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Abstract. In this paper we consider a nonlinear parametric Dirichlet problem driven
by a nonhomogeneous differential operator (special cases are the p-Laplacian and the (p, q)-
differential operator) and with a reaction which has the combined effects of concave ((p −
1)-sublinear) and convex ((p − 1)-superlinear) terms. We do not employ the usual in such
cases AR-condition. Using variational methods based on critical point theory, together with
truncation and comparison techniques and Morse theory (critical groups), we show that for all
small λ > 0 (λ is a parameter), the problem has at least five nontrivial smooth solutions (two
positive, two negative and the fifth nodal). We also prove two auxiliary results of independent
interest. The first is a strong comparison principle and the second relates Sobolev and Hölder
local minimizers for C1 functionals.

1. Introduction. Let Ω ⊆ Rn be a bounded domain with a C2-boundary ∂Ω. In this
paper, we study the following nonlinear parametric Dirichlet problem:

(1)

{−div (a(Du(z)) = λ|u(z)|q−2u(z)+ f (z, u(z)) in Ω,

u|∂Ω = 0, λ > 0.

}

Here the map a : Rn → Rn involved in the differential operator of (1), is strictly monotone
and satisfies certain regularity conditions (see hypotheses H0). The p-Laplacian (p > 1)
defined by �pu = div(‖Du‖p−2Du) for all u ∈ W 1,p

0 (Ω) and the (p, τ )-differential operator

(2 ≤ τ < p) defined by �pu + μ�τ u for all u ∈ W
1,p
0 (Ω) with μ ≥ 0, are special cases

of the differential operator in problem (1). We stress that the differential operator in (1) need
not be homogeneous and this is the source of many technical difficulties. In (1), q ∈ (1, p)
and so the first term in the right-hand side of (1) is “concave” (i.e., (p − 1)-sublinear). On
the other hand, for f (z, x) we assume that it is a Caratheodory function (i.e., for all x ∈ R

x → f (z, x) is measurable and for a.e. z ∈ Ω x → f (z, x) is continuous), which exhibits
(p − 1)-superlinear growth near ±∞ in the x-variable. So, in the reaction of problem (1) we
have the combined effects of “concave” and “convex” nonlinearities and a special case of the
right-hand side of (1), is the following function which we encounter in the literature

g(x, λ) = λ|x|q−2x + |x|r−2x with 1 < q < p < r < p∗ ,
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where

p∗ =

⎧⎪⎪⎨
⎪⎪⎩

Np

N − p
if p < N

+∞ if p ≥ N

(the critical Sobolev exponent) .

This particular reaction can be found in the semilinear works (i.e., equations driven by the
Laplacian) of Ambrosetti-Brezis-Cerami [2], Bartsch-Willem [5] and Tang [31], who focus
on the existence and multiplicity of positive solutions. Their work was extended to equations
driven by the p-Laplacian by Garcia Azorero-Manfredi-Peral Alonso [15], Guo-Zhang [20]
and Kyritsi-Papageorgiou [23].

In this paper, using a combination of variational methods based on critical point theory,
with suitable truncation and comparison techniques and with Morse Theory (critical groups),
we produce five nontrivial smooth solutions and provide precise sign information for all of
them (two positive, two negative and the fifth is nodal (sign changing)). We mention that
all previous results concerning the existence of nodal solutions, deal with equations driven by
the Laplacian orp-Laplacian and the reaction satisfies the well known Ambrosetti-Rabinowitz
condition (AR-condition for short), see Bartsch-Liu-Weth [4], Dancer-Du [10] and Filippakis-
Kristaly-Papageorgiou [14]. The fact that the differential operator in problem (1) is not ho-
mogeneous, does not allow the use of the techniques employed in the aforementioned papers.
It seems that our result here is the first one on the existence of nodal solutions for nonlinear
equations driven by a nonhomogeneous differential operator.

2. Mathematical background. In this section, we briefly review the main mathe-
matical tools which we will use in the sequel. We also prove two auxiliary results, which are
of independent interest. So, let X be a Banach space and X∗ its topological dual. By 〈·, ·〉,
we denote the duality brackets for the pair (X,X∗). Let ϕ ∈ C1(X). We say that ϕ satisfies
the “Cerami condition” (the “C-condition” for short), if the following holds “every sequence
{xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded and (1 + ‖xn‖)ϕ′(xn) → 0 in X∗ as
n → ∞, admits a strongly convergent subsequence.”

This compactness type condition, is in general weaker that the usual Palais-Smale con-
dition (PS-condition for short). However, the C-condition suffices to prove a deformation
theorem and from it derive the minimax theory for certain critical values of ϕ ∈ C1(X) (see,
for example, Papageorgiou-Kyritsi [29]). In particular, we have the following result, known
in the literature as the “mountain pass theorem.”

THEOREM 2.1. If ϕ ∈ C1(X) satisfies the C-condition, x0, x1 ∈ X, ρ > 0, ‖x1 −
x0‖ > ρ

max{ϕ(x0), ϕ(x1)} < inf[ϕ(x); ‖x − x0‖ = ρ] = ηρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ (t)), where Γ = {γ ∈ C([0, 1],X); γ (0) = x0, γ (1) = x1},
then c ≥ ηρ and c is a critical value of ϕ (i.e., there exists x ∈ X such that ϕ′(x) = 0 and
ϕ(x) = c).
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Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

Kϕ = {x ∈ X; ϕ′(x) = 0},Kc
ϕ = {x ∈ Kϕ; ϕ(x) = c}

and ϕc = {x ∈ X; ϕ(x) ≤ c} .
Let (Y1, Y2) be a topological pair with Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0, by

Hk(Y1, Y2) we denote the kth-relative singular homology group for the pair (Y1, Y2) with
integer coefficients. The critical groups at an isolated point x ∈ Kc

ϕ are defined by

Ck(ϕ, x) = Hk(ϕ
c ∩ U, ϕc ∩ U\{x}) for all k ≥ 0 ,

where U is a neighborhood of x such that Kϕ ∩ ϕc ∩ U = {x}. The excision property of
singular homology, implies that this definition is independent of the particular choice of the
neighborhoodU .

In the analysis of problem (1), in addition to the Sobolev space W 1,p
0 (Ω), we will also

use the ordered Banach space C1
0 (Ω) = {u ∈ C1(Ω); u|∂Ω = 0}. The order cone of C1

0 (Ω)

is C+ = {u ∈ C1
0 (Ω); u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by

intC+ =
{
u ∈ C+; u(z) > 0 for all z ∈ Ω, ∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
,

where n(·) denotes the outward unit normal on ∂Ω.
Next we prove two auxiliary results, which are of independent interest. The first is a

comparison principle, while the second relates local C1
0 (Ω) and W 1,p

0 (Ω) minimizers for a
large class of C1-functionals. To this end we introduce the following hypotheses:

H: G : Ω×Rn → R is aC1-function such that for all z ∈ Ω,G(z, 0) = 0,∇yG(z, y) =
a(z, y), a(z, 0) = 0 and

(i) a ∈ C1(Ω × (Rn\{0}),Rn) and for every K ⊆ Rn\{0} compact, there exists
a ∈ (0, 1) such that a ∈ Ca(Ω ×K,Rn);

(ii) for every z ∈ Ω and every y ∈ Rn\{0}, we have

c0(η + ‖y‖)p−2‖ξ‖2 ≤ (∇ya(z, y)ξ, ξ)Rn for all ξ ∈ Rn

and some c0 > 0, η ≥ 0;
(iii) for every z ∈ Ω and every y ∈ Rn\{0}, we have

‖∇ya(z, y)‖ ≤ c1(η + ‖y‖)p−2 for some c1 > 0

and with η ≥ 0 as in (ii);
(iv) for every ρ > 0, there exists c2 = c2(ρ) > 0 such that

|a(z, y)− a(z′, y)| ≤ c2(1 + ‖y‖)p−1‖z− z′‖
for all z, z′ ∈ Ω, all ‖y‖ ≤ ρ.

From these hypotheses and using the integral form of the mean value theorem we can
have:
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LEMMA 2.2. If hypotheses H hold, then for all z ∈ Ω, a(z, ·) is strictly monotone and
there exist c3, c4 > 0 such that

‖a(z, y)‖ ≤ c3(1 + ‖y‖)p−1 and (a(z, y), y) ≥ c4‖y‖p for all (z, y) ∈ Ω × Rn .

An immediate consequence of this lemma is the following growth estimate for the po-
tential functionG(z, ·):

COROLLARY 2.3. If hypotheses H hold, then for all z ∈ Ω , G(z, ·) is strictly convex
and there exist c5, c6 > 0 such that

c5‖y‖p ≤ G(z, y) ≤ c6(1 + ‖y‖p) for all (z, y) ∈ Ω × Rn .

As we already mentioned, the first auxiliary result is a strong comparison principle. It
extends Proposition 2.2 of Guedda-Veron [19] and Proposition 2.6 of Arcoya-Ruiz [3], who
deal with the p-Laplacian (i.e., G(y) = 1

p
‖y‖p for all y ∈ Rn.) Other comparison results,

can be found in the works of Cuesta-Takac [9] and Lucia-Prashanth [26]. So, we consider the
following two nonlinear Dirichlet problems:

(2) −div a(z,Du(z))+ γ |u(z)|p−2u(z) = h1(z) in Ω, u|∂Ω = 0 .

(3) −div a(z,Dv(z))+ γ |v(z)|p−2v(z) = h2(z) in Ω, v|∂Ω = 0 ,

where γ ≥ 0 and h1, h2 ∈ L∞(Ω). We assume that h1 ≺ h2 meaning that for every compact
K ⊆ Ω, we can find ε = ε(K) > 0 such that h1(z)+ ε ≤ h2(z) for a.e. z ∈ K. Note that if
h1, h2 ∈ C(Ω) and h1(z) < h2(z), then h1 ≺ h2.

PROPOSITION 2.4. If u, v ∈ W 1,p
0 (Ω) are nontrivial solutions of (2) and (3) respec-

tively, u, v ≥ 0 and h1 ≺ h2, then v − u ∈ intC+.

PROOF. From Theorem 7.1 (p. 286) of Ladyzhenskaya-Uraltseva [24], we know that
u, v ∈ L∞(Ω). So, applying Theorem 1 of Lieberman [25], we have u, v ∈ C+\{0}. More-
over, invoking Theorem 2.4.1 (p. 30) of Pucci-Serrin [30], we have that

u(z) ≤ v(z) for all z ∈ Ω .

For small δ > 0 let Ωδ ⊆ Ω be the δ-neighborhood of ∂Ω in Ω defined by

Ωδ = {z ∈ Ω; d(z) < δ} ,
where d(z) = d(z, ∂Ω) (the distance of z ∈ Ω from ∂Ω). From the proof of Lemma 14.16
(p. 355) of Gilbarg-Trundinger [18], we know that d ∈ C2(Ωδ).Hence, ∂Ωδ is aC2-manifold.
From Cuesta-Takac [9] (see (2.2) in the proof of Proposition 2.4), we know that w = v − u

satisfies in the sense of distributions the following nonlinear elliptic inequality

(4) −
N∑

i,j=1

∂

∂zi

(
aij (z)

∂w

∂zj

)
+ θ(z)w = h2 − h1 ≥ 0 in Ωδ ,
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where the coefficients aij belong inC(Ωδ), the differential operator in (4) is uniformly elliptic
in Ωδ and θ ∈ C(Ωδ), θ ≥ 0. Invoking Theorem 4 of Vazquez [32], we infer that

(5)
∂w

∂n
(z) < 0 for all z ∈ ∂Ω ⊆ ∂Ωδ .

Let C = {z ∈ Ω; u(z) = v(z)} (the coincidence set). From (5) it follows that C is a
compact set in Ω . Let Ω ′ be an open set such that C ⊆ Ω ′ ⊆ Ω ′ ⊆ Ω. For small ε ∈ (0, 1),
we have

(6) u(z)+ ε ≤ v(z) for all z ∈ ∂Ω ′ and h1(z)+ ε ≤ h2(z) for all z ∈ Ω ′ .

We choose δ ∈ (0, ε) such that

(7) γ ||x|p−2x − |y|p−2y| ≤ ε for all x, y ∈
[

min
Ω ′
u,max

Ω ′
u+ 1

]
with |x − y| ≤ 2δ .

Then we have

−div a(z,D(u+ δ))+ γ (u+ δ)p−1 = −div a(z,Du)+ γ (u+ δ)p−1

= γ [(u+ δ)p−1 − up−1] + h1 (see (2))

≤ ε + h1 (see (7))

≤ h2 (see (6))

= −div a(z,Dv)+ γ vp−1 a.e. in Ω ′

(see (2)) .

(8)

Using once more Theorem 2.4.1 (p. 30) of Pucci-Serrin [30], we infer that u(z)+δ ≤ v(z)

for all z ∈ Ω ′. Since C ⊆ Ω ′, it follows that C = ∅. Therefore

(9) w(z) = v(z)− u(z) > 0 for all z ∈ Ω .

From (5) and (9), we conclude that w = v − u ∈ int C+. �

REMARK 2.5. A careful reading of the above proof reveals that we may replace the
term γ |x|p−2x by a Caratheodory function β(z, x) which is locally Lipschitz in x ∈ R,
∂
∂x
β(z, x) ≥ 0 for a.e. z ∈ Ω × R and there exists r > 0 such that

∂β

∂x
(z, x) =

⎧⎨
⎩
η|x|p−2 if 1 < p ≤ 2

η if 2 < p

for a.e. (z, x) ∈ Ω × (0, r)

with η ≥ 0 as in hypotheses H(ii)(iii) (see Cuesta-Takac [9]).

The next auxiliary result compares local C1
0 (Ω) and W 1,p

0 (Ω)-minimizers for a large
class of C1-functionals. Our result generalizes those of Brezis-Nirenberg [6], where G(y) =
1
2‖y‖2 for all y ∈ Rn and of Garcia Azorero-Manfredi-Peral Alonso [15] and Guo-Zhang
[20], where G(y) = 1

p
‖y‖p (in [15] 1 < p < ∞ and in [20] p ≥ 2). Moreover, our proof is

simpler.
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Let f0 : Ω × R → R be a Caratheodory function with subcritical growth in x ∈ R, i.e.,

|f0(z, x)| ≤ a(z)+ c|x|r−1 for a.e. z ∈ Ω, all x ∈ R ,

with a ∈ L∞(Ω)+, c > 0, 1 < r < p∗ .

We let F0(z, x) = ∫ x
0 f0(z, s)ds and consider the C1-functional

ψ0 : W 1,p
0 (Ω) → R

defined by

ψ0(u) =
∫
Ω

G(z,Du(z))dz−
∫
Ω

F0(z, u(z))dz for all u ∈ W 1,p
0 (Ω) .

PROPOSITION 2.6. If hypotheses H hold and u0 ∈ W
1,p
0 (Ω) is a local C1

0 (Ω)-mini-
mizer of ψ0, i.e., there exists ρ0 > 0 such that

ψ0(u0) ≤ ψ0(u0 + h) for all h ∈ C1
0(Ω) with ‖h‖C1

0 (Ω)
≤ ρ0 ,

then u0 ∈ C1,β
0 (Ω) for some β ∈ (0, 1) and it is also a local W 1,p

0 (Ω)-minimizer of ψ0, i.e.,
there exists ρ1 > 0 such that

ψ0(u0) ≤ ψ0(u0 + h) for all h ∈ W 1,p
0 (Ω) with ‖h‖ ≤ ρ1 .

PROOF. Let h ∈ C1
0 (Ω) and let t > 0 be small. By hypothesis we have

(10) ψ0(u0) ≤ ψ0(u0 + th) ⇒ 0 ≤ 〈ψ ′
0(u0), h〉 .

Since h ∈ C1
0 (Ω) is arbitrary and C1

0(Ω) is dense in W 1,p
0 (Ω), from (10) it follows that

(11) ψ ′
0(u0) = 0,⇒ V (u0) = Nf0(u0) ,

where V : W 1,p
0 (Ω) → W−1,p′

(Ω) = W
1,p
0 (Ω)∗ (1/p + 1/p′ = 1) is the map defined by

〈V (u), y〉 =
∫
Ω

(a(z,Du),Dy)Rndz for all u, y ∈ W 1,p
0 (Ω)

and Nf0(u)(·) = f0(·, u(·)) for all u ∈ W 1,p
0 (Ω). From (11) it follows that

(12) −div a(z,Du0(z)) = f0(z, u0(z)) a.e. in Ω, u0|∂Ω = 0 .

As before, invoking Theorem 7.1 (p. 286) of Ladyzhenskaya-Uraltseva [24], we have that u0 ∈
L∞(Ω). So, we can apply Theorem 1 of Lieberman [25] and conclude that u0 ∈ C1,β

0 (Ω) for
some β ∈ (0, 1).

Next we show that u0 is also a W 1,p
0 (Ω)-minimizer of ψ0. We argue by contradiction.

So, we suppose that u0 is not a localW 1,p
0 (Ω)-minimizer of ψ0. Let ε > 0 and set B

r

ε = {u ∈
W

1,p
0 (Ω); ‖u‖r ≤ ε}. We consider the following minimization problem

(13) inf [ψ0(u0 + h); h ∈ Brε] = mε0 > −∞ .

Since we have assumed that u0 is not a local W 1,p
0 (Ω)-minimizer of ψ0, we have

(14) mε0 < ψ0(u0) .
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Let {hn}n≥1 ⊆ B
r

ε be a minimizing sequence for problem (13). From Corollary 2.3 and

the growth condition on f0(z, ·) we see that {hn}n≥1 ⊆ W
1,p
0 (Ω) is bounded. So, we may

assume that

(15) hn
w→ hε in W

1,p
0 (Ω) and hn → hε in Lr(Ω) as n → ∞ .

Exploiting the compact embedding of W 1,p
0 (Ω) into Lr(Ω) (recall that r < p∗), we can

easily check that ψ0 is sequentially weakly lower semicontinuous onW 1,p
0 (Ω). So, from (15)

it follows that

ψ0(u0 + hε) ≤ lim inf
n→∞ ψ0(u0 + hn) and hε ∈ Brε

⇒ ψ0(u0 + hε) = mε0 and so hε �= 0 (see (14)) .

Hence, in problem (13) the infimum is attained at some hε ∈ B
r

ε\{0}. By virtue of the La-
grange multiplier rule (see, for example, Ioffe-Tichomirov [21] (p. 74)), we can find λε ≤ 0
such that

ψ ′(u0 + hε) = λε|hε|r−2hε

⇒ V (u0 + hε) = Nf0(u0 + hε)+ λε|hε|r−2hε .

Hence

(16)

{ −div a(z,D(u0 + hε)(z)) = f0(z, (u0 + hε)(z))+ λε|hε(z)|r−2hε(z),

a.e. in Ω, hε|∂Ω = 0.

}

From (12) and (16) we have

(17)

{−div (a(z,D(u0 + hε)(z))− a(z,Du0(z)))

= f0(z, (u0 + hε)(z))− f0(z, u0(z))+ λε|hε(z)|p−2hε(z) a.e. in Ω.

}

Case 1: Suppose that λε ∈ [−1, 0] for all ε ∈ (0, 1]. Set vε(z) = (u0 + hε)(z) and
ξε(z, y) = a(z, y)− a(z,Du0(z)). Then (17) becomes

(18)

{−div ξε(z,Dvε(z)) = f0(z, vε(z))− f0(z, u0(z))

+λε|(vε − u0)(z)|p−2(vε − u0)(z) a.e. in Ω.

}

By virtue of Theorem 7.1 (p. 286) of Ladyzhenskaya-Uraltseva [24], we can find M1 > 0
such that

(19) ‖vε‖∞ ≤ M1 for all ε ∈ (0, 1] .
Using Lemma 2, we can easily check that ξε(z, y) verifies hypotheses H. This fact and

(19), permit the use of Theorem 1 of Lieberman [25]. So, we can find γ ∈ (0, 1) and M2 > 0
such that

(20) vε ∈ C1,γ
0 (Ω) and ‖vε‖C1,γ

0 (Ω)
≤ M2 for all ε ∈ (0, 1] .
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Case 2: Suppose that λεn < −1 for all n ≥ 1, with εn ↓ 0. In this case, we set
ξ̂εn (z, y) = 1

|λεn | [a(z, y)− a(z,Du0(z))]. Then (17) becomes

(21)

⎧⎪⎨
⎪⎩

−div ξ̂εn(z,Dvεn(z))
= 1

|λεn | [f0(z, vεn(z))− f0(z, u0(z))] − |(vεn − u0)(z)|p−2(vεn − u0)(z)

a.e. in Ω

⎫⎪⎬
⎪⎭

where vεn = u0 + hεn. For all w ∈ W 1,p
0 (Ω), we have

(22) 〈V (u0),w〉 =
∫
Ω

f0(z, u0(z))w(z)dz (see (11))

〈V (vεn),w〉 =
∫
Ω

f0(z, vεn(z))w(z)dz+ λεn

∫
Ω

|(vεn − u0)|r−2(vεn − u0)(z)dz(23)

(see (16)).

For τ ≥ 1 we consider the function |vεn − u0|τ (vεn − u0). We have

D(|vεn − u0|τ (vεn − u0))

= |vεn − u0|τD(vεn − u0)+ τ (vεn − u0)
vεn − u0

|vεn − u0| |vεn − u0|τ−1D(vεn − u0)

= (τ + 1)|vεn − u0|τD(vεn − u0)

⇒ |vεn − u0|τ (vεn − u0) ∈ W 1,p
0 (Ω) (recall that vεn, u0 ∈ C1

0 (Ω)) .

We use |vεn − u0|τ (vεn − u0) as the test function w in both (22) and (23). Then we
subtract (22) from (23). We obtain

0 ≤ (τ + 1)
∫
Ω

(a(z,Dvεn)− a(z,Du0),Dvεn −Du0)Rn |vεn − u0|τ dz

=
∫
Ω

(f0(z, vεn)− f0(z, u0))(vεn − u0)|vεn − u0|τ dz(24)

+ λεn

∫
Ω

|vεn − u0|τ+rdz for all n ≥ 1 .

Recall that ‖vεn‖∞ ≤ M1 for all n ≥ 1 (see (19)) and that u0 ∈ C1
0 (Ω). Therefore∫

Ω

(f0(z, vεn)− f0(z, u0))(vεn − u0)|vεn − u0|τ dz

≤ M3

∫
Ω

|vεn − u0|τ+1dz for some M3 > 0, all n ≥ 1,

≤ M3|Ω |
r−1
τ+r
N ‖vεn − u0‖τ+1

τ+r(25) (
using Hölder’s inequality with exponents

τ + r

τ + 1
and

τ + r

r − 1

)
,

where | · |N denotes the Lebesgue measure on Rn. Using (25) in (24), we obtain

−λεn‖vεn − u0‖τ+rτ+r ≤ M3|Ω |
r−1
τ+r
N ‖vεn − u0‖τ+1

τ+r
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⇒ −λεn‖vεn − u0‖r−1
τ+r ≤ M3|Ω |

r−1
τ+r
N for all τ ≥ 1 , all n ≥ 1 .

Let τ → +∞. We obtain

−λεn‖vεn − u0‖r−1∞ ≤ M3 for all n ≥ 1

⇒ ‖vεn − u0‖r−1∞ ≤ M3

|λεn |
for all n ≥ 1 .(26)

We return to (21) and denote the right-hand side function by gεn (z, x). Then for a.e.
z ∈ Ω and all x ∈ [−M4,M4, ] where M4 = ‖u0‖∞ +M1, we have

|gεn(z, x)| ≤ 1

|λεn |
[M5 +M3] for some M5 > 0, all n ≥ 1 .

Therefore, we can apply Theorem 1 of Lieberman [25] and obtain β0 ∈ (0, 1) and M6 > 0
such that

(27) hεn ∈ C1,β0
0 (Ω) and ‖hεn‖C1,β0

0 (Ω)
≤ M6 for all n ≥ 1 .

Recall that for every β ′ ∈ (0, 1), the space C1,β ′
0 (Ω) is embedded compactly in C1

0 (Ω).

Then, from (20) and (27) it follows that for a suitable subsequence, we have

u0 + hεn → u0 in C1
0 (Ω) as n → ∞ .

Since by hypothesis u0 is a local C1
0 (Ω)-minimizer of ψ0, we can find n0 ≥ 1 such that

(28) ψ0(u0) ≤ ψ0(u0 + hεn) for all n ≥ n0 .

On the other hand, since hεn n ≥ 1 solves problem (13) and because of (14), we have

(29) ψ0(u0 + hεn) < ψ0(u0) for all n ≥ 1 .

Comparing (28) and (29) we reach a contradiction. This concludes the proof. �

As in the above proof, let V : W 1,p
0 (Ω) → W−1,p′

(Ω) be the nonlinear map defined by

(30) 〈V (u), y〉 =
∫
Ω

(a(z,Du),Dy)Rndz for all u, y ∈ W 1,p
0 (Ω) .

From Gasinski-Papageorgiou [16] (p. 591), we have:

PROPOSITION 2.7. If V : W 1,p
0 (Ω) → W−1,p′

(Ω) is the nonlinear map defined by
(30), then V is bounded, continuous, strictly monotone (hence maximal monotone too) and
of type (S)+, i.e., if un

w→ u in W 1,p
0 (Ω) and lim supn→∞〈V (un), un − u〉 ≤ 0, then un → u

in W 1,p
0 (Ω).

In what follows, for every r ∈ R, we set r± = max{±r, 0}. Recall that, if u ∈ W 1,p
0 (Ω),

then |u|, u+, u− ∈ W
1,p
0 (Ω) and we have |u| = u+ + u−, u = u+ − u−. As we already

mentioned in the proof of Proposition 2.6, by | · |N we denote the Lebesgue measure on Rn.
Note that by ‖ · ‖ we will denote both the norm of the Sobolev space W 1,p

0 (Ω) (‖u‖ =
‖Du‖p for all u ∈ W 1,p

0 (Ω), by Poincare’s inequality) and the norm of Rn. It will always be
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clear from the context which one is used. Finally, let λ̂1 > 0 be the principal eigenvalue of
(−�p,W

1,p
0 (Ω)). Recall that λ̂1‖u‖pp ≤ ‖Du‖pp for all u ∈ W 1,p

0 (Ω).

3. Solutions of constant sign. In this section, for λ > 0 sufficiently small we show
that problem (1) has at least four nontrivial smooth solutions of constant sign (two positive
and two negative). To this end we introduce the following conditions on the map a(y) y ∈ Rn

and on the nonlinearity f (z, x) (z, x) ∈ Ω × R.

H0: G ∈ C1(Rn,R) such that G(0) = 0, ∇G(y) = a(y) = a0(‖y‖)y with a0(t) > 0 for
all t > 0, a(0) = 0, a satisfies hypotheses H(i), (ii), (iii) (without the z dependence)
and
(iv) pG(y)− (a(y), y)Rn ≥ β for some β ∈ R and all y ∈ Rn.

REMARK 3.1. Hypotheses H0 are a restricted version of hypotheses H. So, in partic-
ular, the estimates in Lemma 2.2 and Corollary 2.3 remain valid and G(·) is strictly convex.
Since G(0) = 0 and ∇G(y) = a(y), we have

(31) (a(y), y)Rn ≥ G(y) for all y ∈ Rn .

Examples: The following maps satisfy hypotheses H0:

a1(y) = ‖y‖p−2y with 1 < p < ∞ (corresponds to the p-Laplacian) ,

a2(y) = ‖y‖p−2y + μ‖y‖τ−2y with 2 ≤ τ < p < +∞
(corresponds to the (p, τ )-equations)

a3(y) = (1 + ‖y‖2)
p−2

2 y with p ≥ 2

(corresponds to the generalized mean curvature operator) ,

a4(y) = ‖y‖p−2y + ln(1 + ‖y‖p−2)y with p ≥ 2 .

Now the hypotheses for f (z, x) are the following:
H1: f : Ω × R → R is Carathodory function such that f (z, 0) = 0 for a.e. z ∈ Ω and

(i) |f (z, x)| ≤ a(z)+ c|x|r−1 for a.e. z ∈ Ω , all x ∈ R with a ∈ L∞(Ω)+, c > 0
and p < r < p∗;

(ii) If F(z, x) = ∫ x
0 f (z, s)ds, then lim

x→±∞
F(z, x)

|x|p = +∞ uniformly for a.e. z ∈
Ω;

(iii) there exist τ ∈ ((r − p)max{1, N
p

}, p∗), τ > q and β0 > 0 such that

β0 ≤ lim inf
x→±∞

f (z, x)x − pF(z, x)

|x|τ uniformly for a.e. z ∈ Ω ;
(iv)

lim
x→0

f (z, x)

|x|p−2x
= 0 uniformly for a.e. z ∈ Ω;

(v) f (z, x)x > 0 for a.e. z ∈ Ω , all x �= 0 and for every ρ > 0, there exists
γρ > 0 such that for a.e. z ∈ Ω, x → f (z, x)+ γρ |x|p−2x is nondecreasing on
[−ρ, ρ].
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REMARK 3.2. Hypothesis H1(iii) implies that for a.e. z ∈ Ω, the primitive x →
F(z, x) is p-superlinear. Clearly H1(iii) is satisfied if

lim
x→±∞

f (z, x)

|x|p−2x
= +∞ uniformly for a.e. z ∈ Ω ,

i.e., for a.e. z ∈ Ω, the nonlinearity x → f (z, x) is (p − 1)-superlinear. We emphasize that
we do not employ the usual in such cases Ambrosetti-Rabinowitz condition (AR-condition
for short). We recall that the AR-condition says that there exist μ > p andM > 0 such that

(32) 0 < μF(z, x) ≤ f (z, x)x for a.e. z ∈ Ω, all |x| ≥ M and ess
Ω

infF(·,±M) > 0 .

Integrating (32), we obtain the following weaker condition

(33) c7|x|μ ≤ F(z, x) for a.e. z ∈ Ω, all |x| ≥ M and some c7 > 0 .

Evidently (33) implies the much weaker condition

(34) lim
x→±∞

F(z, x)

|x|p = +∞ uniformly for a.e. z ∈ Ω (see H1(ii)) .

The AR-condition although quite natural and very helpful in verifying the PS-condition
for the energy functional of the problem, is rather restrictive and excludes from consideration
(p − 1)-superlinear functions with “slow” growth near ±∞ (see (33)). For this reason there
have been efforts to replace (32). A survey of the relevant literature, can be found in Miyagaki-
Souto [27]. Here, instead of the AR-condition, we use H1(iii), which covers new situations.
Similar conditions were first used by Costa-Magalhaes [8] and Fei [13]. The second part
of hypothesis H1(v) is more general than assuming that for a.e. z ∈ Ω, x → f (z, x) is
nondecreasing.

Examples: The following functions satisfy hypotheses H1 (for the sake of simplicity
we drop the z dependence):

f1(z) = |x|r−2x where p < r < p∗

f2(z) = |x|p−2x log(1 + |x|p) .
Note that f1 satisfies the AR-condition, but f2 does not. For λ > 0, let ϕ±

λ : W 1,p
0 (Ω) → R

be the C1-functionals defined by

ϕ±
λ (u) =

∫
Ω

G(Du(z))dz− λ

q
‖u±‖qq −

∫
Ω

F(z,±u±(z))dz for all u ∈ W 1,p
0 (Ω) .

PROPOSITION 3.3. If hypotheses H0 and H1 hold and λ > 0 then ϕ±
λ satisfy the C-

condition.

PROOF. We do the proof for ϕ+
λ , the proof for ϕ−

λ being similar.

Let {un}n≥1 ⊆ W
1,p
0 (Ω) be a sequence such that

(35) |ϕ+
λ (un)| ≤ M1 for some M1 > 0 , all n ≥ 1 ,

(36) and (1 + ‖un‖)(ϕ+
λ )

′(un) → 0 in W−1,p′
(Ω) as n → ∞ .
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From (36) we have

|〈(ϕ+
λ )

′(un), h〉| ≤ εn

1 + ‖un‖‖h‖ for all h ∈ W 1,p
0 (Ω) with εn ↓ 0

⇒ |〈V (un), h〉 − λ

∫
Ω

(u+
n )
q−1hdz−

∫
Ω

f (z, u+
n )hdz|

≤ εn

1 + ‖un‖‖h‖ for all n ≥ 1 .(37)

In (37) we choose h = −u−
n ∈ W 1,p

0 (Ω) and have∫
Ω

(a(−Du−
n ),−Du−

n )Rndz ≤ εn for all n ≥ 1

⇒ c4‖Du−
n ‖pp ≤ εn for all n ≥ 1 (see Lemma 2.2)

⇒ u−
n → 0 in W

1,p
0 (Ω) as n → ∞ .(38)

From (35) we have

(39)
∫
Ω

pG(Dun)dz− λp

q
‖u+
n ‖qq −

∫
Ω

pF(z, u+
n )dz ≤ pM1 for all n ≥ 1 .

Also, if in (37) we choose h = u+
n ∈ W 1,p

0 (Ω), then

(40) −
∫
Ω

(a(Du+
n ),Du

+
n )Rndz+ λ‖u+

n ‖qq +
∫
Ω

f (z, u+
n )u

+
n dz ≤ εn for all n ≥ 1 .

Adding (39) and (40) and since G ≥ 0 (see Corollary 2.3), we obtain∫
Ω

(pG(Du+
n )− (a(Du+

n ),Du
+
n )Rn)dz+

∫
Ω

(f (z, u+
n )u

+
n − pF(z, u+

n ))dz

≤ M2 + λ

(
p

q
− 1

)
‖u+
n ‖qq for some M2 > 0, all n ≥ 1

⇒
∫
Ω

(f (z, u+
n )u

+
n − pF(z, u+

n ))dz ≤ M3 + λ

(
p

q
− 1

)
‖u+
n ‖qq(41)

for some M3 > 0, all n ≥ 1 (see H0(iv)) .

By virtue of hypotheses H1(i), (iii), we can find β1 ∈ (0, β0) and c8 > 0 such that

(42) β1x
τ − c8 ≤ f (z, x)x − pF(z, x) for a.e. z ∈ Ω, all x ≥ 0 .

If we use (42) in (41), we obtain

β1‖u+
n ‖ττ ≤ M4 + λ

(
p

q
− 1

)
‖u+
n ‖qq for some M4 > 0, all n ≥ 1

⇒ ‖u+
n ‖ττ ≤ M5 + c9‖u+

n ‖qτ
for some M4 > 0, c9 > 0 and all n ≥ 1

⇒ {u+
n }n≥1 ⊆ Lτ (Ω) is bounded (since q < τ ) .(43)
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It is clear that in hypothesis H1(iii), we may assume that τ ≤ r < p∗. First suppose that
N �= p and let t ∈ [0, 1) such that

1

r
= 1 − t

τ
+ t

p∗ .

By virtue of the interpolation inequality (see for example, Gasinski-Papageorgiou [17]
(p. 905)), we have

‖u+
n ‖r ≤ ‖u+

n ‖1−t
τ ‖u+

n ‖tp∗

⇒ ‖u+
n ‖rr ≤ M10‖u+

n ‖t r for some M10 > 0, all n ≥ 1 (see (43)) .(44)

Hypothesis H1(i) implies that

(45) |f (z, x)x| ≤ â(z)+ ĉ|x|r for a.e. z ∈ Ω, all x ∈ R, with â ∈ L∞(Ω)+, ĉ > 0 .

In (37) we choose h = u+
n ∈ W 1,p

0 (Ω) and have∫
Ω

(a(Du+),Du+)Rndz− λ‖u+
n ‖qq −

∫
Ω

f (z, u+
n )u

+
n dz ≤ εn for all n ≥ 1

⇒ c4‖Du+
n ‖pp ≤ c10 + λ‖u+

n ‖qq + c11‖u+
n ‖rr

for some c10, c11 > 0, all n ≥ 1 (see Lemma 2.2 and (45))

⇒ ‖u+
n ‖p ≤ c12(1 + λ‖u+

n ‖q + ‖u+
n ‖t r ) for some c12 > 0, all n ≥ 1 (see (44)) .(46)

From the hypothesis on τ (see H1(iii)) and an easy calculation, we infer that tr < p. So,
from (46) it follows that

{u+
n }n≥1 ⊆ W

1,p
0 (Ω) is bounded

⇒ {un}n≥1 ⊆ W
1,p
0 (Ω) is bounded (see (38)) .(47)

If N = p, then by definition p∗ = +∞ and the Sobolev embedding theorem implies
that W 1,p

0 (Ω) is embedded compactly in Lη(Ω) for all η ∈ [1,+∞). Let τ ≤ r < η and let
t ∈ [0, 1) be such that

1

r
= 1 − t

τ
⇒ tr = η(r − τ )

η − τ
.

Note that η(r−τ )
η−τ → r − τ as η → +∞ = p∗ and by hypothesis H1(iii) r − τ < p (recall

N = p). So, for η > r large enough, we will have tr < p. Hence, if in the previous argument
we replace p∗ by such large η ∈ (r,+∞), then as above we reach (47). Because of (47) and
by passing to a subsequence if necessary, we may assume that

(48) un
w→ u in W

1,p
0 (Ω) and un → u in Lr(Ω) as n → ∞ .

In (37) we choose h = un − u, pass to the limit as n → ∞ and use (48). Then

lim supn→∞〈V (un), un − u〉 = 0

⇒ un → u in W 1,p
0 (Ω) (see Proposition 2.7)

⇒ ϕ+
λ satisfies the C-condition .
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A similar argument works for ϕ−
λ . �

PROPOSITION 3.4. If hypotheses H0 and H1 hold, then there exists λ∗ > 0 such that
to every λ ∈ (0, λ∗) there corresponds ρ±

λ > 0 for which

inf [ϕ±
λ (u); ‖u‖ = ρ±

λ ] = η±
λ > 0 .

PROOF. We do the proof for ϕ+
λ , the proof for ϕ−

λ being similar. By virtue of hypotheses
H1(i), (iv), given ε > 0, we can find c13 = c13(ε) > 0 such that

f (z, x) ≤ εxp−1 + c13x
r−1 for a.e. z ∈ Ω, all x ≥ 0

⇒F(z, x) ≤ ε

p
xp + c13

r
xr for a.e. z ∈ Ω, all x ≥ 0 .(49)

Then for u ∈ W 1,p
0 (Ω), we have

ϕ+
λ (u)=

∫
Ω

G(Du)dz − λ

q
‖u+‖qq −

∫
Ω

F(z, u+)dz

≥ c5‖Du‖pp − λ

q
‖u‖qq − ε

p
‖u‖pp − c13

r
‖u‖rr (see Corollary 2.3 and (44))

≥
(
c5 − ε

λ̂1p

)
‖u‖p − c14(λ‖u‖q + ‖u‖r ) for some c14 > 0 .

Choosing ε ∈ (0, λ̂1pc5), we infer that

ϕ+
λ (u) ≥ c15‖u‖p − c14(λ‖u‖q + ‖u‖r ) for some c15 > 0, all u ∈ W 1,p

0 (Ω)

⇒ ϕ+
λ (u) ≥ (c15 − c14(λ‖u‖q−p + ‖u‖r−p))‖u‖p for all u ∈ W 1,p

0 (Ω) .(50)

Consider the function

(51) ξ(t) = λtq−p + tr−p for all t > 0 .

Evidently ξ(·) is continuous on (0,+∞) and since q < p < r , we see that

ξ(t) → +∞ as t → 0+ and as t → +∞ .

So, we can find t0 ∈ (0,+∞) such that

ξ(t0) = min[ξ(t); t > 0] > 0

⇒ ξ ′(t0) = (q − p)λt
q−p−1
0 + (r − p)t

r−p−1
0 = 0

⇒ λ(p − q) = (r − p)t
r−q
0

⇒ t0 = t0(λ) =
[
λ(p − q)

r − p

] 1
r−q

.

Evidently t0(λ) → 0+ as λ → 0+ and so from (51) it is clear that we can find λ∗ > 0
such that for every λ ∈ (0, λ∗) we have ξ(t0) < c15/c14. Hence from (49) we infer that

inf [ϕ+
λ (u); ‖u‖ = ρ+

λ ] = η+
λ > 0 .

A similar argument works for the functional ϕ−
λ . �
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PROPOSITION 3.5. If hypotheses H0 and H1 hold and u ∈ C+\{0} with ‖u‖p = 1,
then ϕ±

λ (tu) → −∞ as t → ±∞.

PROOF. Again we do the proof for ϕ+
λ , the proof for ϕ−

λ being similar. By virtue of
hypotheses H1(i), (ii), given μ > 0, we can find c16 = c16(μ) > 0 such that

(52) F(z, x) ≥ μxp − c16 for a.e. z ∈ Ω , all x ≥ 0 .

Then for u ∈ C+\{0} with ‖u‖p = 1 and t > 0, we have

ϕ+
λ (tu)=

∫
Ω

G(D(tu))dz − λtq

q
‖u‖qq −

∫
Ω

F(z, tu)dz

≤ c17(1 + tp‖u‖p)− μtp (see Corollary 2.3 and (52))

= tp(c17‖u‖p − μ)+ c17 .(53)

Choose μ > c17‖u‖p . Then, from (53) it is clear that ϕ+
λ (tu) → −∞ as t → +∞.

A similar argument works for the functional ϕ−
λ . �

Now we are ready to produce the constant sign smooth solutions of problem (1), λ ∈
(0, λ∗).

PROPOSITION 3.6. If hypotheses H0 and H1 hold and λ ∈ (0, λ∗) (λ∗ > 0 as in
Proposition 3.4), then problem (1) has at least four nontrivial smooth solutions of constant
sign

u0, û ∈ intC+ , u0 ≤ û , u0 �= û

and v0, v̂ ∈ −intC+ , v̂ ≤ v0 , v̂ �= v0 .

PROOF. First we establish the existence of the two positive smooth solutions. Propo-
sitions 3.3, 3.4 and 3.5, permit the application of Theorem 2.1 (the mountain pass theorem).
So, we obtain u0 ∈ W 1,p

0 (Ω) such that

(54) ϕ+
λ (0) = 0 < η+

λ ≤ ϕ+
λ (u0)

(55) and (ϕ+
λ )

′(u0) = 0 .

From (54) we see that u0 �= 0. From (55) we have

(56) V (u0) = λ(u+
0 )
q−1 +Nf (u+

0 ) where Nf (u)(·) = f (·, u(·)) for all u ∈ W 1,p
0 (Ω) .

Acting on (56) with −u−
0 ∈ W 1,p

0 (Ω), we obtain

c4‖Du−
0 ‖pp ≤ 0 (see Lemma 2.2)

⇒ u0 ≥ 0, u0 �= 0 .

So (56) becomes

V (u0) = λu
q−1
0 +Nf (u0)

⇒ −div a(Du0(z)) = λu0(z)
q−1 + f (z, u0(z)) a.e. in Ω, u0|∂Ω = 0 .
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Hence, u0 is a nontrivial solution of (1) and the nonlinear regularity theory (see [24] and [25])
implies that u0 ∈ C+\{0}.We have

−div a(Du0(z)) = λu0(z)
p−1 + f (z, u0(z)) ≥ 0 a.e. in Ω

⇒ u0 ∈ intC+ (see Montenegro [28], Theorem 6).

Next consider the following truncation of the reaction

(57) h+
λ (z, x) =

{
λu0(z)

q−1 + f (z, u0(z)) if x ≤ u0(z)

λxq−1 + f (z, x) if u0(z) < x .

This is a Caratheodory function. Let H+
λ (z, x) = ∫

Ω h
+
λ (z, s)ds and consider the C1-func-

tional ψ+
λ : W 1,p

0 (Ω) → R defined by

ψ+
λ (u) =

∫
Ω

G(Du(z))dz−
∫
Ω

H+
λ (z, u(z))dz for all u ∈ W 1,p

0 (Ω) .

CLAIM 3.7. u0 is a local minimizer of the functional ψ+
λ .

PROOF. Let ũ ∈ Kψ+
λ
. Then

(58) V (ũ) = Nh+
λ
(u)(·) where Nh+

λ
(ũ) = h+

λ (·, u(·)) for all u ∈ W 1,p
0 (Ω) .

On (58) we act with (u0 − ũ)+ ∈ W 1,p
0 (Ω). We have

〈V (ũ), (u0 − ũ)+〉 =
∫
Ω

h+
λ (z, ũ)(u0 − ũ)+dz

=
∫
Ω

(λu
q−1
0 + f (z, u0))(u0 − ũ)+dz (see (57))

= 〈V (u0), (u0 − ũ)+〉

⇒
∫

{u0>ũ}
(a(Du0)− a(Dũ),Du0 −Dũ)Rndz = 0

⇒ u0 ≤ ũ (since a(·) is strictly monotone, see Lemma 2.2) .

Let θ ∈ (λ, λ∗) and let u0 ∈ intC+ be a solution of problem (1) with the parameter being
θ obtained as above via the use of the mountain pass theorem (see Theorem 2.1). We have

(59) −div a(Du0(z)) = θu0(z)+ f (z, u0(z)) > λu0(z)+ f (z, u0(z)) a.e. in Ω.

Therefore u0 ∈ intC+ is an upper solution for (1) with the parameter being λ. Then by
truncating at u0(z) and using the direct method, we can produce a solution of (1) (with the
parameter being λ), which is less than or equal to u0. So, we may assume u0 ≤ u0.

Let [u0) = {u ∈ W 1,p
0 (Ω); u0(z) ≤ u(z) a.e. in Ω} and [0, u0] = {u ∈ W 1,p

0 (Ω); 0 ≤
u(z) ≤ u0(z) a.e. in Ω}. We have just seen that Kψ+

λ
⊆ [u0). Also we may assume that

Kψλ+ ∩ [0, u0] = {u0} (otherwise we already have a second smooth positive solution as it is
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evident from (57)). We consider the following truncation of h+
λ (z, ·):

(60) ĥ+
λ (z, x) =

⎧⎪⎪⎨
⎪⎪⎩
h+
λ (z, u0(z)) if x < u0(z)

h+
λ (z, x) if u0(z) ≤ x ≤ u0(z)

h+
λ (z, u0(z)) if u0(z) < x .

This is a Caratheodory function. We set Ĥ+
λ (z, x) = ∫ x

0 ĥ
+
λ (z, s)ds and consider the C1-

functional ψ̂+
λ : W 1,p

0 (Ω) → R defined by

ψ̂+
λ (u) =

∫
Ω

G(Du(z))dz−
∫
Ω

Ĥ+
λ (z, u(z))dz for all u ∈ W 1,p

0 (Ω) .

It is clear from (60) and Corollary 2.3 that ψ̂+
λ is coercive. Also exploiting the compact

embedding of W 1,p
0 (Ω) into Lp(Ω), we can easily check that ψ̂+

λ is sequentially weakly

lower semicontinuous. So, from the Weierstrass theorem, we can find û0 ∈ W
1,p
0 (Ω) such

that

ψ̂+
λ (̂u0) = inf [ψ̂+

λ (u); u ∈ W 1,p
0 (Ω)]

⇒ (ψ̂+
λ )

′(̂u0) = 0

⇒ V (̂u0) = Nĥ+
λ
(̂u0), where Nĥ+

λ
(u)(·) = ĥ+

λ (·, u(·)) for all u ∈ W 1,p
0 (Ω) .(61)

On (61) we act with (u0 − û0)
+ ∈ W

1,p
0 (Ω). Using (60) and (57), as before we obtain

u0 ≤ û0. Also, on (61) we act with (̂u0 − u0)
+ ∈ W 1,p

0 (Ω). Then

〈V (̂u0), (̂u0 − u0)
+〉 =

∫
Ω

ĥ+
λ (z, û0)(̂u0 − u0)

+dz

=
∫
Ω

(λu
q−1
0 + f (z, u0))(̂u0 − u0)

+dz (see (60) and (57))

<

∫
Ω

(θu
q−1
0 + f (z, u0))(̂u0 − u0)

+dz since λ < θ

= 〈V (u0), (̂u0 − u0)
+〉 (see (59)) ,

⇒
∫

{̂u0>u0}
(a(Dû0)− a(Du0),Dû0 −Du0)Rndz < 0

⇒ û0 ≤ u0 (by virtue of the strict monotonicity of a(·), see Lemma 2.2) .

So, û0 ∈ [u0, u0] and (61) becomes

V (̂u0) = Nh+
λ
(̂u0) (see (60))

⇒ û0 ∈ Kψ+
λ

∩ [0, û0]
⇒ û0 = u0 .

Let ρ = ‖u0‖∞ and let γρ > 0 be as postulated by hypothesis H1(v). We have

− div a(Du0(z))+ γρu0(z)
p−1 = λu0(z)

q−1 + f (z, u0(z))+ γρu0(z)
p−1
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< θu0(z)
q−1 + f (z, u0(z))+ γρu0(z)

p−1 (since λ < θ )

≤ θu0(z)
q−1 + f (z, u0(z))+ γρu0(z)

p−1 (sence u0 ≤ u0, see H1(v))

= −div a(Du0(z))+ γρu0(z)
p−1 a.e. in Ω .

Invoking Proposition 2.4, we infer that u0 − u0 ∈ intC+. Since ψ+
λ |[0,u0] = ψ̂+

λ |[0,u0]
and u0 ∈ intC+, u0 − u0 ∈ intC+, we infer that u0 is a local C1

0 (Ω) minimizer of ψ+
λ .

Invoking Proposition 2.6, we have that u0 is a local W 1,p
0 (Ω) minimizer of ψ+

λ . This proves
the Claim. �

We may assume that u0 is isolated in Kψ+
λ

(otherwise and since Kψ+
λ

⊆ [u0), we have a
whole sequence of positive smooth solutions of problem (1), see (57)). Then reasoning as in
Aizicovici-Papageorgiou-Staicu [1] (see the proof of Proposition 29) we can find ρ ∈ (0, 1)
small such that

(62) ψ+
λ (u0) < inf [ψ+

λ (u); ‖u− u0‖ = ρ] = η̃+
λ .

Let u ∈ C+\{0}, ‖u‖p = 1. As in the proof of Proposition 3.4, using hypothesis H1(ii)
and (57) we can show that

(63) ψ+
λ (tu) = −∞ as t → +∞ .

Finally, a slight modification of the proof of Proposition 3.3, reveals that ψ+
λ satisfies

the C-condition. This fact together with (62) and (63), permit the use of Theorem 2.1 (the
mountain pass theorem). So, we obtain û ∈ W 1,p

0 (Ω) such that

(64) ψ+
λ (u0) < η̃+

λ ≤ ψ̂+
λ (̂u) (see (62))

(65) and (ψ+
λ )

′(̂u) = 0 .

From (64) we have that u0 �= û. From (65) and the nonlinear regularity theory we have
û ∈ Kψ+

λ
⊆ [u0) ∩ intC+. Hence û ∈ intC+ solves problem (1) and u0 ≤ û, u0 �= û.

Similarly, working with ϕ−
λ , we obtain two nontrivial negative solutions of (1), v̂, v0 ∈

−intC+, with v̂ ≤ v0, v̂ �= v0. �

4. Nodal solutions. In this section we look for nodal solutions (i.e., sign changing)
solutions. We start by considering the following auxiliary problem

(66) −div a(Du(z)) = f̂0(z, u(z)) in Ω, u|∂Ω = 0 .

We strengthen hypotheses H0 as follows:
H′

0: Hypotheses H0 hold and

(v) if G0(t) = ∫ t
0 a0(s)sds, then there exists τ ∈ (q, p) such that t → G0(t

1
τ ) is

convex on (0,+∞) (note that G(y) = G0(‖y‖) for all y ∈ Rn).
The hypotheses on f̂0(z, x) are the following:
H2: f̂0 : Ω × R → R is Caratheodory function such that f̂0(z, 0) = 0 for a.e. in Ω and

(i) |f̂0(z, x)| ≤ a(z)+ c|x|r−1 for a.e. in Ω , for all x ∈ R with a ∈ L∞(Ω)+, c > 0
and 1 < r < p∗;
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(ii) with q ∈ (1, p) as in H′
0(v), for a.e. z ∈ Ω x → f̂0(z, x)/x

q−1 is strictly
decreasing on (0,+∞), x → f̂0(z, x)/|x|q−2x is strictly increasing on (−∞, 0)
and f̂0(z, x)x ≥ −ĉ|x|θ for all x ∈ R, with ĉ > 0, θ ≥ p.

The next result establishes the uniqueness of solutions of constant sign (when they ex-
ist) and extends an analogous result of Diaz-Saa [11], where the differential operator is p-
Laplacian.

PROPOSITION 4.1. If hypotheses H′
0 and H2 hold, then problem (65) has at most one

nontrivial positive solution and at most one nontrivial negative solution.

PROOF. We show the uniqueness of the nontrivial positive solution (when it exists) the
proof for the uniqueness of the nontrivial negative solution being similar.

Let ξ : L1(Ω) → R = R ∪ {+∞} be the integral functional defined by

ξ(u) =

⎧⎪⎨
⎪⎩

∫
Ω

G(Du
1
τ )dz if u ≥ 0, u

1
τ ∈ W 1,p

0 (Ω)

+∞ otherwise .

Then ξ is convex (see H′
0(v) and Diaz-Saa [11]) and lower semicontinuous (by Fatou’s

lemma).
Suppose u is a nontrivial positive solution of (66). As before, the nonlinear regularity

theory (see [24], [25]) and the nonlinear maximum principle (see [32] and hypothesis H2(ii)),

imply u ∈ intC+. Note that uτ ≥ 0 and (uτ )
1
τ = u ∈ W

1,p
0 (Ω). So uτ is in the effective

domain of the R-valued functional ξ. Let h ∈ C1
0 (Ω) and λ > 0 small. Then uτ + λh ∈ C+

and so the Gateuax derivative of ξ at uτ in the direction h exists. Moreover, using the chain
rule we have

(67) ξ ′(uτ )(h) =
∫
Ω

−div a(Du)

uτ−1
hdz.

Let y be another nontrivial positive solution of (66). Again we have y ∈ intC+. By
virtue of the convexity of ξ(·) and using (67), we have∫

Ω

(−div a(Du)

uτ − 1
+ div a(Dy)

yτ − 1

)
(uτ − yτ )dz ≥ 0

⇒ 0 ≥
∫
Ω

(
f̂0(z, u)

uτ−1
− f̂0(z, y)

yτ−1

)
(uτ − yτ )dz ≥ 0 (see (66) and H2(ii))

⇒ u = y (see H2(ii)).

Similarly we can obtain the uniqueness of the nontrivial negative solution. �

Now, let f̂0(z, x) = |x|q−2x and consider the following auxiliary problem:

(68) −div a(Du(z)) = λ|u(z)|q−2u(z) in Ω, u|∂Ω = 0 , λ > 0 .

PROPOSITION 4.2. If hypotheses H′
0 hold, 1 < q < p and λ > 0, then problem

(68) has a unique nontrivial positive solution ũλ+ ∈ intC+ and a unique nontrivial negative
solution −ũλ+ ∈ −intC+.
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PROOF. We do the proof for ũλ+, and from this follows the uniqueness of a negative

solution. Let θ+
λ : W 1,p

0 (Ω) → R be the C1-functional defined by

θ+
λ (u) =

∫
Ω

G(Du(z))dz− λ

q
‖u+‖qq for all u ∈ W 1,p

0 (Ω) .

Corollary 2.3 and the fact that q < p, imply that θ+
λ is coercive. Also θ+

λ is sequentially

weakly lower semicontinuous. So, we can find ũλ+ ∈ W 1,p
0 (Ω) such that

(69) θ+
λ (ũ

λ+) = inf [θ+
λ (u); u ∈ W 1,p

0 (Ω)] = m̃+
λ .

If u ∈ intC+ and t ∈ (0, 1) is small, then since q < p we have

θ+
λ (tu) < 0

⇒ θ+
λ (ũ

λ+) = m̃+
λ < 0 = θ+

λ (0)

⇒ ũλ+ �= 0 .

From (69) we have

(θ+
λ )

′(ũλ+) = 0

⇒ V (ũλ+) = λ((ũλ+)+)q−1 .(70)

On (70) we act with −(ũλ+)− ∈ W
1,p
0 (Ω) and via Lemma 2.2 we obtain ũλ+ ≥ 0, ũλ+ �= 0.

Then (70) becomes

V (ũλ+) = λ(ũλ+)q−1

⇒ ũλ+ ∈ intC+ (see [25], [28]) solves (68) .

The uniqueness of ũλ+ follows from Proposition 4.1 (recall that τ > q).
Similarly we have −ũλ+ ∈ −intC+. �

Using this proposition, we can establish the existence of extremal constant sign smooth
solutions for (1) (λ ∈ (0, λ∗)), i.e., we show that there exist a smallest nontrivial positive
solution and a biggest nontrivial negative solution for (1) (λ ∈ (0, λ∗), where λ∗ > 0 is as in
Proposition 3.4).

PROPOSITION 4.3. If hypotheses H′
0 and H1 hold and λ ∈ (0, λ∗) (λ∗ > 0 as in

Proposition 3.4), then problem (1) has a smallest nontrivial positive solution uλ∗ ∈ intC+ and
a biggest nontrivial negative solution vλ∗ ∈ −intC+.

PROOF. We do the proof for uλ∗, the proof for vλ∗ being similar.
First we show that if u is a nontrivial positive solution of (1) (λ ∈ (0, λ∗)), then u ≥ ũλ+.

To this end, first note that u ∈ intC+ (as before) and

(71) −div a(Du(z)) = λu(z)q−1 + f (z, u(z)) ≥ λu(z)q−1 a.e. in Ω (see H1(v)) .
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We consider the following function

(72) γ+
λ (z, x) =

⎧⎨
⎩

0 if x < 0
λxq−1 if 0 ≤ x ≤ u(z)

λu(z)q−1 if u(z) < x .

This is a Caratheodory function. Let Γ +
λ (z, x) = ∫ x

0 γ
+
λ (z, s)ds and consider the C1-func-

tional σ+
λ : W 1,p

0 (Ω) → R defined by

σ+
λ (u) =

∫
Ω

G(Du(z))dz−
∫
Ω

Γ +
λ (z, u(z))dz for all u ∈ W 1,p

0 (Ω) .

It is clear from Lemma 2.2 and (72), that σ+
λ is coercive. Also, it is sequentially weakly

lower semicontinuous. So, we can find ũ ∈ W 1,p
0 (Ω) such that

(73) σ+
λ (ũ) = inf [σ+

λ (u); u ∈ W 1,p
0 (Ω)] = m̂+

λ .

As before, since q < p, we have

σ+
λ (ũ) = m̂+

λ < 0 = σ+
λ (0)

⇒ ũ �= 0 .

From (73) we have

(σ+
λ )

′(ũ) = 0

⇒ V (ũ) = Nγ+
λ
(ũ)(74)

where Nγ+
λ
(u)(·) = γ+

λ (·, u(·)) for all u ∈ W 1,p
0 (Ω) .

On (74) we act with −ũ− ∈ W
1,p
0 (Ω) and obtain ũ ≥ 0 and in fact ũ ∈ intC+ by

nonlinear regularity theory and the nonlinear maximum principle (see [24] and [25]). Also
acting on (74) with (ũ− u)+ ∈ W 1,p

0 (Ω), we obtain

〈V (ũ), (ũ− u)+〉 =
∫
Ω

γ+
λ (z, ũ)(ũ− u)+dz

=
∫
Ω

λuq−1(ũ− u)+dz (see (72))

≤ 〈V (u), (ũ− u)+〉 (see (71))

⇒
∫

{ũ>u}
(a(Dũ)− a(Du),Dũ−Du)Rndz ≤ 0

⇒ ũ ≤ u (recall that a(·) is strictly monotone, see Lemma 2.2) .

Then ũ ∈ [0, u] ∩ intC+ and so (74) becomes V (ũ) = λũq−1, hence ũ = ũλ+ by virtue of
Proposition 4.2. Therefore ũλ+ ≤ u.

We introduce the set

S+(λ) = {λ > 0; problem (1) has a nontrivial positive solution} .



604 M. FILIPPAKIS, D. O’REGAN AND N. PAPAGEORGIOU

From Proposition 3.6, we know that S+(λ) �= ∅. Also, S+(λ) ⊆ [ũλ+) ∩ intC+ where [ũλ+) =
{u ∈ W 1,p

0 (Ω); ũλ+(z) ≤ u(z) a.e. in Ω}. Moreover, as in Filippakis-Kristaly-Papageorgiou
[14] we can check that S+(λ) is downward directed (i.e., if u1, u2 ∈ S+(λ), we can find
u ∈ S+(λ) such that u ≤ min{u1, u2}). LetC ⊆ S+(λ) be a chain (i.e., a totally ordered subset
of S+(λ)). From Dunford-Schwartz [12] (p. 336), we know that we can find {un}n≥1 ⊆ C

such that

infn≥1un = infC .

Evidently, we may assume that un ≤ u0 for all n ≥ 1, with u0 ∈ intC+ from Proposition 3.6.
We have

V (un) = λu
q−1
n +Nf (un) for all n ≥ 1(75)

⇒ {un}n≥1 ⊆ W
1,p
0 (Ω) is bounded .

We may assume that

(76) un
w→ u in W

1,p
0 (Ω) and un → u in Lp(Ω) as n → ∞ .

On (75) we act with un − u ∈ W 1,p
0 (Ω), pass to the limit as n → ∞ and use (76). We obtain

lim〈V (un), un − v〉 = 0

⇒ un → u in W
1,p
0 (Ω) as n → ∞ (see Proposition 2.7) .(77)

From the first part of the proof we have ũλ+ ≤ u. Also, passing to the limit as n → ∞ in
(75) and using (77), we obtain

V (u) = λuq−1 +Nf (u)

⇒ u ∈ S+(λ) ∩ intC+ and u = infC .

Since C is an arbitrary chain in S+(λ), from the Kuratowski-Zorn lemma, we infer that S+(λ)
admits a minimal element uλ∗ ≥ ũλ+. Since S+(λ) is downward directed, it follows that uλ∗ is
the smallest nontrivial positive solution of problem (1). Similarly, we produce vλ∗ ∈ −intC+,
vλ∗ ≤ −ũλ+ the biggest nontrivial negative solution of (1). �

Having these two extremal constant sign smooth solutions, we can now implement the
strategy of Dancer-Du [10] (see also [14]). Namely, we focus on the order interval [vλ∗ , uλ∗] =
{u ∈ W

1,p
0 (Ω); vλ∗(z) ≤ u(z) ≤ uλ∗(z) a.e. in Ω}. Using suitable truncation and variational

techniques coupled with Morse Theory (critical groups), we show that problem (1) has a
solution y0 ∈ [vλ∗ , uλ∗] ∩ C1

0 (Ω), y0 �= 0. The extremality of vλ∗ , uλ∗, implies that y must be
nodal.

PROPOSITION 4.4. If hypotheses H′
0 and H1 hold and λ ∈ (0, λ∗), then problem (1)

has a nodal solution y0 ∈ C1
0 (Ω).
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PROOF. Let uλ∗ ∈ intC+ and vλ∗ ∈ −intC+ be the two extremal constant sign solutions
of (1) produced in Proposition 4.3. We introduce the following truncation of the reaction:

(78) β̂λ(z, x) =

⎧⎪⎪⎨
⎪⎪⎩
λ|vλ∗ (z)|q−2vλ∗(z)+ f (z, vλ∗ (z)) if x < vλ∗ (z)
λ|x|q−2x + f (z, x) if vλ∗(z) ≤ x ≤ uλ∗(z)
λuλ∗(z)q−1 + f (z, uλ∗(z)) if uλ∗(z) < x .

This is a Caratheodory function. We set B̂λ(z, x) = ∫ x
0 β̂λ(z, s)ds and consider the C1-

functional jλ : W 1,p
0 (Ω) → R defined by

jλ(u) =
∫
Ω

G(Du(z))dz−
∫
Ω

B̂λ(z, u(z))dz for all u ∈ W 1,p
0 (Ω) .

Also set β̂±
λ (z, x) = β̂λ(z,±x±), B̂±

λ (z, x) = ∫ x
0 β̂

±
λ (z, s)ds and consider the C1-functionals

j±
λ : W 1,p

0 (Ω) → R defined by

j±
λ (u) =

∫
Ω

G(Du(z))dz−
∫
Ω

B̂±
λ (z, u(z))dz for all u ∈ W 1,p

0 (Ω) .

Reasoning as in the proof of Proposition 4.3, we can show that

Kjλ ⊆ [vλ∗ , uλ∗] , Kj+
λ

⊆ [0, uλ∗] , Kj−
λ

⊆ [vλ∗ , 0] (see (78)) .

Taking into account the extremality of the solutions uλ∗ and vλ∗ (see Proposition 4.3), we have

(79) Kjλ ⊆ [vλ∗ , uλ∗] , Kj+
λ

= {0, uλ∗} , Kj−
λ

= {vλ∗ , 0} .
CLAIM 4.5. uλ∗ ∈ intC+ and vλ∗ ∈ −intC+ are local minimizers of jλ.

PROOF. Evidently j+
λ is coercive and sequentially weakly lower semicontinuous. So,

we can find ũλ0 ∈ W 1,p
0 (Ω) such that

(80) j+
λ (ũ

λ
0) = inf [j+

λ (u) ; u ∈ W 1,p
0 (Ω)] = m+

λ .

As before, the presence of the “concave” term λxq−1, x ∈ [0, uλ∗(z)], implies that

j+
λ (ũ

λ
0) = mλ+ < 0 = j+

λ (0) (see (80)) ,

ũλ0 �= 0 and so ũλ0 = uλ∗ (see (80)) .

Note that jλ|W+ = j+
λ |W+ W+ = {u ∈ W

1,p
0 (Ω); u(z) ≥ 0 a.e. in Ω} and recall that

uλ∗ ∈ intC+ (see Proposition 4.3). So, it follows that uλ∗ is a local C1
0 (Ω)-minimizer of jλ.

Invoking Proposition 2.6 we have that uλ∗ is a local W 1,p
0 (Ω)-minimizer of jλ. Similarly for

vλ∗ ∈ −intC+ using this time the functional j−
λ . This proves the claim. �

We may assume that jλ(vλ∗) ≤ jλ(u
λ∗) (the analysis is similar if the opposite inequality

holds). Also because of the claim and reasoning as in Aizicovici-Papageorgiou-Staicu [1] (see
the proof of Proposition 29), we can find ρ ∈ (0, 1) small such that

(81) jλ(v
λ∗ ) ≤ jλ(u

λ∗) < inf [jλ(u); ‖u− uλ∗‖ = ρ] = ηλ, ‖vλ∗ − uλ∗‖ > ρ .
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From Lemma 2.2 and (78), it is clear that jλ is coercive, hence it satisfies the PS-condition.
This fact together with (81) permit the use of Theorem 2.1 (the mountain pass theorem). So,
we can find y0 ∈ Kjλ\{vλ∗ , uλ∗} ⊆ [vλ∗ , uλ∗]\{vλ∗ , uλ∗} (see (79) and (81)). Then y0 ∈ C1

0 (Ω)

and solves (1). Also, since y0 is a critical point of jλ of mountain pass type, we have

(82) C1(jλ, y0) �= 0 (see Chang [7] (p. 89)) .

On the other hand, from Jiu-Su [22] (Proposition 2.4), we know that

(83) Ck(jλ, 0) = 0 for all ; k ≥ 0 (due to the “concave” term) .

Comparing (82) and (83), we conclude that y0 �= 0. Therefore y0 ∈ C1
0 (Ω) is a nodal solution

of (1) (λ ∈ (0, λ∗)). �

Summarizing the situation for problem (1), we have the following multiplicity theorem
with precise sign information for all solutions.

THEOREM 4.6. If hypotheses H′
0 and H1 hold, then there exists λ∗ > 0 such that for

all λ ∈ (0, λ∗) problem (1) has at least five nontrivial smooth solutions

u0, û ∈ intC+ , u0 ≤ û , u0 �= û

v0, v̂ ∈ −intC+ , v̂ ≤ v0 , v̂ �= v0

and y0 ∈ C1
0 (Ω) nodal .

REMARK 4.7. It is interesting to know if the above theorem is still valid for differential
operator satisfying hypotheses H. What is missing, is a nonlinear maximum principle for such
operators.
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