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Abstract. In this paper we initiate the study of almost complex surfaces in the nearly
Kähler S3 × S3. We show that on such a surface it is possible to define a global holomorphic
differential, which is induced by an almost product structure on the nearly Kähler S3 ×S3. We
also find a local correspondence between almost complex surfaces in the nearly Kähler S3×S3

and solutions of the general H -system equation introduced by Wente ([13]), thus obtaining a
geometric interpretation of solutions of the general H -system equation. From this we deduce a
correspondence between constant mean curvature surfaces in R

3 and almost complex surfaces
in the nearly Kähler S3 × S3 with vanishing holomorphic differential. This correspondence
allows us to obtain a classification of the totally geodesic almost complex surfaces. Moreover,
we prove that almost complex topological 2-spheres in S3 × S3 are totally geodesic. Finally,
we also show that every almost complex surface with parallel second fundamental form is
totally geodesic.

Introduction. Nearly Kähler manifolds have been studied intensively in the 1970’s
by Gray [9]. These nearly Kähler manifolds are almost Hermitian manifolds with almost
complex structure J for which the tensor field ∇J is skew-symmetric. In particular, the almost
complex structure is non-integrable if the manifold is non-Kähler. A well known example is
the nearly Kähler 6-dimensional sphere, whose almost complex structure J can be defined in
terms of the vector cross product on R

7. Recently it has been shown by Butruille [6] that the
only homogeneous 6-dimensional nearly Kähler manifolds are the nearly Kähler 6-sphere,
S3 × S3, the projective space CP 3 and the flag manifold SU(3)/U(1) × U(1). All these
spaces are compact 3-symmetric spaces.

There are two natural types of submanifolds of nearly Kähler (or more generally, almost
Hermitian) manifolds, namely almost complex and totally real submanifolds. Almost complex
submanifolds are submanifolds whose tangent spaces are invariant under J . Almost complex
submanifolds in the nearly Kähler manifold S6 have been studied by many authors (see e.g.
[2], [3], [4], [7], [8], [12]). Also in the nearly Kähler CP 3 some results have been obtained in
[14].

In this paper we initiate the study of almost complex submanifolds of S3 × S3. Six-
dimensional non-Kähler nearly Kähler manifolds do not admit 4-dimensional almost complex
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submanifolds ([11]), so the almost complex submanifolds are surfaces. The paper is organized
as follows: the basics on nearly Kähler manifolds and submanifold theory will be recapitulated
in the first section. In Section 2 we will discuss the nearly Kähler structure and an almost
product structure P on S3 × S3. Whereas in the previous works of a.o. [6] the structure is
presented in terms of Lie groups, here we will present everything using the classical structure
on S3 × S3. This allows us to remark that the nearly Kähler metric, up to a constant factor,
corresponds to the Hermitian metric associated to the standard metric on S3 ×S3. In Section 3
it will be shown that to every simply connected almost complex surface M in S3 × S3 one
can associate a surface in Euclidean 3-space. This associated surface ε satisfies the H -surface
equation

εuu + εvv = − 4√
3
εu × εv ,

see [13]. Note that this correspondence works in both directions. This equation also implies
that g(Pφz, φz) dz2 is a holomorphic differential. Furthermore, under the assumption that
the holomorphic differential vanishes, which means that PT M ⊂ T ⊥M , the H -surface has
constant mean curvature. These results enable us to prove the following theorems.

THEOREM. If M is an almost complex surface in S3 × S3 with parallel second funda-
mental form, then M is totally geodesic.

THEOREM. An almost complex topological 2-sphere S2 in the nearly Kähler S3 × S3

is totally geodesic.

The latter result marks a difference from the case of the nearly Kähler 6-sphere: there
exists an immersion from S2(1/6) in S6 which is not totally geodesic (see [12, § 5, Example
2]).

In the final section, we give two examples of totally geodesic almost complex surfaces
in S3×S3. In the first example P maps tangent vectors to tangent vectors; in the second one P

maps tangent vectors into normal ones. Furthermore we show that any almost complex surface
with parallel second fundamental form is locally congruent to one of these two examples.

1. Preliminaries. An almost Hermitian manifold (M̃, g, J ) is a manifold endowed
with an almost complex structure J that is compatible with the metric g , i.e., an endomor-
phism J : T M̃ → T M̃ such that J 2

p = −Id for every p ∈ M̃ and g(JX, JY ) = g(X, Y ) for

all X,Y ∈ T M̃ . A nearly Kähler manifold is an almost Hermitian manifold with the extra
condition that the tensor field G = ∇̃J is skew-symmetric:

(∇̃XJ )Y + (∇̃Y J )X = 0 for every X, Y ∈ T M̃ .

Here ∇̃ stands for the Levi-Civita connection of the metric g . A number of properties hold for
this tensor field ([1], [9]):

G(X, Y ) + G(Y,X) = 0 ,(1)

G(X, JY ) + JG(X, Y ) = 0 ,(2)

g(G(X, Y ), Z) + g(G(X,Z) , Y ) = 0 ,(3)
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∇J = 0 .(4)

The canonical Hermitian connection ∇ is defined by ∇XY = ∇̃XY + 1
2 (∇̃XJ )JY .

An almost complex surface M of a nearly Kähler manifold M̃ is a 2-dimensional sub-
manifold such that the tangent bundle of M is invariant under the almost complex structure,
i.e., JT M = T M . We denote the Levi-Civita connection on M by ∇ and the normal con-
nection on the normal bundle T ⊥M by ∇⊥. The formulas of Gauss and Weingarten then
are

∇̃XY = ∇XY + h(X, Y ) ,

∇̃Xξ = −AξX + ∇⊥
Xξ ,

for tangent vectors X, Y and a normal vector ξ . The second fundamental form h and the shape
operator Aξ are related to each other by

g(h(X, Y ), ξ) = g(AξX, Y ) .

The Gauss and Weingarten formulas and the properties of G imply

∇XJX = J∇XX , h(X, JY ) = Jh(X, Y ) ,(5)

AJξX = JAξX = −AξJX , G(X, ξ) = ∇⊥
XJξ − J∇⊥

Xξ ,(6)

see e.g. [7] or [12]. As an immediate corollary, M itself is nearly Kähler and minimal. More-
over, since each tangent space TpM is spanned by a unit vector X and JX, G(X, Y ) = 0 for
every X,Y ∈ T M and thus M is Kähler.

We denote the curvature tensor of ∇̃, ∇ and ∇⊥ by R̃, R and R⊥ respectively. The
equations of Gauss, Codazzi and Ricci then are

R(X, Y )Z = (
R̃(X, Y )Z

)	 + Ah(Y,Z)X − Ah(X,Z)Y ,

(∇h)(X, Y,Z) − (∇h)(Y,X,Z) = (
R̃(X, Y )Z

)⊥
,

g
(
R⊥(X, Y )ξ, η

) = g
(
R̃(X, Y )ξ, η

) + g
([Aξ,Aη]X,Y

)
,

where X,Y,Z ∈ T M , ξ, η ∈ T ⊥M and ∇h is defined by ∇⊥
Xh(Y,Z) − h(∇XY,Z) −

h(Y,∇XZ). A submanifold is called parallel if ∇h is zero everywhere. The second deriv-
ative ∇2h of h is defined in a similar way by

(∇2h)(X, Y,Z,W) = ∇⊥
X(∇h)(Y,Z,W) − (∇h)(∇XY,Z,W)

−(∇h)(Y,∇XZ,W) − (∇h)(Y,Z,∇XW) .

The Ricci identity for ∇2h then says

(∇2h)(X, Y,Z,W) − (∇2h)(Y,X,Z,W) = R⊥(X, Y )h(Z,W)

−h(R(X, Y )Z,W) − h(Z,R(X, Y )W) .

Note that the left hand side vanishes if M is parallel.
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2. The nearly Kähler structure on S3 × S3. We consider the 3-sphere in R
4 as the

set of all unit quaternions. The vector fields X1, X2 and X3 given by

X1(p) = pi = −x2 + x1i + x4j − x3k ,

X2(p) = pj = −x3 − x4i + x1j + x2k ,

X3(p) = −pk = x4 − x3i + x2j − x1k

at the point p = x1+x2i+x3j+x4k form a basis of tangent vector fields. Thus a tangent vector
in TpS3 can be expressed as pα where α is an imaginary quaternion. Using the quaternion
relations ij = k, jk = i and ki = j one shows that the Lie brackets are given by [Xi,Xj ] =
−2εijkXk . Here εijk is the Levi-Civita symbol.

Using the natural identification T(p,q)(S
3 × S3) ∼= TpS3 ⊕ TqS3, we will write a tangent

vector at (p, q) as Z(p, q) = (
U(p, q), V (p, q)

)
or simply Z = (U, V ). Define the vector

fields

E1(p, q) = (pi, 0) , F1(p, q) = (0, qi) ,

E2(p, q) = (pj, 0) , F2(p, q) = (0, qj) ,

E3(p, q) = −(pk, 0) , F3(p, q) = −(0, qk) .

These vector fields are mutually orthogonal with respect to the usual product metric on S3 ×
S3. The Lie brackets are [Ei,Ej ] = −2εijkEk , [Fi, Fj ] = −2εijkFk and [Ei, Fj ] = 0.

The almost complex structure J on S3 × S3 is defined as

JZ(p, q) = 1√
3
(2pq−1V − U,−2qp−1U + V )

for Z ∈ T(p,q)(S
3 × S3) (see [6]). Furthermore, we define another metric g on S3 × S3 by

g(Z,Z′) = 1

2

(〈Z,Z′〉 + 〈JZ, JZ′〉)

= 4

3

(〈U,U ′〉 + 〈V, V ′〉) − 2

3

(〈p−1U, q−1V ′〉 + 〈p−1U ′, q−1V 〉) ,

where Z = (U, V ) and Z′ = (U ′, V ′). In the first line 〈· , ·〉 stands for the product metric
on S3 × S3 and in the second line 〈· , ·〉 stands for the metric on S3. By definition the almost
complex structure is compatible with the metric g . An easy calculation gives g(Ei, Ej ) =
4/3 δij , g(Ei, Fj ) = −2/3 δij and g(Fi, Fj ) = 4/3 δij . Note that this metric differs up to a
constant factor from the one introduced in [6]. Here we set everything up so that it equals the
Hermitian metric associated with the usual metric. In [6], the factor was chosen in such a way
that the standard basis E1, E2, E3, F1, F2, F3 has volume 1.

LEMMA 2.1. The Levi-Civita connection ∇̃ on S3 × S3 with respect to the metric g is
given by

∇̃Ei Ej = −εijkEk , ∇̃Ei Fj = εijk

3
(Ek − Fk) ,

∇̃Fi Ej = εijk

3
(Fk − Ek) , ∇̃Fi Fj = −εijkFk .
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PROOF. Using the Koszul formula, one finds

g(∇̃Ei Ej ,Ek) = −4

3
εijk , g(∇̃Fi Ej ,Ek) = −2

3
εijk ,

g(∇̃Ei Ej , Fk) = 2

3
εijk , g(∇̃Fi Ej , Fk) = 2

3
εijk ,

g(∇̃Ei Fj , Fk) = −2

3
εijk , g(∇̃Fi Fj , Fk) = −4

3
εijk .

Elementary linear algebra then gives the equations hereabove. �

Now one can verify that

(∇̃Ei J )Ej = − 2

3
√

3
εijk(Ek + 2Fk) ,

(∇̃Ei J )Fj = − 2

3
√

3
εijk(Ek − Fk) ,

(∇̃Fi J )Ej = − 2

3
√

3
εijk(Ek − Fk) ,

(∇̃Fi J )Fj = 2

3
√

3
εijk(2Ek + Fk) .

(7)

The tensor field G = ∇̃J is skew-symmetric, hence S3 × S3 with the metric g and almost
complex structure J is nearly Kähler.

For unit quaternions a, b and c, the map F : S3 × S3 → S3 × S3 given by (p, q) �→
(apc−1, bqc−1) is an isometry of (S3 × S3, g) (cf. remark after Lemma 2.2 in [11]). Indeed,
F preserves the almost complex structure, since

JdF(p,q)(v,w) = 1√
3

(
2(apc−1)(cq−1b−1)bwc−1 − avc−1,

−2(bqc−1)(cp−1a−1)avc−1 + bwc−1)

= dF(p,q)

(
J (v,w)

)

(see also [10, Proposition 3.1]) and F preserves the usual metric 〈· , ·〉 as well.
Next, we introduce an almost product structure on S3 × S3. For a tangent vector Z =

(U, V ) at (p, q), we define

PZ = (pq−1V, qp−1U) .

It is easily seen that
(1) P 2 = Id,
(2) PJ = −JP ,
(3) P is compatible with the metric g , i.e., g(PZ,PZ′) = g(Z,Z′). This also implies

that P is symmetric with respect to g .
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Note that PEi = Fi and PFi = Ei . From these equations and Lemma 2.1 it follows that

(∇̃Ei P )Ej = 1

3
εijk(Ek + 2Fk) ,

(∇̃Ei P )Fj = −1

3
εijk(2Ek + Fk) ,

(∇̃Ei P )Fj = −1

3
εijk(Ek + 2Fk) ,

(∇̃Fi P )Fj = 1

3
εijk(2Ek + Fk) .

(8)

Thus the endomorphism P is not a product structure, i.e., the tensor field H = ∇̃P does
not vanish identically. However, the almost product structure P and tensor field H admit the
following properties.

LEMMA 2.2. For tangent vectors X, Y of S3 × S3 the following equations hold:

PG(X, Y ) + G(PX,PY ) = 0 ,(9)

H(X, JY ) = JH(X, Y ) ,(10)

G(X,PY ) + PG(X, Y ) = −2JH(X, Y ) ,(11)

H(X,PY) + PH(X, Y ) = 0 ,(12)

H(X, Y ) + H(PX, Y ) = 0 ,(13)

∇P = 0 .(14)

PROOF. As all expressions are tensorial, one only has to verify them for the basis vec-
tors Ei and Fj . The first equation can quickly be verified by (7) and the fact that PEi = Fi .
Similarly one can verify equation (10) using (8). Equation (11) follows from (10) since

G(X,PY ) + PG(X, Y ) = −H(X, JY ) − JH(X, Y )

= −2JH(X, Y ) .

The remaining equations are consequences of (9) and (11). For instance for (12) we have

2
(
H(X,PY) + PH(X, Y )

) = JG(X, Y ) + JPG(X, Y )

+PJG(X,PY ) + PJPG(X, Y )

= JG(X, Y ) − JG(X, Y ) = 0 .

Equation (13) can be proven in a similar way. Finally, we have

(∇XP)Y = H(X, Y ) − 1

2

(
G(X,PJY ) + PG(X, JY )

)

= H(X, Y ) + JH(X, JY ) = 0 .

�

Note that in the previous lemma, the most fundamental equations are respectively (9)
and (11). The first one relates P and G, whereas the second one allows us to express ∇̃P as
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a function of J , P and ∇̃J . It is also elementary to check that P can be expressed in terms of
the usual product stucture Q : Z = (U, V ) �→ Q(Z) = (−U,V ) by

(15) QJ(Z) = 1√
3
(−2PZ + Z) .

Note however that the usual product structure is not compatible with the metric g and does
not behave nicely with respect to the almost complex structure J .

A straightforward, but rather tedious calculation now shows that the Riemann curvature
tensor R̃ on (S3 × S3, g) is given by

R̃(U, V )W = 5

12

(
g(V ,W)U − g(U,W)V

)

+ 1

12

(
g(JV,W)JU − g(JU,W)JV − 2g(JU, V )JW

)

+ 1

3

(
g(PV,W)PU − g(PU,W)PV

+ g(JPV,W)JPU − g(JPU,W)JPV
)
,

and that the tensors ∇̃G and G satisfy

(∇̃G)(X, Y,Z) = 1

3
(g(X,Z)JY − g(X, Y )JZ − g(JY,Z)X) ,(16)

g
(
G(X, Y ),G(Z,W)

) = 1

3
(g(X,Z)g(Y,W) − g(X,W)g(Y,Z)(17)

+ g(JX,Z)g(JW, Y ) − g(JX,W)g(JZ, Y )) .

REMARK 2.3. Note that we expressed here the new metric g in terms of the standard
metric of S3 × S3. This can also be reversed. Indeed given g , J and P , we can define the
usual product structure by (15) and we can check that the usual metric is given by

g(QZ,QZ′) + g(Z,Z′) = 8

3

(〈U,U ′〉 + 〈V, V ′〉) .

Hence up to a constant factor the usual metric is the Q-compatible metric associated with g .

3. Almost complex surfaces in S3 × S3. We start with some preparatory results.
Let us begin by showing some identities that are similar to the equations (5) and (6) in the
preliminaries.

LEMMA 3.1. Let M be an almost complex surface in S3 × S3. If PT M = T M , the
following expressions hold for tangent X, Y and normal ξ .

(∇XP)Y = 0 , APξX = PAξX = AξPX ,

h(X,PY ) = Ph(X, Y ) , H(X, ξ) = ∇⊥
XPξ − P∇⊥

Xξ .

In particular, H(X, Y ) = 0 and H(X, ξ) is normal to M .
If PT M ⊂ T ⊥M , then the second fundamental form h is normal to PT M and H(X, Y )

is a normal vector.
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PROOF. First note that from (11) it follows that

(18) H(X, Y ) = 1

2

(
JG(X,PY ) + JPG(X, Y )

)
.

We first assume that P maps tangent vectors to tangent vectors. In that case P maps
normal vectors into normal vectors as well, as P is symmetric and compatible with the metric.

In Section 1 we noted that G(X, Y ) = 0 for all X, Y ∈ T M . Applying the formula of
Gauss to (18) together with this fact, we see that

0 = H(X, Y )

= ∇̃XPY − P ∇̃XY

= ∇XPY + h(X,PY ) − P∇XY − Ph(X, Y ) .

Taking tangent and normal parts gives the first two equations. The equation APξ = PAξ =
AξP then follows easily from the relation g(h(X, Y ), ξ) = g(AξX, Y ).

Equation (6) says that G(X, ξ) is normal. Therefore, since J and P map normal vectors
into normal vectors, equation (18) gives that H(X, ξ) is normal as well. Using the Gauss and
Weingarten formulas then gives H(X, ξ) = ∇⊥

XPξ −P∇⊥
Xξ . This completes the proof in this

case.
Next we assume that PT M ⊂ T ⊥M . Applying the Gauss and Weingarten formulas to

equation (10) and taking the inproduct with a vector JZ ∈ T M gives

−g(APJY X, JZ) − g(PJh(X, Y ), JZ) = −g(JAPY X, JZ) + g(Ph(X, JY ), JZ)

= g(APJY X, JZ) + g(PJh(X, Y ), JZ) .

Hence g(h(X,Z), PY ) + g(h(X, Y ), PZ) = 0. Since the second fundamental form is sym-
metric, we obtain g(h(X, Y ), PZ) = 0. In a similar way as in the first case one can show
that H(X, Y ) is normal. This completes the proof of the lemma. �

PROPOSITION 3.2. If M is a totally geodesic almost complex surface in S3 × S3, then
either

(1) P maps the tangent space into the normal space and the Gaussian curvature K is
2/3.

(2) P preserves the tangent space (and therefore also the normal space) and the Gauss-
ian curvature is 0.

PROOF. Let p ∈ M be a point of M and v a unit tangent vector to M at p. The Codazzi
equation implies that R̃(v, J v)v is a tangent vector, thus it must be a multiple of Jv. By the
Gauss equation, we have

R(v, J v)v = 2

3

(−Jv + g(PJv, v)Pv − g(Pv, v)PJv
)
.

Moreover, we can choose v such that g(v, Pv) is maximal for all unit vectors in p. This
implies that g(Pv, J v) = g(PJv, v) = 0. The Gauss equation simplifies to

(19) R(v, J v)v = −2

3

(
Jv + g(Pv, v)PJv

)
.
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Now two cases can occur. In the first case, if g(Pv, v) = 0, the Gaussian curvature is 2/3.
Using g(Pv, v) = g(Pv, J v) = 0, PJ = −JP and the fact that v and Jv span TpM we
easily get that PT M ⊂ T ⊥M . In the second case, g(Pv, v) is non-zero. Then it follows from
the Gauss equation (19) that g(Pv, v)PJv is a non-zero multiple of Jv. Thus PJv = ±Jv,
as P preserves the metric. We may assume PJv = −Jv by replacing v by Jv if necessary.
Then, since JP = −PJ , we find that Pv = v and

R(v, J v, v, J v) = 2

3

(
g(Pv, v)2 − 1

) = 0 .

This completes the proof. �

The next theorem is a generalization of the previous proposition. The idea of the proof
is the same as before, but now we apply the Ricci equation and Ricci identity as well.

THEOREM 3.3. Suppose M is an almost complex surface in S3 ×S3. If M has parallel
second fundamental form, then PT M = T M or PT M ⊂ T ⊥M . Moreover,

(1) If PT M = T M , then M is flat and totally geodesic.
(2) If PT M ⊂ T ⊥M , then either M is totally geodesic with constant Gaussian curva-

ture 2/3 or M has constant Gaussian curvature 5/18.

PROOF. Let v ∈ TpM be a unit tangent vector. By our assumption, Codazzi’s equa-
tion says that R̃(v, J v)v is a multiple of Jv. Once again we choose v such that g(Pv, v) is
maximal on the unit tangent space at p. Then g(Pv, J v) = 0 and the Gauss equation becomes

R(v, J v)v = −2

3

(
Jv + g(Pv, v)PJv

) + 2JAh(v,v)v .

We now consider two cases.
CASE 1: g(Pv, v) �= 0. By the Gauss equation PJv has to be tangent. As this vector

is orthogonal to v, we conclude that PJv is a non-zero multiple of Jv and thus g(PJv, J v) =
±1. But then g(Pv, v)PJv = −Jv and

K = −R(v, J v, v, J v) = −2‖h(v, v)‖2 .

Therefore ‖Ah(v,v)v‖2 = ‖h(v, v)‖4 = K2/4. Furthermore, since Pv and PJv are tangent
vectors, one obtains

g
(
R̃(v, J v)h(v, v), Jh(v, v)

) = −1

6
‖h(v, v)‖2 .

Then Ricci’s equation is

g
(
R⊥(v, J v)h(v, v), Jh(v, v)

) = g
(
R̃(v, J v)h(v, v), Jh(v, v)

)

+ g(Ah(v,v)AJh(v,v)v, J v) − g(AJh(v,v)Ah(v,v)v, J v)

= −1

6
‖h(v, v)‖2 − 2‖Ah(v,v)v‖2

= 1

12
K − 1

2
K2 .

On the other hand the Ricci identity gives



10 J. BOLTON, F. DILLEN, B. DIOOS AND L. VRANCKEN

g
(
R⊥(v, J v)h(v, v), Jh(v, v)

) = 2g(h(R(v, J v)v, v), Jh(v, v))

= −2Kg(Jh(v, v), Jh(v, v))

= K2 .

Combining the Ricci equation and Ricci identity gives the quadratic equation

3

2
K2 − 1

12
K = 0 .

Hence K = 0 since K = −2‖h(v, v)‖2 cannot be positive.
CASE 2: g(Pv, v) = 0. We shall proceed in a similar way as in the previous case.

If g(Pv, v) = 0, then P clearly maps tangent vectors into normal ones. The Gauss equation
gives

K = 2

3
− 2‖h(v, v)‖2 .

The Ricci equation gives

g
(
R⊥(v, J v)h(v, v), Jh(v, v)

) = −1

6
‖h(v, v)‖2 − 2‖Ah(v,v)v‖2

+ 2

3

(
g(PJv, h(v, v))2 + g(Pv, h(v, v))2

)

= −1

6
‖h(v, v)‖2 − 2‖h(v, v)‖4

= −1

2
K2 + 3

4
K − 5

18
by Lemma 3.1, and the Ricci identity becomes

g
(
R⊥(v, J v)h(v, v), Jh(v, v)

) = −2K‖h(v, v)‖2 = K2 − 2

3
K .

Thus we have the equation
3

2
K2 − 17

12
K + 5

18
= 0 .

The roots are 2/3 and 5/18. This proves the theorem. �

We note that both cases occuring in Theorem 3.3 will be improved by later results: Case
1 will be improved by Theorem 4.2 and Case 2 by Theorem 3.12.

Next we are going to study almost complex surfaces in S3 × S3 more systematically.
In order to do so we will use isothermal coordinates on the surface. We will use these co-
ordinates amongst other tools to show that an almost complex submanifold M such that
PT M ⊂ T ⊥M locally corresponds to an associated constant mean curvature (CMC) sur-
face in Euclidean 3-space R

3. Furthermore, the metrics on the almost complex surface and
its associated CMC surface are equal up to a factor 2. This is the content of Theorem 3.10
and Corollary 3.11.

In the computations we will use that the product of two imaginary quaternions is

xy = −x · y + x × y ,
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where · is the usual inner product on R
3 and × is the vector product on R

3.
Let φ : M → S3 × S3 : (u, v) �→ (

p(u, v), q(u, v)
)

be an almost complex immersion,
where (u, v) are isothermal coordinates on the surface M . We write φu = (pu, qu) and
φv = (pv, qv). Since the coordinates are isothermal, we may assume that φv = Jφu by
interchanging u and v, if necessary. Furthermore, as p and q have unit length, there are well-
defined local functions α̃, β̃, γ̃ and δ̃ from M to R

3 such that

(20) pu = pα̃ , pv = pβ̃ , qu = qγ̃ , qv = qδ̃ .

Then φv = Jφu gives

(pβ̃, qδ̃) = 1√
3

(
p(2γ̃ − α̃), q(−2α̃ + γ̃ )

)
,

or

(21) γ̃ = 1

2
α̃ +

√
3

2
β̃ , δ̃ = −

√
3

2
α̃ + 1

2
β̃ .

The integrability condition puv = pvu yields

α̃v − β̃u = 2α̃ × β̃ .

The other integrability condition quv = qvu gives γ̃v − δ̃u = 2γ̃ × δ̃, which in terms of α̃

and β̃ becomes

α̃u + β̃v = 2√
3
α̃ × β̃ .

Now we write α = cos θα̃ + sin θβ̃ and β = − sin θα̃ + cos θβ̃, where θ = 2π/3; i.e., we
rotate α̃ and β̃ over 2π/3 radians. The two previous equations become

αv = βu ,(22)

αu + βv = − 4√
3
α × β .(23)

LEMMA 3.4. The pull back of the one-form α du + β dv is a well-defined closed one
form on M .

PROOF. The differential form α du+β dv is the composite of the form p−1dp preceded
by rotation in the tangent spaces by 2π/3, and as such its pullback is globally defined and
hence the lemma holds. �

Assume now that M is simply connected. In that case, we know that any closed 1-form
is automatically exact. Hence there exists a function ε such that εu = α, εv = β and

(24) εuu + εvv = − 4√
3
εu × εv .

This equation is known as the H -surface equation (cf. [13]). Of course, as we started with
isothermal coordinates we must have that ε2

u + ε2
v �= 0.

Note that the converse also holds. Indeed, given a solution of the H -surface equation,
which can be seen as an equation on a surface (see [13, p. 501]), we can define α = εu
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and β = εv . By rotating α and β we get α̃ = cos(2π/3)α−sin(2π/3)β and β̃ = sin(2π/3)α+
cos(2π/3)β. The relations (21) then give γ̃ and δ̃. Finally by solving the linear first order
system of differential equations (20) we get an almost complex surface in S3 × S3.

Note also that changing the almost complex surface by an isometry (p, q) �→
(apc−1, bqc−1), where a, b, c are unit quaternions, implies that

α∗ = cαc−1

β∗ = cβc−1 ,

where we denote the new objects by adding a ∗. Since S3 is the double cover of SO(3) (see
e.g. [5, p. 3]) we can represent every element of SO(3) as conjugation by a unit quaternion,
determined up to a sign. Therefore α and β change by a rotation and after integration ε

changes by an isometry of R3.
Conversely, applying an Euclidean isometry to the surface ε gives cεc−1+d for some unit

quaternion c and an imaginary quaternion d . Deriving this expression with respect to u and v

we get cαc−1 and cβc−1. Performing a rotation over 2π/3 and using (21), we see that α̃, β̃, γ̃

and δ̃ change by conjugation with c. We obtain the value of c and then integrating the system
of differential equations (20) will give solutions, up to the choice of initial conditions. This
choice of initial conditions determines the unit quaternions a and b in the isometry (p, q) �→
(apc−1, bqc−1) of S3 × S3. Finally note that changing the sign of a, b and c does not change
the almost complex surface, implying that the almost complex surface does not depend on the
choice of the sign of c. Therefore, we have shown the following theorem:

THEOREM 3.5. There is a one-to-one correspondence between almost complex sur-
faces in S3 ×S3 and solutions of the general H -system equation. Moreover, two solutions are
congruent in R

3 if and only if the associated solutions in S3 × S3 are congruent.

We now introduce the differential Λ dz2 = g(Pφz, φz) dz2. Before proving our main
results, we show that Λ dz2 is a globally defined holomorphic differential.

LEMMA 3.6. The following Cauchy-Riemann equations hold:

(α · β)u = 1

2
(α · α − β · β)v ,

(α · β)v = −1

2
(α · α − β · β)u .

PROOF. Multiplying equations (22) and (23) with α and β gives

αv · α − βu · α = 0 , βv · α + αu · α = 0 ,

αv · β − βu · β = 0 , βv · β + αu · β = 0 .

The proof immediately follows. �

LEMMA 3.7. The pull back of Λ dz2 is a holomorphic differential which is globally
defined on M .

PROOF. Using φv = Jφu, one gets
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4Λ = g(Pφu − iPφv, φu − iφv)

= 2g(Pφu, φu) − 2ig(Pφu, Jφu) ,

i.e., 2Λ = g(Pφu, φu) − ig(Pφu, Jφu). Recall that

φu =
(

pα̃, q

(
1

2
α̃ +

√
3

2
β̃

))

Jφu = φv =
(

pβ̃, q

(
−

√
3

2
α̃ + 1

2
β̃

))
.

A simple calculation using the definition of the metric g and P then gives the real and imagi-
nary parts of Λ:

Re Λ = 1

4
(α · α − β · β) +

√
3

2
α · β ,

Im Λ =
√

3

4
(α · α − β · β) − 1

2
α · β .

(25)

From Lemma 3.6 it follows that (Re Λ)u = (Im Λ)v and (Re Λ)v = −(Im Λ)u. Hence the
Cauchy-Riemann equations for Λ = g(Pφz, φz) hold, so Λ dz2 is indeed a holomorphic
differential.

Changing isothermal coordinates, we deduce that it is independent of the choice of
isothermal coordinates and therefore defines a global holomorphic differential on M . Note
that M is not required to be simply connected. �

LEMMA 3.8. Let M be an almost complex surface in S3 × S3. Then the following are
equivalent:

(1) PT M ⊂ T ⊥M;
(2) Λ dz2 = 0; and
(3) α · α = β · β and α · β = 0.

PROOF. The almost product structure P maps tangent vectors into normal vectors if and
only if g(Pφu, φu) and g(Pφu, φv) are zero. But 2Λ = g(Pφu, φu)− ig(Pφu, Jφu), thus the
first and second assertion are equivalent. Furthermore, g(Pφu, φu) = 0 and g(Pφu, φv) = 0
if and only if the equations (25) are zero if and only if α · α = β · β and α · β = 0. Thus all
assertions are equivalent. �

The following corollary follows immediately from the previous lemma and the fact that
a holomorphic differential on a 2-sphere vanishes.

COROLLARY 3.9. If M is an almost complex 2-sphere in S3×S3, then PT M ⊂ T ⊥M .

THEOREM 3.10. The coordinates (u, v) are isothermal on ε iff Λ dz2 vanishes. In this
case ε corresponds to a surface in R

3 with constant mean curvature H = −2/
√

3.
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PROOF. Since εu = α and εv = β, the first assertion follows from Lemma 3.8. From
equation (24) we know that

2Hεu × εv = εuu + εvv = − 4√
3
εu × εv .

This proves the theorem. �

COROLLARY 3.11. Let g be the induced metric on an almost complex surface M

in S3 × S3 and g ′ the metric on the associated surface in R
3. If Λ dz2 = 0, then g = 2g ′.

PROOF. If g is the induced metric on M , then g(φu, φu) = α · α + β · β, which is equal
to 2α · α by our assumption. Recall that εu = α, εv = β and so the corollary follows. �

Now we are able to prove the remaining main results.

THEOREM 3.12. If M is an almost complex surface of S3 × S3 with parallel second
fundamental form, then M is totally geodesic.

PROOF. Suppose M is not totally geodesic. Then the associated CMC surface ε has
Gaussian curvature 5

9 by Theorem 3.3 and Corollary 3.11. But this is not possible since a
surface in R

3 with constant curvature and constant mean curvature is either a plane, a circular
cylinder or a sphere. The first two examples have curvature 0, whereas the last one is totally
umbilical and therefore, by Theorem 3.10, has curvature H 2 = 4

3 . The corresponding almost
complex surface then has constant curvature 2

3 . �

THEOREM 3.13. An almost complex topological 2-sphere S2 in the nearly Kähler S3×
S3 is totally geodesic.

PROOF. By Lemma 3.8 the differential Λ dz2 vanishes, so we have a CMC 2-sphere
in R

3. This is a round sphere (by a theorem of H. Hopf), hence it is totally umbilical. There-
fore the Gauss curvature of the CMC 2-sphere is H 2 = 4/3. Hence the Gauss curvature of
the almost complex sphere in S3 × S3 is 2/3. The Gauss equation then says

2‖h(v, v)‖2 = 2

3
− K = 0 ,

so the topological 2-sphere is totally geodesic. �

REMARK 3.14. From this theorem it follows that a compact almost complex sur-
face M with Gaussian curvature K ≥ 0 has constant curvature 0 or 2

3 . Indeed, if the curvature
on M is not identically zero then by the Gauss-Bonnet theorem M is a 2-sphere. Then by the
previous theorem M is totally geodesic and has curvature 2

3 .

4. Examples. In this last section we discuss two examples of totally geodesic almost
complex surfaces in S3 × S3.

EXAMPLE 4.1. Consider the immersion

f : R2 → S3 × S3 : (s, t) �→ (cos s + i sin s, cos t + i sin t) .

Then we have
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fs = (− sin s + i cos s, 0) ,

ft = (0,− sin t + i cos t) ,

Jfs = 1√
3

(
sin s − i cos s, 2(sin t − i cos t)

)
,

Jft = 1√
3

(−2(sin s − i cos s),− sin t + i cos t
)
.

Hence the immersion f is almost complex. Furthermore, Pfs = ft , so the almost prod-
uct structure maps tangent vector to tangent vectors. Also, g(fs, fs ) = g(ft , ft ) = 4

3 and

g(fs , ft ) = − 2
3 are constant, so f is flat. A calculation gives R̃(fs, ft , ft , fs) = 0, so that

by the Gauss equation and equation (5) this immersion is totally geodesic as well.

We now show that the above example is the only almost complex surface for which the
almost product structure P maps tangent vectors to tangent vectors.

THEOREM 4.2. Let M be an almost complex surface for which P preserves the tan-
gent space. Then M is locally congruent with the immersion

f : R2 → S3 × S3 : (s, t) �→ (cos s + i sin s, cos t + i sin t) .

PROOF. The endomorphism P maps tangent vectors to tangent vectors, is symmetric
and compatible with the metric and anti-commutes with J . From this, it follows that P at
every point of M has two different eigenvalues, so we can construct a global orthonormal
frame e1, e2 such that

Pe1 = e1

Pe2 = −e2 .

However it now follows that

0 = (∇XP)e1 = ∇Xe1 − P∇Xe1 = 2∇Xe1 .

In the last equation we used that g(∇Xe1, e1) = 0 and Pe2 = −e2. Hence ∇ei ej = 0, and we
know that the immersion is flat and we can choose flat coordinates u and v such that e1 = ∂u

and e2 = ∂v . As these coordinates are flat we can use the previous formulas.
As Pφu = φu, we must have that

α̃ = √
3β̃ .

Hence, α = 0 and β = −2β̃. As e1 and e2 are orthonormal we also have that β has constant
unit length.

We now fix the initial condition by a rotation in R
3 (or equivalently a conjugation by a

unit quaternion c in S3 × S3) in such a way that εv(0, 0) = β(0, 0) = (1, 0, 0). Note that α =
εu = 0. We then see that the differential equation for the H -system implies that β is constant.
We also choose initial conditions such that p(0, 0) = (1, 0, 0, 0) and q(0, 0) = (1, 0, 0, 0).

It follows that
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α̃ =
(√

3

2
, 0, 0

)
, β̃ =

(
−1

2
, 0, 0

)
,

γ̃ = (0, 0, 0) , δ̃ = (−1, 0, 0) .

So we get that qu = 0 and qv = −qi, implying that q = (cos v,− sin v, 0, 0). Similarly,

pu = p
√

3i
2 and pv = − i

2
p has as solution

p(u, v) =
(

cos

(√
3

2
u − 1

2
v

)
, sin

(√
3

2
u − 1

2
v

)
, 0, 0

)
.

A change of variable now completes the proof of the theorem. �

EXAMPLE 4.3. Define

f : S2 ⊂ ImH → S3 × S3 : x �→ 1

2
(1 − √

3x, 1 + √
3x) .

In order to do an explicit calculation we choose

x(u, v) = (sin u cos v, sin u sin v, cos u)

as a parametrization for S2. Also note that, if we write f (u, v) = (
p(u, v), q(u, v)

)
, we

have p(u, v)(q(u, v))−1 = −q(u, v) and q(u, v)(p(u, v))−1 = −p(u, v). A calculation then
gives

fu =
√

3

2
(−xu, xu) , fv =

√
3

2
(−xv, xv) ,

Jfu =
√

3

2
(−xxu, xxu) , Jfv =

√
3

2
(−xxv, xxv) .

From the parametrization of x it follows that xxu = sin u xv and xxv = − sin u xu. Thus
Jfu = sin u fv and M = f (S2) is an almost complex surface. Furthermore using the very
definition of P and the metric g we obtain g(Pfu, fu) = 0 and g(Pfu, fv) = 0, thus P maps
tangents vector into normal vectors. Therefore it follows from the expression of the curvature
tensor R̃ that the sectional curvature of the plane spanned by fu and fv is 2

3 . From the main
theorem it follows that M is totally geodesic, so M has constant curvature 2

3 .

We now put our results together to conclude with the following theorem.

THEOREM 4.4. Any almost complex surface with parallel second fundamental form is
locally congruent to one of the above two examples.

PROOF. If P maps tangent vectors to tangent vectors, we obtain the first example by
Theorem 4.2. So we may assume that P maps tangent vectors into normal vectors and that M

has constant curvature 2
3 by Theorems 3.3 and 3.12. Furthermore, by Theorem 3.10 and Corol-

lary 3.11, we can locally associate to M a surface in R
3 with constant Gaussian curvature 4

3
and constant mean curvature H = − 2√

3
. Hence these surfaces are totally umbilical and

therefore mutually congruent. The correspondence theorem (Theorem 3.5) now completes
the proof. �
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