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Abstract. We give a concrete expression of a minimal singular metric on a big line
bundle on a compact Kähler manifold which is the total space of a toric bundle over a complex
torus. In this class of manifolds, Nakayama constructed examples which have line bundles
admitting no Zariski decomposition even after modifications. As an application, we discuss
the Zariski closedness of non-nef loci.

1. Introduction. We consider the positivity of a big holomorphic line bundle over a
compact Kähler complex manifold. Especially, we are interested in the information related to
the obstruction to the nef-ness of the line bundle. Our main result is the explicit construction
of a minimal singular metric, or a singular hermitian metric on L with minimal singularities,
of a big line bundle L when the manifold X is the total space of a smooth projective toric
bundle over a complex torus (Theorem 4.7).

In order to state our main theorem in general form, we have to define some terminology.
So in this section, we introduce our result only when (X,L) is a Nakayama example ([14,
IV §2.6]), which is one of the most important examples when we study the obstruction to the
nef-ness of the line bundle, since it admits no Zariski decomposition even after modifications.
Let E1 be a sufficiently general smooth elliptic curve such as C/(Z + (π + √−1)Z), E2 a
copy of E1, and zj a coordinate of Ej for j = 1, 2. Let us fix an integer a > 1, points
p1 ∈ E1, p2 ∈ E2, and define the three line bundles Lj (j = 0, 1, 2) over V = E1 ×E2 by

L0 =OV (2F1 − 4F2 + 2Δ) ,

L1 =OV ((a − 1)F1 + (a − 1)F2 + (a + 2)Δ) ,

L2 =OV ((a + 3)F1 + (a − 3)F2 + aΔ) ,

where F1 stands for the prime divisor {p1} × E2 ⊂ V , F2 stands for the prime divisor E1 ×
{p2} ⊂ V , and Δ stands for the prime divisor {(x, y) ∈ E × E | x = y}. Then there exists
a hermitian metric hj over Lj whose curvature tensor Θhj ∈ c1(Lj ) is a harmonic form and
each hj can be denoted as hj (ξ, η)(z1,z2) = e−ϕj (z1,z2)ξη, where

ϕ0(z1, z2)= (z1, z2)

(
4 −2

−2 −2

) (
z1

z2

)
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ϕ1(z1, z2)= (z1, z2)

(
2a + 1 −(a + 2)

−(a + 2) 2a + 1

) (
z1

z2

)

ϕ2(z1, z2)= (z1, z2)

(
2a + 3 −a

−a 2a − 3

) (
z1

z2

)
,

on each small open subset U of V with appropriate local trivialization sj of Lj on U . Let us
define the variety X as the total space of a P2-bundle π : P(L0 ⊕ L1 ⊕ L2) → V over V and
L = OP(L0⊕L1⊕L2)(1). Let U be a sufficiently small open set of V . We use the function

([x0; x1; x2], z1, z2) �→ [x0s0(z1, z2); x1s1(z1, z2); x2s2(z1, z2)]
∈ (Cs0(z1, z2)⊕ Cs1(z1, z2)⊕ Cs2(z1, z2))

∗/C∗ = π−1(z1, z2)

as a coordinates system on π−1(U), where sj is a dual section of sj . Using these coordinates,
our main result applied to this example can be stated as follows:

THEOREM 1.1. Let (X,L) be the above example, which is introduced by Nakayama
[14] and admits no Zariski decomposition even after modifications. There is a minimal singu-
lar metric hmin on L whose local weight functionψ is continuous onX \P(L0) and is written
as

ψ = log max
(α,β)∈H (|x1|2α · |x2|2β)+O(1)

at each point in P(L0) with local coordinates (x1, x2, z1, z2) = ([1; x1; x2], z1, z2), where
H = {(α, β) ∈ R2 | α, β ≥ 0, a2(α + β)2 = (1 − α)2 + (1 − β)2}.

This expression enables us to compute the multiplier ideal sheaf J (htmin) for each posi-
tive number t , whose stalk at x0 ∈ X is defined by

J (htmin)x0 = {f ∈ OX,x | |f |2e−tϕmin is integrable around x0} ,
where ϕmin is the local weight function of hmin around x0.

COROLLARY 1.2. J (htmin) is trivial at any point inX\P(L0). For a point x0 ∈ P(L0),
the stalk J (hmin)x0 of the multiplier ideal sheaf is the ideal of OX,x0 which is generated by
the polynomials

{xp1 xq2 | (p + 1, q + 1) ∈ Int(St ) ∩ Z2} ,
where we denote by St the set {(tα, tβ) ∈ R2 | α, β ≥ 0, a2(α+ β)2 ≥ (1 − α)2 + (1 − β)2}
(For the shape of St in this case, see Figure 1).

According to [14], this (X,L) is an example which admits no Zariski decomposition even
after modifications. So, it can be expected in this case that the behavior of this multiplier ideal
sheaf is different from the algebraic cases. Indeed, the set of jumping numbers Jump(ψ; x0)

for a point x in P(L0) (see [9, Section 5] for definition) can be written as follows in this case;

Jump(ψ; x0) =
{
p + √

2p2a2 − q2

2

∣∣∣∣p, q ∈ Z, 0 ≤ q < p, p − q ≡ 0 (mod 2)

}
,
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FIGURE 1. The shaded area of this figure represents the set S1. The set St is
the set of points p ∈ R2 which satisfies p

t ∈ S1.

which is the set of the largest roots of the quadratic equations 4T 2 − 4pT + (1 − 2a2)p2 +
q2 = 0 of T , where integers p and q satisfy the above conditions. This set has different
properties from algebraic multiplier ideal sheaves. For example, it seems difficult to expect
the “periodicity" property, and does not have the “rationality" property in this case (For these
property, see [9, 1.12] or Remark 6.3 below). Especially, the singularity exponent cx0(ψ),
which is the minimum number in the set of all jumping numbers, satisfies

cx0(ψ) = √
2a + 1 ,

and it is clearly irrational.
More generally, we give a concrete expression of a minimal singular metric on a big line

bundle L on the total space of such a toric bundle, see Theorem 4.7. As an application, we
discuss Zariski closedness of the non-nef locus NNef(L) of L, see Corollary 5.5.

The organization of the paper is as follows. Let X be the total space of a smooth projec-
tive toric bundle over a complex torus, and L be a big line bundle over X. In Section 2, we
recall some facts and notations related to analysis on X and L. In Section 3, we fix a way to
coordinate X, and study how modifications of X or zeros of holomorphic sections of L can
be treated by using this coordinates system. In Section 4, we construct a singular hermitian
metric {e−ψσ } of L and show it is a minimal singular metric. In Section 5, we study some
properties related to the positivity of L, as applications of the result in Section 4. Here we in-
troduce how to calculate the Kiselman numbers and the Lelong numbers of minimal singular
metrics, and study the non-nef locus of L and multiplier ideal sheaves associated to minimal
singular metrics. In Section 6, we introduce three examples for (X,L), all of which is based
on the example introduced in [14], and apply our result to them.
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2. Preliminaries to analysis on toric bundles.

2.1. Analysis on compact Kähler manifolds. Let X be a compact Kähler manifold
and L be a holomorhic line bundle on X. Let h be a singular hermitian metric on L. For each
local trivialization of L on an open set of X, “the inner product" defined by h can be written
as (ξ, η)z = e−ψ(z)ξη where z is a point in the open set, ξ and η are points in C, which we
regard as the z-fiber of L, andψ is a locally integrable function defined on the open set, which
we call the local weight of h. The local currents written as ddcψ for the local weight ψ of h
glue together to define the curvature current associated to h. We denote it byΘh.

In order to define the minimal singular metric, let us recall how to compare the singular-
ities of plurisubharmonic functions.

DEFINITION 2.1 ([8, 1.4]). Let ϕ and ψ be plurisubharmonic functions defined on a
neighborhood of x ∈ X. We write ψ ≺sing ϕ at x when there exists a positive constant C
such that the inequality e−ϕ ≤ Ce−ψ holds for each point sufficiently near to x. We denote
ϕ ∼sing ψ at x if ϕ ≺sing ψ and ϕ �sing ψ holds at x.

By using this notation, we can define the minimal singular metric as follows.

DEFINITION 2.2. Let hmin be a singular hermitian metric onLwhich satisfiesΘhmin ≥
0. We call hmin a minimal singular metric if ψ ≺sing ϕmin holds at any point x ∈ X for all
singular hermitian metric h satisfying Θh ≥ 0, where ϕmin and ψ stand for the local weight
functions of hmin and h, respectively, with respect to a local trivialization of L around the
point x ∈ X.

It is known that there exists a minimal singular metric on every pseudo-effective line
bundle. This fact is proved by considering the upper semi-continuous regularization of the
supremum of the all appropriately normalized ψ‘s, where ψ is as in Definition 2.2 (see [8,
1.5] for details).

Let L be a big line bundle. We denote byN(L) the negative part
∑
Γ : prime divisor ν(ϕmin,

Γ )Γ of L in the sense of the divisorial Zariski decomposition [3], where ϕmin is the local
weight of a minimal singular metric on L and ν(ϕmin, Γ ) is the Lelong number of ϕmin at
the divisor Γ . We say that L admits a Zariski decomposition if the positive part P(L) :=
c1(L⊗OX(L)) is nef class. We here remark that this definition of the Zariski-decomposability
coincides with Nakayama’s algebraic one [14].

2.2. Complex tori. Here, let us recall some fundamental terminologies related to
complex tori. Let Λ ⊂ Cd be a lattice. We denote Cd/Λ by V and the natural map Cd → V

by p.

PROPOSITION 2.3 ([2, Chapter 3]). Following four propositions hold for above d, V ,
andΛ as above. Here, let us denote by Hd the set of all hermitian matrices of size d × d with
C-coefficients.
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(1) There exists an injective R-linear map NS(V )⊗ R → Hd .
(2) By this linear map, NS(V ) is identified with {H ∈ Hd | ∀λ,μ ∈ Λ, Im (λHμ̄) ∈ Z}.
(3) By this linear map, the nef cone Nef(V ) ⊂ NS(V ) is identified with

{H ∈ Hd | H ≥ 0 and H is an element of the image of the set NS(V )⊗ R} .
(4) Let c1(E) be identified with HE ∈ Hd by this linear map for a line bundle E on V .

Fix a metric hE of E whose curvature form is a harmonic form with respect to the Euclidean
metric (such hE always exists and is unique up to scale). Here we fix a point of V and denote
by z = (z1, z2, . . . , zd) the local coordinates of V around the point induced by the map p and
the usual coordinates of Cd . Then, there exists a canonically determined local frame e of E
on the neighborhood of the point such that, with respect to this local trivialization, the local
weight function ϕE of hE can be written as

ϕE(z1, z2, . . . , zd ) = (z1, z2, . . . , zd )HE

⎛
⎜⎜⎜⎝
z1

z2
...

zd

⎞
⎟⎟⎟⎠ .

2.3. Toric bundles. Here, we review fundamental terminology related to toric bun-
dles. We follow [14, IV] basically. Let us denote by V a base complex manifold. For simplic-
ity, we restrict ourselves to the case where V is a complex torus. Let N be a free Z-module
of rank n, and M be the dual module Hom(N,Z). We denote by e1, e2, . . . , en generators
of N ,and by e1, e2, . . . , en the dual generators of M . We write NR and MR for N ⊗ R and
M ⊗ R, respectively. We fix a group homomorphism

L : M → Pic(V )

and a fan Σ of N , and construct a toric bundle π : TN(Σ,L) → V . We assume the fan Σ is
smooth projective, which means that the fan is defined by a smooth full-dimensional lattice
polytope. Under this assumption, the toric variety TN(Σ) is a smooth projective variety. We
denote by Lm ∈ Pic(V ) the image ofm ∈ M . For simplicity, we also denote by Lm the image
of m ∈ MR with respect to the linear map

L ⊗ R : MR → Pic(V )⊗ R .

DEFINITION 2.4. For σ ∈ Σ , we define the affine toric bundle π : TN(σ,L) → V by

TN(σ,L) = SpecV
⊕

m∈σ∨∩M
Lm

with the canonical morphism to V , and the toric bundle π : TN(Σ,L) → V by gluing
{TN(σ,L) → V }σ∈Σ in the natural way.

For each cone σ ∈ Σ , there exists a corresponding T := Hom (M,C∗)-orbit Oσ (L) as
the case of toric varieties. Let us denote by V(σ,L) the closure of Oσ (L) as the subset of
TN(Σ,L). Just as the case of toric varieties, the codimension of V(σ,L) coincides with the
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dimension of σ . In particular, for each 1-dimensional σ ∈ Σ , V(σ,L) is a prime divisor of
TN(Σ,L).

DEFINITION 2.5. We denote by Ver(Σ) the set of the whole primitive generators v ∈
N of one-dimensional cones of Σ . For v ∈ Ver(Σ), we denote by Γv the prime divisor
V(R≥0v,L). Let us set

PLN(Σ,Z) = {h : NR → R | for each σ ∈ Σ, h|σ is linear, and h(N) ⊂ Z} .
For h ∈ PLN(Σ,Z), we define the divisorDh by

Dh =
∑

v∈Ver(Σ)

(−h(v))Γv .

It is known that any line bundle over TN(Σ,L) can be written by adding a divisor of the
form Dg to the pull-back of a line bundle over V ([14, 2.3]).

EXAMPLE 2.6. The cone {0} is always an element of the fanΣ . Here we consider the
affine toric bundle TN({0},L). Fix a metric on Lej whose curvature form is a harmonic form
with respect to the Euclidean metric for each j . Let U be a sufficiently small open set in V
and z �→ sj (z) be such a local trivialization of Lej on U as in Proposition 2.3, and z �→ sj (z)

be the dual frame of the local frame z �→ sj (z) for j = 1, 2, . . . , n. It can be easily checked
that the frame z �→ sj (z) is also such a section of L−ej = (Lej )−1 as in Proposition 2.3.
Here,

TN({0},L)|{z} = SpecC[s1(z), s2(z), . . . , sn(z), (s1)−1(z), (s2)−1(z), . . . , (sn)−1(z)]

=
n∏
j=1

C∗ · sj (z)

for z ∈ U . Thus, it follows that the affine toric bundle TN({0},L) can be considered as the
(C∗)n-bundle on V of which the system {sj }j works as a local trivialization on U .

EXAMPLE 2.7. Second example is a case where n = 2. LetL0, L1, L2 be line bundles
over V . Let L be a map defined by ej �→ Lj ⊗ L−1

0 (j = 1, 2) and Σ be the fan generated
by the three cones

σ1 = Cone{e1, e2}, σ2 = Cone{e2,−(e1 + e2)}, and σ3 = Cone{−(e1 + e2), e1}.
Fix a metric on Lej whose curvature form is a harmonic form with respect to the Euclidean

FIGURE 2. Σ .
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metric for each j . Let U be a sufficiently small open set in V and z �→ s1(z), z �→ s2(z)

be such local trivializations of (L1 ⊗ L−1
0 )−1, (L2 ⊗ L−1

0 )−1 of U as in Proposition 2.3,
respectively, and sj be the dual of sj for j = 1, 2. Here,

TN(σ1,L)|{z} = SpecC[s1(z), s2(z)] ,
TN(σ2,L)|{z} = SpecC[(s1(z))−1s2(z), (s1(z))−1] ,
TN(σ3,L)|{z} = SpecC[(s2(z))−1, s1(z)(s2(z))−1] ,

for z ∈ U . Using this expressions, we can calculate that

TN(Σ,L) = P(OV ⊕ (L1 ⊗ L−1
0 )⊕ (L2 ⊗ L−1

0 )) ∼= P(L0 ⊕ L1 ⊕ L2) .

In this case, Ver(Σ) is the set consisting of the following three elements; v0 = −(e1 +
e2), v1 = e1, and v2 = e2. Let us define h ∈ PLN(Σ,Z) by v0 �→ −1, v1 �→ 0, and v2 �→ 0.
Then the line bundle L = OP(L0⊕L1⊕L2)(1) can be written as

L ∼= π∗L0 ⊗ OX(Dh) .

3. Toric bundles over complex tori.

3.1. Holomorphic sections and local coordinates. Let V be a smooth projective
variety andΣ be the fan defined by a smooth full-dimensional lattice polytope ofM just as in
the previous section. We denote by X the total space of the toric bundle π : TN(Σ,L) → V .
Here we consider holomorphic sections of a line bundle L over X. According to ([14, 2.3]),
without loss of generality, we may assume L = π∗L0 ⊗OX(Dh), where L0 is a holomorphic
line bundle over V , and h is an element of PLN(Σ,Z).

DEFINITION 3.1. We denote by �h the set {m ∈ MR | ∀x ∈ NR, 〈m, x〉 ≥ h(x)}, and
by �Nef(L0, h) the set {m ∈ �h | L0 ⊗Lm is nef} for a line bundleL0 over V and an element
h ∈ PLN(Σ,Z).

Since �h is a bounded closed convex set, we clearly obtain the following lemma.

LEMMA 3.2. �Nef(L0, h) is a bounded closed convex subset of MR.

DEFINITION 3.3. Here we use notations in Example 2.6. For m ∈ M , we define the
meromorphic section χm of π∗L−m on TN(Σ,L) by

(xj · sj (z))j �→
n∏
j=1

(xj · sj (z))mj = (x1)
m1 · (x2)

m2 · · · · (xn)mn ·
( n∏
j=1

(sj )−mj
)
(z)

on TN({0},L)|U , where mj = 〈m, ej 〉.
TN({0},L), which we considered in Example 2.6, is always a dense subset of TN(Σ,L).

In the case of toric varieties, or the case that V is the “0-dimensional complex torus”, regular
functions on TN(Σ,L) can be regarded as meromorphic functions on TN({0},L). There is
an analogue of this fact in the general setting.
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PROPOSITION 3.4 ([14, 2.3, 2.4]). The line bundle L = π∗L0 ⊗ OX(Dh) is pseudo-
effective if and only if the set �Nef(L0, h) is non-empty. In this case, we obtain the equation

H 0(X,L) =
⊕

m∈�Nef(L0,h)∩M
χm · π∗H 0(V ,L0 ⊗ Lm) .

In the following, we assume that V is a complex torus.

OBSERVATION 3.5. Here we rewrite the meromorphic function χm · π∗f in Proposi-
tion 3.4 by using notations in Example 2.6. Let U be a sufficiently small open set in V and
z �→ s0(z) be such a local trivialization of L0 on U as in Proposition 2.3. Under the local
trivialization z �→ (

s0 · ∏n
j=1 s

j
)
(z) of L0 ⊗ Lm, we may assume f is written as

f |U(z) = η(z) ·
(
s0 ·

n∏
j=1

(sj )〈m,ej 〉
)
(z)

on U for some holomorphic function η on U . Since

χm · π∗f ((xj · sj (z))j ) = χm((xj · sj (z))j ) · f (z) =
( n∏
j=1

(xj )
〈m,ej 〉

)
η(z) · s0(z)

holds, it can be checked that χm · π∗f is a meromorphic section of π∗L0, indeed. Moreover
we can check that it is an element of H 0(X,L) = H 0(X, π∗L0 ⊗ OX(Dh)), since m is an
element of �h.

In Observation 3.5, we calculated χm · π∗f as a meromorphic section of π∗L0. We can
rewrite it as a holomorphic section of π∗L0 ⊗ OX(Dh) by using following canonical local
coordinates.

DEFINITION 3.6. Let σ be an element of Σmax := {σ ∈ Σ | dim σ = n}. Since the
fan Σ is smooth, there exists v1, v2, . . . , vn ∈ Ver(Σ) such that σ = Cone{v1, v2, . . . , vn}
and v1, v2, . . . , vn generates N . We call such v1, v2, . . . , vn N-minimal generators of σ .

Let v1, v2, . . . , vn be the dual generators of v1, v2, . . . , vn. Then the dual cone of σ can
be written as σ∨ = Cone{v1, v2, . . . , vn}. Fix a metric hvj of Lvj whose curvature form is a
harmonic form with respect to the Euclidean metric for each j . Let U be a sufficiently small
open set in V . Let us fix such a local trivializations z �→ tj (z) of Lvj on U as in Proposition
2.3, and the dual section tj of tj for j = 1, 2, . . . , n. Using these notations, we can calculate

TN(σ,L)|{z} = Spec
⊕

a1,a2,...,an≥0

L
∑
j aj v

j

∣∣∣∣
{z}

= SpecC[t1(z), t2(z), . . . , tn(z)]

for z ∈ U . So, it turns out that TN(σ,L) is a Cn-bundle which t1, t2, . . . , tn gives a local
trivialization on U . So, we can regard the map

(x1, x2, . . . , xn, z) �→ (xj · tj (z))j ∈ TN(σ,L)|{z}
as a local coordinates system on TN(σ,L)|U . We call this local coordinate system the canon-
ical one of TN(σ,L)|U associated to the N-minimal generator v1, v2, . . . , vn of σ .
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As it is clear from the definition, the canonical coordinates system of TN(σ,L)|U asso-
ciated to the N-minimal generator v1, v2, . . . , vn of σ depends on the choice of the metrics
{hvj }j . In the following, we fix basis e1, e2, . . . , en of M and a metric hej of Lej whose
curvature form is a harmonic form with respect to the Euclidean metric for each j , and we

always choose the metric h
⊗aj1
e1 ⊗ h

⊗aj2
e2 ⊗ · · · ⊗ h

⊗ajn
en for hvj , where vj = ∑

k a
j
k e
k . By using

this metric, we can say that the canonical coordinates system of TN(σ,L)|U associated to the
N-minimal generator v1, v2, . . . , vn is uniquely determined.

REMARK 3.7. Let v1, v2, . . . , vn beN-minimal generators of σ , and (x1, x2,. . . ,xn, z)

be the canonical coordinates system of TN(σ,L)|U associated to v1, v2, . . . , vn. Then, {xj =
0} = Γvj holds for j = 1, 2, . . . , n on TN(σ,L)|U .

DEFINITION 3.8. For σ ∈ Σmax, we denote by mσ ∈ M the point which satisfies
h(w) = 〈mσ ,w〉 for all w ∈ σ . We call {mσ }σ the Cartier data of Dh.

OBSERVATION 3.9. Let σ be an element of Σmax, v1, v2, . . . , vn be N-minimal gen-
erators of σ , and (x1, x2, . . . , xn, z) be the canonical coordinates system of TN(σ,L)|U asso-
ciated to v1, v2, . . . , vn. In TN(σ,L)|U , the map

(x1, x2, . . . , xn, z) �→
n∏
j=1

(xj )
〈mσ ,vj 〉

gives a local trivialization of OX(Dh), where {mσ }σ is the Cartier data of Dh. So, by using
notations in Observation 3.5,

(x1, x2, . . . , xn, z) �→
( n∏
j=1

(xj )
〈mσ ,vj 〉

)
· s0(z)

gives a local trivialization of L. Under this trivialization, χm · π∗f ∈ H 0(X,L) can be
regarded as the holomorphic function

(x1, x2, . . . , xn, z) �→
( n∏
j=1

(xj )
〈m−mσ ,vj 〉

)
· η(z)

on TN(σ,L)|U .

The projective line P1 = {[z;w]} can be regarded as the union of two disks {[z; 1] |
|z| ≤ 1} and {[1;w] | |w| ≤ 1} with radius 1. The following proposition is an analogy of this
fact.

PROPOSITION 3.10. Let U be a sufficiently small open set in V , z0 be a point in U , σ
be an element of Σmax, v1, v2, . . . , vn be N-minimal generators of σ , and (x1, x2, . . . , xn, z)

be the canonical coordinates system of TN(σ,L)|U associated to v1, v2, . . . , vn. We set

Kσ,z0 = {(x1, x2, . . . , xn, z0) ∈ TN(σ,L) | ∀j ∈ {1, 2, . . . , n}, |xj | ≤ 1} .
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Then, ⋃
σ∈Σmax

Kσ,z0 = π−1(z0)

holds.

PROOF. Since TN({0},L)|{z0} = π−1(z0), it is sufficient to show that⋃
σ∈Σmax

Kσ,z0 ⊃ TN({0},L)|{z0} .

Let us fix a point y0 ∈ TN({0},L)|{z0} and an element τ ∈ Σmax. Let u1, u2, . . . , un

be N-minimal generators of τ , and (y1, y2, . . . , yn, z) be the canonical coordinates system
of TN(τ,L)|U associated to u1, u2, . . . , un. In this coordinates system, assume y0 is written
as ((y0)1, (y0)2, . . . , (y0)n, z0). Since y0 ∈ TN({0},L), it turns out that (y0)j �= 0 for all
j . Thus, w0 = − ∑n

j=1 log |(y0)j | · uj defines a point of NR. Since Σ is complete, there
exists an element σ ∈ Σmax such that n0 ∈ σ . Let v1, v2, . . . , vn be N-minimal generators
of σ , and (x1, x2, . . . , xn, z) be the canonical coordinates system of TN(σ,L)|U associated to
v1, v2, . . . , vn. In this coordinates system, y0 can be written as

y0 =
(( n∏

k=1

((y0)k)
〈vj ,uk〉

)
j

, z0

)
,

where v1, v2, . . . , vn is the dual basis of v1, v2, . . . , vn. On the other hands,w0 can be rewrit-
ten as

w0 = −
n∑
k=1

log |(y0)k| · uk = −
n∑
k=1

n∑
j=1

log |(y0)k|〈vj , uk〉 · vj

= −
n∑
j=1

log

∣∣∣∣
n∏
k=1

((y0)k)
〈vj ,uk〉

∣∣∣∣ · vj .

Since we have chosen σ as the condition n0 ∈ σ holds, − log
∣∣ ∏n

k=1((y0)k)
〈vj ,uk〉∣∣ ≥ 0, or∣∣ ∏n

k=1((y0)k)
〈vj ,uk〉∣∣ ≤ 1 holds for all j ∈ {1, 2, . . . , n}. We thus obtain y0 ∈ Kσ,z0 , which

proves the proposition. �

3.2. Modifications. LetΣ be a smooth projective fan of the n-dimensional latticeN .
Here we fix a smooth subdivision fan Σ̃ ofΣ , and consider a toric bundle X̃ = TN(Σ̃,L) and
the canonical morphism μ : X̃ → X. As in the case of toric varieties, μ : X̃ → X is a proper
modification of X. From this section, we use letters with subscripts such as v1, v2, . . . , vn for
generators ofN , and we denote the dual generators by the same letters with superscripts, such
as v1, v2, . . . , vn, throughout this paper.

First of all, we obtain the following result by simple computations.

LEMMA 3.11. Let σ ∈ Σmax, σ̃ ∈ Σ̃max be cones such that σ̃ ⊂ σ , v1, v2, . . . , vn be
N-minimal generators of σ , and ṽ1, ṽ2, . . . , ṽn be N-minimal generators of σ̃ . We denote by
(x1, x2, . . . , xn, z) and (x̃1, x̃2, . . . , x̃n, z) the canonical coordinates systems of TN(σ,L)|U
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and TN(σ̃ ,L)|U , respectively. In these coordinates, the morphism μ : X̃ → X can be written
as

μ(x̃1, x̃2, . . . , x̃n, z) =
(( n∏

k=1

(x̃k)
〈vj ,ṽk〉

)
j

, z

)
.

Lemma 3.11 immediately implies the following corollary.

COROLLARY 3.12. For j ∈ {1, 2, . . . , n}, there exists a subset Jvj ⊂ {1, 2, . . . , n}
such that μ∗Γvj = ⋃

k∈Jvj {x̃k = 0} in TN(σ̃ ,L)|U .

REMARK 3.13. For Corollary 3.12, the set Jvj can be written as

Jvj = {k ∈ {1, 2, . . . , n} | 〈vj , ṽk〉 �= 0} .
For σ ∈ Σmax, we define the set Σ̃σ by Σ̃σ := {σ̃ ∈ Σ̃ | σ̃ ⊂ σ }, and we denote by

(Σ̃σ )max the set {σ̃ ∈ Σ̃σ | dim σ̃ = n}. By using the expression of μ in Lemma 3.11, we can
get the following lemma.

LEMMA 3.14. Fix a point z0 ∈ U , a set I ⊂ {1, 2, . . . , n}, and a cone σ ∈ Σmax.
Denote by WI,σ,z0 the set

{(x1, x2, . . . , xn, z0) ∈ TN(σ,L) | ∀j ∈ I, |xj | ≤ 1, ∀j ∈ {1, 2, . . . , n}, xj �= 0} ,
and by WI,σ̃ ,z0 the set

{(x̃1, x̃2, . . . , x̃n, z0) ∈ TN(σ̃ ,L) | ∀k ∈ ∪j∈I Jvj , |x̃k| ≤ 1, ∀j ∈ {1, 2, . . . , n}, x̃j �= 0}
for each σ̃ ∈ (Σ̃σ )max. Then,

μ

( ⋃
σ̃∈(Σ̃σ )max

WI,σ̃ ,z0

)
= WI,σ,z0

holds.

This lemma can be proved in the almost same way as those used in Lemma 3.10. Apply-
ing this lemma with I = {1, 2, . . . , n}, we obtain the next corollary.

COROLLARY 3.15. Here we use notations in Lemma 3.14. Denote by Kσ the set

{(x1, x2, . . . , xn, z) ∈ TN(σ,L)|U | ∀j ∈ {1, 2, . . . , n}, |xj | ≤ 1}
and by Kσ̃ the set

{(x̃1, x̃2, . . . , x̃n, z) ∈ TN(σ̃ ,L)|U | ∀j ∈ {1, 2, . . . , n}, |x̃j | ≤ 1}
for each n-dimensional cone σ̃ ∈ Σ̃σ . Then,

μ

( ⋃
σ̃∈(Σ̃σ )max

Kσ̃

)
= Kσ

holds.
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3.3. Convex subsets of M . Let Σ be a smooth projective fan of the n-dimensional
lattice N , σ ∈ Σ be an n-dimensional cone, v1, v2, . . . , vn be N-minimal generators of
σ , and (x1, x2, . . . , xn, z) be the canonical coordinates system of TN(σ,L)|U associated to
v1, v2, . . . , vn, where U is a sufficiently small open set in V .

DEFINITION 3.16. For A ⊂ σ∨, we denote by A the set

{m ∈ σ∨ | ∀w ∈ σ, min
m′∈A

〈m′, w〉 ≤ 〈m,w〉} .

When A = ∅, we formally regards ∅ as σ∨.

DEFINITION 3.17. Let mσ be an element of the Cartier data Dh which is associated

to σ . We denote by S(L0, h)σ the subset {m−mσ | m ∈ �Nef(L0, h)} ⊂ σ∨.

REMARK 3.18. In
∏
j∈I {|xj | < 1} × ∏

j /∈I {xj ∈ C} × U ,

max
m∈S(L0,h)σ

∏
j∈I

|xj |2〈m,vj 〉 = max
m∈�Nef(L0,h)

∏
j∈I

|xj |2〈m−mσ ,vj 〉

for any I ⊂ {1, 2, . . . , n}, where mσ is an element of the Cartier data Dh which is associated
to σ .

DEFINITION 3.19. For a point ((x0)1, (x0)2, . . . , (x0)n, z0) ∈ TN(σ,L)|U , let us
denote by I the set {j ∈ {1, 2, . . . , n} | x

j

0 = 0}. We define the set P(f1, f2, . . . ,

fl)((x0)1,(x0)2,...,(x0)n,z0) for f1, f2, . . . , fl ∈ O((x0)1,(x0)2,...,(x0)n,z0) as follows. Let

fν(x1, x2, . . . , xn) =
∑
α≥0

(xI )
αAν,α(xIc, z) ,

be the Taylor expansion of each fν (ν = 1, 2, . . . , l) around the point ((x0)1, (x0)2, . . . ,

(x0)n, z0) for variables {xj }j∈I , where α = (aj )j∈I is a multi-index, the signature “(xI )α”
stands for

∏
j∈I (xj )aj , and Aν,α is the germ of a holomorphic function with (n − #I + d)-

variables (xIc, z) = ((xj )j �∈I , z). We define P(f1, f2, . . . , fl)((x0)1,(x0)2,...,(x0)n,z0) by

P(f1, f2, . . . , fl)((x0)1,(x0)2,...,(x0)n,z0) =
l⋃

ν=1

{ ∑
j∈I

aj · vj
∣∣∣∣Aν,(aj )j �≡ 0

}
⊂ σ∨ .

REMARK 3.20. Here, we use notations in Definition 3.19. Set

Pσ = P(f1, f2, . . . , fl)(0,0,...,0,z0)

for (0, 0, . . . , 0, z0) ∈ TN(σ,L)|U . Let Σ̃ be a smooth complete fan which is a subdivision
of Σ , σ̃ ∈ Σ̃max be a cone such that σ̃ ⊂ σ , ṽ1, ṽ2, . . . , ṽn be N-minimal generators of
σ̃ , and (x̃1, x̃2, . . . , x̃n, z) be the canonical coordinates system of TN(σ̃ ,L)|U associated to
ṽ1, ṽ2, . . . , ṽn. For the point (0, 0, . . . , 0, z0), let us set

Pσ̃ = P(μ∗f1, μ
∗f2, . . . , μ

∗fl)(0,0,...,0,z0) ,
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and assume that fν is expanded as

fν(x̃1, x̃2, . . . , x̃n, z) =
∑

(aj )j≥0

n∏
j=1

(xj )
ajAν,(aj )j (z)

around (0, 0, . . . , 0, z0). Then, by Lemma 3.11, μ∗fν can be written as

μ∗fν(x̃1, x̃2, . . . , x̃n, z) =
∑

(aj )j≥0

n∏
k=1

(x̃k)
∑n
j=1 aj 〈vj ,ṽk〉Aν,(aj )j (z)

around (0, 0, . . . , 0, z0). Thus, it follows that the following two sets are same;

l⋃
ν=1

{ n∑
j=1

aj · vj
∣∣∣∣Aν,(aj )j �≡ 0

}
=

l⋃
ν=1

{ n∑
j,k=1

aj 〈vj , ṽk〉 · ṽk
∣∣∣∣Aν,(aj )j �≡ 0

}
.

However, since the two signature · appeared in the definition of Pσ and Pσ̃ are different from
each other, we can not say nothing more than Pσ ⊂ Pσ̃ in general.

REMARK 3.21. Here, we use notations in Definition 3.19. We remark that
P(f1, f2, . . . , fl)((x0)1,(x0)2,...,(x0)n,z0) is finitely generated in the following sense; There exists
a finite subset

{m1,m2, . . . ,ml} ⊂ P(f1, f2, . . . , fl)((x0)1,(x0)2,...,(x0)n,z0) ∩
n⊕
j=1

Z≥0v
j

of the lattice such that the equation

P(f1, f2, . . . , fl)((x0)1,(x0)2,...,(x0)n,z0) = {m1,m2, . . . ,ml}
holds. More generally, for any subset A ⊂ ⊕n

j=1 Z≥0v
j , there exists a finite subset

{m1,m2, . . . ,ml} ⊂ A ∩
n⊕
j=1

Z≥0v
j

of lattice points such that the equation A = {m1,m2, . . . ,ml} holds.

LEMMA 3.22. For each finite set A ⊂ ⊕n
j=1 Q≥0v

j of rational points, there exists a

smooth complete cone Σ̃ which satisfies the following two conditions (i) and (ii). (i) Σ̃ is a
subdivision of Σ . (ii) For all n-dimensional cone σ̃ ∈ Σ̃ satisfying σ̃ ⊂ σ , there exists an el-
ement m0 ∈ A such that min

m∈A〈m,w〉 = 〈m0, w〉 holds for all w ∈ σ̃ , where ṽ1, ṽ2, . . . , ṽn

is N-minimal generators of σ̃ .

PROOF. Let Σ̃ be a fan which is made by cutting all cones of Σ by the all hyperplanes

{w ∈ NR | 〈mj,w〉 = 〈mk,w〉} (mj ,mk ∈ A)
of NR. Since A ⊂ ⊕n

j=1 Q≥0v
j , each cone of Σ̃ is rational. Moreover, for all n-dimensional

cone of Σ̃ satisfying σ̃ ⊂ σ , there exists an element mσ̃ ∈ A such that min
m∈A〈m,w〉 =
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〈mσ̃ ,w〉 holds for all w ∈ σ̃ . Let Σ̃ ′ be a smooth fan which is a subdivision of Σ̃ . This fan
Σ̃ ′ is what we desired. �

4. Construction of minimal singular metrics. Here, we use notations in the previ-
ous section. In this section, we construct a minimal singular metric on the big line bundle
L = π∗L0 ⊗ OX(Dh) over the total space of a toric bundle X = TN(Σ,L) over a com-
plex torus V , where Σ is a smooth projective fan in an n-dimensional fan N . According to
Proposition 3.4, it is clear that the set �Nef(L0, h) = �Nef(L0, h) is not empty in this setting.

First of all, we define the singular hermitian metric e−ψσ,m for each m ∈ �Nef(L0, h).

DEFINITION 4.1. Let m be an element of �Nef(L0, h), σ be an element of Σmax, v1,
v2, . . . , vn be N-minimal generators of σ , and {mσ }σ be the Cartier data of Dh. Here, we
define the plurisubharmonic function ψσ,m on TN(σ,L)|U by

ψσ,m(x1, x2, . . . , xn, z) = log

( n∏
j=1

|xj |2〈m−mσ ,vj 〉
)

+ ϕL0⊗Lm(z) ,

where U is a sufficiently small open set in V and ϕL0⊗Lm = ϕL0 + ∑n
j=1〈m, vj 〉ϕLvj . For

the definition of ϕL0 and ϕLvj , see Proposition 2.3. And here, we formally regard 00 as 1.

REMARK 4.2. In Definition 4.1, the first term of the defining equation of ψσ,m is
clearly plurisubharmonic. According to Proposition 2.3, the second term is also turned out
to be plurisubharmonic. Thus ψσ,m is also a plurisubharmonic function, indeed.

REMARK 4.3. The functions {e−ψσ,m}σ∈Σmax glue together to give a singular hermitian
metric on L. Here, we explain this fact when m is a rational point of MR for simplicity.

Let ν be a natural number such that νm ∈ M . By Observation 3.5, νψσ,m can be rewritten
as

νψσ,m = log |χνm|2 + νϕL0⊗Lm .

Since χνm can be regarded as a meromorphic section of the line bundle OX(Dνh)⊗π∗L−νm,
the first term of the right hand side of the above equation is turned out to be a local weight
of a singular hermitian metric which is defined globally on OX(Dνh) ⊗ π∗L−νm. Since the
second term is also a local weight of the hermitian metric globally defined on π∗(Lν0 ⊗Lνm),
the sum νψσ,m is a local weight of a singular hermitian metric globally defined on νL =
π∗Lν0 ⊗ OX(Dνh).

This explanation also makes sense in the general case, by considering formally with
R-line bundles.

DEFINITION 4.4. We define the plurisubharmonic function ψσ on TN(σ,L)|U by

ψσ (x1, x2, . . . , xn, z) = max
m∈�Nef(L0,h)

ψσ,m(x1, x2, . . . , xn, z)

for a sufficiently small open set U of V and σ ∈ Σmax.
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REMARK 4.5. Since eachψσ,m is plurisubharmonic, it is clear that the upper envelope

(x1, x2, . . . , xn, z) �→ lim sup
(ξ1,ξ2,...,ξn,ζ )→(x1,x2,...,xn,z)

ψσ (ξ
1, ξ2, . . . , ξn, ζ )

of ψσ is a plurisubharmonic function. Now let us consider the function

((x1, x2, . . . , xn, z),m) �→ eψσ,m(x1,x2,...,xn,z) =
( n∏
j=1

|xj |2〈m−mσ ,vj 〉
)

· eϕL0⊗Lm(z) .

This function is a continuous function defined on TN(σ,L)|U × �Nef(L0, h). Since
�Nef(L0, h) is compact (Lemma 3.2), the function

((x1, x2, . . . , xn, z),m) �→ eψσ (x1,x2,...,xn,z) = max
m∈�Nef(L0,h)

eψσ,m(x1,x2,...,xn,z) ,

is also continuous. Therefore, ψσ itself is also a plurisubharmonic function.

REMARK 4.6. Remark 4.3 yields that {e−ψσ }σ∈Σmax glue together to give a singular
hermitian metric on L whose curvature current is semi-positive.

THEOREM 4.7. Assume that L is a big line bundle, then the singular hermitian metric
e−ψσ of L is a minimal singular metric.

From now on, we will prepare for the proof of Theorem 4.7. Let σ ∈ Σ be an n-
dimensional cone, v1, v2, . . . , vn be N-minimal generators of σ , and (x1, x2, . . . , xn, z) be
the canonical coordinates system of TN(σ,L)|U associated to v1, v2, . . . , vn, where U is a
sufficiently small open set in V . We use these notations throughout this section.

LEMMA 4.8. Let us fix a point ((x0)1, (x0)2, . . . , (x0)n, z0) ∈ TN(σ,L)|U , and de-
note by I the set {j ∈ {1, 2, . . . , n} | xj0 = 0}. Then, there exist constants C1 and C2 such
that

max
m∈�Nef(L0,h)

log
∏
j∈I

|xj |2〈m−mσ ,vj 〉 + C1 ≤ ψσ ≤ max
m∈�Nef(L0,h)

log
∏
j∈I

|xj |2〈m−mσ ,vj 〉 + C2

holds on
∏n
j∈I {|xj | ≤ 1}×∏

j /∈I {|xj−xj0 | ≤ δj }×U , where {δj }j �∈I is a system of sufficiently

small positive numbers such that 0 �∈ {|xj − x
j

0 | ≤ δj } for all j �∈ I , andmσ is the element of
the Cartier data of Dh which is associated to σ .

PROOF. The function(
m, (xj )j �∈I , z

) �→ log
∏
j �∈I

|xj |2〈m−mσ ,vj 〉 + ϕL0⊗Lm(z)

defined on �Nef(L0, h)×∏
j /∈I {|xj −xj0 | ≤ δj }×U is continuous. According to Lemma 3.2,

�Nef(L0, h)×∏
j /∈I {|xj −xj0 | ≤ δj }×U is compact, which yields that this function has both

the maximum value and the minimum value, which we denote by C1 and C2 respectively.
Therefore, the inequality

log
∏
j∈I

|xj |2〈m−mσ ,vj 〉 + C1 ≤ ψσ,m ≤ log
∏
j∈I

|xj |2〈m−mσ ,vj 〉 + C2
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follows, which proves the lemma. �

As we have assumed that L is big thus in particular pseudo-effective, there must be a
minimal singular metric on L. We fix one of these and denote it by hmin.

LEMMA 4.9. Let σ be an element ofΣmax, and we denote the weight function of hmin

around TN(σ,L)|U with respect to the local trivialization of L as in Observation 3.5 by
ϕmin,σ . Then, there exists a constant Cσ such that

ϕmin,σ ≤ ψσ + Cσ

holds on the set Kσ = {(x1, x2, . . . , xn, z) ∈ TN(σ,L)|U | ∀j ∈ {1, 2, . . . , n}, |xj | ≤ 1}.
PROOF. Let us denote by mσ the element of the Cartier data of Dh associated to σ .

Applying Lemma 4.8 with I = {1, 2, . . . , n}, it follows that there exists a constant C such
that

max
m∈�Nef(L0,h)

log
n∏
j=1

|xj |2〈m−mσ ,vj 〉 ≤ ψσ + C

holds on Kσ .
Thus here, we compare ϕmin,σ with maxm∈�Nef(L0,h) log

∏n
j=1 |xj |2〈m−mσ ,vj 〉.

We choose an infinite subsequence {ν} ⊂ N and a finite subset {f (ν)j }1≤j≤Nν of

H 0(X, νL) for each ν satisfying the following condition; The function

ϕν = 1

ν
log

Nν∑
j=1

|f (ν)j |2

converges pointwise to ϕmin,σ on X except a subset of measure 0 as ν → ∞, and the max-
imum value Mϕν of ϕν on Kσ also converges to Mϕmin,σ = maxKσ ϕmin,σ as ν → ∞. The
existence of these functions can be immediately shown by applying [6, Theorem (13.21)]
regarding ϕ in the theorem as (1 − 1

k
)ϕmin + 1

k
ϕ+ for each natural number k, where ϕ+ is

the local weight of a singular hermitian metric h+ on L which satisfies Θh+ ≥ εω for some
positive number ε and a Kähler metric ω on X.

Then, according to the next Lemma 4.10, an inequality

ϕν ≤ max
m∈�Nef(L0,h)

log
n∏
j=1

|xj |2〈m−mσ ,vj 〉 +Mϕν

holds on Kσ . Considering this inequality as ν → ∞, we obtain

ϕmin,σ ≤ max
m∈�Nef(L0,h)

log
n∏
j=1

|xj |2〈m−mσ ,vj 〉 +Mϕmin,σ

on Kσ except the subset of measure 0. Since the both hand sides are plurisubharmonic, this
inequality holds on wholeKσ .

According to the above argument, we obtain the inequality

ϕmin,σ ≤ ψσ + C +Mϕmin,σ



MINIMAL SINGULAR METRICS OF A LINE BUNDLE 313

on Kσ , which proves the lemma. �

LEMMA 4.10. Here we use notations in the proof of Lemma 4.9. The inequality

ϕν ≤ max
m∈�Nef(L0,h)

log
n∏
j=1

|xj |2〈m−mσ ,vj 〉 +Mϕν

holds on Kσ .

PROOF. Let P(ϕν)σ := 1
ν
P (f

(ν)
1 , f

(ν)
2 , . . . , f

(ν)
Nν
)(0,0,...,0,z0). According to Proposi-

tion 3.4 and Observation 3.9, νP (ϕν)σ is a subset of S(Lν0, νh)σ . Since �Nef(L
ν
0, νh) =

ν�Nef(L0, h) holds, it turns out that S(Lν0, νh)σ = νS(L0, h)σ , thus we obtain

P(ϕν)σ ⊂ S(L0, h)σ .

Therefore, according to Remark 3.18, it is sufficient to show the inequality

ϕν ≤ max
m∈P(ϕν)σ

log
n∏
j=1

|xj |2〈m,vj 〉 +Mϕν

on Kσ .
According to Remark 3.21, there exists a finite subset A of P(ϕν) whose elements are

rational and which satisfies P(ϕν) = A. For this set A, we fix such a subdivision Σ̃ of Σ
as in Lemma 3.22. In the following, we use notations we used in Section 4.2. According to
Corollary 3.15, it is sufficient to show that

μ∗ϕν ≤ μ∗
(

max
m∈P(ϕν)σ

log
n∏
j=1

|xj |2〈m,vj 〉
)

+Mϕν

on Kσ̃ = {(x̃1, x̃2, . . . , x̃n, z) ∈ TN(σ̃ ,L)|U | ∀j ∈ {1, 2, . . . , n}, |x̃j | ≤ 1} for each σ̃ ∈
(Σ̃σ )max.

Since

log
n∏
j=1

|μ∗xj |2〈m,vj 〉 = log
n∏
j=1

n∏
k=1

|x̃k|2〈m,vj 〉〈vj ,ṽk〉 =
n∑
k=1

〈m, ṽk〉 log |x̃k|2

holds, we obtain

μ∗
(

max
m∈P(ϕν)σ

log
n∏
j=1

|xj |2〈m,vj 〉
)

= max
m∈P(ϕν)σ

n∑
j=1

〈m, ṽj 〉 log |x̃j |2 .

As log |x̃j |2 ≤ 0 holds for all j on Kσ̃ , the equation we desire can be rewritten as

μ∗ϕν ≤ log
n∏
j=1

|x̃j |2〈m0,ṽj 〉 +Mϕν ,

where m0 ∈ P(ϕν)σ is such an element as in Lemma 3.22.
Let P(ϕν)σ̃ := 1

ν
P (μ∗f (ν)1 , μ∗f (ν)2 , . . . , μ∗f (ν)Nν

)(0,0,...,0,z0). According to Remark 3.20,

and since both P(ϕν)σ̃ and P(ϕν)σ are generated by the same set, it turns out that μ∗f (ν)j can
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be divided by the function
∏n
k=1(xk)

〈νm0,ṽk〉 for all j ∈ {1, 2, . . . , Nν }. Denoting the quotient

by g(ν)j , the function μ∗ϕν − log
∏
j∈I |x̃j |2〈m0,ṽj 〉 can be rewritten as

μ∗ϕν − log
n∏
j=1

|x̃j |2〈m0,ṽj 〉 = 1

ν
log

Nν∑
j=1

|g(ν)j |2 .

Thus, this function is a plurisubharmonic function on Kσ̃ , and it has the maximum value on
Kσ̃ , which we denote by Mϕν,σ̃ . Then, since

μ∗ϕν ≤ log
n∏
j=1

|x̃j |2〈m0,ṽj 〉 +Mϕν,σ̃

holds on Kσ̃ . Therefore, it remains to prove that Mϕν,σ̃ ≤ Mϕν .
Assume that the plurisubharmonic function μ∗ϕν − log

∏
j∈I |x̃j |2〈m0,ṽj 〉 has the maxi-

mum value at the point ((x̃0)1, (x̃0)2, . . . , (x̃0)n, z0) ∈ Kσ̃ . We may assume |(x̃0)j | = 1 for
all j after we change the point ((x̃0)1, (x̃0)2, . . . , (x̃0)n, z0) ∈ Kσ̃ if necessary. It is because,
in the case when |(x̃0)1| < 1 for example, by considering the plurisubharmonic function

x̃1 �→ μ∗ϕν(x̃1, (x̃0)2, (x̃0)3, . . . , (x̃0)n, z0)− log

(
|x̃1|2〈m0,ṽ1〉 ·

n∏
j=2

|(x̃0)j |2〈m0,ṽj 〉
)

defined on {|x̃1| < 1}, the value of the function above must constantly be Mϕν,σ̃ .
Then, we can calculate that

Mϕν,σ̃ = μ∗ϕν((x̃0)1, (x̃0)2, . . . , (x̃0)n, z0)− log
n∏
j=1

|(x̃0)j |2〈m0,ṽj 〉

= ϕν(μ((x̃0)1, (x̃0)2, . . . , (x̃0)n, z0)) .

Since μ((x̃0)1, (x̃0)2, . . . , (x̃0)n, z0) ∈ Kσ , the value is at most Mϕν . �

PROOF OF PROPOSITION 4.7. Let us denote by h the singular hermitian metric de-
fined by {e−ψσ }σ , and by h∞ a smooth hermitian metric on L. Then, there exist upper semi-
continuous functions ϕ′

min and ψ ′ on X such that

hmin = h∞e−ϕ
′
min, h = h∞e−ψ

′

hold. Here, it is sufficient to prove that there exists a constant C such that

ϕ′
min ≤ ψ ′ + C

holds on π−1(U) ⊂ X.
According to Lemma 4.9, for each σ ∈ Σmax, there exists a constant Cσ such that

ϕ′
min ≤ ψ ′ + Cσ

holds on the set Kσ = {(x1, x2, . . . , xn, z) ∈ TN(Σ,L)|U | ∀j ∈ {1, 2, . . . , n}, |xj | ≤ 1}.
Thus, according to Lemma 3.10,

ϕ′
min ≤ ψ ′ + C
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holds on π−1(U) ⊂ X, where C = maxσ∈Σmax Cσ . �

5. Properties related to the singularities of minimal singular metrics.

5.1. Kiselman numbers and Lelong numbers of minimal singular metrics and non-
nef loci. Let X be a smooth projective variety and L be a holomorphic line bundle over X.
According to [3, 3.6], the next proposition follows.

PROPOSITION 5.1. If L is big, then the non-nef locus NNef(L) of L can be written as

NNef(L) = {x ∈ X | ν(ϕmin, x) > 0} ,
where e−ϕmin is a minimal singular metric on L.

According to this proposition, we can specify the non-nef locus of a big line bundle by
calculating the Lelong number of a minimal singular metric. It can be done, actually, in our
setting.

PROPOSITION 5.2. Let X be the total space of a toric bundle TN(Σ,L) over a com-
plex torus and L = π∗L0 ⊗ OX(Dh) be a big line bundle over X, where Σ is a smooth
projective fan in an n-dimensional lattice N . The Kiselman number

νKζ,w(ϕmin, x0) = sup

{
t ≥ 0

∣∣∣∣ϕmin ≤ t log
n+d∑
j=1

|ζj |2wj +O(1) around x0

}

associated to the coordinates system

ζ = (ζ1, ζ2, . . . , ζn+d ) = (x1, x2, . . . , xn, z1, z2, . . . , zd)

and w = (wj ) ∈ ⊕
j∈I R>0 of a minimal singular metric e−ϕmin at a point x0 =

((x0)1, (x0)2, . . . , (x0)n, z0) ∈ TN(σ,L) (see [1, Section 5.2] for the definition) can be cal-
culated by using notations in the previous section that

νKζ,w(ϕmin, x0) = min
m∈S(L0,h)σ

〈
m,

∑
j∈I

vj

wj

〉
,

where we denote by I the set {j | xj0 = 0} and by (x1, x2, . . . , xn, z1, z2, . . . , zd ) the canon-
ical coordinates system of TN(σ,L)|U associated to N-minimal generators v1, v2, . . . , vn of
σ . Especially, the Lelong number at x0 can be calculated that

ν(ϕmin, x0) = min
m∈S(L0,h)σ

∑
j∈I

〈m, vj 〉 .

COROLLARY 5.3. Let X,L be as that of the previous proposition. The following con-
ditions are equivalent.

(1) ϕmin(x0)(= ψσ (x0)) = −∞.
(2) ψσ is not continuous at x0.
(3) ν(ϕmin, x0)(= ν(ψσ , x0)) > 0.
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Especially,

ϕ−1
min(−∞) = Pole(ϕmin)

holds, where we denote by Pole(ϕmin) the set {x ∈ X | ν(ϕmin, x) > 0}.
The next proposition is also obtained easily by Theorem 4.7.

PROPOSITION 5.4. Let X,L be as that of Proposition 5.2. Then, Pole(ϕmin) is a
Zariski closed set.

According to these argument, we obtain the following corollary.

COROLLARY 5.5. LetX be the total space of a toric bundleTN(Σ,L) over a complex
torus and L = π∗L0 ⊗OX(Dh) be a big line bundle overX, where Σ is a smooth projective
fan. Then, the set NNef(L) is a Zariski closed subset of X.

5.2. Multiplier ideal sheaves. LetΣ be a smooth projective fan of an n-dimensional
lattice N . Fix N-minimal generators v1, v2, . . . , vn of σ ∈ Σmax. Let (x1, x2, . . . , xn, z) be
the canonical coordinates system of TN(σ,L)|U associated to v1, v2, . . . , vn, where U is a
sufficiently small open set in V . In this section, we consider the condition

f ∈ J (htmin)((x0)1,(x0)2,...,(x0)n,z0) ,

where ((x0)1, (x0)2, . . . , (x0)n, z0) is a point of TN(σ,L)|U , f is an element of
OX,((x0)1,(x0)2,...,(x0)n,z) \ {0}, t is a positive real number, and hmin is a minimal singular metric
on L. In the following, we also denote by J (tϕmin) the multiplier ideal sheaf J (htmin) by
using the local weight function ϕmin of the singular hermitian metric hmin.

Let I := {j ∈ {1, 2, . . . , n} | (x0)j = 0}. For this set I , let us denote the expansion
appeared in Definition 3.19 by

f (x1, x2, . . . , xn, z) =
∑

m∈PrI (σ∨∩M)

∏
j∈I
(xj )

〈m,vj 〉Am(xIc , z) ,

where the map PrI is the projection from MR to SpanR{vj }j∈I . As the dual version of this
map, we denote the projection from NR to SpanR{vj }j∈I by PrI in the following. Fix a set
A ⊂ P(f )((x0)1,(x0)2,...,(x0)n,z0) of lattice points such that

P(f )((x0)1,(x0)2,...,(x0)n,z0) = A

holds.

COROLLARY 5.6. The followings are equivalent.

(1) f ∈ J (tϕmin)((x0)1,(x0)2,...,(x0)n,z0).

(2) min
m∈tS(L0,h)σ

〈m,w〉 <
〈
m0 +

∑
j∈I

vj , w

〉
for all m0 ∈ A and w ∈ PrI (σ ) \ {0}.
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Corollary 5.6 immediately follows from Theorem 4.7 and the result of Guenancia [10]
referring to the way to compute the multiplier ideal sheaves associated to “toric plurisubhar-
monic functions”, which can be regarded as a generalization of the famous Howald’s result
([11, Theorem 11]) in algebraic setting.

According to Corollary 5.6, [5, 1.10, 1.11], and [13, 11.2.12 (ii)], we obtain next corol-
lary.

COROLLARY 5.7. Let X be the total space of a smooth projective toric bundle over
a complex torus, D a big divisor on X, and e−ϕmin be a minimal singular metric on the line
bundle OX(D).

(1) If f ∈ J (tϕmin)x0 at the point x0, then f ∈ J ((1 + ε)tϕmin)x0 holds for sufficiently
small positive number ε and any positive real number t . Especially, since the sheaf J (tϕmin)

is coherent, it follows that

J (tϕmin) = J+(tϕmin) .

(2) Let P be a nef big divisor on X, then

Hj(X,OX(KX + P + L)⊗ J (ϕmin)) = 0

holds for all j > 0.

6. Some examples. In this section, we will introduce three examples for X and L in
the previous sections. We construct them as P2-bundles over abelian surfaces, by following
[14, CHAPTER IV §2.6] basically. In this section, we use notations in Example 2.7.

As a preparation, we first recall a useful lemma to see L is big.

LEMMA 6.1. In the setting of Example 2.7, L is big if and only if there exists a triple
(a, b, c) of nonnegative integers such that La0 ⊗ Lb1 ⊗ Lc2 is ample line bundle over V .

This lemma can be easily shown by applying the result known by Cutkosky ([12, Lemma
2.3.2]) and the fact that the ample cones of complex tori coincide with these big cones.

Let E be a sufficiently general smooth elliptic curve and o be a point of E. For example,
you can choose C/(Z + (π + √−1)Z) for E. Let

V = E × E .

It is known that the rank of the Neron-Severi group NS(V ) of V is three and this group is
generated by the following three classes ([12, Chapter 1.5.B]).

• f1 = c1(OV (F1)), where F1 stands for the prime divisor {o} × E ⊂ V .
• f2 = c1(OV (F2)), where F2 stands for the prime divisor E × {o} ⊂ V.

• δ = c1(OV (Δ)) , whereΔ stands for the prime divisor {(x, y) ∈ E×E | x = y}.
By using these three classes, the nef cone Nef(V ) of V can be written as

Nef(V ) = {af1 + bf2 + cδ | a, b, c ∈ R, ab + bc+ ca ≥ 0, a + b + c ≥ 0}.
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In order to obtain more useful expression of Nef(V ), let us define the other basis of NS(V )⊗R

by

l1 = 1

6
(f1 + f2 − 2δ), l2 = 1

6
(−√

3f1 + √
3f2), and l3 = 1

6
(f1 + f2 + δ) .

By using these classes, Nef(V ) can be written as

Nef(V ) = {al1 + bl2 + cl3 | c2 ≥ a2 + b2, c ≥ 0} .
This expression of Nef(V ) makes it easy to judge the nef-ness of line bundles.

EXAMPLE 6.2. The first example is an example which admits a Zariski decomposition
after appropriate modifications. Let us fix two positive integers u < v. LetL0 := OV (−uF1−
uF2 − uΔ),L1 := OV ((u + v)F1 + (u + v)F2 + (−2u + v)Δ), and L2 := OV ((−u +
v)F1 + (−u + v)F2 + (2u + v)Δ). Then c1(L0) = −6ul3, c1(L1) = 6(ul1 + vl3), and
c1(L2) = 6(−ul1 + vl3) hold. These expressions make it clear that the line bundle L1 ⊗ L2

is ample and, according to Lemma 6.1, that L is a big line bundle in this case.
The set �Nef(L0, h) in this setting is rational polyhedral. More precisely, �Nef(L0, h) is

the convex closure of the five points e1, e2, u
v
e2, u

2(u+v)e
1 + u

2(u+v)e
2, u

v
e1 in MR. So, by

applying Theorem 4.7, it immediately turns out that the weight of a minimal singular metric
ψσj satisfies ψσj ∼sing 1 at any points of X except for the locus P(L0), and

ψσ1(x1, x2, z)∼sing
u

2v(u+ v)
log max

{|x1|2(2u+2v), |x2|2(2u+2v), |x1|2v|x2|2v
}

∼sing
u

2v(u+ v)
log

(|x1|2(2u+2v) + |x2|2(2u+2v) + |x1|2v|x2|2v
)

at a point (0, 0, z0) ∈ P(L0). Therefore, it follows that the non-nef locus NNef(L) is a Zariski
closed subset P(L0) of X.

According to [14, 2.5], the fact that �Nef(L0, h) is a rational polyhedral yields that L
admits a Zariski decomposition after appropriate proper modifications. Especially, when u
and v can be written as

u = 1, v = 2n− 2

for some integer n > 1, (X,L) is an example which admits a Zariski decomposition just after
the n-time blow-up centered at the non-nef locus of the pull-back of L. It can be also checked
out by using the above expression of the minimal singular metric on L.

According to the above expression of �Nef(L0, h), the result of Corollary 5.6 can be
rewritten as follows. First, it is clear that J (htmin) is trivial at any point in X \ P(L0). Next,
for a point x0 ∈ P(L0), the stalk of J (hmin)x0 of the multiplier ideal sheaf at x0 is the ideal
of OX,x0 which is generated by the system of the polynomials

{xp1 xq2 | (p + 1, q + 1) ∈ Int(St ) ∩ Z2} ,
where we denote by Int(St ) the interior of the set

St = {(〈tm, e1〉, 〈tm, e2〉) ∈ R2 | m ∈ S(L0, h)σ1} .
For the detail shape of St , see Figure 3.
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FIGURE 3. The shaded area of this figure represents the set S1. The set St is
the set of points p ∈ R2 which satisfies p

t ∈ S1.

The set of the whole jumping numbers Jump(ψσ1 ; x0) at a point x0 ∈ P(L0) can be
written as Jump(ψσ1; x0) = {

2p + (p + q) v
u

∣∣p, q ∈ Z, 1 ≤ p ≤ q
}
, and the singularity ex-

ponent cx0(ψσ1), which is the least number in Jump(ψσ1; x0), satisfies cx0(ψσ1) = 2
(
1 + v

u

)
.

REMARK 6.3. In Example 6.2, the behavior of the multiplier ideal sheaf J (ψσ1)

around a point of P(L0) coincides with that of the (algebraic) multiplier ideal sheaf J (ac),
where a is an ideal generated by (x2(u+v)

1 , x
2(u+v)
2 , xv1x

v
2 ) and c is the rational number u

2v(u+v) .
This means that the analytic multiplier ideal sheaf J (ψσ1)x0 has properties same as alge-

braic multiplier ideal sheaves. For example, it is known that, related to the algebraic multiplier
ideal sheaf J (ac), the set of the whole jumping numbers Jump(a; x0) is a discrete subset of
the set of rational numbers Q, and has the property so-called “periodicity” in a sufficiently big
parts of this set (see [9, 1.12] for details). Indeed, it can be easily checked that Jump(ψσ1; x0)

is a discrete subset of Q, and has a “period” c−1 = 2v(1 + v
u
).

EXAMPLE 6.4. Second example is the example found out by Nakayama ([14]), which
admits no Zariski decomposition even after modifications.

Let us fix an integer a > 1 and set L0 := OV (2F1 − 4F2 + 2Δ),L1 := OV ((a −
1)F1 + (a − 1)F2 + (a + 2)Δ) , and L2 := OV ((a + 3)F1 + (a − 3)F2 + aΔ). Then
c1(L0) = −6(l1 + √

3l2), c1(L1) = 6(−l1 + al3), and c1(L2) = 6(−√
3l2 + al3) hold. By

these expressions, it turns out that the line bundles L1 and L2 are ample and, according to
Lemma 6.1, that L is also a big line bundle in this case. For this example, see Section 1.

EXAMPLE 6.5. Finally, we introduce an example which can be proved that admits no
Zariski decomposition even after modifications in the almost same way to the case of previous
Nakayama example, however whose minimal singular metric can be expressed more easily.

Let L0 := OV (4F1 + 4F2 + Δ),L1 := OV , and L2 := OV (−F1 + 9F2 + Δ). Then
c1(L0) = 6(l1+3l3), c1(L1) = 0, and c1(L2) = 6l1+10

√
3l2+18l3 hold. By this expression,
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FIGURE 4. The shaded area of this figure represents the set S1. The set St is
the set of points p ∈ R2 which satisfies p

t ∈ S1.

it turns out that the line bundle L0 is ample and, from Lemma 6.1, that L is also a big line
bundle in this case.

The set �Nef(L0, h) in this setting is not rational, but is polyhedral. More precisely,

�Nef(L0, h) is the convex closure of the three points 0, e1, and 2
√

6
5 e2 in MR. So, apply-

ing Theorem 4.7, it immediately turns out that the weight of a minimal singular metric ψσj
satisfies ψσj ∼sing 1 at any points of X except for the locus P(L2), and

ψσ3(x1, x2, z)∼sing log max
{|x0|2α, |x1|2

}
∼sing log

(|x0|2α + |x1|2
)

at a point (0, 0, z0) ∈ P(L2), where we denote by α the positive irrational number 1 − 2
√

6
5 .

According to the above expression of �Nef(L0, h), the result of Corollary 5.6 can be
rewritten as follows. First, it is clear that J (htmin) is trivial at any point in X \ P(L2). Next,
for a point x0 ∈ P(L2), the stalk J (hmin)x0 of the multiplier ideal sheaf at x0 is the ideal of
OX,x0 which is generated by the polynomials

{xp1 xq2 | (p + 1, q + 1) ∈ Int(St ) ∩ Z2} ,
where we denote by St the set {(〈tm, e1〉, 〈tm, e2〉) ∈ R2 | m ∈ S(L0, h)σ3}. For the detail
shape of St in this case, see Figure 4.

Let x0 be a point in P(L2). In this case, Jump(ψσ3; x0) can be calculated that
Jump(ψσ3 ; x0) = Z>0 ⊕ 1

α
· Z>0, and the singularity exponent can be calculated that

cx0(ψσ1) = 1 + 1
α

, which is not rational, too. It can easily be proved by using ([14, 2.11]) that
L admits no Zariski decomposition even after modifications in this settings.
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