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Abstract. A fundamental result of toric geometry is that there is a bijection between
toric varieties and fans. More generally, it is known that some classes of manifolds having
well-behaved torus actions, say toric objects, can be classified in terms of combinatorial data
containing simplicial complexes.

In this paper, we investigate the relationship between the topological toric manifolds
over a simplicial complex K and those over the complex obtained by simplicial wedge opera-
tions from K. Our result provides a systematic way to classify toric objects associated with the
class of simplicial complexes obtained from a given K by wedge operations. As applications,
we completely classify smooth toric varieties with a few generators and show their projectivity.
We also study smooth real toric varieties.
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1. Introduction. A toric variety, which arose in the field of algebraic geometry, of
dimension n is a normal algebraic variety with an action of an algebraic torus (C∗)n having
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a dense orbit. A compact smooth toric variety is sometimes called a toric manifold. By re-
garding S1 as the unit circle in C∗, there is a natural action of T n = (S1)n ⊂ (C∗)n on a
toric variety. Instead of an algebraic torus action on an algebraic variety, one could think of a
smooth torus (T n or (C∗)n) action on a smooth manifold. Since the pioneering work of Davis
and Januszkiewicz [7], a number of categories of manifolds which admit certain torus actions
have been proposed as topological analogues of smooth toric varieties.

A torus manifold introduced in [17] is a closed smooth orientable manifold of dimension
2n which admits an effective T n-action with the non-empty fixed points set. Since every toric
manifold admits a T n-action, any compact smooth toric variety is a torus manifold.

A quasitoric manifold∗ introduced in [7] is a closed smooth 2n-manifold M with an
effective T n-action such that

(1) the torus action is locally standard: i.e., it is locally isomorphic to the standard action
of T n on R2n,

(2) the orbit space M/T n can be identified with a simple polytope Pn.

A quasitoric manifold is surely a torus manifold. Moreover, every smooth projective toric
variety is a quasitoric manifold. As far as the authors know, there is no known example of
a (non-projective) toric manifold whose T n-orbit is not a simple polytope. In other words,
every known example of toric manifolds is a quasitoric manifold.

A topological toric manifold defined in [18] is a closed smooth 2n-manifold M with an
effective smooth (C∗)n-action such that there is an open and dense orbit and M is covered
by finitely many invariant open subsets each of which is equivariantly diffeomorphic to a
smooth representation space of (C∗)n. Every topological toric manifold is a torus manifold.
Furthermore, every toric manifold and quasitoric manifold is a topological toric manifold by
[18]. Therefore, we obtain a diagram of inclusions of manifolds equipped with torus actions:

FIGURE 1. Hierarchy of toric objects.

∗The authors would like to indicate that the notion of quasitoric manifolds originally appeared under the name
“toric manifolds” in [7]. Later, it was renamed in [3] in order to avoid confusion with smooth compact toric varieties.
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The theory of toric varieties has been grown up very highly for the last decades. One of
the most important results for toric varieties is that there is a bijection between toric varieties
and fans. Roughly speaking, a fan is a collection of strongly convex rational cones in Rn

satisfying that each face of cones and each intersection of a finite number of cones are also in
the fan. A fan is said to be complete if the union of all cones covers the whole space Rn, and is
said to be non-singular if one-dimensional faces (simply, rays) of each cone are unimodular in
Zn. It is known that a toric variety is compact (resp. smooth) if and only if its corresponding
fan is complete (resp. non-singular). Therefore, there is a bijection between toric manifolds
and complete non-singular fans.

We note that a complete non-singular fan can be regarded as a pair of a simplicial com-
plex and the data of rays. That is, for a given complete non-singular fan Σ of dimension n,
one obtains a pair (K, λ), where K is the face complex of Σ and λ is the map which assigns
the primitive integral vector in Z

n representing a ray of Σ to the corresponding vertex of K .
Such a pair (K, λ) is called a characteristic map of dimension n.

Topological toric manifolds (and quasitoric manifolds) also have their characteristic
maps characterizing them, enabling the notation M = M(K, λ). A characteristic map of
dimension n is defined as the pair (K, λ) of an abstract simplicial complex K of dimension
≤ n − 1 and a map λ : V (K) → Z

n so that {λ(i) | i ∈ σ } is a linearly independent set
over R for any face σ of K , where V (K) = [m] is the vertex set of K . Meanwhile, when
M is a quasitoric manifold, K is the face complex of a simplicial polytope. Such a simplicial
complex is said to be polytopal. When M is a topological toric manifold, K is the underlying
simplicial complex of a complete fan. Such a simplicial complex is said to be fan-like.

The completeness and non-singularity of the characteristic maps are defined similarly.
We emphasize that the characteristic map is a useful tool connecting topology of manifolds
and combinatorics of the underlying simplicial complexes.

There is a classical operation of simplicial complexes called the simplicial wedge opera-
tion (refer [28] for example). As shown by Bahri-Bendersky-Cohen-Gitler in [1], it is deeply
related with polyhedral products and generalized moment angle complexes and is gaining
more interests in the field of toric theory. Let K be a simplicial complex with m vertices and
fix a vertex v. Consider a 1-simplex I whose vertices are v1 and v2 and denote by ∂I the
0-skeleton of I . Now, let us define a new simplicial complex on m + 1 vertices, called the
(simplicial ) wedge of K at v, denoted by wedgev(K), by

wedgev(K) = (I � LkK {v}) ∪ (∂I � (K \ {v})) ,

where K \ {v} is the induced subcomplex with m − 1 vertices except v, the LkK {v} is the
link of v in K , and � is the join operation of simplicial complexes. Let P be a simple poly-
tope whose face structure is K . A wedge of P is defined as the simple polytope whose face
structure is isomorphic to a wedge of K . For a given characteristic map (K, λ), a fixed ver-
tex v ∈ K , and the associated topological toric manifold M , there is a natural construction
of a new topological toric manifold, whose underlying complex is wedgev(K), called the
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canonical extension of M at v. This concept is originally due to Ewald (the namer of “canon-
ical extension”) [10] for toric manifolds and Bahri-Bendersky-Cohen-Gitler [1] for quasitoric
manifolds. Let (K, λ) be a characteristic map of dimension n and σ a face of K such that the
vectors λ(i), i ∈ σ , are unimodular. Then a characteristic map (LkK σ, Projσ λ), called the
projected characteristic map, is defined by the map

(Projσ λ)(v) = [λ(v)] ∈ Z
n/〈λ(w) | w ∈ σ 〉 ∼= Z

n−|σ | .

The canonical extension of (K, λ) is determined by the characteristic map (wedgev(K), λ′)
where Projv1

λ′ = Projv2
λ′ = λ.

Generalizing this concept, we try to find every non-singular characteristic map whose
underlying simplicial complex is wedgev(K). Let K be a fan-like simplicial sphere of dimen-
sion n − 1 equipped with an orientation o as a simplicial manifold. Then the characteristic
map (K, λ) is said to be positively oriented if the sign of det(λ(i1), . . . , λ(in)) coincides with
o(σ) for any oriented maximal simplex σ = (i1, . . . , in) ∈ K .

The following is our main result:

THEOREM 1.1. Let K be a fan-like simplicial sphere and v a given vertex of K .
Let (wedgev(K), λ) be a characteristic map and let v1 and v2 be the two new vertices of
wedgev(K) created from the wedging. Let us assume that {λ(v1), λ(v2)} is a unimodular set.
Then λ is uniquely determined by the projections Projv1

λ and Projv2
λ. Furthermore,

(1) λ is non-singular if and only if so are Projv1
λ and Projv2

λ.
(2) λ is positively oriented if and only if so are Projv1

λ and Projv2
λ.

(3) λ is fan-giving if and only if so are Projv1
λ and Projv2

λ.

Combining this with the fact that K is polytopal if and only if its wedge is polytopal, we
can say:

• If one knows every topological toric manifold over K , then we know every topologi-
cal toric manifold over a wedge of K .
• If one knows every quasitoric manifold over P , then we know every quasitoric man-

ifold over a wedge of P .
• If one knows every toric manifold over K , then we know every toric manifold over a

wedge of K .

We sometimes use the colloquial term “toric objects” to indicate one of the three categories.
In this paper, we would claim that the above theorem is efficiently applicable to classify toric
objects, and, hence, we can easily deduce the properties of given toric objects. In fact, we
have many applications as below.

To classify toric manifolds or topological toric manifolds, it seems natural to classify
their underlying simplicial complexes first. Let m be the number of rays of a complete non-
singular fan of dimension n, and K the corresponding simplicial complex of dimension n−1.
The Picard number of K , denoted by Pic(K), is defined as m−n.† For instance, if Pic(K) = 1,

†It coincides with the Picard number of the corresponding toric variety.
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then K is the boundary complex of the n-simplex. It is known that only CPn is the toric
manifold supported by K . If Pic(K) = 2, then K is the join of boundaries of two simplices
(see [15]), and all toric manifolds over K are classified by Kleinschmidt [20]. More generally,
every toric manifold over the join of boundaries of simplices is known as a generalized Bott
manifold. Such manifolds are studied by several literatures such as [27], [2], [8], [6].

However, not all simplicial spheres of Pic(K) = 3 support a toric manifold. Due to [13],
we have the complete criterion of simplicial complexes to support a toric manifold, and using
this, Batyrev [2] classified toric manifolds with Picard number 3 as varieties. In this paper,
we observe that every simplicial complex with Pic(K) = 3 supporting smooth toric varieties
is obtainable by a sequence of wedge operations from either a cross polytope or a penta-
gon (recall that the n-cross polytope is the dual of the n-cube). Hence, as an application of
Theorem 1.1, we classify toric manifolds with Picard number 3 up to Davis-Januszkiewicz
equivalence as quasitoric manifolds. Then, using the symmetry of a pentagon, we can get also
the classification as varieties which is a reproving of the Batyrev’s result. It should be noted
that our method does not need projectivity of the toric varieties while it is important in [2].
Indeed, we can show that they are projective in our own way as mentioned below.

In the category of projective toric varieties, the situation does not go very well like The-
orem 1.1. In fact, there is a (singular) non-projective toric variety over wedgev(K) whose
projections with respect to v1 and v2 are projective respectively. But we can still show pro-
jectivity of some families of toric varieties, containing toric manifolds with Picard number
3, with Shephard’s projectivity criterion [29], [10]. The fact that every toric manifold of
Pic(K) ≤ 3 is projective was originally shown by [21], but their method was lengthy and
cumbersome case-by-case approach and the paper does not contain the whole proof due to
its length and repetitive calculations. In Section 6, a new and complete proof of the fact will
be given. Moreover, we will provide a criterion for a compact (singular) toric variety over
the join of boundaries of simplices with arbitrary Picard number to be projective. We note
that when such a toric variety is smooth, it is known as a generalized Bott manifold which is
always projective.

When M is a toric variety of complex dimension n, there is a canonical involution on
M and its fixed points form a real subvariety of real dimension n, called a real toric variety.
Similarly, there are “real” versions of topological toric manifolds and quasitoric manifolds
called real topological toric manifolds and small covers, respectively. Such real analogues of
toric objects also can be described as a Z2-version of characteristic map (K, λ), that is, the
codomain of λ is Zn

2 instead of Zn. The map Projv(λ) of a characteristic map over Z2 also can
be defined similarly. Then, we have the Z2-version of Theorem 1.1 as the following:

THEOREM 1.2. Let K be a fan-like simplicial sphere and v a given vertex of K . Let
(wedgev(K), λ) be a characteristic map over Z2 and let v1 and v2 be the two new ver-
tices of wedgev(K) created from the wedging. Then λ is uniquely determined by the pro-
jections Projv1

λ and Projv2
λ. Furthermore, λ is non-singular if and only if so are Projv1

λ

and Projv2
λ.
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As corollaries, we classify and enumerate real topological toric manifolds and smooth
real toric varieties with Picard number 3. By [6], every real topological toric manifold over
the join of boundaries of simplices are indeed a real toric variety known as a generalized real
Bott manifold. Moreover, the classification of real toric manifolds over the join of boundaries
of simplices is given in [6], and the number of generalized real Bott manifolds with Picard
number 3 is presented in [5]. In this paper, if K with Pic(K) = 3 supports a real topological
toric manifold, then K should be obtainable by a sequence of wedge operations from a 3-cross
polytope, a pentagon, or a 4-cyclic polytope with 7 vertices. Equivalently, a Gale diagram of
K is a triangle, a pentagon, or a heptagon. Furthermore, we will give a complete classification
of them up to Davis-Januszkiewicz equivalence, and count them. In particular, when P is a
simple polytope whose Gale diagram is a pentagon with assigned numbers (a1, a3, a5, a2, a4),
every real topological toric manifold over P is a real toric variety, and the number #DJ of them
up to Davis-Januszkiewicz equivalence is

#DJ = 2a1+a4−1 + 2a2+a5−1 + 2a3+a1−1 + 2a4+a2−1 + 2a5+a3−1 − 5 .

When P is a polytope whose Gale diagram is a heptagon with arbitrary assigned numbers, no
real topological toric manifold over P is a real toric variety, and we have #DJ = 2. Mean-
while, although such a manifold is not a real toric variety, we can see that any characteristic
map (∂P ∗, λ) over Z2 is congruent to some characteristic map (∂P ∗, λ̃) over Z up to mod-
ulo 2. This observation provides an affirmative partial answer to so-called the lifting problem
which asks whether for given K , any real topological toric manifold over K can be realized
as fixed points of the conjugation of a topological toric manifold or not. That is, the answer
to the lifting problem is affirmative for Pic(K) ≤ 3.

The paper is organized as follows. In Section 2, we define wedge operations of simpli-
cial complexes and study some of their properties related to toric objects. In Section 3, we
introduce some categories containing toric objects and their associated combinatorial objects
such as fans, multi-fans, and characteristic maps. In Section 4 we prove the main result. In
Section 5, we introduce the Shephard diagram and Shephard’s criterion of projectivity of toric
varieties. In Section 6, as an application of the main result, we give a classification of smooth
toric varieties of Picard number 3. In Section 7, we prove that smooth toric varieties of Picard
number 3 are projective and give a criterion of when a toric variety over the join of bound-
aries of simplices is projective. We classify and count real topological toric manifolds over K

with Pic(K) = 3 in Section 8. Lastly, we introduce the lifting problem of topological toric
manifolds over K and prove it for Pic(K) ≤ 3 in Section 9.

2. Wedge operations of simplicial complexes. A simplicial complex K on a finite
set V is a collection of subsets of V satisfying

(1) if v ∈ V , then {v} ∈ K ,
(2) if σ ∈ K and τ ⊂ σ , then τ ∈ K .

Each element σ ∈ K is called a face of K . The dimension of σ is defined by dim(σ ) =
|σ | − 1. The dimension of K is defined by dim(K) = max{dim(σ ) | σ ∈ K}.
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FIGURE 2. Illustration of a wedge of K.

There is a useful way to construct new simplicial complexes from a given simplicial
complex introduced in [1]. We briefly present the construction here. Let K be a simplicial
complex of dimension n− 1 on vertices V = [m] = {1, 2, . . . ,m}. A subset τ ⊂ V is called
a non-face of K if it is not a face of K . A non-face τ is minimal if any proper subset of τ is a
face of K . Note that a simplicial complex is determined by its minimal non-faces.

In the setting above, let J = (j1, . . . , jm) be a vector of positive integers. Denote by
K(J ) the simplicial complex on vertices

{11, 12, . . . , 1j1︸ ︷︷ ︸, 21, 22, . . . , 2j2︸ ︷︷ ︸, . . . ,m1, . . . ,mjm︸ ︷︷ ︸}
with minimal non-faces

{(i1)1, . . . , (i1)ji1︸ ︷︷ ︸, (i2)1, . . . , (i2)ji2︸ ︷︷ ︸, . . . , (ik)1, . . . , (ik)jik︸ ︷︷ ︸}
for each minimal non-face {i1, . . . , ik} of K .

There is another way to construct K(J ) called the simplicial wedge construction. Recall
that for a face σ of a simplicial complex K , the link of σ in K is the subcomplex

LkK σ := {τ ∈ K | σ ∪ τ ∈ K, σ ∩ τ = ∅}
and the join of two disjoint simplicial complexes K1 and K2 is defined by

K1 � K2 = {σ1 ∪ σ2 | σ1 ∈ K1, σ2 ∈ K2} .
Let K be a simplicial complex with vertex set [m] and fix a vertex i in K . Consider a 1-
simplex I whose vertices are i1 and i2 and denote by ∂I = {i1, i2} the 0-skeleton of I . Now,
let us define a new simplicial complex on m+ 1 vertices, called the (simplicial) wedge of K

at i, denoted by wedgei (K), by

wedgei (K) = (I � LkK {i}) ∪ (∂I � (K \ {i})) ,

where K \ {i} is the induced subcomplex with m− 1 vertices except i. The operation itself is
called the simplicial wedge operation or the (simplicial) wedging. See Figure 2.

It is an easy observation to show that wedgei (K) = K(J ) where J = (1, . . . , 1, 2, 1,

. . . , 1) is the m-tuple with 2 as the i-th entry. By consecutive application of this construction
starting from J = (1, . . . , 1), we can produce K(J ) for any J . Although there is some
ambiguity to proceed from J = (j1, . . . , jm) to J ′ = (j1, . . . , ji−1, ji + 1, ji+1, . . . , jm) if
ji ≥ 2, we have no problem since any choice of the vertex yields the same minimal non-faces
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of the resulting complex wedgev(K(J )) = K(J ′) keeping in mind the original definition
of K(J ). In conclusion, one can obtain a simplicial complex K(J ) by successive simplicial
wedge constructions starting from K , independent of order of wedgings.

Related to the simplicial wedging, we recall some hierarchy of simplicial complexes.
Among simplicial complexes, simplicial spheres form a very important subclass.

DEFINITION 2.1. Let K be a simplicial complex of dimension n− 1.

(1) K is called a simplicial sphere of dimension n− 1 if its geometric realization |K| is
homeomorphic to a sphere Sn−1.

(2) K is called star-shaped if there is an embedding of |K| into Rn and a point p ∈
Rn such that any ray from p intersects |K| once and only once. The geometric
realization |K| itself is also called star-shaped.

(3) K is said to be polytopal if there is an embedding of |K| into Rn which is the bound-
ary of a simplicial n-polytope P ∗.

We have a chain of inclusions

simplicial complexes ⊃ simplicial spheres

⊃ star-shaped complexes ⊃ polytopal complexes .

It is worthwhile to observe that each category of simplicial complexes above is closed
under the wedge operation as follows.

PROPOSITION 2.2. Let K be a simplicial complex and v its vertex. Then the follow-
ings hold:

(1) If K is a simplicial sphere, then so is wedgev(K).
(2) wedgev(K) is star-shaped if and only if so is K .
(3) wedgev(K) is polytopal if and only if so is K .

PROOF. To prove (1), we recall the definition of wedgev(K):

wedgev(K) = (I � LkK {v}) ∪ (∂I � (K \ {v})) .

Observe that the join ∂I � K , or the suspension of K , is

∂I � K = (∂I � StK {v}) ∪ (∂I � (K \ {v}) ,

where StK {v} means the closed star of v. Observe that

∂I � StK {v} = ∂I � {pt} � LkK {v}
is a subdivision of I � LkK {v} and therefore the geometric realizations |wedgev(K)| and
|∂I � K| are homeomorphic. But, the suspension of a sphere is again a sphere, so it is done.

Next, we are going to show (2). The ‘only if’ part follows from [17, Section 2] (or see
Lemma 4.2). For ‘if’ part, suppose that K is a star-shaped sphere of dimension n−1. In other
words, there is an embedding |K| into Rn such that the origin is in the kernel of |K|. Fix a
vertex v of |K|. We regard Rn as a hyperplane of Rn+1 so that Rn+1 = {(p, x) | p ∈ Rn, x ∈
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R}. Put A := {(v, 1), (v,−1)} ⊂ Rn+1 and consider the geometric join

A �G |K| := {(1− t)a + tp | 0 ≤ t ≤ 1, a ∈ A, p ∈ |K|} .
We claim that A �G |K| is the wanted geometric realization of wedgev(K) which is star-
shaped. The fact that A�G |K| has the face structure same as wedgev(K) can be shown easily
since the vertex (v, 0) is in the convex hull of A — recall that wedgev(K) is subdivided to
∂I � K by adding a vertex into the edge I . Therefore we remain to show that A �G |K| is
star-shaped in the origin O . Consider a ray R starting from O . It must intersect A �G |K| and
thus we are enough to show the uniqueness of the intersection. Suppose

(1− t)a + tp ∈ R ∩ (A �G |K|)
for some a ∈ A, p ∈ |K|, and 0 ≤ t ≤ 1. The ray R is given by R = {s(1−t)a+stp | s ≥ 0}.
Suppose that

s(1− t)a + stp = (1− t ′)b + t ′p′

for some 0 ≤ t ′ ≤ 1, b ∈ A, and p′ ∈ |K|. There are two cases:

• t = 1. Since Rn+1 = 〈a〉 ⊕ Rn, one has t ′ = 1 and sp = p′. The star-shapedness of
|K| implies s = 1.
• t �= 1. Similarly, one has t ′ �= 1 and b = a. A property of direct sums says that

s(1− t) = 1− t ′ and stp = t ′p′. Hence p = p′, t = t ′ and s = s′.
In conclusion, we have proven that R intersects A �G |K| exactly once.

The proof of (3) could be done similarly to (2), but we introduce a different approach
depicted below. �

When K is polytopal, we often regard K as the boundary complex of a simple polytope
P . To be more precise, let K be the boundary of a simplicial polytope Q. Then the dual
polytope to Q is a simple polytope P . Recall that an n-dimensional polytope P is called
simple if exactly n facets (or codimension 1 faces) intersect at each vertex of P . We follow
[23] to define the notion of the (polytopal) wedge. Let P ⊆ R

n be a polytope of dimension n

and F a face of P . Consider a polyhedron P × [0,∞) ⊆ R
n+1 and identify P with P × {0}.

Pick a hyperplane H in R
n+1 so that H ∩P = F and H intersects the interior of P × [0,∞).

Then H cuts P × [0,∞) into two parts. The part which contains P is an (n + 1)-polytope
and it is combinatorially determined by P and F , and it is called the (polytopal) wedge of P

at F and denoted by wedgeF (P ). Note that wedgeF (P ) is simple if P is simple and F is a
facet of P . See Figure 3.

The next lemma is due to [28].

LEMMA 2.3. Assume that P is a simple polytope and F is a facet of P . Then the
boundary complex of wedgeF (P ) is the same as the simplicial wedge of the boundary complex
of P at F .

PROOF. Let F = {F1, . . . , Fm} be the set of facets of P and put F = F1. Note that
wedgeF (P ) has m+1 facets. Two of them contain F ×{0} and we label them as F ′11

and F ′12
,

respectively. Each facet except F ′11
and F ′12

is a subset of Fi × [0,∞) for some 1 < i ≤ m,
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FIGURE 3. Illustration of a wedge of P .

which is labeled as F ′i . Thus the new facet set is F ′ = {F ′11
, F ′12

, F ′2, . . . , F ′m}. The bound-
ary complex of wedgeF (P ) is a simplicial complex whose vertex set is {11, 12, 2, . . . ,m}.
Now consider a set I ⊆ {11, 12, 2, . . . ,m} and check whether the intersection

⋂
i∈I F ′i ⊂

wedgeF (P ) is nonempty. There are three cases:

• Case I: I contains neither 11 nor 12. In this case,
⋂

i∈I F ′i is nonempty in wedgeF (P )

if and only if
⋂

i∈I Fi is nonempty in P .
• Case II: I contains both 11 and 12. Since F ′11

∩F ′12
= F1×{0}, ⋂

i∈I F ′i is nonempty
if and only if

⋂
i∈I\{11,12} Fi is nonempty. It is equivalent to that I \ {11, 12} is a

subset of the link of 1 in the boundary complex of P .
• Case III: I contains exactly one of 11 or 12. Assume that 11 ∈ I . In this case,

⋂
i∈I F ′i

is nonempty in wedgeF (P ) if and only if
⋂

i∈I\{11} Fi is nonempty in P . Therefore,
this case coincides with ∂I � (K \ {F1}) where K is the boundary complex of P .

The proof is completed putting all cases together. Note that if the intersection is a vertex, then
it is Case II or case III, since every vertex of wedgeF (P ) is in F ′11

or F ′12
. �

Suppose P is a simple polytope and F = {F1, . . . , Fm} is the set of facets of P . Let J =
(a1, . . . , am) ∈ Nm be a vector of positive integers. Then define P(J ) by the combinatorial
polytope obtained by consecutive polytopal wedgings analogous to the construction of K(J )

with simplicial wedgings. Lemma 2.3 guarantees that if the boundary complex of P is K ,
then the boundary complex of P(J ) is K(J ).

REMARK 2.4. The converse of (1) in Proposition 2.2 does not hold because of the
famous Double Suspension Theorem of Edwards and Cannon [4] which states that every
double suspension SSM of a homology n-sphere M is homeomorphic to an (n+ 2)-sphere.

3. Toric topology and combinatorial objects. A fundamental result of toric geome-
try is that there is a bijection between toric varieties of dimension n and (rational) fans of real
dimension n. One could regard a fan as a “combinatorial” object associated to a toric variety.
Similarly, objects in toric topology such as topological toric manifolds, quasitoric manifolds,
and torus manifolds, have their associated combinatorial objects respectively. In this section,
we briefly introduce them focusing on combinatorial objects.
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3.1. Toric varieties and fans. Let us review the definition of a fan. For a subset
X ⊂ Rn, the positive hull of X, denoted by pos X, is the set of positive linear combinations
of X, that is,

pos X =
{ k∑

i=1

aixi | ai ≥ 0, xi ∈ X

}
.

By convention, we put pos X = {0} if X is empty. A subset C ofRn is called a polyhedral
cone, or simply a cone, if there is a finite set X of vectors, called the set of generators of the
cone, such that C = pos X. The elements of X is called generators of C. We also say that X

positively spans the cone C. A subset D of C is called a face of C if there is a hyperplane H

such that C ∩ H = D and C does not lie in both sides of H . A cone is by convention a face
of itself and all other faces are called proper.

A cone is called strongly convex if it does not contain a nontrivial linear subspace. In this
paper, every cone is assumed to be strongly convex. A polyhedral cone is called simplicial
if its generators are linearly independent, and rational if every generator is in Z

n. A rational
cone is called non-singular if its generators are unimodular, i.e., they are a part of an integral
basis of Zn.

A fan Σ of real dimension n is a set of cones in Rn such that

(1) if C ∈ Σ and D is a face of C, then D ∈ Σ ,
(2) and for C1, C2 ∈ Σ , C1 ∩ C2 is a face of C1 and C2 respectively.

A fan Σ is said to be rational (resp. simplicial or non-singular) if every cone in Σ is rational
(resp. simplicial or non-singular). Remark that the term “fan” is used for rational fans in most
literature, especially among toric geometers. We will sometimes use the term “real fan” to
emphasize that generators need not be integral vectors.

If a fan Σ is simplicial, then we can think of a simplicial complex K , called the under-
lying simplicial complex of Σ , whose vertices are generators of cones of Σ and whose faces
are the sets of generators of cones in Σ (including the empty set). We also say that Σ is a fan
over K . In this paper a fan is assumed to be simplicial unless otherwise mentioned.

A fan Σ is called complete if the union of cones in Σ covers all of Rn. Observe that the
underlying simplicial complex of a fan is a simplicial sphere if and only if the fan is complete.
It is a well-known fact that a rational fan is complete (resp. non-singular) if and only if its
corresponding toric variety is compact (resp. smooth). A compact smooth toric variety is
called a toric manifold in this paper. We remark that a toric variety is an orbifold if and only
if its corresponding fan is simplicial.

We close this subsection giving definition of two notions relating a fan to a polytope. A
fan is said to be weakly polytopal if its underlying simplicial complex is polytopal in the sense
of Definition 2.1. A fan Σ is called strongly polytopal if there is a simplicial polytope P ∗,
called a spanning polytope, such that 0 ∈ int P ∗ and

Σ = {pos σ | σ is a proper face of P ∗} .
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Observe that the underlying complex of Σ is ∂P ∗. Therefore strong polytopalness implies
weak polytopalness.

It is a well-known fact from convex geometry that a fan Σ is strongly polytopal if and
only if Σ is the normal fan of a simple polytope P . For a given simple n-polytope P ⊂ Rn,
correspond to each facet F the outward normal vector N(F). The normal fan Σ of P is a
collection of cones

Σ = {
pos{N(F) | F ⊃ f } ∣∣ f is a proper face of P

}
.

THEOREM 3.1 ([11, Theorem V.4.4]). A fan Σ is strongly polytopal whose spanning
polytope is a simplicial polytope P ∗ if and only if it is a normal fan of the dual polytope
P ∗∗ = P .

The toric variety corresponding to a (rational) strongly polytopal fan is known to be a
projective algebraic variety, that is, a subvariety of a complex projective space. We call such
a variety a projective toric variety. If it is non-singular, then we call it a projective toric
manifold. We have a fundamental a bijection

strongly polytopal non-singular fans⇐⇒ projective toric manifolds.

We remark that for every strongly polytopal non-singular fan Σ , there is a Delzant polytope
P whose normal fan is Σ .

3.2. Topological toric manifolds and characteristic maps. It is easy to see that ev-
ery information of a rational simplicial fan Σ of dimension n can be recovered from the under-
lying simplicial complex K = K(Σ) of dimension ≤ n− 1 and a map λ = λ(Σ) : V (K)→
Z

n, where V (K) denotes the vertex set of K and λ maps a vertex of K to the primitive integral
vector corresponding to the 1-cone of Σ . We call the pair (K(Σ), λ(Σ)) the characteristic
map of Σ . More generally, we give the following definition of characteristic maps. Before
that, recall that a simplicial sphere K is said to be fan-like if there is a complete fan over K .
Observe that fan-likeness and star-shapedness of Definition 2.1 are equivalent properties of
simplicial spheres. (This is not true in general polyhedral spheres; see [11] for an example.)

DEFINITION 3.2. A characteristic map of dimension n (over Z) is defined as the pair
(K, λ) of an abstract simplicial complex K of dimension≤ n− 1 and a map λ : V (K)→ Zn

so that {λ(i) | i ∈ I } is a linearly independent set over R for any face I of K , where V (K) =
[m] is the vertex set of K . Moreover, we define the following:

(1) (K, λ) is said to be primitive if each λ(i) is a primitive vector.
(2) (K, λ) is called complete if K is a fan-like simplicial sphere of dimension n− 1.
(3) (K, λ) is called non-singular if for every face of I ∈ K , the set of vectors {λ(i) | i ∈

I } positively spans a non-singular cone.
(4) (K, λ) is called fan-giving if the set of cones{

pos{λ(i) | i ∈ σ } ∣∣ σ ∈ K
}

is a fan.
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Sometimes we call the map λ itself a characteristic map. Note that every non-singular char-
acteristic map is primitive. In addition, a characteristic map is primitive and fan-giving if and
only if there is a fan Σ such that (K, λ) = (K(Σ), λ(Σ)).

One could think of the “real” version of a characteristic map so that the mapped vectors
are in Rn, not necessarilyZn. We still can define completeness and fan-givingness in that case.
By definition, if a characteristic map (K, λ) of dimension n is complete and non-singular, then
for any maximal face I of K , the vectors {λ(i) | i ∈ I } form an integral basis of Zn. Note that
not every characteristic map defines a fan because overlapping cones may exist. We remark
that the term “characteristic function” is used in some literatures including [7], in the meaning
of “complete non-singular characteristic map on the boundary complex of a simple polytope
P ”. Note that a fan-giving characteristic map corresponds to a complete (resp. non-singular)
fan if and only if the characteristic map is complete (resp. non-singular).

A topological toric manifold introduced in [18] is a topological generalization of a toric
manifold. A closed smooth manifold M of dimension 2n with an effective smooth action of
(C∗)n is a topological toric manifold if one of its orbits is open and dense and M is covered by
finitely many invariant open subsets each of which is equivariantly diffeomorphic to a smooth
representation space of (C∗)n. Note that toric manifolds are topological toric manifolds by
definition. Let us briefly recall its combinatorial counterpart called a topological fan.

DEFINITION 3.3. Let K be a simplicial complex of dimension ≤ n − 1 and let
z : V (K)→ Cn and λ : V (K)→ Zn be maps. The triple Σ = (K, z, λ) is called a topologi-
cal fan of dimension n if the followings hold:

(1) (K, Re z) is a fan-giving real characteristic map, where Re z : V (K)→ Rn denotes
the coordinate-wise real part of the vector z and

(2) (K, λ) is a primitive characteristic map.

We say Σ is complete if (K, Re z) is complete and it is non-singular if (K, λ) is non-singular.

Let M be a topological toric manifold of dimension 2n. We say that a closed connected
smooth submanifold of M of real codimension two is a characteristic submanifold if it is fixed
pointwise under some C∗-subgroup of (C∗)n. According to [18], there are only finitely many
characteristic submanifolds. A choice of an orientation on each characteristic submanifold
together with the orientation of M is called an omniorientation on M . By the classification
theorem of [18], every omnioriented 2n-dimensional topological toric manifold bijectively
corresponds to a complete non-singular topological fan of dimension n. Note that if z(i) =
λ(i) for all i ∈ V (K), then the topological fan corresponds to an ordinary fan. Furthermore,
in this case, the notion of completeness and non-singularity above generalizes that for an
ordinary fan.

We denote by T n = (S1)n the compact torus with dimension n. Recall that a topological
toric manifold M is equipped with a (C∗)n-action. Thus M has a natural T n-action as a
subgroup of (C∗)n. As a T n-manifold, M can be characterized by the following theorem of
[18].
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THEOREM 3.4 ([18, Theorem 7.2]). Let Σ = (K, z, λ) be a complete non-singular
topological fan of dimension n and M be the corresponding topological toric manifold. Then
the T n-equivariant homeomorphism type of M is independent of z.

In other words, any omnioriented topological toric manifold as a T n-manifold is deter-
mined by a complete non-singular characteristic map (K, λ) equipped with an orientation of
|K|. We say that (K, λ) is an oriented characteristic map if an orientation of |K| is fixed and
the orientation is called an orientation of (K, λ). In this paper, we regard topological toric
manifolds as T n-manifolds. In addition, even if we do not have defined, we will use the no-
tation λ(M) for the characteristic map corresponding to a topological toric manifold M , and
M(λ) or M(K, λ) vice versa. Similarly, K(M) means the underlying complex for M . The
same goes for Σ(M) and M(Σ) for a toric manifold M and its fan Σ .

3.3. Quasitoric manifolds. Quasitoric manifolds, introduced in [7], are another topo-
logical analogue of toric manifolds. A closed smooth manifold M of dimension 2n with a
smooth action of T n is called a quasitoric manifold over a simple polytope P if

(1) the action of T n on M is locally standard and
(2) the orbit space M/T n is P .

Its combinatorial object is called the characteristic function. Let F be the set of facets of
a simple n-polytope P . A characteristic function over P is a map f : F → Zn satisfying
non-singularity condition

Fi1 , . . . , Fin ∈ F intersect at a vertex of P

�⇒ {f (Fij ) | j = 1, . . . , n} is an integral basis of Zn .

Since the dual of P is a simplicial n-polytope, f induces a complete non-singular charac-
teristic map (K, λ) whose underlying complex is a polytopal sphere. Polytopal spheres are
star-shaped by convexity and therefore (K, λ) defines a topological toric manifold M ′. Indeed,
M ′ is equivariantly homeomorphic to M (for a proof see Section 10 of [18]). This shows any
quasitoric manifold is a topological toric manifold. Conversely, there is a topological toric
manifold whose underlying complex is not polytopal (see [18] for an example and note that
in the example the underlying complex is the Barnette sphere).

There are many examples of quasitoric manifolds which are not toric manifolds. We
remark that it is an open problem whether there exists a toric manifold which is not a quasitoric
manifold or not. Note that this is about finding a complete non-singular fan which is not
weakly polytopal.

3.4. Characteristic maps and Todd genera. A closed connected smooth orientable
manifold M of dimension 2n is called a torus manifold if it is equipped with an effective
T n-action which has a nonempty fixed point set. Torus manifolds make a large class of man-
ifolds properly containing topological toric manifolds (and, obviously, toric manifolds and
quasitoric manifolds). A torus manifold has its own combinatorial object, called a multi-fan,
which can be roughly understood as a collection of cones similar to a fan but the cones may
“overlap”. Although we do not present the precise definition of multi-fans, we use the concept
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of overlapping cones to consider fan-givingness of a characteristic map. For further reading
for multi-fans, refer to [17].

Let (K, λ) be a characteristic map of dimension n and I ∈ K a face of K . One defines
the cone over I be the positive hull pos{λ(i) | i ∈ I } and denote it by � λI . From now on, we
assume (K, λ) is complete and follow an argument of Section 4 of [19]. First, we consider
the (geometric) simplicial complex |K| which is an (n− 1)-dimensional sphere. We set

σI :=
{∑

i∈I
aiei

∣∣∣∣ ∑
i∈I

ai = 1, ai ≥ 0

}
⊂ R

m for I ∈ K ,

where ei is the i-th coordinate vector of Rm. The geometric realization |K| of K is given by

|K| =
⋃
i∈K

σI .

Let us write λ(i) = λi ∈ Zn for i = 1, . . . ,m. We define a map fλ : |K| → Sn−1 by

fλ|σI

( ∑
i∈I

aiei

)
=

∑
i∈I aiλi

|∑i∈I aiλi | .

Observe that fλ is a homeomorphism if and only if λ is fan-giving.
Fix an orientation of |K|. For each cone � λI of dimension n (or an (n− 1)-face I of K

equivalently), we assign +1 or −1, called the weight function w(I) of λ, so that

w(I) =
{+1 , the orientations of σI ⊂ |K| and fλ|σI coincide ;
−1 , otherwise.

DEFINITION 3.5. An oriented complete characteristic map λ is said to be positive if
every w(I) is positive. In this case the orientation of |K| is called the positive orientation of
λ and λ is said to be positively oriented or shortly positive.

The next definition is confirmed available by Theorem 4.2 of [25].

DEFINITION 3.6. Let (K, λ) be a given complete characteristic map of dimension n.
Let v be a generic vector in Rn in the sense that v does not lie in any cone � λI for a non-
maximal face I of K . Then the value ∑

I : v∈� λI

w(I)

is independent of the choice of v. We call the value the Todd genus of (K, λ) and denote it by
Todd(λ).

This definition actually says that the Todd genus Todd(λ) is the degree of fλ as a map
between spheres. We can check whether a characteristic map is fan-giving. The following is
a version of Lemma 4.1 of [19].

PROPOSITION 3.7. A complete characteristic map λ is fan-giving if and only if λ is
positive and Todd(λ) = 1.
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PROOF. The only-if part is obvious. Suppose that λ is fan-giving. Since λ is posi-
tive, the weight w(I) is nonnegative for all I such that v ∈ � λI . Because the sum of such
w(I) is one, any generic vector v is contained exactly one maximal cone � λI . Hence λ

is fan-giving. �

4. Toric objects over the complex K(J ). In this section, we study the relation of
simplicial wedging and toric objects and prove Theorem 1.1. To do so, we need the notion of
“projected characteristic map” first of all.

DEFINITION 4.1. Let (K, λ) be a characteristic map of dimension n and σ ∈ K a face
of K such that the set {λ(i) | i ∈ σ } is unimodular. Let v be a vertex of LkK σ . Then one
maps v to [λ(v)] which is an element of the quotient lattice of Zn by the sublattice generated
by λ(i), i ∈ σ . This map, denoted by Projσ λ, is called the projected characteristic map, or
shortly the projection, of λ with respect to σ .

There is a similar notion called the projected fans (see Section 2 of [17]). Note that
projected characteristic maps generalize projected fans whenever it is applicable. We denote
by Projσ Σ the projected fan of a fan Σ with respect to a face σ of K(Σ).

LEMMA 4.2. Let K be a fan-like sphere. Then for any proper face σ of K , LkK σ

is a fan-like sphere. If (K, λ) is a complete non-singular characteristic map, then for any
σ , its projection (LkK σ, Projσ λ) is also complete and non-singular. If λ is fan-giving, so is
Projσ λ.

PROOF. This is a topological toric version of projected fans and the proof is essen-
tially the same. Since K is fan-like, there exists a complete real (or rational) fan Σ over K .
Its projected fan is complete and therefore LkK σ is a fan-like sphere. Other assertions are
obvious. �

We note that one can define projected topological fans in the same way. When σ is a
vertex, the projection Projσ λ corresponds to a characteristic submanifold of M(λ). We also
remark that the above lemma shows that any multi-fan given by a complete characteristic map
(or a complete topological fan) is complete.

If (K, λ) is an oriented complete characteristic map, then a projected characteristic map
(LkK σ, Projσ λ) inherits an orientation so that

w(I ∪ σ) = w′(I) ,

where w is the weight function for λ and w′ is that for Projσ λ. In this orientation convention,
one immediately sees that an oriented complete characteristic map is positive if and only if
every projection of it is positive.

According to Section 7 of [18], the orbit space P of a topological toric manifold M(K, λ)

is a manifold with corners determined by K whose face poset coincides with the inverse poset
of K . We say two topological toric manifolds πi : Mi → P , i = 1, 2, are Davis-Januszkiewicz
equivalent or D-J equivalent if there is an automorphism θ of T n and a homeomorphism
f : M1 → M2 such that f (g · x) = θ(g) · f (x) and π2 ◦ f = π1. In other words, the
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following diagram

M1
f ��

���
��

��
��

� M2

����
��
��
��

P

commutes.
For two characteristic maps λi = λ(Mi), i = 1, 2, we also say (K, λ1) and (K, λ2) are

Davis-Januszkiewicz equivalent. Refer [7] and [18] for more details.
Let K be a fan-like sphere with V (K) = [m] = {1, . . . ,m}. A characteristic map

λ : V (K)→ Zn can be regarded as an n ×m-matrix, called the characteristic matrix, which
is again denoted by λ. Each column is labeled by a vertex and the i-th column vector of
the matrix λ corresponds to λ(i). Two characteristic maps (K, λ1) and (K, λ2) are Davis-
Januszkiewicz equivalent if and only if there is a unimodular map sending the i-th column
vector of λ1 to that of λ2 for all i = 1, . . . ,m. Therefore, elementary row operations on λ

preserve its D-J equivalence type and vice versa. We consider two characteristic maps are the
same if they are D-J equivalent.

EXAMPLE 4.3. Let wedge1(K) be the simplicial complex shown in Figure 2 and λ is
defined by the characteristic matrix

λ =
⎛
⎝ 0 1 0 −1 −1 0

0 0 1 1 0 −1
1 −1 0 0 0 0

⎞
⎠

whose columns are labeled by the vertices 11, 12, 2, 3, 4, 5 respectively. That is, we define

λ(11) = (0, 0, 1)

λ(12) = (1, 0,−1)

λ(2) = (0, 1, 0)

λ(3) = (−1, 1, 0)

λ(4) = (−1, 0, 0)

λ(5) = (0,−1, 0) .

Since λ(11) is a coordinate vector, the projection Proj11
λ is easily obtained by

Proj11
λ =

⎛
⎝ 12 2 3 4 5

1 0 −1 −1 0
0 1 1 0 −1

⎞
⎠

where the first row is for indicating column labeling. To compute Proj3 λ, one should perform
a row operation so that λ(3) becomes a coordinate vector. Add the second row of λ to the first
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one and one obtains ⎛
⎝ 0 1 1 0 −1 −1

0 0 1 1 0 −1
1 −1 0 0 0 0

⎞
⎠ .

Since LkK {3} has vertices 11, 12, 2, 4, its characteristic matrix looks like

Proj3 λ =
⎛
⎝ 11 12 2 4

0 1 1 −1
1 −1 0 0

⎞
⎠ .

PROPOSITION 4.4. Let K be a fan-like sphere with vertex set V . For v ∈ V , let
wedgev(K) be the wedge of K whose vertex set is V ∪ {v1, v2} \ {v} and let λ be a complete
characteristic map on wedgev(K) such that {λ(v1), λ(v2)} is a unimodular set. Then λ is
non-singular if and only if Projv1

λ and Projv2
λ are non-singular. Furthermore, λ is uniquely

determined by Projv1
λ and Projv2

λ. If the inherited orientations of Projv1
λ and Projv2

λ are
positive, λ is positively oriented.

PROOF. The non-singularity is easily verified since every maximal face of wedgev(K)

contains v1 or v2. The positiveness also directly follows. Let us prove uniqueness of λ. We can
assume that v = 1. By assumption, the set {λ(11), λ(12)} is unimodular, and for a suitable
basis of Zn, we can assume that λ(11) = e1 and λ(12) = e2 where ei denotes the i-th
coordinate vector of Zn. So the matrix for λ has the form

(4.1) λ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 a12 · · · a1,m

0 1 a22 · · · a2,m

0 0
...

... A

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(n+1)×(m+1)

whose columns are labeled by the vertices 11, 12, 2, . . . ,m. Then the projected characteristic
map Proj11

λ is given by the matrix N2 and Proj12
λ is given by N1, where

Nj =

⎛
⎜⎜⎜⎝

1 aj2 · · · aj,m

0
... A

0

⎞
⎟⎟⎟⎠ ,

for j = 1, 2. It is obvious that once the matrices N1 and N2 are fixed, then λ is forced to be
unique. �



WEDGE OPERATIONS AND TORUS SYMMETRIES 109

Notice that Lkwedge1(K) 11 and Lkwedge1(K) 12 can be naturally identified with K . There-
fore, Proposition 4.4 implies for any topological toric manifold M =M(λ) over K with

λ =

⎛
⎜⎜⎜⎝

1 a2 · · · am

0
... A

0

⎞
⎟⎟⎟⎠ ,

the matrix

(4.2)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 a2 · · · am

0 1 a2 · · · am

0 0
...

... A

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

defines a topological toric manifold over wedge1(K). We write the new characteristic map by
wedge1(λ) and the corresponding topological toric manifold by wedge1(M). This is called the
canonical extension of M in [10] when wedge1(M) is a toric manifold. The notation λ(J ) and
M(J ) are used in [1] reminding that their underlying complex is K(J ) in Section 2. Following
[10], we call wedge1(λ) or wedge1(M) the canonical extension or the trivial wedging. Let us
briefly introduce the notation M(J ) of [1]. Let M(λ) be a topological toric manifold over K

with vertex set V (K) = [m] = {1, . . . ,m} and J = (a1, . . . , am) ∈ Nm. Although M(J ) is
defined for arbitrary J , we will do it only when J = (1, . . . , 1, 2, 1 . . . , 1), where the k-th
entry of J is 2. Then K(J ) = wedgek(K) and the matrix

(4.3) λ′ =

⎛
⎜⎜⎜⎝

1 0 · · · 0 −1 0 · · · 0
0
... λ1 · · · λk · · · λm

0

⎞
⎟⎟⎟⎠ ,

where λi is the i-th column of λ, is a characteristic matrix for wedgek(K) with respect to the
ordering of facets k1, 1, 2, . . . , k − 1, k2, k + 1, . . . ,m, defining M(J ) over K(J ). Without
loss of generality, we can assume k = 1 and λk = λ1 is the first coordinate vector e1. Then
the matrix above is re-written like the following:⎛

⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0
0 1 a2 · · · am

0 0
...

... A

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now adding the second row to the first one obtains the wanted result. This shows that M(J )

of [1] can be obtained from consecutive trivial wedgings of a topological toric manifold M .
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This construction can be iterated for general K(J ), defining the characteristic map λ(J ) for
M(J ).

Proposition 4.4 certainly extends for general K(J ) in place of wedgev(K). Let V (K) =
[m] and J = (a1, . . . , am) as before. Repeatedly applying Proposition 4.4, we reach
a subcomplex of K(J ) naturally isomorphic to K . Let us describe the subcomplex. Let
π : V (K(J )) → V (K) be the natural surjective map given by ik �→ i (actually this map
induces a simplicial map between two simplicial complexes). Let s be a section map
s : V (K) → V (K(J )) such that π ◦ s = idV (K). It is obvious that the image of s induces a
subcomplex denoted by Ks , naturally isomorphic to K , reminding the definition of K(J ) in
Section 2. Moreover, the subcomplex is the link of the simplex V (K(J )) \ im s (observe this
set does not contain any non-face as a subset). By Lemma 4.2, we have the following:

COROLLARY 4.5. Let the setting be above and let Λ be a non-singular characteristic
map over K(J ). Then the projection of Λ with respect to the simplex V (K(J )) \ im s is non-
singular for every section s : V (K)→ V (K(J )). Furthermore, Λ is uniquely determined by
projections of Λ on Ks . If every such projection is D-J equivalent to a characteristic map λ

over K ∼= Ks , then Λ = λ(J ).

In particular, we obtain the following:

COROLLARY 4.6. The simplicial complex K(J ) admits a topological toric manifold
if and only if K does.

Corollary 4.5 shows that ones can find all topological toric manifolds over K(J ) provided
they know every topological toric manifold over K . As we have seen, if K is polytopal then
so is K(J ) and this means that an analogue of the above corollary also holds for quasitoric
manifolds. Every argument so far applies to the Z2-version of characteristic maps and thus
real topological toric manifolds and small covers.

Our next step is for fan-giving characteristic maps and their associated toric manifolds. If
(K, λ) is fan-giving, we can assume that |K| is oriented such that λ is a positive characteristic
map.

PROPOSITION 4.7. Under the setting of Proposition 4.4, a complete characteristic
map λ is fan-giving if and only if Projv1

λ and Projv2
λ are fan-giving.

PROOF. We only need to show the ‘if’ part. Suppose the dimension of λ is n+ 1. Then
we have a map fλ : |wedgev(K)| → Sn as we defined in Subsection 3.4. By Lemma 4.2 of
[19], the restriction fλ|St{vi} (i = 1, 2) is an embedding of an n-disc into Sn, where St{vi}
denotes the open star of vi in wedgev(K). Observe that St{v1} ∩ St{v2} contains a maximal
simplex {v1, v2} ∪ τ , where τ is a maximal simplex of LkK {v}. By combining these clues
and the fact St{v1} ∪ St{v2} = wedgev(K), one concludes that if x ∈ int |{v1, v2} ∪ τ |,
y ∈ |wedgev(K)|, and fλ(x) = fλ(y), then y = x. Apply Proposition 3.7 to finish the
proof. �
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Combining Proposition 4.4 and Proposition 4.7, we obtain the main result which we
restate below:

THEOREM 4.8. Let K be a fan-like simplicial sphere and v a given vertex of K .
Let (wedgev(K), λ) be a characteristic map and let v1 and v2 be the two new vertices of
wedgev(K) created from the wedging. Let us assume that {λ(v1), λ(v2)} is a unimodular set.
Then λ is uniquely determined by the projections Projv1

λ and Projv2
λ. Furthermore,

(1) λ is non-singular if and only if so are Projv1
λ and Projv2

λ.
(2) λ is positively oriented if and only if so are Projv1

λ and Projv2
λ.

(3) λ is fan-giving if and only if so are Projv1
λ and Projv2

λ.

REMARK 4.9. An omnioriented quasitoric manifold admits an equivariant almost
complex structure if and only if its (oriented) characteristic map is positively oriented by
Kustarev [22]. Combining this with the above theorem we can classify equivariantly almost
complex quasitoric manifolds over wedgeF (P ) provided we know all such manifolds over
P . The authors think that an analogous result is also true for equivariantly almost complex
topological toric manifolds. Note also that every toric manifold is a complex manifold with an
equivariant complex structure and therefore admits an equivariant almost complex structure.

5. Wedge operations and projectivity of toric varieties. This section heavily de-
pends on the contents of II.4 of [11].

Let X := (x1, . . . , xm) ∈ (Rn)m be a finite sequence of vectors in R
n which linearly

spans Rn. Consider the space of linear dependencies of X, which is an (m− n)-dimensional
space

{(α1, . . . , αm) ∈ R
m | α1x1 + · · · + αmxm = 0} .

Choose one of its basis and write down them as rows of a matrix⎛
⎜⎝

α11 · · · α1m

...
...

αm−n,1 · · · αm−n,m

⎞
⎟⎠

(m−n)×m

=: (x1, . . . , xm) .

The sequence X of column vectors of this matrix is called a linear transform of X. Note
that Shephard [29] used the term linear representation. A linear transform is not uniquely
determined and it is defined up to basis change. When each vector is regarded as a column

vector, the matrices X = (x1, . . . , xm) and X = (x1, . . . , xm) have the relation XX
T = O .

Its transpose is again XXT = O . In other words, their row spaces are orthogonal to each
other and span the entire space Rm. Therefore if X is a linear transform of X, then X is a
linear transform of X.

For a subsequence Y = (xi1, . . . , xik ) of X, one writes X|Y := (xi1 , . . . , xik ). If X \ Y

positively spans a face of the polyhedral cone pos X, we say that Y is a coface of X. The
following result is fundamental in the theory of Gale transform.
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THEOREM 5.1 ([11, Theorem II.4.14]). Let X be a linear transform of X and Y a
subsequence of X. Then Y is a coface of X if and only if

0 ∈ relint conv X|Y
(relint = relative interior of, conv = convex hull of ).

An immediate corollary follows:

COROLLARY 5.2. The set pos X is strongly convex if and only if X positively spans
Rm−n.

PROOF. Exchange the roles of X and X and then a proof is straightforward once one
notices that pos X has no proper face. �

We also need the next lemma.

LEMMA 5.3. A linear transform X of X satisfies x1 + · · · + xm = 0 if and only if the
points xi lie in a hyperplane H of Rn for which 0 /∈ H .

PROOF. Let a1, . . . , am ∈ R be a linear relation such that

a1x1 + · · · + amxm = 0

and

a1 + · · · + am = 0 .

Such a linear relation is called an affine relation. Put yi := xi − xm, i = 1, . . . ,m− 1. Then
am = −a1 − · · · − am−1 and

a1y1 + · · · + am−1ym−1 = 0 .

There are m−n such relations and thus span{yi} has dimension n−1 = m−1− (m−n). We
obtain the hyperplane H by translating span{yi} by xm. The converse is proven by reversing
all the argument. �

Note that one can assume that H is the hyperplane of points whose last coordinate is 1
since we can take (1, . . . , 1) for a linear dependency of X. In general, for any strongly convex
cone C, there is a hyperplane H which does not intersect the origin and C ∩ H = P is a
convex polytope which has the same face poset with C. Now we are ready to define the Gale
transform.

DEFINITION 5.4. Let X = (x1, . . . , xm) ∈ (Rn)m be a sequence of points affinely
spanning Rn and f : Rn ↪→ Rn+1 be an embedding defined by f (v) = (v, 1). Then a Gale
transform of X, denoted by X′ = (x ′1, . . . , x ′m), is a linear transform of f (X) in Rn+1, which
is defined in Rm−n−1.

The set P = conv X ⊂ R
n is surely an n-polytope. In some sense X can be regarded

as the “vertex set” of P , even though X can have a multiple point or a point on the relative
interior of a face of P (including P itself). In the latter case, the point does not represent a
vertex of P and we call it a ghost vertex of P . If X is indeed the vertex set of P , then we
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call X′ a Gale transform of P . Corollary 5.2 and Lemma 5.3 imply that X′ positively spans
Rm−n−1 and x ′1+ · · ·+ x ′m = 0. The term coface is used analogously. We sometimes say that
Y is a coface of P = conv X if conv(X \ Y ) is a face of P . An analogue of Theorem 5.1 for
convex polytopes is as follows, which is very useful to study polytopes when m− n is small
(at most 4).

COROLLARY 5.5. Let P = conv X be an n-polytope with m vertices. Then the subse-
quence Y of X is a coface of P if and only if

0 ∈ relint conv X′|Y .

The polytope P is simplicial if and only if conv X′|Y is a simplex of dimension m− n− 1 for
every minimal coface Y of P .

PROOF. The first assertion has been already shown. Suppose that P is a simplicial n-
polytope with m vertices. Then each maximal face of P has n vertices and therefore for each
minimal coface Y , X′|Y has cardinality m − n in Rm−n−1. Suppose that conv X′|Y is not a
simplex. Then its dimension is less than m − n − 1. Recall that the famous Carathéodory’s
theorem states that if a point v ∈ Rd lies in conv S for a set S, then there is a subset T

of S consisting of d + 1 or fewer points such that v ∈ conv T . Therefore one can apply
Carathéodory’s theorem to see that Y is not minimal, which is a contradiction. The converse
is immediate since every coface of P has cardinality m− n. �

In general, for any sequence X′ = (x ′1, . . . , x ′m) of points of Rm−n−1, one can define the
poset which consists of subsequences of the form X\Y , where X = (x1, . . . , xm) is a sequence
of symbols and Y is a subsequence of X such that 0 ∈ relint conv X′|Y . If this poset coincides
with a face poset of a polytope P , then we call X′ a Gale diagram of P . By definition, a Gale
transform is a Gale diagram. Two Gale diagrams are called isomorphic if they share the same
face poset. We will see an application of Gale transform in next section. We would need a
lemma there, so we introduce it here. For a polytope P and its given vertex x, recall that a
vertex figure of P at x is a polytope defined by P ∩ H where H is a hyperplane separating
x from the other vertices of P . A vertex figure is uniquely determined up to combinatorial
equivalence of polytopes, so let us call its combinatorial type “the” vertex figure at x.

LEMMA 5.6. Let X = (x1, . . . , xm) be a sequence of points and let X′ = (x ′1, . . . , x ′m)

be a Gale diagram of the simplicial polytope P ∗ = conv X. Then the subsequence

X′′ = (x ′1, x
′
2, . . . , x

′
i−1, x

′
i+1, . . . , x

′
m)

is a Gale diagram for the vertex figure of P ∗ at xi .

PROOF. Observe that the vertex figure at xi has boundary complex LkK{xi}. It is im-
mediate to see that the face complex of X′′ and the complex LkK {xi} are the same. �
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In the language of simple polytopes, the vertex figure at xi corresponds to the facet of
(P ∗)∗ = P dual to xi . Note that the lemma above does not hold for general face figures
because it is different from the link. Throughout this paper, we consider only Gale diagrams
for simplicial polytopes. When we say about a Gale diagram for a simple polytope P , then
actually it means a Gale diagram for the dual polytope P ∗ which is simplicial.

Returning for projectivity of fans, we consider an “inverse” of the Gale transform in
some sense. By Corollary 5.2, any linear transform of a positively spanning sequence is a
strongly convex cone. Let X = (x1, . . . , xm) be a sequence positively spanning Rn. Then by
Corollary 5.2, the set pos X is a strongly convex cone C. Let H be any hyperplane such that
H ∩C is an (m−n−1)-polytope P̂ . For each xi ∈ X consider the ray r(xi) = {axi | a > 0}
and let this ray meet H at x̂i . Then the sequence X̂ := (̂x1, . . . , x̂m) in H is called a Shephard
diagram of X. Observe that the inverse operation of the Gale transform gives a Shephard
diagram of X. The Shephard diagram X̂ is independent of the choice of xi’s. To see this, let
ai be nonzero reals for i = 1, . . . ,m and observe that a linear transform of (a1x1, . . . , amxm)

is (a−1
1 x1, . . . , a

−1
m xm). The next theorem indicates the relation between Gale diagrams and

Shephard diagrams.

THEOREM 5.7 ([29]). Let μ := (μ1, . . . , μm) be a vector of positive real numbers
and put Pμ := conv(μ1x1, . . . , μmxm). Then X̂ is a Gale diagram of Pμ if we select some
suitable point z ∈ H as origin. Conversely, if we select any z ∈ int conv X̂ for the origin, then
X̂ is a Gale diagram of Pμ for some μ.

Let Σ be a complete fan of dimension n. We choose a point xi , i = 1, . . . ,m, from
each 1-cone of Σ . Then, by completeness, the sequence X = (x1, . . . , xm) positively spans
Rn. The sequence X̂ is sometimes called a Shephard diagram for the fan Σ . Let Y be a
subsequence of X and suppose that pos(X \ Y ) is a face of Σ . Then Y is called a coface of
Σ . The next theorem is Shephard’s criterion for projectivity of fans which is easily induced
from Theorem 5.7.

THEOREM 5.8 (Shephard’s criterion [29, 10]). A complete fan Σ is strongly polytopal
if and only if

S(Σ, X̂) :=
⋂

Y : coface of Σ

relint conv X̂|Y �= ∅ .

Let K be a fan-like sphere with V (K) = [m] and Σ be a complete fan over wedge1(K).
Assume that V (wedge1(K)) = [m] ∪ {0} by renaming 11 to 0 and 12 to 1. Choose a point xi

from each 1-cone corresponding to i ∈ V (wedge1(K)).

PROPOSITION 5.9. In above setting, let X̂ = (̂x0, x̂1, . . . , x̂m) be a Shephard diagram
for Σ . Then the subsequences X̂ \ (̂x0) = (̂x1, x̂2, . . . , x̂m) and X̂ \ (̂x1) = (̂x0, x̂2, . . . , x̂m)

are Shephard diagrams for the projected fans Proj0 Σ and Proj1 Σ respectively. Furthermore,

S(Σ, X̂) = S(Proj0 Σ, X̂ \ (̂x0)) ∩ S(Proj1 Σ, X̂ \ (̂x1)).
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PROOF. To compute X̂, let xi be the i-th column vector of the following matrix

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

q0 0 a

0 q1 b

0 0
...

... A

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(n+1)×(m+1)

,

where q0, q1 > 0 are positive reals, a and b are row vectors of dimension m − 1, and each
column is labeled by the vertices 0, 1, . . . ,m (See (4.1)). Moreover, one can assume that
x0+x1+· · ·+xm = 0 (that is why q0 and q1 are not necessarily 1) and thus one can compute
a Shephard diagram X̂ by the inverse operation of the Gale transform. First, let Â be a matrix
indicating a Shephard diagram of columns of A. More precisely, we choose Â such that the
following identity

A ·
(

Â

1 · · · 1

)T

= O ,

which is possible since the sum of columns of A is zero. Now observe that a Shephard diagram
of X is written as

X̂ =
⎛
⎜⎝

α1 β1
...

... Â

αm−n−1 βm−n−1

⎞
⎟⎠

(m−n−1)×(m+1)

,

where αi and βi are real numbers satisfying

q0αi + a · Âi = 0 , i = 1, . . . ,m− n− 1 ,

and

q1βi + b · Âi = 0 , i = 1, . . . ,m− n− 1

(Âi denotes the i-th row of Â).
On the other hand, it is easy to see the matrix for Proj1 Σ is⎛

⎜⎜⎜⎝
q0 a

0
... A

0

⎞
⎟⎟⎟⎠

n×m

,

the sum of columns of which is still zero and therefore its Shephard diagram is⎛
⎜⎝

α1
... Â

αm−n−1

⎞
⎟⎠

(m−n−1)×m

.

The same goes for Proj0 Σ and the proof is done. The last identity is obvious by observing
cofaces of Σ . �
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When M is a compact toric orbifold, the proposition above provides an alternative proof
of the fact [10] that the canonical extension M(J ) is projective if and only if M is projective
since S(Proj0 Σ, X̂ \ (̂x0)) = S(Proj1 Σ, X̂ \ (̂x1)) = S(Σ, X̂).

In the proof of Proposition 5.9, we have essentially shown the following:

PROPOSITION 5.10. Let K be a fan-like sphere with V (K) = [m] and Σ be a com-
plete fan over K with m 1-cones. Choose a point xi from the relative interior of each 1-cone
corresponding to i ∈ [m] and let X̂ = (̂x1, . . . , x̂m) be a Shephard diagram for Σ . Then the
subsequence X̂ \ (̂xi) is a Shephard diagram for Proji Σ for any i ∈ [m].

Be cautious that the underlying complex of Proji Σ is LkK {i} and in general its vertices
do not bijectively correspond to entries of X̂ \ (̂xi), causing ghost vertices. But we still have
no problem to use X̂ \ (̂xi) to apply Shephard’s criterion to determine if Proji Σ is strongly
polytopal. We continue to study projectivity of toric varieties in Section 7.

6. Application: Classification of toric varieties. Let M =M(K, λ) be a topological
toric manifold of dimension 2n. One can think about two possible applications of the main
result:

(1) K = �k
i=1∂Δni is the join of boundaries of simplices. Note that K is the boundary

complex of the simple polytope
∏k

i=1 Δni .
(2) K is a simplicial sphere of dimension n− 1 with at most n+ 3 vertices.

Let P = ∏k
i=1 Δni be a product of simplices. In fact, quasitoric manifolds (and espe-

cially toric manifolds) over P were already studied by [6].

DEFINITION 6.1. The generalized Bott tower is the following sequence of projective
bundles

B�
π�−→ B�−1

π�−1−→ · · · π2−→ B1
π1−→ B0 = {a point} ,

where Bi for i = 1, . . . , � is the projectivization of the Whitney sum of ni + 1 F -line bundles
over Bi−1 where F = C or R. Each Bi is called a generalized Bott manifold over F of stage
i. If all ni is equal to 1, then we call the sequence a Bott tower and each Bi a Bott manifold.

Every generalized Bott manifold is actually a quasitoric manifold over P = ∏k
i=1 Δni

which is a smooth projective toric variety. Conversely, every toric manifold (in fact, every
quasitoric manifold admitting an equivariant almost complex structure) over P becomes a
generalized Bott manifold (see [6]).

LEMMA 6.2. Let K and L be simplicial complexes whose vertex sets are {v1, . . . , vm}
and {w1, . . . , w�} respectively. Let J = (a1, . . . , am) and J ′ = (b1, . . . , b�) be vectors whose
entries are positive integers. Then

K(J ) � L(J ′) = (K � L)(J ∪ J ′) ,

where J ∪ J ′ = (a1, . . . , am, b1, . . . , b�).
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PROOF. A proof is straightforward once observing that a minimal non-face of

K � L = {σ ∪ τ | σ ∈ K, τ ∈ L}
is a minimal non-face of K or L. �

Hence the simplicial complex �k
i=1∂Δni is obtained by wedge operations from the com-

plex �k
i=1∂Δ1 which is the boundary of the k-cross polytope. Therefore, in the language of

simple polytopes, any product of simplices is obtained by polytopal wedge operations from
the k-cube Ik . Let M = M(P, λ) be a quasitoric manifold admitting an equivariant almost
complex structure. Then its projection with respect to a k-cube Ik must be a Bott manifold.
Conversely, if every projection of M = M(P, λ) with respect to a k-cube is a toric manifold,
then it can be shown that M is a generalized Bott manifold although the proof is omitted. For
further study of (generalized) Bott manifolds, see [14], [26], and [6].

Next, let us consider the second case. It was proved by Mani [24] that every simplicial
(n − 1)-sphere with at most n+ 3 vertices is polytopal. Hence in this case every topological
toric manifold over K is a quasitoric manifold and we are left with simplicial n-polytopes P ∗
with at most n+ 3 vertices which is classified using the Gale diagram introduced in previous
section. In this case, its Gale diagram lies in R

2. In the language of simple polytopes, its
dual is a simple n-polytope P with ≤ n + 3 facets. Let P2k−1 be a regular (2k − 1)-gon in
R2 with center at the origin O and vertex set V = {v1, . . . , v2k−1}, where vi ’s are labeled in
counterclockwise order. For convenience we further assume that vi ’s are on the unit circle. For
a given surjective map φ : [n + 3] → V , we have a sequence of points X′ = (x ′1, . . . , x ′n+3)

such that x ′i = φ(i). We call X′ a standard Gale diagram in R2. Observe that the face poset
defined by X′ is simplicial and hence the corresponding polytope P ∗ is simplicial. Let K be
the simplicial complex given by X′. Note that K is a boundary complex for a simple polytope
P . Recall that

I is a face of K ⇐⇒ O ∈ conv{φ(i) | i ∈ [n+ 3] \ I } .
For 1 ≤ i ≤ 2k − 1, let ai be the cardinality of φ−1(vi). The standard Gale diagram is deter-
mined by ai’s up to symmetry of P2k−1. A polygon P2k−1 whose vertices vi are numbered by
a positive integer ai is again called a standard Gale diagram. We sometimes abuse the term
Gale diagram for standard Gale diagram. See Figure 4 for an illustration.

It is a classical result that every simple n-polytope with not more than n + 3 facets has
a corresponding standard Gale diagram on R2. Moreover, two simple n-polytopes with n+ 3
facets are combinatorially equivalent if and only if their standard Gale diagrams coincide after
an orthogonal linear transform of R2 onto itself. Note that 2k − 1 = 3 and ai = 1 for some i

if and only if P has n+ 1 or n+ 2 facets.
Let us denote by [a1, . . . , a2k−1] the simple polytope whose Gale diagram is the (2k−1)-

gon whose vertices are labeled by (a1, . . . , a2k−1). For example, [n1 + 1, n2 + 1, n3 + 1] is
the product of simplices

∏3
i=1 Δni , ni ≥ 0.

We could apply Proposition 4.4 to classify topological toric manifolds over the polytope
[a1, . . . , a2k−1], but we restrict our interest to toric manifolds for now. First, by Lemma 6.4,
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FIGURE 4. Standard Gale diagrams and the corresponding polytopes: [1, 1, 1, 1, 1] and
[2, 2, 2].

every simple n-polytope with n+3 facets is obtained by consecutive polytopal wedgings from
the cube [2, 2, 2] or

P[2k−1] := [1, . . . , 1︸ ︷︷ ︸
2k−1

] , k ≥ 3 .

CONVENTION 6.3. For a given polytope P and vector J , one needs a suitable label-
ing of facets of P for P(J ) to be well defined. Note that every vertex labeling of the standard
Gale diagram induces a facet labeling of P[2k−1]. If there is no comment about it, the default
convention for P[2k−1] is that we label the vertices of the standard Gale diagram in counter-
clockwise order.

LEMMA 6.4. Let P be the simple polytope P[2k−1] with k ≥ 3 and J = (a1, . . . ,

a2k−1). Then

P(J ) = P[2k−1](J ) = [a1, . . . , a2k−1] .
PROOF. After simple observation, one concludes their minimal non-faces agree. To be

precise, observe that the set of minimal non-faces of [a1, . . . , a2k−1] is given by

{φ−1(vj ) ∪ · · · ∪ φ−1(vj+k−1) | 1 ≤ j ≤ 2k − 1} ,
where the subscripts are mod 2k − 1. �

Since the cube has been already covered in the first case, we are enough to check out toric
manifolds over P[2k−1]. The following theorem is originally proved in [13], but we include a
proof in our language for readers’ convenience.

THEOREM 6.5. There is no toric manifold over P[2k−1] if k ≥ 4.
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facet sign facet sign
1234 + 1457 −
1236 − 2347 +
1246 + 2367 −
1347 − 2456 −
1356 − 2457 +
1357 + 2567 +
1456 + 3567 −

TABLE 1. Facets of P ∗[7] and their signs.

PROOF. We are first going to show that there is no toric manifold over P[7]. We label
the vertices of the heptagon which is a standard Gale diagram of P[7] by 1, 2, 5, 3, 4, 6, 7 in
counterclockwise order. Then the facets 1, 2, 3, and 4 intersect at a vertex and thus one can
assume that the characteristic map of P[7] is given by the matrix

λ =

⎛
⎜⎜⎝

1 0 0 0 a e i

0 1 0 0 b f j

0 0 1 0 c g k

0 0 0 1 d h l

⎞
⎟⎟⎠ ,

where a, b, c, d, e, f, g, h, i, j, k, and l are integers. We denote by λα the α-th column vector
of λ. Note that every fan-giving characteristic map is positive in the sense of Definition 3.5.
Suppose αβγ δ and αβγ ε are two simplices of P ∗[7] sharing the triangle αβγ . Then the posi-
tiveness of λ implies that

det
(
λα λβ λγ λδ

) · det
(
λα λβ λγ λε

) = −1 .

Table 1 indicates every simplex αβγ δ of P ∗[7] and its sign sgn(αβγ δ) so that

det
(
λα λβ λγ λδ

) = sgn(αβγ δ) · 1 .

After substituting g = h = i = j = −1, we obtain the following system of Diophantine
equations:

b + f d = 1

bl + d =−1

b + cf =−1

bk + c=−1

el = 0

a + ce=−1

ak + c=−1
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a e −1
c −1 k

d −1 l

∣∣∣∣∣∣ = −1

∣∣∣∣∣∣
a e −1
b f −1
d −1 l

∣∣∣∣∣∣ = −1 .

It is not very hard to show that this has no integral solution, showing that there is no toric
manifold over P[7]. For k > 4, apply Lemma 5.6 to see that any facet of P[2k−1] is [2, 1, . . . , 1]
with (k − 2) 1’s. Since P[2k−3] is a facet of [2, 1, . . . , 1], we conclude that for every k > 4,
P[2k−1] has a face isomorphic to P[7]. If P[2k−1] admitted a non-singular fan over it, then its
projected fan to P[7] would be non-singular, which is a contradiction. �

So far, we have shown that every possible underlying simplicial complex (or, equiva-
lently, the dual of the boundary of a simple polytope) is ∂P (J )∗ either P = [2, 2, 2] or
P = P[5]. Since we already dealt with the cube [2, 2, 2], we are remaining with the pentagon.

CONVENTION 6.6. When P is a pentagon, its standard Gale diagram is also a pen-
tagon and there is danger of confusion of facet labeling. When we denote P by P5, we as-
sume that its facets are labeled by 1, 2, 3, 4, 5 ∈ Z5 such that two facets i and j intersects
if and only if j − i = ±1. In conclusion, when J = (a1, a2, a3, a4, a5), one observes that
P5(J ) = [a1, a3, a5, a2, a4] and P[5](J ) = [a1, a2, a3, a4, a5].

To apply Proposition 4.7 for P(J ), the first step would be the following lemma.

LEMMA 6.7. Up to rotational symmetry of P = P5 and basis change of Z2, any
complete non-singular fan over P is described by the following characteristic matrix

λd :=
(

1 0 −1 −1 d

0 1 1 0 −1

)
for an arbitrary d ∈ Z. Suppose each column is numbered by i + 1, i + 2, i + 3, i + 4 and
i, from left to right, respectively. We say the corresponding characteristic map (or fan) is of
type (i, d) ∈ Z5 × Z and we write its Davis-Januszkiewicz equivalence class by (i, d). Every
class (i, d) is distinct each other except the five cases (i, 0) = (i + 1, 1), i ∈ Z5.

PROOF. A proof is given by a direct calculation. By basis change and positiveness of
the characteristic map, we can assume that the characteristic matrix has the form

λ =
(

1 0 −1 b d

0 1 a c −1

)
and we have the relations

−c− ab = 1

−b − cd = 1 .

So we obtain
c = −ab − 1
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and

d = 1+ b

1+ ab
if ab �= −1 .

Consider the following cases:

(1) a = 0. Then

λ =
(

1 0 −1 b 1+ b

0 1 0 −1 −1

)
.

(2) b = 0. Then

λ =
(

1 0 −1 0 1
0 1 a −1 −1

)
.

(3) a = 1, b �= −1. Then

λ =
(

1 0 −1 b 1
0 1 1 −1− b −1

)
.

(4) b = −1, a �= 1. Then

λ =
(

1 0 −1 −1 0
0 1 a −1+ a −1

)
.

(5) a = 1, b = −1. Then

λ =
(

1 0 −1 −1 d

0 1 1 0 −1

)
.

For these cases, check that λ is fan-giving for any a, b, or d ∈ Z. It is easy to see these five
cases are equivalent up to rotation of P5 and basis change. The fact that the classes (i, d) are
distinct each other except (i, 0) = (i + 1, 1), i ∈ Z5 is also easily shown.

For remaining possibility, assume that a �= 0, 1 and b �= 0,−1. Since d is an integer,
one has the inequality |1+ b| ≥ |1+ ab|. By squaring each hand side, we get

b(a − 1) [(a + 1)b + 2] ≤ 0 .

If a > 1, the inequality above has no integer solution, and therefore we have a < 0. Observe
that there are five possibilities of (a, b) for d = (1+ b)/(1+ ab) to be an integer for a < 0,
that is,

(a, b) = (−1, 2), (−1, 3), (−2, 1), (−2, 2), (−3, 1) ,

and λ is not fan-giving for any of them. �

For a given integral vector J = (a1, a2, . . . , a5), ai ≥ 1, we know that P5(J ) =
P5(a1, a2, . . . , a5) = [a1, a3, a5, a2, a4] up to symmetry of the pentagon. First, assume that
a1 = · · · = a5 = 1 and we are given a characteristic matrix λd = (v1 v2 v3 v4 v5) where vi is
the i-th column vector of λd . Suppose we perform a wedge operation on the facet 3 for exam-
ple and rename facets by 1, 2, 31, 32, 4, and 5. Let λ be a characteristic matrix for the wedged
polytope wedge3 P5 = P5(1, 1, 2, 1, 1) and assume that Proj31

λ = λd . See Case III of the
proof of Lemma 2.3 and one knows that the set of facets {i, i + 1, 31}, i ∈ Z5 corresponds to
a vertex of P5(1, 1, 2, 1, 1) whenever i ≤ 3 and i + 1 ≤ 3. By convention, we choose i so
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that neither i nor i + 1 intersects 3, so in this case i = 5 and we further choose a basis of Z3

such that

(1) λ(31) = (0, 0, 1)T ,
(2) λ(i) = (vT

i 0)T and λ(i + 1) = (vT
i+1 0)T .

Then the matrix λ should look like the following:

λ =

⎛
⎜⎜⎝

1 2 31 32 4 5
v1 v2 0 v3 v4 v5

0
0 n2 1 n3 n4 0

⎞
⎟⎟⎠ ,

where nj is the third entry of the column vector corresponding to the facet j for j �= i. The
integer n3 must be −1 since

det (λ(i) λ(i + 1) λ(32)) = − det (λ(i) λ(i + 1) λ(31)) = −1

by positiveness of λ. Let us call ni−1 and ni+1 be the unknowns of the third row. This obser-
vation works for any i ∈ Z5 and in general one can construct a characteristic matrix for P(J )

starting from λd by repeatedly adding a row and a column. One thing more, note that λ is a
canonical extension in the sense of [10] if n2 = n4 = 0.

From now on, let us check when λ is fan-giving for given i ∈ Z5.

(1) i = 1. Then

λ =
⎛
⎝ 0 1 0 −1 −1 d

0 0 1 1 0 −1
1 −1 n2 0 0 n5

⎞
⎠ .

To compute Proj12
λ, add the third row to the first one and delete the second column

and third row and one obtains(
1 n2 −1 −1 d + n5

0 1 1 0 −1

)
.

This characteristic matrix is fan-giving if and only if n2 = 0.
(2) i = 2. Then

λ =
⎛
⎝ 1 0 0 −1 −1 d

0 0 1 1 0 −1
n1 1 −1 n3 0 0

⎞
⎠

and a similar calculation gives n3 = 0 and dn1 = 0.
(3) i = 3. Then

λ =
⎛
⎝1 0 0 −1 −1 d

0 1 0 1 0 −1
0 n2 1 −1 n4 0

⎞
⎠ .

In this case n2 = 0 and n4(d − 1) = 0.
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(4) i = 4. Then

λ =
⎛
⎝1 0 −1 0 −1 d

0 1 1 0 0 −1
0 0 n3 1 −1 n5

⎞
⎠

and we obtain n3 = 0.
(5) i = 5. Then

λ =
⎛
⎝ 1 0 −1 −1 0 d

0 1 1 0 0 −1
n1 0 0 n4 1 −1

⎞
⎠

and one has dn1 = 0 and (d − 1)n4 = 0.

Suppose, for example, that i = 2 and n3 = d = 0. Then the characteristic matrix λ has the
form

λ =
⎛
⎝ 1 0 0 −1 −1 0

0 0 1 1 0 −1
n1 1 −1 0 0 0

⎞
⎠ .

Since the D-J classes (5, 0) and (1, 1) are the same, λ is D-J equivalent to⎛
⎝ 1 0 1 0 −1 −1

1 0 0 1 1 0
n1 1 −1 0 0 0

⎞
⎠ ,

which is exactly the case i = 1 with columns re-labeled by 5, 11, 12, 2, 3, 4 and n5 is replaced
by n1. In fact, up to rotation of P , we do not need to consider the cases nj �= 0 for j �= 5.

The next step is to deal with non-singular characteristic maps over P5(a1, . . . , a5) when
a1 + · · · + a5 = 7. Each of them corresponds to a twice wedged pentagon. This time, let us
omit canonical extensions and assume every nonzero unknown of each row lies in the column
5. Then there are three cases:

(1) wedged twice at 4;
(2) wedged twice at 1;
(3) and wedged at 4 and 1.

When wedged twice at 4, the matrix has the form

λ =

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 41 42 43 5
1 0 −1 0 0 −1 d

0 1 1 0 0 0 −1
0 0 0 1 0 −1 n5

0 0 0 0 1 −1 m5

⎞
⎟⎟⎟⎟⎟⎠ .

Reminding Corollary 4.5, note that this matrix has three possible projections over the pen-
tagon: Proj{41,42} λ, Proj{41,43} λ, and Proj{42,43} λ. Among these, Proj{41,42} λ = λd and the
other two are also fan-giving. The case wedged twice at 1 is similarly done. For the case
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wedged at 1 and 4, we write down the matrix

λ =

⎛
⎜⎜⎜⎜⎜⎝

11 12 2 3 41 42 5
0 1 0 −1 0 −1 d

0 0 1 1 0 0 −1
0 0 0 0 1 −1 n5

1 −1 0 0 0 0 m5

⎞
⎟⎟⎟⎟⎟⎠

and consider its four projections which are characteristic map for the pentagon. Here, let us
compute Proj{12,42} λ skipping the other easier three. By adding the first row to the fourth row
to get ⎛

⎜⎜⎜⎜⎜⎝

11 12 2 3 41 42 5
0 1 0 −1 0 −1 d

0 0 1 1 0 0 −1
0 0 0 0 1 −1 n5

1 0 0 −1 0 −1 m5 + d

⎞
⎟⎟⎟⎟⎟⎠ .

The following matrix Proj12
λ is obtained by deleting the first row and the column 12:

Proj12
λ =

⎛
⎜⎜⎝

11 2 3 41 42 5
0 1 1 0 0 −1
0 0 0 1 −1 n5

1 0 −1 0 −1 m5 + d

⎞
⎟⎟⎠ .

Now projecting it with respect to 42 gives

Proj{12,42} λ =
(

0 1 1 0 −1
1 0 −1 −1 m5 + d − n5

)
,

which is fan-like for all m5, d, n5 and has type (5, d +m5 − n5).
Now we are ready to deal with general P5(a1, . . . , a5). Up to rotation of P , we can

assume that every nonzero unknowns lie in the column 5j for some 1 ≤ j ≤ a5. We start
with P5 and perform wedges at 1 a1 − 1 times and continue wedging at 2 a2 − 1 times and
so on. In other words, we do the row-and-column adding in the order 1, 2, 3, 4, and 5. For
convenience of notation, we write

Mi :=
(
0 · · · 0 vi

)
2×ai

where i = 1, . . . , 5 and vi is the i-th column of λd . Moreover, we write

Sai :=
⎛
⎜⎝

1 0 −1
. . .

...

0 1 −1

⎞
⎟⎠

(ai−1)×ai

and

Ni :=
(
0 · · · 0 ni

)
(ai−1)×a5
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for an arbitrary integral vector ni = (ni2, . . . , niai )
T . We put ni1 = 0 for convention. Any

pentagon in the 2-skeleton of P(J ) = P5(a1, . . . , a5) can be labeled by an integral vector
(b1, . . . , b5), 1 ≤ bi ≤ ai , and each pentagon can be naturally identified with P .

THEOREM 6.8. Up to rotational symmetry of the pentagon P5 and basis change, a
toric manifold over P5(a1, . . . , a5) is determined by the following characteristic matrix

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M1 M2 M3 M4 M5

Sa1 0 0 0 N1

0 Sa2 0 0 0
0 0 Sa3 0 0
0 0 0 Sa4 N4

0 0 0 0 Sa5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
∑

i ai−3)×∑
i ai

,

for arbitrary choice of d , n1, and n4. Further, the projection of Λ over the pentagon labeled
by (b1, . . . , b5) has type (5, d + n1b1 − n4b4).

REMARK 6.9. For a standard Gale diagram P2k−1 for a simple polytope P , we know
that there is a toric manifold over P if and only if k = 2 and 3. A result in [9] states that there
is a topological toric manifold (or, equivalently, a quasitoric manifold) over P if and only if
k = 2, 3, 4. We have classified toric manifolds of Picard number 3, but the classification of
topological toric manifolds over K when Pic(K) = 3 is somewhat complicated to calculate
to be contained here. It will be covered elsewhere in the future.

7. Application: Projectivity of toric varieties. By Theorem 1.1, there is some kind
of good relationship between toric objects (i.e., topological toric manifolds, quasitoric mani-
folds, and toric manifolds) and wedges of simplicial complexes. It is also true for the category
of toric orbifolds or the category of complete (not necessarily non-singular) rational fans. We
can show this is not true for the category of projective toric orbifolds or that of complete
strongly polytopal rational fans using Proposition 5.9. To be more precise, there exists a
complete non-strongly polytopal fan Σ over wedgev(K) whose projections Projv1

(Σ) and
Projv2

(Σ) are strongly polytopal.

EXAMPLE 7.1. Define the characteristic map (wedge1 P[7], λ) by the matrix

λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

11 12 2 3 4 5 6 7
−16 16 −1 0 0 0 0 1
−33 83 −6 0 0 0 1 0
−37 127 −10 0 0 1 0 0
−33 123 −10 0 1 0 0 0
−13 63 −6 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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FIGURE 5. A Shephard diagram for a complete non-strongly polytopal fan over
wedge1 P[7] = [2, 1, 1, 1, 1, 1, 1].

which is fan-giving‡ and hence defines a complete fan Σ . To compute its Shephard diagram,
we multiply 10 to last 6 columns respectively, obtaining

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

11 12 2 3 4 5 6 7
−16 16 −10 0 0 0 0 10
−33 83 −60 0 0 0 10 0
−37 127 −100 0 0 10 0 0
−33 123 −100 0 10 0 0 0
−13 63 −60 10 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

the sum of whose column is zero and therefore a Shephard diagram for Σ can be computed
by the matrix ⎛

⎝ 1̂1 1̂2 2̂ 3̂ 4̂ 5̂ 6̂ 7̂
−2.5 2.5 4 5 1 −1 −5 −4

5.5 5.5 5 2.5 0.5 0.5 2.5 5

⎞
⎠ .

An illustration for X̂ is given in Figure 5. Observe that, by Proposition 5.9, S(Proj11
Σ, X̂ \

(̂11)) is the gray region and S(Proj12
Σ, X̂\ (̂12)) is the black one which are nonempty respec-

tively, so each projected fan is strongly polytopal. But S(Σ, X̂) is the intersection of the two
sets and is empty and hence Σ itself is not strongly polytopal. Note that there is no complete
non-singular fan over P[7] by Theorem 6.5. Therefore, Σ is not non-singular. The authors do
not know whether such an example of a non-singular fan exists or not.

QUESTION 7.2. Is there a complete non-singular non-projective fan Σ over
wedgev(K) whose projected fans Projv1

Σ and Projv2
Σ are projective?

In general, as one has seen, projectivity of projected fans of Σ with respect to v1 and v2

does not guarantee projectivity of Σ over wedgev(K) . But in special cases of fans, one can
prove their projectivity as we will see in the rest of this section.

‡This can be easily shown using a computer program such as the Maple package Convex [12].
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Let (K, λ) be a fan-giving complete non-singular characteristic map of dimension n and
M = M(K, λ) be the corresponding toric manifold. If K has m vertices, then the number
m−n is known as the Picard number of the toric variety M . Since we have classified smooth
toric varieties of Picard number 3, we can try checking their projectivity using Proposition 5.9
and prove the following:

THEOREM 7.3. Every toric manifold of Picard number three is projective.

The above theorem was originally proved by Kleinschmidt and Sturmfels [21], but their
proof was somewhat cumbersome case-by-case approach. Here we present a new proof.

We can assume that K = ∂P (J )∗ where P is either a cube I 3 or a pentagon P[5]. First,
let us consider when P is a cube. That is, let Σ be a complete (not necessarily non-singular)
fan over K = �3

i=1∂Δni = ∂Δn1 �∂Δn2 �∂Δn3 . We assume that every projected fan of Σ over
∂(I 3)∗ is strongly polytopal. Label the vertices of K by 10, 11, 12, . . . , 1n1 , 20, . . . , 2n2 , 30,

. . . , 3n3 and let

X̂ = (̂10, 1̂1, . . . , 1̂n1, 2̂0, . . . , 2̂n2 , 3̂0, . . . , 2̂n3)

be a Shephard diagram for Σ . Choose two sequences a = {ai} and b = {bi}, i = 1, 2, 3, such
that 0 ≤ ai < bi ≤ ni for all i. For such a choice, one has the corresponding projected fan over
∂(I 3)∗, denoted by Σab, which is determined by the vertex set {1a1, 1b1, 2a2, 2b2, 3a3, 3b3}. By
Proposition 5.10, the subsequence

X̂ab := (̂1a1, 1̂b1, 2̂a2, 2̂b2, 3̂a3, 3̂b3)

is a Shephard diagram of the projected fan and therefore the set

S(Σab, X̂ab) =
⋂

ki=ai or bi

relint conv(̂1k1, 2̂k2, 3̂k3)

is nonempty. By Corollary 5.5, every such conv(̂1k1, 2̂k2, 3̂k3) is a triangle. For simplicity of
notation, let us temporarily write relint conv{v1, . . . , vm} = v1 · · · vm. For example, since

1̂k1 2̂k2 3̂a3 ∩ 1̂k1 2̂k2 3̂b3 �= ∅
for every k1 and k2, every point 3̂j lies on the same side of the line 1̂k1 2̂k2 for any k1 and
k2. Let us write Ci := conv{ij | 0 ≤ j ≤ ni}. Then actually one can find d1 and d2,

0 ≤ d1 ≤ n1, 0 ≤ d2 ≤ n2 such that the line 1̂d1 2̂d2 divides the sets C3 and C1 ∪ C2 where

C1 ∪ C2 is allowed to intersect 1̂d1 2̂d2 . Similarly, we can choose e2, e3, f3, and f1, such that

the line 2̂e2 3̂e3 divides C1 and C2 ∪ C3 and the line 3̂f3 1̂f1 divides C2 and C3 ∪ C1. Then by
projectivity assumption, the set

Z := 1̂d1 2̂d2 3̂e3 ∩ 1̂d1 2̂d2 3̂f3 ∩ 1̂d1 2̂e2 3̂e3 ∩ 1̂d1 2̂e2 3̂f3

∩ 1̂f1 2̂d2 3̂e3 ∩ 1̂f1 2̂d2 3̂f3 ∩ 1̂f1 2̂e2 3̂e3 ∩ 1̂f1 2̂e2 3̂f3

is nonempty. For any triangle 1̂k1 2̂k2 3̂k3 , its edges do not intersect Z and we conclude that
Z ⊆ 1̂k1 2̂k2 3̂k3 proving that Σ is a strongly polytopal fan. We remark two things. First, if
Σ is non-singular, then its corresponding toric variety is a generalized Bott manifold of stage
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three. Secondly, the argument above can be generalized to fans whose underlying complex is
K = �k

i=1∂Δni by replacing dividing lines for dividing hyperplanes. We state the result as a
proposition.

PROPOSITION 7.4. Let Σ be a complete fan over the simplicial sphere K = �k
i=1∂Δni

with vertices

10, 11, . . . , 1n1, 20, . . . , 2n2, . . . , k0, . . . , knk .

For i = 1, . . . , k. Assume that, for every sequence of integers c such that 0 ≤ ci1 ≤ ci2 ≤
· · · ≤ ci,k−1 ≤ ni , the projected fan of Σ with 1-cones given by

1c11, 1c12, . . . , 1c1,k−1, . . . , kck1, kck2 , . . . , 1ck,k−1

is strongly polytopal. Then Σ is strongly polytopal.

Next, we consider smooth toric varieties over P(J ) when P = P5 and J = (a1, . . . , a5).
Note the facets of P5(J ) are 11, . . . , 1a1, 21, . . . , 2a2, . . . , 51, . . . , 5a5 . Let M=M(P5(J ),Λ)

where Λ is the matrix seen from Theorem 6.8. Let Σ be the fan given by Λ and X̂ be a
Shephard diagram for Σ . By a property of Shephard diagrams of canonical extensions, we
know that 2̂1 = 2̂2 = · · · = 2̂a2 , 3̂1 = 3̂2 = · · · = 3̂a3 , and 5̂1 = 5̂2 = · · · = 5̂a5 , thus
it will be natural that we denote them by just 2̂, 3̂, and 5̂ respectively. Choose a sequence
of integers i = (i1, i4) so that 1 ≤ i1 ≤ a1 and 1 ≤ i4 ≤ a4. Then every subsequence
X̂i := (̂1i1, 2̂, 3̂, 4̂i4, 5̂) is a Shephard diagram for a fan Σ ′ over P which is always strongly
polytopal. We know the fan Σ ′ is of type (5, d) for some integer d . Recall that there is the
corresponding characteristic map of Σ ′ (up to basis change of Z2)

λd =
(

1 0 −1 −1 d

0 1 1 0 −1

)
and we compute a Shephard diagram for λd . Suppose that d ≥ 0. To make the sum of column
vectors zero, we multiply a suitable positive real number to each column of λd , resulting

X =
(

2 0 −1 −2d − 1 2d

0 1 1 0 −2

)

and we choose a linear transform X which contains a row (1, 1, 1, 1, 1), for example

X =
⎛
⎝ 1 −2 2 0 0
−d 2 0 0 1
1 1 1 1 1

⎞
⎠ .

Deleting the row (1, 1, 1, 1, 1) gives the wanted Shephard diagram. Note that for all d ≥ 0,
the fifth column vector (0, 1) is the midpoint of the second column (−2, 2) and the third
one (2, 0). This is also true for any other Shephard diagrams and in particular one obtains
5̂ = (̂2+ 3̂)/2. A similar argument works for d < 0.

We use again the notation relint conv{v1, . . . , vm} = v1 · · · vm. We know that for every i,

S(X̂i) := 1̂i1 2̂̂3 ∩ 2̂̂3̂4i4 ∩ 3̂̂4i4 5̂ ∩ 4̂i4 5̂̂1i1 ∩ 5̂̂1i1 2̂ �= ∅
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FIGURE 6. A Shephard diagram for a complete non-singular fan Σ over
P5(2, 1, 1, 2, 1). The thick lines indicate a Shephard diagram X̂i which has
maximal angles of � 1̂i1 5̂̂3 and � 4̂i4 5̂̂2 respectively.

by strong polytopalness of Σ ′. Since 1̂i1 2̂̂3 intersects 2̂̂3̂4i4 for every i, every 1̂i1 and 4̂i4 must

lie on the same open half-plane determined by the line 2̂̂3. The fact that 3̂̂4i4 5̂ ∩ 5̂̂1i1 2̂ is
nonempty implies that � 1̂i1 5̂̂3+ � 4̂i4 5̂̂2 < 2π . See Figure 6.

Pick i1 and i4 such that the angles � 1̂i1 5̂̂3 and � 4̂i4 5̂̂2 are maximal, respectively. Then
for such i1 and i4, it is an easy task to show that the intersection of relint conv{̂1i1, 5̂, 4̂i4} and
an ε-ball centered at 5̂ is included in relint conv X̂|Y for any coface Y of P5(J ), hence Σ is a
strongly polytopal fan. For example, the set S(Σ, X̂) is the filled region in Figure 6.

8. Application: Real toric varieties and their topological analogues. In this sec-
tion, we briefly give an introduction to “real toric objects” and classify them for special cases.
Let M be a toric variety of complex dimension n. Then there is a canonical involution, called
the conjugation of M . The set of its fixed points, denoted by MR, is a real subvariety of dimen-
sion n, called a real toric variety. When M is a toric manifold, then MR is a submanifold of
dimension n and called a real toric manifold. This concept can be generalized to topological
toric case.

DEFINITION 8.1 ([18]). We say that a closed smooth manifold M of dimension n with
an effective smooth action of (R∗)n having an open dense orbit is a real topological toric
manifold if it is covered by finitely many invariant open subsets each of which is equivariantly
diffeomorphic to a direct sum of real one-dimensional smooth representation spaces of (R∗)n.

See [18] for details. Note that (R∗)n ∼= Rn × Z
n
2 as a group. Similarly to its complex

counterpart, we can consider the combinatorial object for a real topological toric manifold (as
a Z

n
2-manifold). One can define an analogue of a characteristic map, called a characteristic

map over Z2, (K, λ): all is the same but λ maps to Z
n
2. The non-singularity condition becomes

that for each face of K , the vectors λ(i) are linearly independent over Z2.
If (K, λ) is polytopal, then the corresponding manifold M(λ) is called a small cover,

which is a Z2-version of a quasitoric manifold.
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One can observe that a slightly modified version of Proposition 4.4 works for real topo-
logical toric manifolds except positiveness of orientation which is not applicable for a Z2-
version. Hence, we have the following theorem which is a Z2-version of our main theorem
restating Theorem 1.2;

THEOREM 8.2. Let K be a fan-like simplicial sphere and v a given vertex of K . Let
(wedgev(K), λ) be a characteristic map over Z2 and let v1 and v2 be the two new ver-
tices of wedgev(K) created from the wedging. Then λ is uniquely determined by the pro-
jections Projv1

λ and Projv2
λ. Furthermore, λ is non-singular if and only if so are Projv1

λ

and Projv2
λ.

Using the theorem, we can classify every real topological toric manifold over K with
Pic(K) = 3. The process is quite similar to classification of toric manifolds of Picard number
three introduced in the previous section. First, remember that K is polytopal by Mani [24]
and K = ∂P ∗ for a simple polytope P . Let X′ be a standard Gale diagram for K which is
a regular (2k − 1)-gon. Recall Remark 6.9 which states there is a topological toric manifold
over P if and only if k = 2, 3, 4. Similarly, again by [9], there is a real topological toric
manifold (or small cover) over P if and only if k = 2, 3, 4. Suppose that k = 2. Then the
Gale diagram is a triangle and P = [n1 + 1, n2 + 1, n3 + 1] for positive integers ni . Let
P = [2, 2, 2] be a 3-cube. Every small cover on P is a 3-stage real Bott manifold by [6] and
hence for some appropriate ordering of facets of P , its characteristic matrix

λ =
⎛
⎝ 1 0 0 1 0 0

0 1 0 ∗ 1 0
0 0 1 ∗ ∗ 1

⎞
⎠ ,

where the asterisks mean arbitrary numbers in Z2. Applying the Z2-version of Proposition 4.4
repeatedly, we obtain the characteristic matrix of a small cover on [n1 + 1, n2 + 1, n3 + 1] =
Δn1 ×Δn2 ×Δn3 : ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

In1 0 0
...

...
...

1 0 0
∗ 1 0

0 In2 0
...

...
...

∗ 1 0
∗ ∗ 1

0 0 In3

...
...

...

∗ ∗ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which is exactly that of a generalized Bott manifold over R of stage 3 as seen from [6]. In
particular, M is a real toric variety. We remark that the number of D-J classes over Δn1 ×
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Δn2 ×Δn3 is calculated in [5] by

#DJ = 1+ 2(x1 + x2 + x3)+ (x1 + x2 + x3)
2 + (x1x2 + x2x3 + x3x1)

+ (x1 + x2 + x3)(x
2
1 + x2

2 + x2
3)− x3

1 − x3
2 − x3

3 ,

where xi = 2ni − 1 for i = 1, 2, 3.
If k = 3, the polygon is a pentagon P5. Let us find small covers over P5. To do this,

denote λ(i) = vi . By applying a basis change, we can assume v1 =
(1

0

)
and v2 =

(0
1

)
. Then it

is a simple computation to see that there are five D-J classes on the pentagon:

A1 :=
(

1 0 1 0 1
0 1 1 1 1

)
,

A2 :=
(

1 0 1 1 1
0 1 1 0 1

)
,

A3 :=
(

1 0 1 1 0
0 1 1 0 1

)
,

A4 :=
(

1 0 1 1 0
0 1 0 1 1

)
,

and

A5 :=
(

1 0 1 0 1
0 1 0 1 1

)
.

Note that in any case, up to a suitable rotation of P5, the matrix has the form (a b a b c)

for some nonzero vectors a, b, c ∈ Z2
2 which are distinct each other. Up to basis change,

the characteristic map is determined by the position of c, hence the name Ai . Let us call the
position of c the type of Ai . Hence the type of Ai is i. The five matrices are all equivalent each
other up to rotational symmetry of P5 and the integral matrix λd becomes A3 mod 2 if d is
even or A2 otherwise. Hence we obtain a Z2-analogue of Lemma 6.7. Since every small cover
over P5 is a real toric variety, it concludes that every small cover over P5(a1, a2, . . . , a5) is
a real toric variety and all arguments used to prove Theorem 6.8 work almost the same. Let
A = A3 or A2. Again, we write

Mi :=
(
0 · · · 0 vi

)
2×ai

where i = 1, . . . , 5 and vi is the i-th column of A. Moreover, we write

Sai :=
⎛
⎜⎝

1 0 1
. . .

...

0 1 1

⎞
⎟⎠

(ai−1)×ai

and
Ni :=

(
0 · · · 0 ni

)
(ai−1)×a5

for an arbitrary vector ni = (ni2, . . . , niai )
T . We put ni1 = 0 for convention. Any pentagon

in the 2-skeleton of P(J ) = P5(a1, . . . , a5) can be labeled by an integral vector (b1, . . . , b5),
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1 ≤ bi ≤ ai , and each pentagon can be naturally identified with P5. Now we get the following
Z2-analogue of Theorem 6.8.

THEOREM 8.3. Up to rotational symmetry of the pentagon P5 and basis change, a
small cover over P5(a1, . . . , a5) is determined by the following characteristic matrix

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M1 M2 M3 M4 M5

Sa1 0 0 0 N1

0 Sa2 0 0 0
0 0 Sa3 0 0
0 0 0 Sa4 N4

0 0 0 0 Sa5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
∑

i ai−3)×∑
i ai

,

for arbitrary choice of n1 and n4. The projection of Λ over the pentagon labeled by
(b1, . . . , b5) has type{

3 , if A = A3 and n1b1 + n4b4 = 0; or A = A2 and n1b1 + n4b4 = 1;
2 , if A = A3 and n1b1 + n4b4 = 1; or A = A2 and n1b1 + n4b4 = 0 .

Therefore, the number of Davis-Januszkiewicz classes of small covers over P5(a1, . . . , a5) is

#DJ = 2a1+a4−1 + 2a2+a5−1 + 2a3+a1−1 + 2a4+a2−1 + 2a5+a3−1 − 5 .

PROOF. Every argument goes the same as that of Theorem 6.8. The D-J equivalence
type of Λ is determined by the types of projected characteristic maps. We can choose A from
A3 and A2 and there are 2a1−1 and 2a4−1 choices of the vectors n1 and n4 respectively, thus
we have 2 ·2a1−1 ·2a4−1 = 2a1+a4−1 possibilities. Considering rotational symmetry of P5, the
D-J classes are all distinct except possibly the case n1 and n4 are zero vectors. For example,
both of

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M1 M2 M3 M4 M5

Sa1 0 0 0 0
0 Sa2 0 0 0
0 0 Sa3 0 0
0 0 0 Sa4 0
0 0 0 0 Sa5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, when A = A2

and

Λ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M5 M1 M2 M3 M4

0 Sa2 0 0 0
0 0 Sa3 0 0
0 0 0 Sa4 0
0 0 0 0 Sa5

Sa1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, when A = A3

give the same types (it is 2 in this case) on every projection. Since there are five such cases,
we obtain the wanted result. �
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When k = 4, the standard Gale diagram is a heptagon and P[7] = [1, 1, 1, 1, 1, 1, 1] is a
simple 4-polytope with 7 facets. Let us label the vertices of the heptagon by 1, 2, 5, 3, 4, 6, 7.
It is actually the dual of a cyclic polytope; see [9] for reference. There are only two small
covers on [1, 1, 1, 1, 1, 1, 1], which we denote by λ1 and λ2,

(8.1) λ1 =

⎛
⎜⎜⎝

1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞
⎟⎟⎠ and λ2 =

⎛
⎜⎜⎝

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

⎞
⎟⎟⎠ ,

up to D-J equivalence. For example, the following is a characteristic map for [2, 1, 1, 1, 1, 1,

1] = wedgeF1
([1, 1, 1, 1, 1, 1, 1]):

λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

11 12 2 3 4 5 6 7
1 0 0 0 0 1 0 1
0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 1
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe the first and second rows of λ and compare it with the matrix (4.2). We write

λ1 =

⎛
⎜⎜⎝

1 0 0 0 a1

0 1 0 0 a2

0 0 1 0 a3

0 0 0 1 a4

⎞
⎟⎟⎠

and

λ2 =

⎛
⎜⎜⎝

1 0 0 0 b1

0 1 0 0 b2

0 0 1 0 b3

0 0 0 1 b4

⎞
⎟⎟⎠ ,

where ai and bi are row vectors of dimension 3. In order to find a nontrivial wedging over
[2, 1, 1, 1, 1, 1, 1], one must find k, 1 ≤ k ≤ 4, such that

ai = bi when i �= k ;
and

ai �= bi when i = k ,

but there is no such k. In conclusion, there are only two small covers over [2, 1, 1, 1, 1, 1, 1]
up to D-J equivalence: one is the canonical extension of λ1 and the other is the trivial wedging
of λ2. This holds for arbitrary P[7](J ). Meanwhile, we recall Theorem 6.5 saying that there
is no toric manifold over P[7]. Hence, no small cover over [a1, a2, . . . , a7] is a real toric
manifold while every small cover over [a1, . . . , a5] is a real toric variety.

We state this result as a proposition:
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PROPOSITION 8.4. Up to Davis-Januszkiewicz equivalence, there are exactly two
small covers over the simple polytope [a1, a2, . . . , a7]. These cannot be real toric manifolds.

For a fixed simple polytope P , we remark there is a computer algorithm [16, Algo-
rithm 4.1] to find every small cover over P , although the printed version in [16] has small
error on it. We present the corrected version here.

• Input: FP = set of subsets I ⊂ {1, . . . ,m} such that
⋂

i∈I Fi is a face of P .
• Output: Γ = list of Z2-vectors (λ1, . . . , λm) such that the first n vectors λ1, . . . , λn

form the standard basis for Zn
2.

• Initialization: Set the following:
λ1 ← (1, 0, . . . , 0), λ2 ← (0, 1, . . . , 0), . . . , λn ← (0, 0, . . . , 1),
Γ ← ∅,
S ← list of nonzero elements of Zn

2,
i ← n+ 1.

• Procedure:
(1) Set Si ← S.
(2) For all I ∈ FP of the form I = {i1, . . . , ik} ∪ {i} with 1 ≤ ii ≤ · · · ≤ ik ≤ i,

remove the vector λi1 + · · · + λik from the list Si .
(3) If i = n then STOP.
(4) If Si = ∅ then i ← i − 1 and go to (3).
(5) Set λi ← Si [1] (where Si [1] denotes the first element of the list Si ).
(6) Remove λi from the list Si .
(7) If i = m, then add the vector to the list and go to (4).
(8) If i < m, then set i ← i + 1 and go to (1).

For example, the algorithm above applied to the polytope [1, 2, 1, 2, 2] gives the fol-
lowing list of matrices Bi such that λ = (I5 | Bi) is a characteristic matrix of the polytope
[1, 2, 1, 2, 2] where I5 is a 5× 5 identity matrix. Note that the facets of [1, 2, 1, 2, 2] are or-
dered so that the first five facets intersect and therefore the first five columns forms an identity
matrix. We used the ordering 1, 21, 3, 41, 51, 22, 42, 52.

B1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1
1 0 0
1 1 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B2 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1
1 0 0
1 1 1
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B3 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1
1 1 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B4 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1
1 1 1
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

B5 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1
1 0 0
1 1 1
0 1 0
1 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B6 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1
1 0 0
1 1 0
0 1 0
1 1 1

⎞
⎟⎟⎟⎟⎟⎠ , B7 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1
1 0 0
1 1 1
1 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B8 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1
1 0 0
1 1 1
1 1 0
1 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,
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B9 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1
1 0 0
0 1 1
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B10 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1
1 1 0
0 1 1
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B11 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1
1 0 0
0 1 1
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B12 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1
1 1 0
0 1 1
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

B13 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1
1 0 0
0 1 1
0 1 0
1 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B14 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1
1 0 0
0 1 1
1 1 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B15 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1
1 0 0
0 1 1
1 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B16 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1
1 0 0
0 1 1
1 1 0
1 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

B17 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1
1 0 0
1 1 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , B18 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1
1 0 0
1 1 0
0 1 0
1 1 1

⎞
⎟⎟⎟⎟⎟⎠ , and B19 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1
1 0 0
1 1 0
1 1 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

Using this data, we have an alternative way to find all characteristic maps over [a1, a2 +
1, a3, a4 + 1, a5 + 1] (a2, a4, and a5 are allowed to be zero). For a suitable basis, its charac-
teristic matrix has the form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11

In1 0 0
...

A1n1

0
. . . 0

...

A51

0 0 In5

...

A5n5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ai,j are 3-dimensional row vectors such that for any ji’s, the matrix⎛
⎜⎝

A1j1
...

A5j5

⎞
⎟⎠

is one of Bi ’s above.

9. Application: The lifting problem. Recall that every toric manifold has its con-
jugation map. Like toric manifolds, every topological toric manifold M as a T n-manifold
has a conjugation map whose fixed points make a real topological toric manifold M ′ as a
(Z2)

n-manifold. In this case, λ(M ′) is exactly the modulo 2 reduction of λ(M). Hence, it
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seems natural to ask whether the converse holds or not. From this viewpoint, Lü presented
the following problem, so called the lifting problem, at the conference on toric topology held
in Osaka in November 2011.§

QUESTION 9.1 (Lifting problem for real topological toric manifolds). Let K be a fan-
like simplicial sphere of dimension n − 1 with m vertices. Let M be a real topological toric
manifold over K . Then, is there a topological toric manifold N , called a lifting of M , such
that M is the fixed point set of the conjugation on N? Equivalently, for any non-singular
characteristic map λ : V (K)→ Z

n
2 over Z2, is there a non-singular characteristic map λ̃ over

Z, called a lifting of λ, such that

Zn

mod 2
��

V (K)

λ̃

�����������

λ
�� Zn

2,

where V (K) is the vertex set of K?

When n ≤ 3, it is known that the answer to the lifting problem is affirmative. In this
paper, we answer to the problem affirmatively when m ≤ n+ 3.

LEMMA 9.2. Let A = (aij )n×n be an n×n matrix with integer entries such that det A
is odd. Then, there is an n× n matrix B = (bij )n×n such that det B = 1 and bij is congruent
to aij up to modulo 2 for all i and j .

PROOF. We use an induction on n. It is obvious for n = 1. Let A be an n × n matrix.
Let us denote by Aij the minor of A obtained by deleting the i-th row and the j -th column of
A. Then recall

det A =
n∑

i=1

a1i det A1i .

One can assume that det A11 = 1 by induction hypothesis. Replace a11 with a11 − det A+ 1
to obtain B which is available since 1 − det A is even. Then det B = 1 and the proof is
done. �

The above lemma says that it is enough to consider the D-J equivalence class of toric
objects for the lifting problem. To be more precise, let λ be a characteristic map over Z2 of
dimension n. Then every characteristic map over Z2 which is D-J equivalent is given by the
matrix Rλ when R is an n × n matrix over Z2 whose determinant is 1. If λ̃ is a lifting of λ,
then the above lemma guarantees that there is an n × n matrix R̃ with det R̃ = 1 such that R

is the modulo 2 reduction of R̃ and therefore R̃λ̃ is a characteristic map D-J equivalent to λ̃.

COROLLARY 9.3. Let K be a fan-like simplicial sphere of dimension n − 1 with at
most n+ 3 vertices. Then any real topological toric manifold over K can be realized as fixed
points of the conjugation of a topological toric manifold.

§http://www.sci.osaka-cu.ac.jp/~masuda/toric/torictopology2011_osaka.html



WEDGE OPERATIONS AND TORUS SYMMETRIES 137

PROOF. By [6], any real topological toric manifold M over the join of boundaries of
simplices is a generalized real Bott manifold which is real toric variety. Hence, there is a
(projective) toric manifold whose fixed point set of the conjugation is M . Indeed, this toric
manifold is a generalized Bott manifold.

Hence, it is enough to consider the case when the number of vertices is n+3, and the Gale
diagram of P is either a pentagon or a heptagon where ∂P ∗ = K . If P = P5(a1, . . . , a5),
then, by Theorem 6.8 and Theorem 8.3, our claim holds. If P = [a1, . . . , a7], then, by
Proposition 8.4, every small cover over P can be obtained by canonical extensions from either
M(P[7], λ1) or M(P[7], λ2) where λ1 and λ2 are given by (8.1). If we regard both λ1 and λ2

as (0, 1)-matrix over Z, then one can check that λ1 and λ2 are non-singular over Z. Hence, so
are their canonical extensions, which proves the corollary. �
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