ON MINIMAL LAGRANGIAN SURFACES IN THE PRODUCT OF RIEMANNIAN TWO MANIFOLDS

NIKOS GEORGIOU

(Received May 20, 2013, revised December 2, 2013)

Abstract. Let (Σ_1,g_1) and (Σ_2,g_2) be connected, complete and orientable 2-dimensional Riemannian manifolds. Consider the two canonical Kähler structures $(G^{\varepsilon},J,\Omega^{\varepsilon})$ on the product 4-manifold $\Sigma_1\times \Sigma_2$ given by $G^{\varepsilon}=g_1\oplus \varepsilon g_2, \varepsilon=\pm 1$ and J is the canonical product complex structure. Thus for $\varepsilon=1$ the Kähler metric G^+ is Riemannian while for $\varepsilon=-1$, G^- is of neutral signature. We show that the metric G^{ε} is locally conformally flat if and only if the Gauss curvatures $\kappa(g_1)$ and $\kappa(g_2)$ are both constants satisfying $\kappa(g_1)=-\varepsilon\kappa(g_2)$. We also give conditions on the Gauss curvatures for which every G^{ε} -minimal Lagrangian surface is the product $\gamma_1\times \gamma_2\subset \Sigma_1\times \Sigma_2$, where γ_1 and γ_2 are geodesics of (Σ_1,g_1) and (Σ_2,g_2) , respectively. Finally, we explore the Hamiltonian stability of projected rank one Hamiltonian G^{ε} -minimal surfaces.

1. Introduction. A submanifold of a symplectic manifold is said to be *Lagrangian* if it is half the ambient dimension and the symplectic form vanishes on it. A Lagrangian submanifold of a pseudo-Riemannian manifold is said to be *minimal* if it is a critical point of the volume functional associated with pseudo-Riemannian metric. A minimal submanifold is characterized by the vanishing of the trace of its second fundamental form, the *mean curvature*. Recently, an interest in minimal Lagrangian submanifolds in pseudo-Riemannian Kähler structures has grown amongst geometers [2], [20], while minimal Lagrangian submanifolds in Calabi-Yau manifolds are of great interest in theoretical physics because of their close relationship to the mirror symmety [19]. In addition, the space $\mathbb{L}(\mathbb{M}^3)$ of oriented geodesics in a 3-dimensional space form (\mathbb{M}^3, g) admits a natural Kähler structure where the metric G is of neutral signature, scalar flat and locally conformally flat [1], [3], [11], [12].

The significance of these structures is that the identity component of the isometry group of G is isomorphic with the identity component of the isometry group of g. Moreover, Salvai has proved that the neutral Kähler metrics on $\mathbb{L}(\mathbb{E}^3)$ and $\mathbb{L}(\mathbb{H}^3)$ are the unique metrics with this property [16], [17]. The neutral Kähler structure on $\mathbb{L}(\mathbb{M}^3)$ plays an important role in the surface theory in (\mathbb{M}^3, g) . In particular, if S is a smoothly immersed surface in M, the set of oriented geodesics normal to S forms a Lagrangian surface in $\mathbb{L}(\mathbb{M}^3)$. A Lagrangian surface Σ in $\mathbb{L}(\mathbb{M}^3)$ is G-minimal if and only if Σ is locally the set of normal oriented geodesics of an equidistant tube along a geodesic in M [3], [6], [10].

²⁰¹⁰ Mathematics Subject Classification. Primary 53D12; Secondary 49Q05.

Key words and phrases. Kähler structures, minimal submanifolds.

The author is supported by Fapesp (2010/08669-9).

Oh in [14] has introduced a natural variational problem, apart from the classical variational problem of minimizing the volume functional in a homology class, consisting of minimizing the volume with respect to Hamiltonian compactly supported variations. An important property of these variations is that they preserve the Lagrangian constraint. A Lagrangian submanifold in a Kähler or a pseudo-Kähler manifold is said to be *a Hamiltonian minimal submanifold* if it is a critical point of the volume functional with respect to Hamiltonian compactly supported variations. A Hamiltonian minimal submanifold can be characterized by its mean curvature vector being the divergence-free.

For example, in the space $\mathbb{L}(\mathbb{E}^3)$ of oriented lines in the Euclidean 3-space, a Hamiltonian minimal surface is the set of oriented lines normal to a surface $S \subset \mathbb{E}^3$ that is a critical point of the functional

$$\mathcal{F}(S) = \int_{S} \sqrt{H^2 - K} dA,$$

where H, K denote the mean and the Gauss curvatures of S, respectively [6]. The neutral Kähler structures on the space of oriented great circles in the three sphere \mathbb{S}^3 and the space of oriented space-like geodesics in the anti De Sitter 3-space $Ad\mathbb{S}^3$ can both be identified with the product structures, $\mathbb{L}(\mathbb{S}^3) = \mathbb{S}^2 \times \mathbb{S}^2$ and $\mathbb{L}^+(Ad\mathbb{S}^3) = \mathbb{H}^2 \times \mathbb{H}^2$.

More generally, one is led to consider the Kähler structures derived by the product structure of $\Sigma_1 \times \Sigma_2$, where (Σ_1, g_1) and (Σ_2, g_2) are complete, connected, orientable Riemannian 2-manifolds.

Let ω_1 and ω_2 be the symplectic two forms of (Σ_1, g_1) and (Σ_2, g_2) , respectively, and j_1 and j_2 their complex structures as Riemann surfaces. For $\varepsilon=1$ or -1, consider the product structures of the four-dimensional manifold $\Sigma_1 \times \Sigma_2$ endowed with the product metrics $G^{\varepsilon}=\pi_1^*g_1+\varepsilon\pi_1^*g_2$, the almost complex structure $J=j_1\oplus j_2$ and the symplectic two forms $\Omega^{\varepsilon}=\pi_1^*\omega_1+\varepsilon\pi_2^*\omega_2$, where π_i are the projections of $\Sigma_1 \times \Sigma_2$ onto Σ_i , i=1,2. The quadruples $(\Sigma_1 \times \Sigma_2, G^{\varepsilon}, J, \Omega^{\varepsilon})$ are easily seen to be 4-dimensional Kähler structures.

In this paper we study G^{ε} -minimal Lagrangian surfaces in the Kähler 4-manifold ($\Sigma_1 \times \Sigma_2$, G^{ε} , J, Ω^{ε}). In Section 2 we prove:

THEOREM 1. The Kähler metric G^+ is Riemannian while the Kähler metric G^- is neutral. Moreover, the Kähler metric G^{ε} is conformally flat if and only if the Gauss curvatures $\kappa(g_1)$ and $\kappa(g_2)$ are both constants with $\kappa(g_1) = -\varepsilon \kappa(g_2)$.

In Section 3, we first define the *projected rank* (see Definition 3.1) of a surface in $\Sigma_1 \times \Sigma_2$ and we prove that every Lagrangian surface is either of projected rank one or of projected rank two.

For the projected rank one case, we classify all Hamiltonian G^{ε} -minimal surfaces:

THEOREM 2. Every projected rank one Lagrangian surface can be locally parametrised by $\Phi: S \to \Sigma_1 \times \Sigma_2: (s,t) \mapsto (\phi(s), \psi(t))$, where ϕ and ψ are regular curves on Σ and the induced metric Φ^*G^{ε} is flat. Φ is Hamiltonian G^{ε} -minimal if and only if ϕ and ψ are

Cornu spirals of parameters λ_{ϕ} and λ_{ψ} , respectively, such that

$$\lambda_{\phi} = -\varepsilon \lambda_{\psi}$$
.

 Φ is a G^{ε} -minimal Lagrangian if and only if both ϕ and ψ are geodesics. Furthermore, every projected rank one G^{ε} -minimal Lagrangian surface in $\Sigma_1 \times \Sigma_2$ is totally geodesic.

In the same section, the following theorem gives the conditions for the non-existence of projected rank two G^{ε} -minimal Lagrangian surfaces:

THEOREM 3. Let (Σ_1, g_1) and (Σ_2, g_2) be Riemannian two manifolds and let $(G^{\varepsilon}, J, \Omega^{\varepsilon})$ be the canonical Kähler product structures on $\Sigma_1 \times \Sigma_2$. Let $\kappa(g_1), \kappa(g_2)$ be the Gauss curvatures of g_1 and g_2 , respectively. Assume that either of the following hold:

- (i) The metrics g_1 and g_2 are both generically non-flat and $\varepsilon \kappa(g_1)\kappa(g_2) < 0$ away from flat points.
- (ii) Only one of the metrics g_1 and g_2 is flat while the other is non-flat generically. Then every G^{ε} -minimal Lagrangian surface is of projected rank one.

Here a generic property is one that holds almost everywhere. Note that Theorem 3.5 is no longer true when (Σ_1, g_1) and (Σ_2, g_2) are both flat, since there exist projected rank two minimal Lagrangian immersions in the complex Euclidean space \mathbb{C}^2 endowed with the pseudo-Hermitian product structure [6].

Minimality is the first order condition for a submanifold to be volume-extremizing in its homology class. Harvey and Lawson [13] have proven that minimal Lagrangian submanifolds of a Calabi-Yau manifold is calibrated, which implies by Stokes theorem, that are volume-extremizing. The second order condition for a minimal submanifold to be volume-extremizing was first derived by Simons [18].

Minimal submanifolds that are local extremizers of the volume are called *stable minimal submanifolds*. The stability of a minimal submanifold is determined by the monotonicity of the second variation of the volume functional. If the second variation of the volume functional of a Hamiltonian minimal submanifold is monotone for any Hamiltonian compactly supported variation, it is said to be *Hamiltonian stable*. In [14] and [15], the second variation formula of a Hamiltonian minimal submanifold has been derived in the case of a Kähler manifold, while for the pseudo-Kähler case it has been derived in [5].

The following theorem in Section 4 investigates the Hamiltonian stability of projected rank one Hamiltonian G^{ε} -minimal surfaces in $\Sigma_1 \times \Sigma_2$:

THEOREM 4. Let $\Phi = (\phi, \psi)$ be of projected rank one Hamiltonian G^{ε} -minimal immersion in $(\Sigma_1 \times \Sigma_2, G^{\varepsilon})$ such that $\kappa(g_1) \leq -2k_{\phi}^2$ and $\kappa(g_2) \leq -2k_{\psi}^2$ along the curves ϕ and ψ respectively. Then Φ is a local minimizer of the volume in its Hamiltonian isotopy class.

Acknowledgements. The author would like to thank H. Anciaux and B. Guilfoyle for their helpful and valuable suggestions and comments.

2. The product Kähler structure. Consider the Riemannian 2-manifolds (Σ_k, g_k) for k = 1, 2 and denote by j_k the rotation by an angle $+\pi/2$ in $T \Sigma_k$. Set $\omega_k(\cdot, \cdot) = g_k(j_k \cdot, \cdot)$ so that the quadruples $(\Sigma_k, g_k, j_k, \omega_k)$ are 2-dimensional Kähler manifolds.

Using the following identification,

$$X \in T(\Sigma_1 \times \Sigma_2) \simeq (X_1, X_2) \in T\Sigma_1 \oplus T\Sigma_2$$
, where $X_k \in T\Sigma_k$,

we obtain the natural splitting $T(\Sigma_1 \times \Sigma_2) = T\Sigma_1 \oplus T\Sigma_2$. Let $(x, y) \in \Sigma_1 \times \Sigma_2$ and $X = (X_1, X_2)$ and $Y = (Y_1, Y_2)$ be two tangent vectors in $T_{(x,y)}(\Sigma_1 \times \Sigma_2)$. Define the metric $G_{(x,y)}^{\varepsilon}$ by:

$$G_{(x,y)}^{\varepsilon}(X,Y) = g_1(X_1,Y_1)(x) + \varepsilon g_2(X_2,Y_2)(y),$$

where $\varepsilon = 1$ or -1. The Levi-Civita connection ∇ with respect to the metric G^{ε} is

$$\nabla_X Y = (D_{X_1}^1 Y_1, D_{X_2}^2 Y_2),$$

where $X = (X_1, X_2), Y = (Y_1, Y_2)$ are vector fields in $\Sigma_1 \times \Sigma_2$ and D^1, D^2 denote the Levi-Civita connections with respect to g_1 and g_2 , respectively.

Consider the endomorphism $J \in \operatorname{End}(T\Sigma_1 \oplus T\Sigma_2)$ defined by $J = j_1 \oplus j_2$, i.e., $J(X) = (j_1X_1, j_2X_2)$. Clearly, J is an almost complex structure on $\Sigma_1 \times \Sigma_2$.

PROPOSITION 2.1. The almost complex structure J is integrable.

PROOF. The Nijenhuis tensor N_J is

$$N_J(X, Y) = [JX, JY]^{\nabla} - J[JX, Y]^{\nabla} - J[JX, Y]^{\nabla} - [X, Y]^{\nabla},$$

where $X = (X_1, X_2)$, $Y = (Y_1, Y_2)$ are vector fields in $\Sigma_1 \times \Sigma_2$ and $[\cdot, \cdot]^{\nabla}$ denotes the Lie bracket with respect to the Levi-Civita connection ∇ . Then

$$[X, Y]^{\nabla} = ([X_1, Y_1]^{D^1}, [X_2, Y_2]^{D^2}),$$

where $[\cdot,\cdot]^{D^i}$ are the Lie brackets with respect to the Levi-Civita connections D^i . Thus,

$$\begin{aligned} N_J(X,Y) &= [JX,JY]^{\nabla} - J[JX,Y]^{\nabla} - J[JX,Y]^{\nabla} - [X,Y]^{\nabla} \\ &= (N_{j_1}(X_1,Y_1),N_{j_2}(X_2,Y_2)) \,, \end{aligned}$$

and the proposition follows.

Let $\pi_i: \Sigma_1 \times \Sigma_2 \to \Sigma_i$ be the *i*-th projection, and define the following two-forms

$$\Omega^{\varepsilon} = \pi_1^* \omega_1 + \varepsilon \pi_2^* \omega_2.$$

THEOREM 2.2. The quadruples $(\Sigma_1 \times \Sigma_2, G^{\varepsilon}, J, \Omega^{\varepsilon})$ are 4-dimensional Kähler structures. The Kähler metric G^{ε} is conformally flat if and only if the Gauss curvatures $\kappa(g_1)$ and $\kappa(g_2)$ are both constants with $\kappa(g_1) = -\varepsilon \kappa(g_2)$.

PROOF. We have already seen that the almost complex structure J is integrable. It is obvious that Ω^{ε} is closed, i.e., $d\Omega^{\varepsilon}=0$ and hence a symplectic form on $\Sigma_1\times\Sigma_2$.

Moreover, J is compatible with Ω^{ε} since for $X = (X_1, X_2)$ and $Y = (Y_1, Y_2)$, we have

$$\Omega_{(x,y)}^{\varepsilon}(JX,JY) = \Omega_{(x,y)}^{\varepsilon}((j_1X_1,j_1X_2),(j_2Y_1,j_2Y_2))$$

$$= \omega_1(j_1X_1, j_1Y_1)(x) + \varepsilon\omega_2(j_2X_2, j_2Y_2)(y)$$

= $\omega_1(X_1, Y_1)(x) + \varepsilon\omega_2(X_2, Y_2)(y)$
= $\Omega^{\varepsilon}_{(x,y)}(X, Y)$.

We proceed with the proof by considering the cases of G^+ and G^- .

THE CASE OF G^+ : Assume that (e_1, e_2) and (v_1, v_2) are orthonormal frames on Σ_1 and Σ_2 respectively, both oriented in such a way $j_1e_1 = e_2$ and $j_2v_1 = v_2$. Consider the orthonormal frame (E_1, E_2, E_3, E_4) of $(\Sigma_1 \times \Sigma_2, G^+)$ defined by

$$E_1 = \frac{1}{\sqrt{3}}(e_1, v_1 + v_2), \quad E_2 = JE_1 = \frac{1}{\sqrt{3}}(e_2, v_2 - v_1)$$

$$E_3 = \frac{1}{\sqrt{3}}(e_1 - e_2, -v_1), \quad E_4 = JE_3 = \frac{1}{\sqrt{3}}(e_1 + e_2, -v_2).$$

If Ric^+ denotes the Ricci curvature tensor with respect to the metric G^+ , we have

$$\operatorname{Ric}^+(E_1, E_1)_{(x,y)} = \operatorname{Ric}^+(E_2, E_2)_{(x,y)} = \frac{\kappa(g_1)(x) + 2\kappa(g_2)(y)}{3}$$

$$\operatorname{Ric}^{+}(E_3, E_3)_{(x,y)} = \operatorname{Ric}^{+}(E_4, E_4)_{(x,y)} = \frac{2\kappa(g_1)(x) + \kappa(g_2)(y)}{3},$$

and the scalar curvatute R^+ is:

(1)
$$R^{+} = \sum_{i=1}^{4} Ric^{+}(E_{i}, E_{i}) = 2(\kappa(g_{1})(x) + \kappa(g_{2})(y)).$$

If G^{ε} is conformally flat, it is scalar flat [9] and thus, from (1), the Gauss curvatures $\kappa(g_1)$, $\kappa(g_2)$ are constants with $\kappa(g_1) = -\kappa(g_2)$.

Conversely, suppose that

(2)
$$\kappa(q_1) = -\kappa(q_2) = c,$$

where c is a real constant. Consider the corresponding coframe $\mathcal{B}_+ = (e_1, e_2, e_3, e_4)$ of the orthonormal frame (E_1, E_2, E_3, E_4) . The Hodge star operator $*: \Lambda^2(\Sigma_1 \times \Sigma_2) \to \Lambda^2(\Sigma_1 \times \Sigma_2)$ defined by

$$a \wedge *b = G^+(a, b) \text{Vol},$$

splits the bundle of 2-forms $\Lambda^2(\Sigma_1 \times \Sigma_2)$ into:

$$\Lambda^2(\Sigma_1 \times \Sigma_2) = \Lambda^2_+(\Sigma_1 \times \Sigma_2) \oplus \Lambda^2_-(\Sigma_1 \times \Sigma_2) \,,$$

where $\Lambda_+^2(\Sigma_1 \times \Sigma_2)$, $\Lambda_-^2(\Sigma_1 \times \Sigma_2)$ are the self-dual and the anti-self-dual 2-form bundles, respectively, and Vol = $e_1 \wedge e_2 \wedge e_3 \wedge e_4$ is the volume element.

With respect to this splitting the Riemann curvature operator $\mathcal{R}: \Lambda^2(\Sigma_1 \times \Sigma_2) \to \Lambda^2(\Sigma_1 \times \Sigma_2)$ defined by

$$\mathcal{R}(e_i \wedge e_i)e_k \wedge e_l = G(R(E_i, E_i)E_k, E_l)$$
,

is decomposed by:

$$\mathcal{R} = \begin{pmatrix} W^{+} + \frac{R^{+}}{12}I & Z \\ Z^{*} & W^{-} + \frac{R^{+}}{12}I \end{pmatrix},$$

where $W^{\pm}: \Lambda^2_{\pm}(\Sigma_1 \times \Sigma_2) \to \Lambda^2_{\pm}(\Sigma_1 \times \Sigma_2)$ are the self-dual and the anti-self-dual part of the Weyl tensor W and Z is the traceless Ricci tensor. Note that $W = W^+ \oplus W^-$. An orthonormal basis for $\Lambda^2_{+}(\Sigma_1 \times \Sigma_2)$ is

$$e_1^{\pm} = \frac{1}{\sqrt{2}} (e_1 \wedge e_2 \pm e_3 \wedge e_4) ,$$

$$e_2^{\pm} = \frac{1}{\sqrt{2}} (e_1 \wedge e_3 \mp e_2 \wedge e_4) ,$$

$$e_3^{\pm} = \frac{1}{\sqrt{2}} (e_1 \wedge e_4 \pm e_2 \wedge e_3) .$$

The metric G^+ is scalar flat and the self-dual part W^+ vanishes, since

$$W^{+} = R^{+} \begin{pmatrix} 1/3 & & \\ & -1/6 & \\ & & -1/6 \end{pmatrix}.$$

Substituting (2) into (1), the scalar curvature R^+ vanishes and thus $W^-(e_i^-, e_j^-) = \mathcal{R}(e_i^-)e_j^-$. A brief computation shows that $\mathcal{R}(e_i^-)e_j^- = 0$ for all i, j. For example,

$$\mathcal{R}(e_1^-)e_2^- = \frac{1}{2}\mathcal{R}(e_1 \wedge e_2)e_1 \wedge e_2 + \frac{1}{2}\mathcal{R}(e_3 \wedge e_4)e_3 \wedge e_4$$
$$= \frac{1}{2} (G^+(R(E_1, E_2)E_1, E_2) + G^+(R(E_3, E_4)E_3, E_4))$$
$$= 0.$$

Thus, the anti-self-dual part W^- also vanishes. Therefore, the Weyl tensor W=0, or G^+ is locally conformally flat.

THE CASE OF G^- : We now prove that the neutral Kähler metric G^- is conformally flat if and only if the Gauss curvatures $\kappa(g_1)$, $\kappa(g_2)$ are both constants with $\kappa(g_1) = \kappa(g_2)$. For this metric, consider the orthonormal frame (E_1, E_2, E_3, E_4) defined by:

$$E_1 = (e_1, v_1 + v_2), \quad E_2 = JE_1 = (e_2, v_2 - v_1),$$

 $E_3 = (e_1 - e_2, v_1), \quad E_4 = JE_3 = (e_1 + e_2, v_2).$

In particular,

$$-|E_1|^2 = -|E_2|^2 = |E_3|^2 = |E_4|^2 = 1$$
, $G(E_i, E_j) = 0$, $\forall i \neq j$.

A brief computation gives

$$Ric^{-}(E_1, E_1) = Ric^{-}(E_2, E_2) = \kappa(g_1)(x) + 2\kappa(g_2)(y),$$

 $Ric^{-}(E_3, E_3) = Ric^{-}(E_4, E_4) = 2\kappa(g_1)(x) + \kappa(g_2)(y),$

where Ric⁻ is the Ricci tensor of the metric G^- . Then, if R^- denotes the scalar curvature of G^- , we have

(3)
$$R^{-} = \sum_{k=1}^{2} \left(-\operatorname{Ric}^{-}(E_{k}, E_{k}) + \operatorname{Ric}^{-}(E_{2+k}, E_{2+k}) \right)$$
$$= 2(\kappa(g_{1})(x) - \kappa(g_{2})(y)).$$

If the neutral Kähler metric G^- is conformally flat, it is also scalar flat [7] and hence, from (3), the Gauss curvatures $\kappa(g_1)$ and $\kappa(g_2)$ are constants with $\kappa(g_1) = \kappa(g_2)$. Following the same argument as before, assume the converse, that is, $\kappa(g_1) = \kappa(g_2) = c$, where c is a real constant. Consider the corresponding coframe $\mathcal{B}_2 = (e_1, e_2, e_3, e_4)$ and the Hodge star operator $*: \Lambda^2(\Sigma_1 \times \Sigma_2) \to \Lambda^2(\Sigma_1 \times \Sigma_2)$. The Hodge star operator splits the Riemann curvature operator $\mathcal{R}: \Lambda^2(\Sigma_1 \times \Sigma_2) \to \Lambda^2(\Sigma_1 \times \Sigma_2)$ in the same way as in the Riemannian case. The Weyl (0, 4)-tensor W is given by:

$$W_{ijkl} = R_{ijkl}^G - \frac{1}{2} (-G_{jk} \operatorname{Ric}_{il}^G + G_{jl} \operatorname{Ric}_{ik}^G - G_{il} \operatorname{Ric}_{jk}^G + G_{ik} \operatorname{Ric}_{jl}^G),$$

where $R_{ijkl}^G = G(R^G(E_i, E_j)E_k, E_l)$. An orthonormal basis for $\Lambda^2_{\pm}(\Sigma_1 \times \Sigma_2)$, in the neutral case, is

$$e_1^{\pm} = \frac{1}{\sqrt{2}} (e_1 \wedge e_2 \pm e_3 \wedge e_4) ,$$

$$e_2^{\pm} = \frac{1}{\sqrt{2}} (e_1 \wedge e_3 \pm e_2 \wedge e_4) ,$$

$$e_3^{\pm} = \frac{1}{\sqrt{2}} (e_1 \wedge e_4 \mp e_2 \wedge e_3) .$$

The metric G^- is scalar flat, following [7], and the anti-self-dual part W^- vanishes, since

$$W^{-} = R^{-} \begin{pmatrix} 1/3 & & \\ & 1/6 & \\ & & 1/6 \end{pmatrix}.$$

The self-dual part is

$$W^{+} = \begin{pmatrix} W_{1212} + W_{3434} + 2W_{1234} & 2(W_{1213} + W_{1334}) & 2(W_{1214} + W_{1434}) \\ 2(W_{1313} + W_{1324}) & 2(W_{1314} - W_{1323}) \\ 2(W_{1414} - W_{1423}) \end{pmatrix},$$

and a brief computation shows that W^+ vanishes. Therefore, the Weyl tensor W vanishes, or G is locally conformally flat.

COROLLARY 2.3. Let (Σ, g) be a Riemannian two manifold. The neutral Kähler metric G^- of the four dimensional Kähler manifold $\Sigma \times \Sigma$ is conformally flat if and only if the metric g is of constant Gaussian curvature.

3. Surface theory in the 4-manifold $\Sigma_1 \times \Sigma_2$. Let $\Phi: S \to \Sigma_1 \times \Sigma_2$ be a smooth immersion of a surface S in $\Sigma_1 \times \Sigma_2$, where (Σ_1, g_1) and (Σ_2, g_2) are both Riemannian two manifolds and let π_i be the projections of $\Sigma_1 \times \Sigma_2$ onto Σ_i , i=1,2. We denote by ϕ and ψ the mappings $\pi_1 \circ \Phi$ and $\pi_2 \circ \Phi$, respectively, and we write $\Phi = (\phi, \psi)$. The rank of a mapping at a point is the rank of its derivative at that point.

DEFINITION 3.1. The immersion $\Phi = (\phi, \psi) : S \to \Sigma_1 \times \Sigma_2$ is said to be of projected rank zero at a point $p \in S$ if either $\operatorname{rank}(\phi(p)) = 0$ or $\operatorname{rank}(\psi(p)) = 0$. Φ is of projected rank one at p if either $\operatorname{rank}(\phi(p)) = 1$ or $\operatorname{rank}(\psi(p)) = 1$. Finally, Φ is of projected rank two at p if $\operatorname{rank}(\phi(p)) = \operatorname{rank}(\psi(p)) = 2$.

Note that, since it is an immersion, Φ must be of projected rank zero, one or two.

3.1. Projected rank zero case. Let $\Phi = (\phi, \psi)$ be of projected rank zero immersion in $\Sigma_1 \times \Sigma_2$. Assuming, without loss of generality, that $\operatorname{rank}(\phi) = 0$, the map ϕ is locally a constant function and the map ψ is a local diffeomorphism. We now give the following proposition:

PROPOSITION 3.2. There are no Lagrangian immersions in $\Sigma_1 \times \Sigma_2$ of projected rank zero.

PROOF. If $\Phi = (\phi, \psi) : S \to \Sigma_1 \times \Sigma_2$ were an immersed surface with rank $(\phi) = 0$, then $\psi : S \to \Sigma_2$ is a local diffeomorphism and thus for any vector fields X, Y on S

$$\begin{split} \Phi^* \Omega^{\varepsilon}(X,Y) &= \Omega^{\varepsilon}(d\Phi(X), d\Phi(Y)) \\ &= \Omega^{\varepsilon}((0, d\psi(X)), (0, d\psi(Y))) \\ &= \varepsilon \ \omega(d\psi(X), d\psi(Y)) \\ &\neq 0 \,, \end{split}$$

where the last line follows from the non-degeneracy of ω and the fact that $d\psi$ is a bundle isomorphism. \Box

3.2. Projected rank one Lagrangian surfaces. We begin by giving the definition of Cornu spirals in a Riemannian two manifold.

DEFINITION 3.3. Let (Σ, g) be a Riemannian two manifold. A regular curve γ of Σ is called a *Cornu spiral of parameter* λ if its curvature κ_{γ} is a linear function of its arclength parameter such that $\kappa_{\gamma}(s) = \lambda s + \mu$, where s is the arclength and λ , μ are real constants.

A Cornu spiral γ in \mathbb{R}^2 of parameter λ can be parametrised, up to congruences, by

$$\gamma(s) = \left(\int_0^s \cos(\lambda t^2/2) dt, \int_0^s \sin(\lambda t^2/2) dt\right),\,$$

and they are bounded but have infinite length [4].

Let $\Phi = (\phi, \psi): S \to \Sigma_1 \times \Sigma_2$ be of projected rank one immersion in $\Sigma_1 \times \Sigma_2$. Then either ϕ or ψ is of rank one. The following theorem gives all rank one Hamiltonian G^{ε} -minimal surfaces: THEOREM 3.4. Every projected rank one Lagrangian surface can be locally parametrised by $\Phi: S \to \Sigma_1 \times \Sigma_2: (s,t) \mapsto (\phi(s), \psi(t))$, where ϕ and ψ are regular curves on Σ and the induced metric Φ^*G^{ε} is flat. In addition, Φ is Hamiltonian G^{ε} -minimal if and only if ϕ and ψ are Cornu spirals of parameters λ_{ϕ} and λ_{ψ} , respectively, such that

$$\lambda_{\phi} = -\varepsilon \lambda_{\psi}$$
.

Moreover, Φ is a G^{ε} -minimal Lagrangian if and only if both ϕ and ψ are geodesics, and every projected rank one G^{ε} -minimal Lagrangian surface in $\Sigma_1 \times \Sigma_2$ is totally geodesic.

PROOF. Let $\Phi = (\phi, \psi) : S \to \Sigma_1 \times \Sigma_2$ be of projected rank one Lagrangian immersion. Assume, without loss of generality, that ϕ is of rank one. We now prove that ψ is of rank one.

Since Φ is an immersion of a surface, the map ψ cannot be of rank zero. Suppose that ψ is of rank two, i.e., a local diffeomorphism. Thus, Φ is locally parametrised by $\Phi: U \subset S \to \Sigma_1 \times \Sigma_2 : (s,t) \mapsto (\phi(s), \psi(s,t))$. Hence,

$$\Phi_s = (\phi'(s), \psi_s) \quad \Phi_t = (0, \psi_t).$$

Since Φ is a Lagrangian immersion, we have that $\omega_2(\psi_s, \psi_t) = 0$. The fact that ψ is a local diffeomorphism implies that for any non-zero vector field X in Σ_2 can be written as $X = a\psi_s + b\psi_t$. Hence, we have that $\omega_2(\psi_s, X) = 0$. The nondegeneracy of ω_2 implies that ψ is cannot be a local diffeomorphism, since $\psi_s = 0$. Thus ψ is also a rank one immersion.

We now have that S is locally parametrised by $\Phi: U \subset S \to \Sigma_1 \times \Sigma_2 : (s,t) \mapsto (\phi(s), \psi(t))$, where ϕ and ψ are regular curves in Σ_1 and Σ_2 , respectively. If s, t are the corresponding arc-length parameters of ϕ and ψ , the Frénet equations give

$$D^1_{\phi'}\phi'=k_\phi j\phi'\quad D^2_{\psi'}\psi'=k_\psi j\psi'\,,$$

where k_{ϕ} and k_{ψ} denote the curvatures of ϕ and ψ , respectively. Moreover, $\Phi_s = (\phi', 0)$ and $\Phi_t = (0, \psi')$ and thus

$$\nabla_{\Phi_s} \Phi_s = (D_{\phi'}^1 \phi', 0) = (k_{\phi} j \phi', 0), \quad \nabla_{\Phi_t} \Phi_t = (0, D_{\psi'}^2 \psi') = (0, k_{\psi} j \psi'), \quad \nabla_{\Phi_t} \Phi_s = (0, 0).$$

The first fundamental form $G_{ij}^{\varepsilon} = G^{\varepsilon}(\partial_i \Phi, \partial_j \Phi)$ is given by

$$G_{ss} = \varepsilon G_{tt} = 1$$
, $G_{st} = 0$,

which proves that the immersion Φ is flat.

The second fundamental form h^{ε} of Φ is completely determined by the following trisymmetric tensor

$$h^{\varepsilon}(X, Y, Z) := G^{\varepsilon}(h^{\varepsilon}(X, Y), JZ) = \Omega^{\varepsilon}(X, \nabla_{Y}Z).$$

We then have

$$h_{sst}^{\varepsilon} = \Omega^{\varepsilon}(\Phi_s, \nabla_{\Phi_s}\Phi_t) = 0, \quad h_{stt}^{\varepsilon} = \Omega^{\varepsilon}(\Phi_s, \nabla_{\Phi_t}\Phi_t) = 0.$$

Moreover.

$$h_{sss}^{\varepsilon} = \Omega^{\varepsilon}(\Phi_s, \nabla_{\Phi_s}\Phi_s) = \Omega^{\varepsilon}((\phi', 0), (k_{\phi}j\phi', 0)) = G^{\varepsilon}((j\phi', 0), (k_{\phi}j\phi', 0)) = k_{\phi},$$

and similarly, $h_{ttt}^{\varepsilon} = \varepsilon k_{\psi}$. Denote the mean curvature of Φ with respect to the metric G^{ε} by \vec{H}^{ε} . Then

$$G^{\varepsilon}(2\vec{H}^{\varepsilon}, J\Phi_{s}) = \frac{h_{sss}^{\varepsilon}G_{tt}^{\varepsilon} + h_{stt}^{\varepsilon}G_{ss}^{\varepsilon} - 2h_{sst}^{\varepsilon}G_{st}^{\varepsilon}}{G_{st}^{\varepsilon}G_{tt}^{\varepsilon} - (G_{st}^{\varepsilon})^{2}} = k_{\phi},$$

and

$$G^{\varepsilon}(2\vec{H}^{\varepsilon},J\Phi_{t}) = \frac{h^{\varepsilon}_{sst}G^{\varepsilon}_{tt} + h^{\varepsilon}_{ttt}G^{\varepsilon}_{ss} - 2h^{\varepsilon}_{stt}G^{\varepsilon}_{st}}{G^{\varepsilon}_{sc}G^{\varepsilon}_{tt} - (G^{\varepsilon}_{st})^{2}} = k_{\psi} .$$

Hence

$$2\vec{H}^{\varepsilon} = k_{\phi}J\Phi_{s} + \varepsilon k_{\psi}J\Phi_{t}.$$

It is not hard to see that the Lagrangian immersion Φ is G^{ε} -minimal if and only if the curves ϕ and ψ are geodesics. Moreover, if Φ is a G^{ε} -minimal Lagrangian it is totally geodesic, since the second fundamental form vanishes identically.

Note also that

$$\operatorname{div}^{\varepsilon}(\Phi_{s}) = -G^{\varepsilon}(\nabla_{\Phi_{s}}\Phi_{s}, \Phi_{s}) = -G^{\varepsilon}((k_{\phi}j\phi', 0), (\phi', 0)) = -g(k_{\phi}j\phi', \phi') = 0.$$

In a similar way, we derive that $\operatorname{div}^{\varepsilon}(\Phi_t) = 0$.

Thus,

$$-\operatorname{div}^{\varepsilon}(2J\vec{H}^{\varepsilon}) = G^{\varepsilon}(\nabla k_{\phi}, \Phi_{s}) + k_{\phi}\operatorname{div}^{\varepsilon}(\Phi_{s}) + \varepsilon G^{\varepsilon}(\nabla k_{\psi}, \Phi_{t}) + \varepsilon k_{\psi}\operatorname{div}^{\varepsilon}(\Phi_{t})$$

$$= \frac{D}{ds}k_{\phi}(s) + \varepsilon \frac{D}{dt}k_{\psi}(t),$$

and the theorem follows.

3.3. Projected rank two Lagrangian surfaces. For the projected rank two case, we have the following theorem:

THEOREM 3.5. Let (Σ_1, g_1) and (Σ_2, g_2) be Riemannian two manifolds and let $(G^{\varepsilon}, J, \Omega^{\varepsilon})$ be the canonical Kähler product structures on $\Sigma_1 \times \Sigma_2$ constructed in Section 2. Let $\kappa(g_1), \kappa(g_2)$ be the Gauss curvatures of g_1 and g_2 , respectively. Assume that one of the following holds:

(i) The metrics g_1 and g_2 are both generically non-flat and $\varepsilon \kappa(g_1)\kappa(g_2) < 0$ away from flat points.

(ii) Only one of the metrics g_1 and g_2 is flat while the other is non-flat generically. Then every G^{ε} -minimal Lagrangian surface is of projected rank one.

PROOF. Assume that the G^{ε} -minimal Lagrangian immersion $\Phi = (\phi, \psi) : S \to \Sigma_1 \times \Sigma_2$ is of projected rank two. Then by definition the mappings $\phi : S \to \Sigma_1$ and $\psi : S \to \Sigma_2$ are both local diffeomorphisms. The Lagrangian assumption $\Phi^* \Omega^{\varepsilon} = 0$ yields

$$\phi^* \omega_1 = -\varepsilon \psi^* \omega_2 \,.$$

Take an orthonormal frame (e_1, e_2) of Φ^*G^{ε} such that.

$$G^{\varepsilon}(d\Phi(e_1), d\Phi(e_1)) = \varepsilon G^{\varepsilon}(d\Phi(e_2), d\Phi(e_2)) = 1$$
, $G^{\varepsilon}(d\Phi(e_1), d\Phi(e_2)) = 0$.

The Lagrangian condition implies that the frame $(d\Phi(e_1), d\Phi(e_2), Jd\Phi(e_1), Jd\Phi(e_2))$ is orthonormal. Let (s_1, s_2) and (v_1, v_2) be oriented orthonormal frames of (Σ_1, g_1) and (Σ_2, g_2) ,

respectively, such that $j_1s_1 = s_2$ and $j_2v_1 = v_2$. Then there exist smooth functions $\lambda_1, \lambda_2, \mu_1$, μ_2 on Σ_1 and $\bar{\lambda}_1, \bar{\lambda}_2, \bar{\mu}_1, \bar{\mu}_2$ on Σ_2 such that

$$d\phi(e_1) = \lambda_1 s_1 + \lambda_2 s_2 \quad d\phi(e_2) = \mu_1 s_1 + \mu_2 s_2,$$

$$d\psi(e_1) = \bar{\lambda}_1 v_1 + \bar{\lambda}_2 v_2 \quad d\psi(e_2) = \bar{\mu}_1 v_1 + \bar{\mu}_2 v_2.$$

Hence

$$\phi^* \omega_1(e_1, e_2) = \lambda_1 \mu_2 - \lambda_2 \mu_1, \quad \psi^* \omega_2(e_1, e_2) = \bar{\lambda}_1 \bar{\mu}_2 - \bar{\lambda}_2 \bar{\mu}_1.$$

Using the Lagrangian condition (4), we have

$$(\lambda_1 \mu_2 - \lambda_2 \mu_1)(\phi(p)) = -\varepsilon(\bar{\lambda}_1 \bar{\mu}_2 - \bar{\lambda}_2 \bar{\mu}_1)(\psi(p)), \quad \forall p \in S.$$

Moreover, the assumption that Φ is of projected rank two, implies that $\lambda_1 \mu_2 - \lambda_2 \mu_1 \neq 0$ for every $p \in S$.

For the mean curvature vector H^{ε} of the immersion Φ , consider the one form $a_{H^{\varepsilon}}$ defined by $a_{H^{\varepsilon}} = G^{\varepsilon}(JH^{\varepsilon}, \cdot)$. It is known from [8] that since Φ is Lagrangian

$$(5) da_{H^{\varepsilon}} = \Phi^* \rho^{\varepsilon},$$

where ρ^{ε} is the Ricci form of G^{ε} . Since Φ is a G^{ε} -minimal Lagrangian immersion $\Phi^* \rho^{\varepsilon}$ vanishes and thus

$$\begin{split} 0 &= \rho^{\varepsilon}(d\Phi(e_{1}), d\Phi(e_{2})) \\ &= \operatorname{Ric}^{\varepsilon}(d\Phi(e_{1}), Jd\Phi(e_{2})) \\ &= \varepsilon G^{\varepsilon}(R(d\Phi e_{1}, d\Phi e_{2}) Jd\Phi e_{2}, d\Phi e_{2}) + G^{\varepsilon}(R(d\Phi e_{1}, d\Phi e_{2}) Jd\Phi e_{1}, d\Phi e_{1}) \\ &= \varepsilon g_{1}(R_{1}(d\phi e_{1}, d\phi e_{2}) j_{1} d\phi e_{2}, d\phi e_{2}) + g_{2}(R_{2}(d\psi e_{1}, d\psi e_{2}) j_{2} d\psi e_{2}, d\psi e_{2}) \\ &\quad + g_{1}(R_{1}(d\phi e_{1}, d\phi e_{2}) j_{1} d\phi e_{1}, d\phi e_{1}) + \varepsilon g_{2}(R_{2}(d\psi e_{1}, d\psi e_{2}) Jd\psi e_{1}, d\psi e_{1}) \\ &= \varepsilon \left((\lambda_{1}^{2} + \lambda_{2}^{2} + \varepsilon(\mu_{1}^{2} + \mu_{2}^{2}))(\mu_{1}\lambda_{2} - \mu_{2}\lambda_{1})\kappa(g_{1}) \right. \\ &\quad + \left(\bar{\lambda}_{1}^{2} + \bar{\lambda}_{2}^{2} + \varepsilon(\bar{\mu}_{1}^{2} + \bar{\mu}_{2}^{2}) \right) (\bar{\mu}_{1}\bar{\lambda}_{2} - \bar{\mu}_{2}\bar{\lambda}_{1})\kappa(g_{2}) \\ &= \varepsilon (\mu_{1}\lambda_{2} - \mu_{2}\lambda_{1}) \left[\left(\lambda_{1}^{2} + \lambda_{2}^{2} + \varepsilon(\mu_{1}^{2} + \mu_{2}^{2}) \right) \kappa(g_{1}) - \left(\bar{\lambda}_{1}^{2} + \bar{\lambda}_{2}^{2} + \varepsilon(\bar{\mu}_{1}^{2} + \bar{\mu}_{2}^{2}) \right) \kappa(g_{2}) \right], \end{split}$$

which finally gives,

(6)
$$(\lambda_1^2 + \lambda_2^2 + \varepsilon(\mu_1^2 + \mu_2^2)) \kappa(g_1) = (\bar{\lambda}_1^2 + \bar{\lambda}_2^2 + \varepsilon(\bar{\mu}_1^2 + \bar{\mu}_2^2)) \kappa(g_2).$$

The condition $G^{\varepsilon}(d\Phi(e_1), d\Phi(e_2)) = 0$ yields

(7)
$$\lambda_1 \mu_1 + \lambda_2 \mu_2 = -\varepsilon (\bar{\lambda}_1 \bar{\mu}_1 + \bar{\lambda}_2 \bar{\mu}_2).$$

Now, using (4) and (7), we have

(8)
$$(\lambda_1^2 + \lambda_2^2)(\mu_1^2 + \mu_2^2) = (\bar{\lambda}_1^2 + \bar{\lambda}_2^2)(\bar{\mu}_1^2 + \bar{\mu}_2^2).$$

From $G^{\varepsilon}(d\Phi(e_1), d\Phi(e_1)) = \varepsilon G^{\varepsilon}(d\Phi(e_2), d\Phi(e_2)) = 1$ we obtain

(9)
$$\lambda_1^2 + \lambda_2^2 + \varepsilon(\bar{\lambda}_1^2 + \bar{\lambda}_2^2) = \varepsilon(\mu_1^2 + \mu_2^2) + \bar{\mu}_1^2 + \bar{\mu}_2^2 = 1.$$

Set $a:=\lambda_1^2+\lambda_2^2, b:=\mu_1^2+\mu_2^2, \bar{a}:=\bar{\lambda}_1^2+\bar{\lambda}_2^2, \bar{b}:=\bar{\mu}_1^2+\bar{\mu}_2^2$. The relations (7), (8) and (9) give

$$ab = \bar{a}\bar{b}$$
, $a + \varepsilon\bar{a} = \varepsilon b + \bar{b} = 1$.

Thus $a = -\varepsilon \bar{a} + 1$ and $b = \varepsilon - \varepsilon \bar{b}$, and from $ab = \bar{a}\bar{b}$ we have that $\bar{a} + \varepsilon \bar{b} = \varepsilon$. Moreover, $\bar{a} = \varepsilon - \varepsilon a$ and $\bar{b} = 1 - \varepsilon b$, and again from $ab = \bar{a}\bar{b}$ we have $a + \varepsilon b = 1$. Hence, relation (6) becomes

$$\kappa(g_1)(\phi(p)) = \varepsilon \kappa(g_2)(\psi(p)), \text{ for every } p \in S,$$

which implies that the metrics g_1 and g_2 can satisfy neither condition (i) nor condition (ii) of the statement.

The following corollaries follow:

COROLLARY 3.6. Every G^+ -minimal Lagrangian surface immersed in $\mathbb{S}^2 \times \mathbb{H}^2$ is, up to isometry, the cylinder $\mathbb{S}^1 \times \mathbb{R}$. Moreover, every G^{ε} -minimal Lagrangian surface immersed in $\mathbb{R}^2 \times \mathbb{H}^2$ ($\mathbb{R}^2 \times \mathbb{S}^2$) is of projected rank one and thus it is $\gamma_1 \times \gamma_2$, where γ_1 is a straight line in \mathbb{R}^2 and γ_2 is a geodesic in \mathbb{H}^2 (γ_2 is a geodesic in \mathbb{S}^2), respectively.

COROLLARY 3.7. Let (Σ, g) be a Riemannian two manifold such that the metric g is non-flat. Then every G^- -minimal Lagrangian surface immersed in $\Sigma \times \Sigma$ is of projected rank one and consequently the product of two geodesics of (Σ, g) .

4. The Hamiltonian stability of minimal Lagrangian surfaces. The Hamiltonian stability of a Hamiltonian minimal surface S in a pseudo-Riemannian manifold (\mathcal{M}, G) is given by the monotonicity of the second variation formula of the volume V(S) under Hamiltonian deformations (see [14] and [5]). For a smooth compactly supported function $u \in C_c^{\infty}(S)$ the second variation $\delta^2 V(S)(X)$ formula in the direction of the Hamiltonian vector field $X = J\nabla u$ is:

$$\delta^2 V(S)(X) = \int_{S} \left((\Delta u)^2 - \operatorname{Ric}^{G}(\nabla u, \nabla u) - 2G(h(\nabla u, \nabla u), nH) + G^2(nH, J\nabla u) \right) dV,$$

where h is the second fundamental form of S, Ric^G is the Ricci curvature tensor of the metric G, and Δ with ∇ denote the Laplacian and gradient, respectively, with respect to the metric G induced on S. For the Hamiltonian stability of projected rank one Hamiltonian G^ε -minimal surfaces we give the following theorem:

THEOREM 4.1. Let $\Phi = (\phi, \psi)$ be of projected rank one Hamiltonian G^{ε} -minimal immersion in $(\Sigma_1 \times \Sigma_2, G^{\varepsilon})$ such that $\kappa(g_1) \leq -2k_{\phi}^2$ and $\kappa(g_2) \leq -2k_{\psi}^2$ along the curves ϕ and ψ respectively. Then Φ is a local minimizer of the volume in its Hamiltonian isotopy class.

PROOF. Let $\Phi = (\phi, \psi) : S \to \Sigma_1 \times \Sigma_2$ be of projected rank one Hamiltonian G^{ε} -minimal immersion and let (s, t) be the corresponded arclengths of ϕ and ψ , respectively. Then $(\phi_s, j_1\phi_s)$ is an oriented orthonormal frame of (Σ_1, g_1) and $(\psi_t, j_2\psi_t)$ is an oriented orthonormal frame of (Σ_2, g_2) . Therefore,

$$\begin{aligned} \operatorname{Ric}^{\varepsilon}(\boldsymbol{\Phi}_{s}, \, \boldsymbol{\Phi}_{s}) &= \varepsilon G^{\varepsilon}(\boldsymbol{R}(\boldsymbol{\Phi}_{t}, \, \boldsymbol{\Phi}_{s}) \boldsymbol{\Phi}_{s}, \, \boldsymbol{\Phi}_{t}) + G^{\varepsilon}(\boldsymbol{R}(\boldsymbol{J} \boldsymbol{\Phi}_{s}, \, \boldsymbol{\Phi}_{s}) \boldsymbol{\Phi}_{s}, \, \boldsymbol{J} \boldsymbol{\Phi}_{s}) \\ &+ \varepsilon G^{\varepsilon}(\boldsymbol{R}(\boldsymbol{J} \boldsymbol{\Phi}_{t}, \, \boldsymbol{\Phi}_{s}) \boldsymbol{\Phi}_{s}, \, \boldsymbol{J} \boldsymbol{\Phi}_{t}) \end{aligned}$$

$$= G^{\varepsilon}(\boldsymbol{R}(\boldsymbol{J} \boldsymbol{\Phi}_{s}, \, \boldsymbol{\Phi}_{s}) \boldsymbol{\Phi}_{s}, \, \boldsymbol{J} \boldsymbol{\Phi}_{s})$$

$$= G^{\varepsilon}((R_{1}(j_{1}\phi_{s},\phi_{s})\phi_{s}, R_{2}(j_{2}\psi_{s},\psi_{s})\psi_{s}), (j_{1}\phi_{s}, j_{2}\psi_{s}))$$

$$= G^{\varepsilon}((R_{1}(j_{1}\phi_{s},\phi_{s})\phi_{s}, 0), (j_{1}\phi_{s}, 0))$$

$$= g_{1}(R_{1}(j_{1}\phi_{s},\phi_{s})\phi_{s}, j_{1}\phi_{s})$$

$$= \kappa(g_{1}).$$

Moreover, a similar computation gives

$$\operatorname{Ric}^{\varepsilon}(\Phi_t, \Phi_t) = \kappa(g_2)$$
 and $\operatorname{Ric}^{\varepsilon}(\Phi_s, \Phi_t) = 0$.

Then, for every $u(s, t) \in C_c^{\infty}(S)$, we have

$$\operatorname{Ric}^{\varepsilon}(\nabla u, \nabla u) = \kappa(g_1)u_s^2 + \kappa(g_2)u_t^2$$

Furthermore,

$$G^{\varepsilon}(h^{\varepsilon}(\nabla u, \nabla u), 2\vec{H}^{\varepsilon}) = u_s^2 k_{\phi}^2 + u_t^2 k_{\psi}^2$$

and

$$G^{\varepsilon}(2\vec{H}^{\varepsilon}, J\nabla u) = u_{s}k_{\phi} + \varepsilon u_{t}k_{\psi}.$$

The second variation formula for the volume functional with respect to the Hamiltonian vector field $X = J\nabla u$ becomes

$$\delta^{2}V(S)(X) = \int_{S} (\Delta^{\varepsilon}u)^{2} - \operatorname{Ric}^{\varepsilon}(\nabla u, \nabla u) - 2G^{\varepsilon}(h^{\varepsilon}(\nabla u, \nabla u), 2\vec{H}^{\varepsilon}) + G^{\varepsilon}(2\vec{H}^{\varepsilon}, J\nabla u)^{2}$$

$$= \int_{S} (u_{ss} + \varepsilon u_{tt})^{2} - u_{s}^{2}\kappa(g_{1}) - u_{t}^{2}\kappa(g_{2}) - (u_{s}k_{\phi} - \varepsilon u_{t}k_{\psi})^{2}$$

$$= \int_{S} (u_{ss} + \varepsilon u_{tt})^{2} + u_{s}^{2}(-\kappa(g_{1}) - k_{\phi}^{2}) + u_{t}^{2}(-\kappa(g_{2}) - k_{\psi}^{2}) + 2\varepsilon u_{s}u_{t}k_{\phi}k_{\psi}.$$

Assuming that $\kappa(g_1) \leq -2k_{\phi}^2$ and $\kappa(g_2) \leq -2k_{\psi}^2$ along the curves ϕ and ψ , respectively, we conclude that the second variation formula is nonnegative.

Every minimal Lagrangian surface in a pseudo-Kähler 4-manifold is unstable [2]. The following corollary explores the Hamiltonian stability of G^- -minimal Lagrangian surfaces in $\Sigma_1 \times \Sigma_2$:

COROLLARY 4.2. Let (Σ_1, g_1) and (Σ_2, g_2) be Riemannian two manifolds such that their Gauss curvatures $\kappa(g_1)$ and $\kappa(g_2)$ are both negative. Then every G^- -minimal Lagrangian surface is a local minimizer of the volume in its Hamiltonian isotopy class.

PROOF. From Theorem 3.5 every G^- -minimal Lagrangian immersion must be of projected rank one and thus it is parametrised by $\Phi = (\phi, \psi) : S \to \Sigma_1 \times \Sigma_2$, where $\phi = \phi(s)$ and $\psi = \psi(t)$, where s, t are arclengths. Assuming that $\kappa(g_1), \kappa(g_2)$ are both negative, we have that:

$$\kappa(g_1)(s) \le -2k_{\phi}^2(s) = 0, \quad \kappa(g_2)(t) \le -2k_{\psi}^2(t) = 0,$$

and from Theorem 4.1 the G^- -minimal Lagrangian immersion Φ is stable under Hamiltonian deformations.

We also have the next corollary:

COROLLARY 4.3. Let (Σ, g) be a Riemannian two manifold of negative Gaussian curvature. Then every G^- -minimal Lagrangian surface immersed in $\Sigma \times \Sigma$ is a local minimizer of the volume in its Hamiltonian isotopy class.

EXAMPLE 1. It is easy to see that if (Σ, g) is a Riemannian two manifold of constant Gauss curvature $c \neq 0$, then every G^- -minimal Lagrangian surface immersed in $\Sigma \times \Sigma$ is a local minimizer of the volume in its Hamiltonian isotopy class if and only if c < 0.

EXAMPLE 2. Let $L(\mathbb{S}^3)$ and $L^+(\operatorname{Ad}\mathbb{S}^3)$ be the spaces of oriented closed geodesics in the three sphere and anti-De Sitter 3-space, respectively. Then $L(\mathbb{S}^3) = \mathbb{S}^2 \times \mathbb{S}^2$ and $L^+(\operatorname{Ad}\mathbb{S}^3) = \mathbb{H}^2 \times \mathbb{H}^2$ (see [1] and [3]). The previous example generalises a result obtained in [5] which states that every minimal Lagrangian surface in the space of closed oriented geodesics $L(\mathbb{S}^3)$ is Hamiltonian unstable and every Lagrangian minimal surface in $L^+(\operatorname{Ad}\mathbb{S}^3)$ is Hamiltonian stable.

The following proposition investigates the Hamiltonian stability of G^+ -minimal Lagrangian surfaces:

PROPOSITION 4.4. Let (Σ_1, g_1) and (Σ_2, g_2) be Riemannian two manifolds with Gaussian curvatures satisfying

$$c_1 \le |\kappa(g_1)(x)| \le C_1$$
, $c_2 \le |\kappa(g_2)(y)| \le C_2$, and $\kappa(g_1)(x)\kappa(g_2)(y) < 0$,

for every pair $(x, y) \in \Sigma_1 \times \Sigma_2$ and for some positive constants c_1, c_2, C_1, C_2 . Then, every G^+ -minimal Lagrangian surface is Hamiltonian unstable and hence G^+ -unstable.

PROOF. Consider again a Lagrangian minimal immersion $\Phi = (\phi, \psi): S \to \Sigma_1 \times \Sigma_2$. From Theorem 3.5, we have that $\phi = \phi(s)$ and $\psi = \psi(t)$ are geodesics of Σ_1 and Σ_2 , respectively, with (s,t) chosen to be the corresponding arc-lengths. Then $(\phi_s, j_1\phi_s)$ is an oriented orthonormal frame of (Σ_1, g_1) and $(\psi_t, j_2\psi_t)$ is an oriented orthonormal frame of (Σ_2, g_2) . A computation similar to that in Theorem 4.1 gives

$$\operatorname{Ric}^+(\Phi_s, \Phi_s) = \kappa(g_1), \quad \operatorname{Ric}^+(\Phi_t, \Phi_t) = \kappa(g_2), \quad \operatorname{Ric}^+(\Phi_s, \Phi_t) = 0,$$

and the second variation formula for the volume of S in the direction of the Hamiltonian vector field $X = J\nabla u$ is

$$\delta^2 V(S)(X) = \int_S \left((u_{ss} - u_{tt})^2 - \kappa(g_1) u_s^2 - \kappa(g_2) u_t^2 \right) dV.$$

Assume that $\kappa(g_1) < 0$. Then, $\kappa(g_2) > 0$ and

$$\delta^2 V(S)(X) \ge \int_S \left((u_{ss} - u_{tt})^2 - C_1 u_s^2 + c_2 u_t^2 \right) dV.$$

Thus, for the quadratic functional

$$Q_1(u) := \int_S -C_1 u_s^2 + c_2 u_t^2,$$

there exists $u^1 \in C_c^{\infty}(S)$ such that $Q_1(u^1) \ge 0$. Therefore, $\delta^2 V(S)(J\nabla u^1) \ge 0$.

On the other hand, for every $u \in C_c^{\infty}(S)$

$$\delta^2 V(S)(J\nabla u) \le \int_S \left((u_{ss} + u_{tt})^2 - c_1 u_s^2 + C_2 u_t^2 \right) dV.$$

Then, for the quadratic functional

$$Q_2(u) := \int_{S} -c_1 u_s^2 + C_2 u_t^2,$$

there exists $u^2 \in C_c^{\infty}(S)$ such that $Q_2(u^2) \le 0$. An argument similar to that in the proof of Theorem 3 of [5] establishes the existence of $u^3 \in C_c^{\infty}(S)$ such that

$$\int_{S} \left((u_{ss}^3 + u_{tt}^3)^2 - c_1 (u_s^3)^2 + C_2 (u_t^3)^2 \right) dV \le 0,$$

which implies that $\delta^2 V(S)(J\nabla u^3) \leq 0$. Therefore the second variation formula for the volume of S under Hamiltonian deformations is indefinite.

REFERENCES

- [1] D. ALEKSEEVSKY, B. GUILFOYLE AND W. KLINGENBERG, On the geometry of spaces of oriented geodesics, Ann. Global Anal. Geom. 40 (2011), 389–409.
- [2] H. ANCIAUX, Minimal submanifolds in pseudo-Riemannian geometry, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
- [3] H. ANCIAUX, Space of geodesics of pseudo-Riemannian space forms and normal congruences of hypersurfaces, Trans. Amer. Math. Soc. 366 (2014), 2699–2718.
- [4] H. ANCIAUX AND I. CASTRO, Construction of Hamiltonian-minimal Lagrangian submanifolds in complex Euclidean space, Results Math. 60 (2011), 325–349.
- [5] H. ANCIAUX AND N. GEORGIOU, Hamiltonian stability of Hamiltonian minimal Lagrangian submanifolds in pseudo- and para- Kähler manifolds, Adv. Geom 14 (2014), 587–612.
- [6] H. ANCIAUX, B. GUILFOYLE AND P. ROMON, Minimal submanifolds in the tangent bundle of a Riemannian surface, J. Geom. Phys. 61 (2011), 237–247.
- [7] H. ANCIAUX AND P. ROMON, A canonical structure of the tangent bundle of a pseudo- or para- Kähler manifold, arxiv:1301.4638.
- [8] I. CASTRO, F. TORRALBO AND F. URBANO, On Hamiltonian stationary Lagrangian spheres in non-Einstein Kähler surfaces, Math. Z. 271 (2012), 259–270.
- [9] A. DERDZIŃSKI, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no 3, 405–433.
- [10] N. GEORGIOU, On area stationary surfaces in the space of oriented geodesics of hyperbolic 3-space, Math. Scand. 111 (2012), 187–209.
- [11] N. GEORGIOU AND B. GUILFOYLE, On the space of oriented geodesics of hyperbolic 3-space, Rocky Mountain J. Math. 40 (2010), 1183–1219.
- [12] B. GUILFOYLE AND W. KLINGENBERG, An indefinite K\u00e4hler metric on the space of oriented lines, J. London Math. Soc. 72 (2005), 497–509.
- [13] R. HARVEY AND H. B. LAWSON, Calibrated geometries, Acta Math. 148 (1982), 47-157.
- [14] Y. G. OH, Second variation and stabilities of minimal lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), 501–519.
- [15] Y. G. OH, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Z. 212 (1993), 175–192.

- [16] M. SALVAI, On the geometry of the space of oriented lines in Euclidean space, Manuscripta Math. 118 (2005), 181–189.
- [17] M. SALVAI, On the geometry of the space of oriented lines of hyperbolic space, Glasg. Math. J. 49 (2007), 357–366.
- [18] J. SIMONS, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105.
- [19] A. STROMINGER, S.-T. YAU AND E. ZASLOW, Mirror symmetry is *T*-duality, Nuclear Phys. B 479 (1996), 243–259.
- [20] F. Urbano, Hamiltonian stability and index of minimal Lagrangian surfaces in complex projective plane, Indiana Univ. Math. J. 56 (2007), 931–946.

FEDERAL UNIVERSITY OF AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS MANAUS, AM BRAZIL

E-mail address: georgiou.g.nicos@ucy.ac.cy