and this means that g(X, Yp) = 0 and also g(F∗X,F∗Y ) = 0 by (6). Thus F∗(TpMσ
ζ,c) and

F∗(TvU) are orthogonal to each other. It is clear that F∗ restricted on TpMσ
ζ,c is injective and

F∗ restricted on TvU is also injective. Thus F∗ is injective on TxLζ,c and F is an immersion
map.

Next we prove that F is a Lagrangian, that is, F ∗ω=0. It is easy to see (F ∗ω)(X1,X2)=
0 and (F ∗ω)(Y1, Y2) = 0 since the real form and a torus fiber are typical Lagrangians. We can
also prove that (F ∗ω)(X, Y ) = 0 easily. Since ω is torus-invariant and ω(·, Yp) = d〈μ, Y 〉,
we have

(F ∗ω)(X, Y ) = ω(F∗X,F∗Y ) = ω(X, Yp) = X(〈μ, Y 〉) .
Since Y is in TvU ∼= Vζ = SpanR{ζ1, . . . , ζn}, we can write Y as Y = a1ζ1 + · · · + anζn for
some coefficients ak ∈ R, and we have

〈μ, Y 〉 = a1〈μ, ζ1〉 + · · · + an〈μ, ζn〉 .
By the definition of Mσ

ζ,c, this function 〈μ, Y 〉 is a constant

a1c1 + · · · + ancn

on Mσ
ζ,c, and now X is a tangent vector onMσ

ζ,c, thus it is clear that

X(〈μ, Y 〉) = 0 .

Hence we have F ∗ω = 0. �

4. Lagrangian angle. In above sections, the ambient space (M,ω, g, J ) is a toric
Kähler manifold. From this section, we assume that the canonical line bundle KM of (M, J )
is trivial. This condition is equivalent to that there exists a vector γ in Z

∗
g such that 〈γ, λi〉 = 1

for all i = 1, . . . , d , where λi is a primitive generator of a 1-dimensional cone of fanΣ ofM ,
see Section 2. In fact, if such a vector γ = (γ1, . . . , γm) exists, a holomorphic (m, 0)-form

Ωγ := eγ1z
1+···+γmzmdz1 ∧ · · · ∧ dzm(7)
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written by logarithmic holomorphic coordinates on an open dense (C∗)m-orbit can be extend
over M as a nowhere vanishing holomorphic (m, 0)-form. We call this (M,ω, g, J,Ωγ ) a
toric almost Calabi–Yau manifold.

In general, an m-dimensional Kähler manifold (M,ω, g, J ) with nowhere vanishing
holomorphic (m, 0)-form Ω is called an almost Calabi–Yau manifold, and for a Lagrangian
immersion F : L → M we can define the Lagrangian angle θF : L → R/πZ as follows.
For a point x in L, take a local chart (U, (x1, . . . , xm)) around x, then F ∗Ω is a C∗-valued
m-form on U , so there exists a C∗-valued function hU on U such that

F ∗Ω = hU(x
1, . . . , xm)dx1 ∧ · · · ∧ dxm

on U , and we define the Lagrangian angle θF : L → R/πZ by

θF (x) := arg(hU (x)) mod π .

This definition is independent of the choice of local charts. It is clear that if L is oriented
we can lift θF to an R/2πZ-valued function θF : L → R/2πZ. If we can lift θF to an R-
valued function θF : L → R then F : L → M is called Maslov zero, and furthermore if θF
is constant θ0 then F : L → M is called a special Lagrangian submanifold with phase eiθ0 .
Note that the definition of special Lagrangian condition depends on the choice of holomorphic
volume formΩ .

In [1], Behrndt introduced the notion of the generalized mean curvature vector field K
for a Lagrangian immersion F : L → M in an almost Calabi–Yau manifold. The generalized
mean curvature vector field K is defined by

K := H −m∇ψ⊥ ,(8)

whereH is the mean curvature vector field of the immersion F : L → (M, g), ψ is a function
on M defined by the following equation;

e2mψ ω
m

m! = (−1)
m(m−1)

2

(
i

2

)m
Ω ∧Ω ,(9)

and ∇ψ⊥ is the normal part of the gradient of ψ . By the definition of K , if M is a Calabi–
Yau manifold, that is, ψ ≡ 0, then the generalized mean curvature vector field K coincides
with the mean curvature vector field H . In Proposition 4.8 in [2], Behrndt proved the relation
between K and θF which is written by

K = J∇θF .(10)

Thus K ≡ 0 is equivalent to that L is a special Lagrangian submanifold.
Furthermore, in this paper, we introduce the notion of weighted Hamiltonian stationary

for a Lagrangian immersionF : L → M into an almost Calabi–Yau manifold (M,ω, g, J,Ω)
with ψ defined by (9).

DEFINITION 4.1. Let θF be the Lagrangian angle of F : L → M . If 	f θF = 0 then
we call F : L → M a weighted Hamiltonian stationary Lagrangian submanifold.



WEIGHTED HAMILTONIAN STATIONARY LAGRANGIAN SUBMANIFOLDS 339

Here f is a function on L defined by f := −mF ∗ψ and 	f is the weighted Laplacian
on Riemannian manifold (L, F ∗g). In general, for a Riemannian manifold (N, h) with a
function f , the weighted Laplacian with respect to f is defined by	f u := 	u+ 〈∇u,∇f 〉.
Thus, ifM is a Calabi–Yau manifold, that is, ψ = 0, then the notion of weighted Hamiltonian
stationary is equivalent to the Hamiltonian stationary condition, namely 	θF = 0. For the
meaning of the weighted Hamiltonian stationary condition, see Appendix A. Note that 	f is
the standard Laplace operator on L with respect to a Riemannian metric F ∗(e2ψg).

In this section, we compute the Lagrangian angle of our example Fζ,c : Lζ,c → M

constructed in Section 3, and show some properties of Fζ,c : Lζ,c → M .
Let (M,ω, g, J,Ωγ ) be an m-dimensional toric almost Calabi–Yau manifold and Fζ,c :

Lζ,c → M be a Lagrangian immersion constructed by ζ = {ζ1, . . . , ζn} ⊂ g and c =
{c1, . . . , cn} ⊂ R, explained in Section 3.

THEOREM 4.2. The Lagrangian angle θ of Fζ,c : Lζ,c → M is given by

θ(x) = 2π〈γ, v〉 + π

2
n mod π

for x = (p, v) in Lζ,c = Mσ
ζ,c × U in the case (I) and for x = (p, [v]) in Lζ,c = Mσ

ζ,c × Tζ

in the case (II).

PROOF. In this proof, we write Fζ,c by F for short. It is clear that we only have to prove
in the case (I). Let Mσ be the real form of M and g be a Lie algebra of T m. We define a map
F̃ : Mσ × g → M by

F̃ (p, v) := exp(v) · p .
Remember thatLζ,c = Mσ

ζ,c×U , andMσ
ζ,c is an (m−n)-dimensional submanifold inMσ and

U is an n-dimensional submanifold in g. Thus we have the inclusion map Lζ,c into Mσ × g

by

ι = (ι1, ι2) : Lζ,c = Mσ
ζ,c × U ↪→ Mσ × g .

Then the map F : Lζ,c → M coincides with F̃ ◦ ι by the definition of F , so we compute
ι∗(F̃ ∗Ωγ ) to compute F ∗Ωγ . It is enough to prove this theorem on an open dense (C∗)m-
orbit, so we take a logarithmic holomorphic coordinates (z1, . . . , zm), then (x1, . . . , xm)

define local coordinates on the real form Mσ , where zj = xj + iyj . Let (t1, . . . , tm) be
coordinates of g ∼= R

m, then we have a local expression of a map F̃ : Mσ × g → M by

F̃ (x1, . . . , xm, t1, . . . , tm) = (x1 + 2πit1, . . . , xm + 2πitm) .

Since Ωγ = eγ1z
1+···+γmzmdz1 ∧ · · · ∧ dzm, we have

F̃ ∗Ωγ = e(γ1x
1+···+γmxm)+2πi(γ1t

1+···+γmtm)(dx1 + 2πidt1) ∧ · · · ∧ (dxm + 2πidtm) .

Since Lζ,c = Mσ
ζ,c ×U , andMσ

ζ,c is an (m− n)-dimensional submanifold in Mσ and U is an

n-dimensional submanifold in g, in the expansion of (dx1 +2πidt1)∧· · ·∧ (dxm+2πidtm),
differential forms such as

(2πi)ndxI ∧ dtJ
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with �I = m − n and �J = n do not vanish after pull-back by ι, and other forms vanish,
where I and J are multi-indices. Thus the argument of F ∗Ωγ = ι∗(F̃ ∗Ωγ ) at (p, v) is the
argument of

(2πi)ne〈γ,p〉+2πi〈γ,v〉 ,
that is, 2π〈γ, v〉 + π

2 n mod π . �

Then the following corollary is clear.

COROLLARY 4.3. Fζ,c : Lζ,c → M is a special Lagrangian submanifold if and only
if 〈γ, ζi〉 = 0 for all i = 1, . . . , n.

REMARK 4.4. It is clear that the real form Mσ , that is the case of n = 0, is always
a special Lagrangian submanifold, and every torus fiber, that is the case of n = m, is not a
special Lagrangian submanifold with respect to this holomorphic volume form Ωγ . If M =
Cm, we take γ = (1, . . . , 1), see also Example 6.1. Then the special Lagrangian condition
(1) by Joyce introduced in Section 1 coincides with the condition 〈γ, a〉 = 0 in Corollary 4.3.

THEOREM 4.5. Fζ,c : Lζ,c → M is weighted Hamiltonian stationary.

PROOF. In this proof, we write Fζ,c byF for short. We only have to prove that	f θ = 0
in the case (I) thatLζ,c = Mσ

ζ,c×U . As noted above,	f is the standard Laplace operator onL

with respect to a Riemannian metric F ∗(e2ψg). Since g is invariant under the torus action and
it is easily seen that ψ is also torus invariant by the equation (7) and (9), so the metric e2ψg

is also a torus invariant metric on M . Since F : Lζ,c → M is given by F(p, v) := exp(v) · p
and e2ψg is a torus invariant metric on M , the metric F ∗(e2ψg) on L is independent of the
U -factor of Lζ,c. Furthermore, in the proof of Theorem 3.7 we prove that F∗(TMσ

ζ,c) and

F∗(T U) are orthogonal, thus F ∗(e2ψg) is a product metric over Mσ
ζ,c and U locally. By

Theorem 4.2, the Lagrangian angle is given by θ(p, v) = 2π〈γ, v〉+ π
2 n, it is independent of

Mσ
ζ,c-factor of Lζ,c and affine on U -factor. Then one can easily prove that 	f θ = 0. �

5. Mean curvature flow. In this section, we consider generalized Lagrangian mean
curvature flows. In general, a generalized Lagrangian mean curvature flow is defined in an
almost Calabi–Yau manifold (M,ω, g, J,Ω). Let F0 : L → M be a Lagrangian immersion,
then a one parameter family of Lagrangian submanifolds F : L× I → M is called a solution
of a generalized Lagrangian mean curvature flow with initial condition F0, if it moves along
its generalized Lagrangian mean curvature vector field K defined in (8), that is,

(
∂F

∂t

)⊥
= Kt and F(·, 0) = F0,(11)

where Kt is the generalized Lagrangian mean curvature vector field of immersion Ft : L →
M defined by Ft (p) := F(p, t). Of course, ifM is a Calabi–Yau manifold then a generalized
Lagrangian mean curvature flow is an ordinary Lagrangian mean curvature flow. It is clear that
K = 0 on a special Lagrangian submanifold by the equation (10), thus a special Lagrangian
submanifold is a stationary solution of a generalized Lagrangian mean curvature flow. In
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general, a generalized Lagrangian mean curvature flow develops some singularities in a finite
time, so here we define a notion of a generalized Lagrangian mean curvature flow with some
singularities and topological changes.

DEFINITION 5.1. Let (M,ω, g, J,Ω) be a real 2m-dimensional almost Calabi–Yau
manifold and {Lt }t∈I be a one parameter family of subsets in M . Then we call {Lt }t∈I a
solution of a generalized Lagrangian mean curvature flow with singularities and topological
changes if there exists a real m-dimensional manifold L and a solution of a generalized La-
grangian mean curvature flow F : L × I → M such that Ft : L → M is an embedding into
Lt and m-dimensional Hausdorff measure of Lt \ Ft (L) is zero, i.e.

Ft(L) ⊂ Lt and Hm(Lt \ Ft (L)) = 0 .(12)

It means that {Lt }t∈I is almost parametrized by a smooth solution of a generalized Lagrangian
mean curvature flow.

The purpose of this section is to observe how our concrete examples Fζ,c : Lζ,c → M

move along the generalized Lagrangian mean curvature flow. Let (M,ω, g, J,Ωγ ) be a toric
almost Calabi–Yau manifold and Fζ,c : Lζ,c → M be a Lagrangian submanifold constructed
in Section 3 by data ζ = {ζ1, . . . , ζn} ⊂ g and c = {c1, . . . , cn} ⊂ R. Let

ci(t) := ci − 2π〈γ, ζi〉t
for t ∈ R and we denote c(t) := {c1(t), . . . , cn(t)}. We define an open interval I by

I :=
{
t ∈ R

∣∣∣∣ Int	 ∩
( n⋂
i=1

Hζi,ci(t)

)
�= ∅

}
,

by the assumption of ζ and c we have 0 ∈ I .

THEOREM 5.2. A one parameter family of subsets {L′
ζ,c(t)

}t∈I defined by (4) in the
case (I) or by (5) in the case (II) is a solution of a generalized Lagrangian mean curvature
flow with singularities and topological changes.

PROOF. It is sufficient to prove this theorem in the case (I). First we define

	′′
ζ,c(t) := Int	 ∩

( n⋂
i=1

Hζi,ci (t)

)
.

Remember that 	ζ,c(t) is defined by

	ζ,c(t) := 	 ∩
( n⋂
i=1

Hζi,ci (t)

)
.

Since 	ζ,c(t) \	′′
ζ,c(t) is contained in ∂	ζ,c(t), it is clear that (m− n)-dimensional Hausdorff

measure of 	ζ,c(t) \	′′
ζ,c(t) is zero. Since each 	′′

ζ,c(t) is an (m − n)-dimensional connected
convex affine open subset in Rm, all 	′′

ζ,c(t) are diffeomorphic to each other.
Next we define

M ′′σ
ζ,c(t) := (μσ )−1(	′′

ζ,c(t)) and L′′
ζ,c(t) := M ′′σ

ζ,c(t) × U .
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Then M ′′σ
ζ,c(t) is an (m − n)-dimensional open dense submanifold in M , and L′′

ζ,c(t) is an
m-dimensional open dense submanifold in Lζ,c(t). As same as 	′′

ζ,c(t), all M ′′σ
ζ,c(t) are diffeo-

morphic to each other, and (m − n)-dimensional Hausdorff measure of Mσ
ζ,c(t) \ M ′′σ

ζ,c(t) is
zero, andm-dimensional Hausdorff measure of Lζ,c(t) \L′′

ζ,c(t) is also zero. Thus we can take
a one parameter family of diffeomorphisms

Gt : M ′′σ
ζ,c → M ′′σ

ζ,c(t) ,

for all t ∈ I , andGt induces a one parameter family of diffeomorphisms

G̃t : L′′
ζ,c → L′′

ζ,c(t)

by G̃t (p, v) := (Gt(p), v). Then we have a one parameter family of maps F : L′′
ζ,c×I → M

by

Ft(p, v) := Fζ,c(t) ◦ G̃t (p, v) = exp(v) ·Gt(p) .
It is clear that

Ft(L
′′
ζ,c) = Fζ,c(t)(G̃t (L

′′
ζ,c)) = Fζ,c(t)(L

′′
ζ,c(t)) ⊂ L′

ζ,c(t) ,

where remember that

L′
ζ,c(t) = {exp(v) · p | v ∈ U, p ∈ Mσ , 〈μ(p), ζj 〉 = cj (t), j = 1, . . . , n} .

Since torus action is free on M ′′σ
ζ,c(t), one can easily prove that Ft is embedding for all t , and

m-dimensional Hausdorff measure of L′
ζ,c(t) \ Ft (L′′

ζ,c) is zero.
Hence the remainder we have to prove is to prove that F : L′′

ζ,c× I → M is a solution of
a generalized Lagrangian mean curvature flow. Since both Kt and the normal part of ∂F/∂t
are sections of normal bundle and Ft : L′′

ζ,c → M is a Lagrangian submanifold, it is enough
to prove

ω

(
∂F

∂t
, Ft∗Z

)
= ω(Kt , Ft∗Z)(13)

for all tangent vectors Z on L′′
ζ,c to prove the equation (11). Fix a point x = (p, v) in L′′

ζ,c =
M ′′σ
ζ,c × U . Since we have a decomposition

TxL
′′
ζ,c = TpM

′′σ
ζ,c ⊕ TvU

and note that TvU ∼= Vζ , a tangent vectorZ is written by Z = X+Y for some tangent vectors
X in TpM ′′σ

ζ,c and Y in Vζ . For X and Y , we have

Ft∗X = exp(v)∗(Gt∗X) and Ft∗Y = exp(v)∗(YGt (p)) .

For X, we have

ω

(
∂F

∂t
, Ft∗X

)
= ω

(
exp(v)∗

(
∂G

∂t

)
, exp(v)∗(Gt∗X)

)
= ω

(
∂G

∂t
,Gt∗X

)
= 0 .



WEIGHTED HAMILTONIAN STATIONARY LAGRANGIAN SUBMANIFOLDS 343

The second equality follows from the torus invariance of ω, and the third equality follows
from that both ∂G/∂t andGt∗X are tangent to real form and it is a Lagrangian. If we use the
equation (10), we have

ω(Kt , Ft∗X) = ω(J∇θFt , Ft∗X) = −g(∇θFt , Ft∗X) = −XθFt = 0 ,

since θFt (p, v) = 2π〈γ, v〉 + π
2 n by Theorem 4.2 and it is independent of M ′′σ

ζ,c part. Thus
the equation (13) holds for X. Next, for Y , we have

ω

(
∂F

∂t
, Ft∗Y

)
= ω

(
∂G

∂t
, YGt (p)

)
= ∂G

∂t
〈μ, Y 〉 = ∂

∂t
〈μ ◦Gt , Y 〉

= ∂

∂t
〈μ ◦Gt , a1ζ1 + · · · + anζn〉

= ∂

∂t
(a1c1(t)+ · · · + ancn(t))

= −2π〈γ, Y 〉 .
The second equality follows from the assumption of the moment map μ. In the fourth equality
we put Y = a1ζ1 + · · · + anζn for some coefficients ai and the fifth equality follows from
the definition of M ′′σ

ζ,c(t). In the last equality, remember that ci(t) is defined by ci(t) := ci −
2π〈γ, ζi〉t . If we use the equation (10), we have

ω(Kt , Ft∗Y ) = ω(J∇θFt , Ft∗Y ) = −g(∇θFt , Ft∗Y ) = −YθFt = −2π〈γ, Y 〉 .
Thus the equation (13) holds for Y and it is proved that F : L′′

ζ,c × I → M is a solution of a
generalized Lagrangian mean curvature flow. �

6. Examples. In this section, we give some examples of our main theorems. First we
explain that if the ambient space M is Cm then our examples coincide with those constructed
by Lee and Wang in [8].

EXAMPLE 6.1. Let (Cm,ω, g, J,Ω) be a standard complex plane with a holomorphic
volume form Ω = dw1 ∧ · · · ∧ dwm by the standard coordinates w. If we write wi = ezi

where wi �= 0, then Ω is written by Ω = ez1+···+zmdz1 ∧ · · · ∧ dzm. Hence we can take γ
as γ = (1, . . . , 1). A moment map is given by μ(w) = 1

2 (|w1|2, . . . , |wm|2) and a moment
polytope is given by

	 = {y ∈ R
m | 〈y, λi〉 ≥ 0, i = 1, . . . ,m} ,

where λi := ei , the i-th standard base, and then we have 〈γ, λi〉 = 1 for all i. The real form
of Cm is Rm and note that Rm can be constructed by gluing from 2m-copies of 	. Take one
vector ζ = (ζ1, . . . , ζm) ∈ Rm satisfying 〈γ, ζ 〉 > 0 and c = 0. Since

c(t) = c − 2π〈γ, ζ 〉t = −2πt〈γ, ζ 〉 = −2πt
m∑
j=1

ζj

and 	ζ,c(t) = { y ∈ 	 | 〈y, ζ 〉 = c(t) }, we have

Mσ
ζ,c(t) = (μ|Rm)−1(	ζ,c(t))
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=
{
x ∈ R

m

∣∣∣∣
m∑
j=1

ζjx
2
j = −4πt

m∑
j=1

ζj

}
,

and L′
ζ,c(t), the image of Fζ,c(t) : Lζ,c → Cm, is given by

L′
ζ,c(t) =

{
(x1e

2πiζ1s , . . . , xme
2πiζms) ∈ C

m

∣∣∣∣ 0 ≤ s ≤ 1,

m∑
j=1

ζjx
2
j = −4πt

m∑
j=1

ζj , x = (x1, . . . , xm) ∈ R
m

}
.

This L′
ζ,c(t) coincides with Vt in Theorem 1.1 in [8], and Lee and Wang proved that Vt is

Hamiltonian stationary and {Vt }t∈R forms an eternal solution for Brakke flow. Hence our
theorems can be considered as a kind of generalization of example of Lee and Wang to toric
almost Calabi–Yau manifolds.

EXAMPLE 6.2. Let M = K
P2 be the total space of the canonical line bundle of P2.

Then a moment polytope is given by	 = { y ∈ R3 | 〈y, λi〉 ≥ κi, i = 1, . . . , 4 }, where

λ1 = (0, 0, 1) , λ2 = (1, 0, 1) , λ3 = (0, 1, 1) , λ4 = (−1,−1, 1)

and κ1 = κ2 = κ3 = 0, κ4 = −1. Of course, M is a toric almost Calabi–Yau manifold since
we can take γ = (0, 0, 1) so that 〈γ, λi〉 = 1 for all i. For example, take n = 1, and take one
vector and one constant as

ζ = (3, 1, 5) and c = 5 .

Then 	ζ,c(t) is written by

	ζ,c(t) = {y ∈ 	 | 〈y, ζ 〉 = 5 − 10πt} ,
since c(t) = c− 2π〈γ, ζ 〉t and t ≥ 0. We write each facet of 	 by Fi := { y ∈ 	 | 〈y, λi 〉 =
κi } for i = 1, 2, 3, 4.

By simple calculation, one can easily see the following.

• On 0 ≤ t < 1
5π , 	ζ,c(t) intersects with F2, F3 and F4, so 	ζ,c(t) is a triangle.

• At t = 1
5π , 	ζ,c(t) across (1, 0, 0), a vertex of 	, and a topological change happens.

• On 1
5π < t < 2

5π , 	ζ,c(t) intersects with F1, F2, F3 and F4, so 	ζ,c(t) is a square.
• At t = 2

5π , 	ζ,c(t) across (0, 1, 0), a vertex of 	, and a topological change happens.
• On 2

5π < t < 1
2π , 	ζ,c(t) intersects with F1, F2 and F3, so 	ζ,c(t) is a triangle.

• At t = 1
2π , 	ζ,c(t) is one point {(0, 0, 0)}, this means that	ζ,c(t) vanishes.

Hence a solution {L′
ζ,c(t)}t∈I of a generalized Lagrangian mean curvature flow with singular-

ities and topological changes exists for t ∈ I = [0, 1
2π ). It forms singularities and topological

changes when t = 1
5π and t = 2

5π , and vanishes when t = 1
2π .

One can see the topology of Lζ,c(t) = Mσ
ζ,c(t) × S1 (since now Tζ ∼= S1) by the same

argument as explained in the proof of Proposition A.3 in [13]. In fact the topology of Mσ
ζ,c(t)

is S2 when 0 ≤ t < 1
5π , is T 2 when 1

5π < t < 2
5π , is S2 when 2

5π < t < 1
2π .
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Appendix A. In Section 4, we introduce the notion of the weighted Hamiltonian
stationary. In this appendix, we explain the meaning of it. Let (M,ω, g, J,Ω) be a 2m-
dimensional almost Calabi–Yau manifold with the functionψ defined by (9) and F : L → M

be a Lagrangian immersion with the Lagrangian angle θF . Then we say that F : L → M

is a weighted Hamiltonian stationary if 	f θF = 0. Here f is a function on L defined by
f := −mF ∗ψ and 	f is the weighted Laplacian on Riemannian manifold (L, F ∗g) defined
by	f u := 	u+ 〈∇u,∇f 〉, where	 is the standard Laplacian on L with respect to a metric
F ∗g .

Let g̃ := e2ψg be a conformal rescaling of g on M , then we get a new Riemannian
manifold (M, g̃). For an immersion F : L → M , we define a weighted volume functional
Volψ by

Volψ(F ) :=
∫
L

dVF ∗g̃ ,

where dVF ∗g̃ is the volume form on L with respect to a metric F ∗g̃ . Note that the relation
between dVF ∗g̃ and dVF ∗g is given by

dVF ∗g̃ = emF
∗ψdVF ∗g = e−f dVF ∗g .

Then we consider a symplectic manifold (M,ω) with the weighted volume functional Volψ .
The following proposition is the meaning of the weighted Hamiltonian stationary.

PROPOSITION A.1. A Lagrangian immersion F : L → M is weighted Hamiltonian
stationary if and only if F is a critical point of the weighted volume functional Volψ along
Hamiltonian deformations with respect to ω.

PROOF. Let {Ft : L → M}t be a Hamiltonian deformation of F with Hamiltonian
functions {ht : L → R}t , that is, F0 = F and

ω

(
∂F

∂t
, ·

)
= −dht .(14)

If L is non-compact, we assume that each ht has a compact support. Then the first variation
of Volψ at F along {Ft : L → M}t is derived by the first variation formula as

d

dt

∣∣∣∣
t=0

Volψ(Ft )= d

dt

∣∣∣∣
t=0

∫
L

emF
∗
t ψdVF ∗

t g

= −
∫
L

g

(
emF

∗ψH −memF
∗ψ∇ψ⊥, ∂F

∂t

∣∣∣∣
t=0

)
dVF ∗g

= −
∫
L

g

(
H −m∇ψ⊥, ∂F

∂t

∣∣∣∣
t=0

)
e−f dVF ∗g .

Next we remember the definition of the generalized mean curvature vector filed K , see (8),
and use the equation (10), then we have
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−
∫
L

g

(
H −m∇ψ⊥, ∂F

∂t

∣∣∣∣
t=0

)
e−f dVF ∗g = −

∫
L

g

(
K,

∂F

∂t

∣∣∣∣
t=0

)
e−f dVF ∗g

= −
∫
L

g

(
J∇θF , ∂F

∂t

∣∣∣∣
t=0

)
e−f dVF ∗g .

Since the equation (14) is equivalent to ∂F
∂t

= J∇ht , we have

−
∫
L

g

(
J∇θF , ∂F

∂t

∣∣∣∣
t=0

)
e−f dVF ∗g = −

∫
L

g(J∇θF , J∇h0)e
−f dVF ∗g

= −
∫
L

〈dθF , dh0〉F ∗ge−f dVF ∗g

= −
∫
L

(	f θF )h0e
−f dVF ∗g

= −
∫
L

(	f θF )h0dVF ∗g̃ .

In the third equality, we use the another definition of 	fu = δf (du), where δf is the for-
mal adjoint of d with respect to a weighted measure e−f dVF ∗g . One can easily show that
δf (du) = 	u+〈∇u,∇f 〉F ∗g . Now we can take any h0, thus it is clear that the first variation
of Volψ at F along all Hamiltonian deformations is zero if and only if 	f θF = 0. �
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