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Abstract. In this paper, we study regularized periods of cusp forms and Eisenstein
series on G L(2) introduced by Masao Tsuzuki.

Introduction. In the theory of automorphic forms and automorphic representations, it
is an important problem to study the periods of automorphic forms, because central values
of automorphic L-functions appear in explicit formulas of the periods of automorphic forms.
So far, many works on the periods of automorphic forms have been done. For a remarkable
example, we should mention the paper [10], in which Waldspurger studied the central values
of several kinds of automorphic L-functions in connection with the toral period of cusp forms.

Let F be an algebraic number field and A its adele ring. In [9], Tsuzuki introduced a
notion of regularized periods of functions on GL(2, A) in the following way. For C > 0, let
B(C) be the space of all holomorphic functions 8 on {z € C; | Re(z)| < C} satisfying that

(1) the equality B(z) = B(—z) holds,

(2) the estimate

1B +it)| <A +t)~", o €la,bl
holds for any [a, b] C (—C, C) and any [ > 0.
Let B be the space of all entire functions 8 on C such that the restriction of 8 to {z €
C;|Re(z)] < C} is contained in B(C) forany C > 0. For 8 € B,t > 0O and A € C,

we consider y
R 1 o+ioo ,B(Z)
Bu(t) == —
2mi o—ico 2+ A
For a function ¢ : GL(2, F)\GL(2,A) — C, 8 € B, » € C and a unitary character n of

A /F*, we consider

~ A _ t 0 1 X
P = [ o B+ By e ((0 1) (0 x{’))n(x)nﬁn(xn,ﬁn)d ‘.

where x;, = (x;,v)ves, € A is the adele which will be defined in §4, x;) f, is the projection
of xy, to the finite adele ring A, of F and 5y is the restriction of 7 to Alifn. For the function
@, we assume the following:

t*dz, (o > —Re())).

e For any B € B there exists a constant C € R such that if Re(A) > C the integral
Pgﬁ , () converges.
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e Forany 8 € B, the function {z € C; Re(z) > C} 2 A — Pgﬁ)\(go) has a meromorphic
continuation to a neighborhood of A = 0.

e The constant term CTAZQPI;{ , () of the Laurent expansion of Pg’ ,(@)ath =0is
proportional to the Dirac delta distribution supported at O as a linear functional of 5.

Then, the proportionality constant Pr'ég () is called the regularized n-period of ¢, i.e.,

CT;—0P}, (¢) = Pl (#)B(0)

forall 8 € B.

When F is totally real, Tsuzuki obtained the following results in [9].

(1) The regularized periods of cusp forms which are associated with cuspidal automor-
phic representations of G L(2) with square free conductor are explicitly described
in terms of central L-values.

(2) Theregularized periods of Eisenstein series constructed by induced representations
from unramified characters of A*/F* R~ are described in terms of the Hecke L-
functions.

In this paper, we generalize the above results (1) and (2). First we explain our result on cusp
forms. Let (7, V) be a Kso-spherical cuspidal automorphic representation of GL(2, A) with
trivial central character. We denote the conductor of 7 by f,. Let n be an ideal of the integer
ring o of F which is divided by f;. Tsuzuki explicitly computed the regularized periods of
cusp forms in Vf <Ko i1 the case where F is totally real, assuming n is square free (cf. [9,
Lemma 7.4]). Here Ko(n) is the congruence subgroup defined at the end of this section.

In this paper, we explicitly compute the regularized periods of cusp forms in the invari-
ant subspace Vf <Ko \hen the field F is an arbitrary number field and the ideal n is not
necessarily square free.

Let X, X', X ¢ and X, be the set of all places of F, the set of all real places of F', the
set of all complex places of F' and the set of all finite places of F, respectively. For an ideal a
of o we denote by S(a) the set of v € Xy, such that v divides a and denote by S (a) the set
of v € S(a) such that the order ord, (a) of a equals k for any k € N. Let

{(pn,p s IO € HMap(Sk(nf;I)a {01 cet k})}

k=1

be an orthogonal basis of V;( KoM which will be constructed in §4, where n is the maximal

nonnegative integer k such that Sy (nf; ') # @ and Map(Si (nf; '), {0, ..., k}) is the set of all
mappings from Sg(nf, ') to {0, ..., k}. We fix a family {7,},cx, consisting of unitarizable
irreducible admissible representations such that 7 = ), 5, 7y Let 7 be a unitary character
of A*/F* R satisfying the following conditions:
) {v € XRUXc =1, =|- | forsomer, € iR,
fp is relatively prime to n,

where f, is the conductor of . We denote the Gauss sum associated with 1 by G(5), which
will be defined in §1. Then, we prove the following theorem.
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MAIN THEOREM A. Letn be a character of A* /| F* R~ satisfying the condition (x).
Then, for any p = (p1, ..., pn) € [li—; Map(Sk (nf;l), {0, ..., k}), there exist explicitly
computable polynomials QZ:(U) ,(Mv, X) € C[X] foranyv € Xgn—S(fy) andk € {0, ..., n}
such that

n
Pl (¢r.) = Q(n){ IT I 25w 1)}L(1/2, T®n).
k=lvesinfz"
Here L(s, m @ n) denotes the standard L-function of 1 ® n. Indeed, Q;i"v (v, 1) is given as
the following.

e Ifc(my) =0and (a, o~ YY) is the Satake parameter of 1y, then
0 (. 1)

1 (if k=0),

a+al )
= nv(wv)—ﬁ (if k=1,
Gy T+ qu

a7 (@) ey P (@y) — D@ gy nu(@y) = 1) (f k>2).

1/2 —1/2

e Ifc(my) = 1 and m, is isomorphic to o (xy| - v/, vl - lv '), then

o™ 1y = ]! (f k=0),
v nlh = _ _ — .

. o (@) (e (@) — ) (@)™ G k> 1).
o Ifc(my) = 2, then O, (v, 1) = nu(@y)* for any k € No.

Next we explain our result on Eisenstein series. Let x be a character of A*/F* R-.
Let K be the standard maximal compact subgroup of GL(2, A). For v € C, we denote by
I(x] - Iz/z) the space of all smooth functions f : GL(2, A) — C which are K-finite and

satisfy the condition

(5 ) o) =iy o

forall (§4) e (4 A)and g € GL(2, A). For f® € I(x| - |}{*). E(f. g) denotes the
Eisenstein series for f). Let n be an ideal of o divided by f2. Tsuzuki explicitly computed

regularized periods of E(f, ¢) for f™ e I(x]- Iz/z)KOOKO(") in the case where F is totally

real, x is unramified and n is square free (cf. [9, Lemma 7.5]).

In this paper we explicitly compute regularized periods of E(f®, g) for f) e
I(x] - |Z/2)K°°K0(") when the field F' is an arbitrary number field, x is an arbitrary charac-
ter and the ideal n is not necessarily square free. Let

{f)g,vx)n . p e [[Map(Sk(nf,®). (0. ... k})}

k=1
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be the subset of (x| - |VA/ Z)K“KO(“) constructed in §9, which is an orthonormal basis of

I(x| - |Z/2)K°°K0(") if v € iR. Here n is the maximal nonnegative integer k such that
Sk(nfzz) # . We write E, ,(v, g) for E(f)%, g). Let N(j) and Df denote the abso-
lute norm of f, and that of the global different of F/Q, respectively. Then we prove the
following theorem (see Theorem 37 in detail).

MAIN THEOREM B. Let n be a character of A* | F* R~ satisfying the condition (x).
We assume v € iR if S(fy) = 0. Then, for any p = (p1, ..., pn) € [ Map(Sk(anZ),
{0, ..., k}), there exists an explicitly computable meromorphic function B)'g,p(s, vyonC x C
such that

Pl (Ey.p(v, =) = @m)*Ze G DN, ) />~

L((1+v)/2, x)L((1 = v)/2, x"'n)
L+, x?) '

We explain the structure of this paper. In §1, we introduce notations for fundamental ob-
jects and review notions of spherical functions and local new forms on GL(2, F,) forv € X',
where F, denotes the completion of F' at v. In §2, for v € Xg,, we construct a basis of
I (x»)®o®v) which is orthogonal for any GL(2, F,)-invariant hermitian inner product, where
1 (xy) is a unitarizable spherical principal series representation of GL(2, F;,) with trivial cen-
tral character and p, denotes the maximal i((iez)il of the integer ring of Fy. In §3, for v € X4y,
c(my +n)

we construct an orthogonal basis of V;EO(p” , where (7, Vz,) is an infinite dimensional

unitarizable irreducible nonspherical representation of GL(2, F,) with trivial central charac-
ter and c(7r,) denotes the exponent of the conductor of m,. In §4, we construct a basis of
V;( Ko™ ang explicitly compute modified global zeta integrals of cusp forms in V;( ooKo(n),
Moreover we construct polynomials QZfU (v, X). In §5, we recall regularized periods defined
by Tsuzuki and prove Main Theorem A.

From §6 to §10, we consider regularized periods of Eisenstein series. In §6, we review
notions of induced representations of GL(2, A) and Eisenstein series on GL(2, A). In §7

x Bl ,(1/2,v)

and 8, we construct an orthonormal basis of I (x| - |5/ 2)K0(p%f(m+n) if v € iR, where
1(xy]| - |5/ 2) denotes an induced representation from a ramified character x| - 5/ 2 of F* and
f (xv) denotes the exponent of the conductor of yx,. In §9, we construct an orthonormal basis
of I(x] - |Z/2)K°°K0(“) if v € i R and compute constant terms E;yp(v, g) of Ey ,(v, g) and
modified global zeta integrals of E, ,(v, g) — E; o (v, 9). In §10, we prove Main Theorem B
and compute regularized periods of the residue ¢y, —1(g) and the constant term ey , 0(g) at
v=1of E, ,(v, g).

NOTATION. Let N be the set of natural numbers not including the number 0 and put
Ny := N U {0}. For any sets A and B, we denote by Map(A, B) the set of all mappings from
Ato B.

For any set X and two nonnegative functions f : X — R>pand g : X — R>(, we write
f(x) < g(x) if there exists C > 0 such that f(x) < Cg(x), for all x € X. For any set X
and its subset A, we denote the characteristic function of A by ch4. For any condition P, the
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Kronecker symbol §(P) is defined by

1 (@Gf P istrue),

8(P) := {0 (if P is false).

Let F be an algebraic number field of degree dr and oF its ring of integers. Let X'F,
Yoo, 2R, X and X, be the set of places of F, the set of infinite places of F, the set of
real places of F, the set of complex places of F and the set of finite places of F, respectively.
The completion of F at a place v € X is denoted by F,. If v is a finite place of F, the
field F, is a non-archimedean local field, whose ring of integers is denoted by o0,. We fix a
uniformizer @, of 0, once and for all, and denote by g, the cardinality of the residue field
0y/py, Where p, = @0, is the maximal ideal of 0,. For any v € X, we write | - |, for the
normalized valuation of F;,. Let A and Agp be the adele ring of F and the finite adele ring of
F, respectively.

For an ideal a of of, let S(a) denote the set of all v € X5, such that ao, C p,. For all
k € N, let S¢(a) denote the set of all v € S(a) such that ao, = pﬁ. Then, S(a) = ]_[Z=1 Sk (a),
where n is the maximal nonnegative integer m such that Sy, (a) # . We denote the absolute
norm of a by N(a).

For any algebraic subgroup M defined over F of G = GL(2) and v € X, groups
of F,-rational points, F-rational points and A-rational points are denoted by M,, M and
M 4, respectively. We denote the unit element of G by e. Let B be the Borel subgroup of G
consisting of all upper triangular matrices and Z the center of G. For v € X'r, we put

O2,R) (if ve Xp),
K, =1U2,0) Gf ve X¢),
GL(2,0,) (if ve Xqp).

Then, K := [],c5, Ky is a maximal compact subgroup of G 4. We set Koo := [[,c 5 Ky
and Ko(p?) := {(¢%) € Ky;c =0 (modp?)} for n € No. For an ideal a of of, we put
Ko(a) := Huezﬁn Ko(aoy).

1. Preliminaries.

1.1. Local and global differents. For v € X4, let pﬁ” be the local different of F,,.
Let Dr be the discriminant of F/Q, which is defined as the absolute norm of the global
different of F/Q. Then, Dr equals [],cx, g

Let A g be the adele ring of Q and v/ the additive character of A ¢/ Q with archimedean
component R > x > exp(2wix). Then, ¥f := ¥ otrg, g is a nontrivial additive character of
A/F and decomposed into a product of local additive characters ¥ r, (v € Xr). Moreover,
pv_d” equals the maximal fractional ideal of 0, contained in Keryrr, for any v € Xg,.

1.2. Haar measures and Gauss sums. For v € Xp, let dx, be the self-dual Haar
measure of F, with respect to ¥ r,. Then, the equalities vol([0, 1]) = 1, vol({o + it; 0,1 €
[0, 1]}) = 2 and vol(o,) = qv_d”/2 hold for v € Xg, v € ¥¢ and v € Xgy, respectively.
We denote the Haar measure c,dx,/|xy|y of F by d*x,, where ¢, = 1 for v € Yo and
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cy = (1 — qv_l)_1 for v € Y§,. We denote the Haar measure Huezp d*x, of A* by d*x.
We fix Haar measures d g, on G, and dk, on K, such that vol(K,, d¢,) = vol(K,, dk,) = 1
for v € X'r, respectively. We denote the Haar measure [ [, 5., dky of K by dk.

Let| |4 = ]_[vezF | - |, be the idele norm of A* and A' = {x € AX; |x|4 = 1} the
norm one subgroup of A*. Fory € R, Y denotes the idele whose v-component satisfies

_ PV we Zx),
v 1 (v e Zhn).

Then, A is isomorphic to R~ x A! by the map A* 3 x — (|x|4, [x|4a"'x) € Rog x AL

Set G}4 ={g € Gy;|detgl]g =1}and A = {(%S);y > 0}. Then, we have G 4 :%G}L‘.

For v € X, and a quasi character y, of F,, the number f()x,) stands for the minimal
nonnegative integer f such that the restriction of y, to 1 + p{ equals identically one. The

ideal p{ () i called the conductor of Xv- We define the Gauss sum associated with x, by

G(xp) := /X Xu(uwv_du_f(xv))‘va (uwv—du—f()(u))dxu .
0

v

Then, G(xy) equals (o, d")q,,_ /2 for any unramified quasi character y, of F,*. For any

quasi character x = [[,cx, xv of A*/F*, we define the conductor of x by the ideal f, of

oF such that §,0, = pf(X”) for all v € Xq,. We write xq, for ]_[Uezﬂn Xv- The Gauss sum

associated with x is defined by

G0 = [] 90w

VE Xfin

For v € X'r, we denote the trivial character of F* by 1,, and the trivial character of A* by
1. Throughout this paper, whenever we consider a quasi character x of A*/F>, we assume
that x (y) = 1 forall y € R-o. Such a quasi character is a character.

1.3. Induced representations. For v € Xr and any quasi character x, of F,, I (xv)
denotes the space of all smooth functions f : G, — C which are K,-finite and satisfy the
condition

(5 4)9) = wermasals

forall (42) € By and g € G,. Then, I(xy) is a (gv, Ky)-module if v € Xoo, where g, is the
complexification of the Lie algebra of G,.

1.4. Spherical functions on GL(2, R) and GL(2,C). Forv € Y, let m, be a K-
spherical unitarizable irreducible admissible (g, , K;)-module with trivial central character.
Then, 7, is isomorphic to /(| - |;) for some v € C. The Whittaker model of , with respect to
Y, is denoted by Vi, . Let f(f » be the spherical vector in /(| - ;) normalized so that f07f (@)
equals one. For v € X'g (resp. v € X¢), we denote ¢g , the spherical Whittaker function in



REGULARIZED PERIODS OF AUTOMORPHIC FORMS ON GL(2) 379

Vi, which corresponds to I'g (1 +2v) f3 (resp. (2) ™' I'c (1 +2v) f3) by the isomorphism

I(-1) > f > W) 2=/F f <wo <(1) T) 9) Vr,(—=x)dx € Vg, ,

where wo = (9 '), Tr(s) = 77/2I'(s/2) and I'c(s) = 2m) " I'(s).
We define the local zeta integral by

0
Z(s,nv,d)):/ d)((t) 1>nv(t>|tli‘”2dxt
F

for any quasi character 1, of F, and ¢ € V. The defining integral converges absolutely for
Re(s) > 0 and Z(s, 1y, ¢) has a meromorphic continuation to C as a function in s. If 7, is
of the form | - |2 for some #, € C, then

I'r(s+v+1)IR(s —v+1) ((f ve Xg)
I'cs+v+t)lcs—v+1) (Gf ve Xce)

holds (cf. [3, Proposition 3.4.6] and [11, Proposition (2.3.14)]).

1.5. Local new forms. For v € Xg,, let 7, be an infinite dimensional irreducible
admissible representation of G, with trivial central character. The Whittaker model of 7, with
respect to ¥r, is denoted by Vi, . The local zeta integral Z(s, n,, ¢) for any quasi character
ny of F, and ¢ € Vy, is defined in the same way as the archimedean case.

We consider a compact open subgroup Ko (p})) of K, forn € Ng. Then, {Ko(p});n €

. . . . . Ko(p?) .
Ny} gives a decreasing filtration of G,. The invariant subspace ano(pv) is nonzero for some

n. We put ¢(1ry) := min{n € Ny; V,EO('JI"I) # 0}. By the theory of local new forms for GL(2),
we have the following proposition (cf. [6, p. 3], [7], and [8, Theorem 11.13]).

Z(s, 77vs¢0,v) =L(s,my Q@) = {

c(my)
PROPOSITION 1. The dimension of VgO(p” ) equals one. For anyn € Ng, we have
Ko™ _ (T @t 0) Ko™
Vol =P o )R

k=0
: - Ko(ps™)
There exists a unique element ¢g, € Vy, " such that
Z(s, v, $o.0) = vol(0)5, d* )y (@)~ g TVPL(s, w, @ m)
Sfor any unramified quasi character n, of F*.

REMARK 2. Infact, ¢, is given by the following:

o If ¢(my) = 0, then we have

dy+1 m—+dy,+1
ZZJ_m 0 B am+ v —« v
¢0,v v =4q, (m+dy)/2 71 2 8(m > —d,)
0o 1 o] — o

for any m € Z, where (1, «rp) is the Satake parameter of .
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e If c¢(my) = 1, then =, is isomorphic to the special representation

o (Xl - 3/2, Xol - |;1/2) for some unramified character x, of F,* satisfying Xf =1,,
and we have

t 0
$0.0 (O 1) = xo(@* Dl t]ych, o (1)

forany ¢ € F*.

o If ¢(;ry) > 2, then we have

t 0
¢0,U (0 1) = Chwu—duaﬁ (t)

forany ¢t € F*.

In addition, we assume that 7, is unitarizable. Then, the G,-invariant hermitian inner
product on the Whittaker model Vy, is given by

_ t 0 t 0\ «
i) = [ w (6 D)w(6 e

for any Wy, W € Vg, (cf. [2, Theorem 12]). By a direct computation, we have the following.

LEMMA 3. We have

(b0,0160,v)
g2 L= g, ol (if c(ry) = 0)
— — _ _ v) — )
_ ) a0 e =g o)1~ g @l
1 =gy (if c(my) = 1),
—dy/2 .
g (if c(my) > 2).

2. A basis of the Ko(p})-invariant subspace in a spherical representation. For
v € Xfp, let m, be an infinite dimensional unitarizable irreducible spherical representation
of G, with trivial central character. Then, 7, is isomorphic to 7(x,) for some unramified
quasi character x, of F,*. We denote by fojf » the spherical vector in 7 (x,) normalized so that
o (e) equals one.

Let H(Gy, K,) be the vector space of all K,-biinvariant functions f : G, — C with
compact support. The space H(G,, K,) is called the spherical Hecke algebra of G,. Let
M (2, 0,) be the set of all 2 x 2 matrices with coefficients in 0,. Set

kN .
T () = higem.0,); (detg)o,=pk)

k
for any k € No. We denote (E(;” Z;){) by éy(k, ) for any k,! € Z and set

R(py) :=chk,s,(1,HK, = chs, (1, 1)K, -

Then, T (p,), R(py) and R(pv)_1 generate H(G,, K,) as an algebra. For simplicity we write
fo.v for fis in the proofs in this section.



REGULARIZED PERIODS OF AUTOMORPHIC FORMS ON GL(2) 381

LEMMA 4. For every k € Ny, there exists by, (k) € R such that nv(T(pﬁ))féf; =
b, () 3.

PROOF. We prove this assertion by induction on k. For simplicity, we write by for
by, (k). The assertion holds for k = 0 because we can take by = 1. By the theory of the
spherical Hecke algebra, we have m,(T (py)) fo.n = q,}/z(oq + a2) fo.v, where (a1, a2) =
(xv (@), Xov (wy)™ 1) is the Satake parameter of m,. Since m, is unitarizable, o; + op must
be real. Therefore the assertion holds for k = 1 because we can take b| = q,}/ 2(051 + ap).
Next, suppose k > 0 and that there exists b; for every j € {0, ...,k + 1}. By the theory of
the spherical Hecke algebra, the equality T (p,)T (p5*1) = T (p5*2) 4+ gy R(py) T (p¥) holds

(cf. [1, Proposition 4.6.4]). By (T (X)) fo.0 = bx fo,u and 7, (T (05*1) fo.0 = brt1 fo,vs
we have

(TP fo.0 = 70 (T ()70 (T X)) for — quREDT BF) fo.0
1
=qy (1 + 2)bi+1 fo.v — quetioabr fo.v
1
= (q3 (a1 + a2)br+1 — qvbi) fo.v -

Thus we can take by4> = qi/z(m + a2)br+1 — qubi. d

REMARK 5. By solving the recurrence relation of by, we obtain

k+1 k+1
(04 —
k/21 2

bk = ql)/ _—
o] — o3

forany k € Ny.

LEMMA 6. Foreveryk € Ny, there exists az,(k) € R such that

7y (chk, s,k DK, ) S = @, (k) fo -

PROOF. We prove this assertion by induction on k. For simplicity, we write ay for
ax, (k). The assertion holds for k = 0 because we can take ap = 1. Next, suppose k > 1. By
definition, we have

Ky _ _
T(py) =chygem2.0,): (detg)o,=pk) = Chu,k:o Ky8y (k—r,r) Ky
Lk/2]

=y g s, ek, T D Bk, (rrK, -
r=0

Since the central character of 7, is trivial and 12 equals one,

Lk/2]
bifoo =7 (T () foo = Y 70 (chK,s,k—r.K,) fo.v
r=0
Lk/2]
= (@) 7y (chi,s,6-2-.0K,) fo.v
r=0
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Lk/2]
=y (chk,s,k.0K, ) fow + D ak—ar fo -

r=1
Thus we have a; = by — ZrU‘:/fJ aix—o2 € R. O

REMARK 7. By solving the recurrence relation of aj, we obtain

L (k=0,1),
T kb k=2).

For any G-invariant hermitian inner product (-|-), on I (xy), we put || fllv = ~/(f1f)v
forany f € I(xy).

LEMMA 8. Foreveryk € No, there exists Ay, (k) € R such that

<ﬂu(5u(—k, 0) foy

féf:;) = A, O£ 117
v

for any G-invariant hermitian inner product (-|-)y on I (xy). Here {Az, (k)}ren, is indepen-
dent of the choice of a G,-invariant hermitian inner product.

PROOF. For simplicity, we write Ay for Az, (k). Let (:|-) be a G,-invariant hermitian
inner product on  (x,). We have
fO,v) = <f0,v
for any k1, kp € K,. Hence, we have
fO,v)
. 1

~ vol (Ky8y (k, 0)Ky) Jk,s,k.0)K, <
1

- ’ 70(9) foud )
vol (K8, (k, 0)Ky) <f0”‘ /Kvsuuc,omu v(9) fo.dyg

Ty (ChKvsu(k,O)KU) fO,v) .
[2773

= Vol (K3, (k, O)Ky)

<7Tv (6y(—k, 0))f0,v

7y (k18y (k, O)kZ)fO,v)

(”v (6y(—k, 0))f0,v

fO,v

”v(g)fo,v> dg

1
~ Vol (Kyéy(k, 0K,) <f07v

Therefore we can take

Ak

Here, we can explicitly compute vol (K, 8, (k, 0)K,) by the following lemma.

LEMMA 9. Fork € Ngy, we have

(k =0),

1 (Kydy(k, 0OK,) =
VLI OO =0 L gkt ez 1),
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PROOF. This assertion is obvious for k = 0. For k > 1, by the Iwasawa decomposition,
we have
k—1

Kvsv(k,O)szu{ 1] <w5 f) }

be(oy/p)*

L1 (5 el S
Thus, we have
k—1
vol (Ky 8y (k. 0)K,) = { Y v Day " +qk + 1}vol(KU>.
r=1
Since vol(K,) equals one, we obtain the assertion. O
PROPOSITION 10. Forn € N, there exists a unique finite set {ffffj, e fvY of

I(XU)KO("g) satisfying the following conditions (1) and (2):

(1) There exists a finite sequence {cy,(k, j)}1<k<n,0<j<k—1 of real numbers such
that

S0 =1 Bu(=k, O [ = " en, (k, ) [T forallk €{1,...,n}.

(2) For any Gy-invariant hermitian inner product (-|-), on I (xy), the set
{fO S ., [y} is an orthogonal basis of 1 (X yKo(py),
Moreover, there exists a unique family {tz,(k, j)}o<k<n,0<j<k of real numbers such that

SR=NVUE =

<ﬂu(5u(—k, 0 fo

ﬁ) = Tn, (k, J.)||f(ff)||%
v
forallk, j €{0, ..., n}and for any G,-invariant hermitian inner product (-|-), on I (xy).

PROOF. For simplicity, we write ¢k j and 1 ; for ¢y, (k, j) and 1, (k, j), respectively.
By Proposition 1, the finite set

k-1
{fo.u} U {fk,v = 7y (8 (—k, 0)) fo,u0 — ch,jfj,v ; kel n}}

j=0

=A==V =

induction on n. The assertion holds for n = 1 since we can take

xo(@y) + x, (@)
172 ~12
CIU/ + v /
700 =1, T1,0 = A1,0, and 71,1 = 1 — c1,071,0, respectively (cf. [9, Lemma 6]).
Suppose that n > 2 and that both {cg, j}1<k<n—1,0<j<k—1 and {zx, j}o<k<n—1,0<j<k have
been determined. Let (-|-) be a G -invariant hermitian inner product on / (). By assumption

€ R,

Ccl10=A1 =
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and a direct computation, we obtain ||fk,v||2 = tk,k||f0,,,||2 forall k € {0,...,n — 1}. Thus
we have 7y x > Oforallk € {0,...,n — 1}.

Now we will show the existence of {c,, j}o<j<n—1. We can take 1,0 = A, obviously.
Assume k € {1, ..., n — 1}. If there exists {7, j}o<j<k—1, we have

<7TU(8U(_n7 0) fo,v

fk,v)

= <7rv(3v(—n, 0)) fo.v

k—1

(80 (—k, 0) fo — Y cx. jfj,v)

j=0

k—1
fo,v) =Y erj (nv(av<—n, 0)) fo.v
j=0

= <nv(8v(—(n —k),0) fov

fj,v)

k—1
2
= (An_k - ch,jrn,,->||fo,v|| :
j=0
Hence we can take
k—1
Tnk = Ap—k — chyjtn,j €R.
j=0
Therefore, we can construct 7, x forall k € {0, ..., n — 1} inductively.
Next, assume k € {0, ..., n — 1} and we put
Tn,k
Cnk = " e R.
Tk k

Then, we have

n—1
fk,v) = eni(fiwl fiw)

j=0

(fnolfiw) = (ﬂu (8v(=n,0)) fo.u

= Tkl fo.0 1> = cakll fioll?
= (tak — cn it fo,oll?
=0.

Thus we obtain {c,, j}o<j<n—1-

Finally, we show the existence of 7, ,. In the same way as the above computation, we
have

n—1
(70 Bu (=1, 0) fo.ol fnv) = <?»0 - ch,,-rn,j> I fo.ull?.
j=0

Hence we can take
n—1

Ty = AQ — chyjtn,j €ER.
Jj=0
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By the argument in the proof of Proposition 10, the family {c, ¢} can be computed by the
following recurrence relations.

COROLLARY 11. Foranyn € N, we have
k—1

© Tuk=lnk— Y ckjTajforallk el ... n},
j=0
® T,0=An, T00=1,

e Chik= .,n—1}L

Tk, k
By induction on n and a direct computation, we can prove the following.

COROLLARY 12. We seta := «1. For n € N, we have the following:

. 1o
quYiga® =Y P .
’ /2 ! (if k=0),
anql) (l +6]U)
2] 2 2 _ 1
(24 o
o Ty = Z] =0 (Zlil)ﬂ O ) W k=1,
O‘n-HQU (1 +qu)2
(q”_az)(azq”_l)(qv_l)ZJ 0“ fn>22<k<
kg2, (kD)2 (if n=2,2<k=<n,
o Qv (1+qv)
no o 2j -l 2j
q i—0 & o
255 o Lin o),
(I'+qv)
[} Cn,k =
Siche |
;jzﬁﬂﬁ (fl1<k=<n-1).
v

3. A basis of the K (p?)-invariant subspace in a nonspherical representation. For
v € Xjp, let , be an infinite dimensional unitarizable irreducible admissible representation
with trivial central character. In this section, assume c(7r,) > 1.
Fix n € Ny and assume c(m,) > 2. In this case we define the inner product (-|-), by
g2 (|). For k € {0, ..., n}, we denote (8, (—k, 0))¢0.» by ¢x... Then, by Lemma 3 and
a direct computation, we have the following proposition.

c(my)+n
PROPOSITION 13. {¢o, ..., Puv} is an orthogonal basis on (V;{O(p ), (-|-)U)

and we have ||¢0,v||v =4/ (¢O,v|¢0,v)v =1

Next assume c¢(;r,) = 1. Then we have 7, = o (xy|- |,1,/2, Xvl- |v_1/2) for some unramified
character x, of F* satisfying Xg = 1,. In this case we define the inner product (:|-), by

g3"*(1 = gy 2)(|-). By Lemma 3, we have ||¢o, [, = 1.
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LEMMA 14. Forevery k € No, there exists Ly, (k) € R* such that

(nv (Bu(—k, 0))o,v

¢O,v) = )"JTU (k) .
v
PROOF. We have

(0 (80 (=K. 0)0.0lbo,0) = / 0@ gy Y xe(@y D@y e, (@, D)

v

dyy —dy
X xv(@y") gy Xv(t)ltvahp;dv(t)dxt

:qﬁdﬁkxy(wv‘k)/ |t|%Chpk—dU (t)d*t
FY v

o0
=g @) Y /x o u 24 u
n=k—d, Ov
2d,—2k
Xu(@, ©)—— vol(o), d*1)
1—qy

_ —2dy+k
=4, v

_ 4 @)
1—qy°
Therefore we can take A, (k) = qv_kxv(wv_k) and A, (k) must be real by x,(wy) € {£1}. O

vol(o,, d*1).

The proof of the following proposition is the same as that of Proposition 10.

. . . Ko (pse)tm)
PROPOSITION 15. There exists a unique finite set {¢1,v, ..., Puv} of Vo, "

isfying the following conditions (1) and (2):

sat-

that .
Bkv = TSy (—k, 0)o.u — Y _ e, (k. )$ju forallk € (1.....n}.
j=0

y)+n

o(
(2) The set {¢o.v, - .., Pn,v} is an orthogonal basis of(VgO(p” ), (~|-)v).

By induction on n and a direct computation, we can prove the following.

COROLLARY 16. With the notation in the previous Proposition, set

(bj,v) = T, (k, j)

forallk, j €{0,...,n}. Then, for n € N we have the following:

<7Tv By (=K, 0))o,v

1
S if k=0),
q xv(@y)" W )
o 7 (n, k)=
2 2
@) =1 ey <y,

—k+2 _
q{)l + Xv(@y)" k2
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o cr (n, k)= (f0<k<n-—1).

qg_k Xo(@y)

4. Zeta integrals of cusp forms on GL(2). Let be a Ky-spherical cuspidal auto-
morphic representation of G 4 with trivial central character, where the representation space Vj
is contained in the space of cusp forms Ao(G r\G 4, 1). For any quasi character n of A* /F*
and ¢ € Vi, we define the global zeta integral by

t 0 -1/2
Z(s, 1, 9) :=/ ga(o 1) nlel’y Paxi, sec.
FX\Ax

The defining integral converges absolutely for any s € C, and hence Z(s, n, ¢) is an entire
function in s.

We fix a family {7,},ex, consisting of unitarizable irreducible admissible representa-
tions such that 7 = @) 1. The conductor of 7 is defined to be the ideal f; of of such

veXr
that fro, = pi"™ for all v € Zgn. Let n be an ideal of o which is divided by f,. We
Koo Ko(n)

construct a basis of V

For v € XYg, satisfying the isomorphism 7, = I(x,) for some unramified quasi char-
acter x,, we denote by ¢, , € Vr, the Whittaker function corresponding to Xv(wv)_d"(l —
X2 (@y)gy )™ /T by the isomorphism

1
1Ow) 3 f > Wr(g) = /F f (wo (0 j) g> Vr, (—x)dx € Vi,

for all k € {0,...,n}. Then, the function ¢¢ , coincides with the local new form which
appears in Proposition 1.

Let n be the maximal nonnegative integer m such that S, (nj; 1y £ @. For p =
(o) 1<k<n € [[i—; Map (Sk(nfz1), {0, ..., k}), let us denote by ¢ , the cusp form in

VKeKoM) (o rresponding to

® ¢0,v ® ® ¢p1(v),v ®---& ® ¢pn(v),v ® ® ¢0,v

veEXoo UGS](!‘lf;l) UGSn(!‘lf;l) veEﬁn—S(nf;I)

by the isomorphism Vy = @), 5, Vr,-

For v € S(fz), let (:|-), be the Gy-invariant hermitian inner product on V, defined in
§3. Forv € Yo U (X5n — S(fr)), we take a G -invariant hermitian inner product (-|-), on
Vi, such that ||¢o ||y = 1. We obtain the following by the same proof as [9, Lemma 2.4].

PROPOSITION 17. The finite set
n

{wﬂ,p ; o € [ [ Map(Se(nfzh, {0, ...,k})}
k=1

is an orthogonal basis of Vf“KO(n). Here Vi C L*(ZAGF\G ) is equipped with the L*-
inner product.
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LEMMA 18. For any unramified quasi character n, of F,* and any k € N, we define
polynomials QZ}JU (v, X) € C[X] by the following recurrence relation.

k—1

07, (v, X) = ny (@) X* =" e, (k, HOT, (1, X)),
j=0

ng)v(nva X) = l )
where we put cq,(k, j) = Oforallk € Nand j € {0,...,k — 1}, if v € Xq, satisfies

c(my) = 2. Then, for any v € Xgn, k € {0, ..., n} and any unramified quasi character n, of
F), we have

Z(s, mus $iw) = Q7 (os 40> ") Z (5, 1w, do.0) -
PROOF. Suppose c(,) > 2. We have

Z(s, My, Pxw) =Z (Sa Nvs Ty (8y (=K, 0))¢O,v)
= (@) gy PO Z s, mus do,0) -
Hence we can take QZ’”U(nU, X) = ny(wy)k Xk,

Suppose c(m,) € {0, 1}. We prove the assertion by induction on k. The assertion is
obvious for k = 0. Indeed, we can take Qg"v(nv, X) = 1. Suppose k > 1. We have

Z(s, Ny, ¢k,v)
k—1
= Z(S, Nu, Ty (Bu(—k, 0))o,v — chv (k, j)¢j,v>
j=0
k—1
= Z(s, Ny, my (8 (—k, 0))¢0,v) - Zcﬂu (k, })Z(s, 0y, ¢j,v)
j=0
k-1
= (@ )gE 2 Z(s nu. Go.0) = 3 e, (ke HOT (10 412 Z (5, 1m0, G0 -
j=0
Thus we can take
k—1
0, (v, X) = mu(@) X5 =" cr, (k, QT (10, X).
j=0

By induction on k and a direct computation, we have the following.
COROLLARY 19. We have the following:

e Ifc(my) = 0and (a, o~ YY) is the Satake parameter of 1, then we have
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1 (if k=0),

a+a! .
= nv(wv)X—ﬁ (ifk=1),

qv' + qu
_ _ _ 2 _ 2 .
a7 (@) 2 X2 a0y (@) X — D g (@)X — 1) (f k > 2).

o Ifc(my) = 1 and w, is isomorphic to o (x| - 11)/2, Xol - IJI/Z), then we have

07, 0. X) = {1 Wk=on
* o (@) X 0y (@) X — gy (@)™ (@ k= ).
e Ifc(my) > 2, then we have
07", (v, X) = ny(@)* X*
foranyk € Ny.

We consider a character n of A*/F* satisfying
VE X =ny=]|-] for somet, iR,
(%) . . .
fp is relatively prime ton .

For suchn and ¢ € V;( <Ko ' we define the modified global zeta integral by

1 x
Z*(s, 1, ) = fin(xy.fin) Z (s, . <0 1") w) , seC.
Here x;, = (x,v)vex; € A is the adele whose v-component satisfies
0 (v e Xo)
Xpv =

@, /" (v e D)

and x; fin is the projection of x, to Afp.

PROPOSITION 20. Forany p = (p1,...,pn) € [ 1= Map(Sk(nf;I), {0,...,k}
and n satisfying (x), we have

n
—1/2 v —
Z*(s, m, $r.p) = D;: / g 1_[ 1_[ sz(v)’v(rlva 11,}/2 g)}L(S, TRn).
k=lvesi(nfzh
PROOF. We give a proof in the same way as [9, Lemma 2.5]. By definition, we have

Z*(s, n, Wﬂ,p)

1 x
= 1_[ zZ (S, Ny, Ty (0 qv) ¢O,v)
veEX o
. 1 x
X l_[ 1_[ Wv(xn,v)z (sa N, Ty (O q,v) ¢pk(v),v)

k=1 yesnizh
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1
X 1_[ nv(xﬂyv)z <S, Ny, Ty <0 xr;,v) ¢O,v> .

vE Tpn—S(nfr")

For v € X, we have Z(s, 1y, JTU((l) e )$0.v) = L(s, Ty ® 1y). Next we consider the case

of v € Xgy. Since f, is relatively prime to n, the character 7, is unramified if v € S(nf,; Y
Therefore, for v € S(nf; 1, by Proposition 1 we have

1 x
Ny (xyv)Z (Sy Ny, Ty (O '71U> ¢pk(v)av>

= Z(5, Nvs Bpy(v).0)
= 0 (.0 (o 07 Z (. 10 b0.0)
= 07 ).0 (0 ay > vol(o ), d* 1y (@) P qd VP L(s, w1y @ o).

Forv € Xg, — S(nj; by if 1y 1s unramified, by Proposition 1 we have

1 x
nv(xn,v)z <S, Ny, Ty <0 qv) ¢O,v>

= Z(s, Ny, d0.0) = vol (02X, d* 1)y (@) P g~V L(s, 7, @ ).

Suppose that 1, is ramified. We notice that L(s, T, ® 1) is identically one. If ¢ () = 0,
by the definition of ¢g ,, we have

dy+1 m+dy,+1
o™ 0 _ oMty v
dou( 0 = g, (/2] = 8(m = —dy)
0o 1 o] — o

forany m € Z. By

0 —f () 0
¢o,u( ((’) 1) ((1) o )) = Vr () o, (g 1) L eF),

the equality

1
holds (cf. [9, Lemma 2.5]). If ¢(;t,) = 1, then we have

1 x
nv(xn,v)z <S, Ny, Ty <0 qv) ¢0,v>

= /F VR, Gy T (@ )l ocho, (@ Dy (e T M) e 2d e

1 x _
Wv(xn,v)z <Ss Ny, Ty <0 n,v) ¢0,v> = qf)l”(s 1/2)g(Tlu)L(S, Ty @ ny)

zqgu(s—l/a/ Wr (e ) (er == FODY ()7 H1/2 0%
0,10}

o0
=gy / G R UM (e D VRO e
n=0"%

ngXx
v Ov
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o0
=gl (@y)g, / B G RO UM (e A R T
n=0 Oy

:qgu(s—1/2)g(nv)L(s’ Ty ® r]u)

dy—f(my)+n _du_f(ﬂv)'f'n)dx

)ty t vanishes if and only if n # 0.

since /oi Y, (toy,
If ¢(ry) > 2, we have

1 x
Wv(xn,v)z <Ss Ny, Ty <0 q,v) ¢O,v>

Z/FX va(twv_f("”))Chw;dva;(I)Uv(twv_f("”))Itli_l/zdxt

= MG Lis, 1y © ) -

Hence, we have

Z*(s,m, O, 01,eees )
=[] LG @)

vVEX

n

<TT T1 Q5w a)* vol(o), d*tymy (@) g~ L(s, 7, @ ny)
k=1vesinfz"

x I1 vol(a)S, d*1yny () g S~ VPL(s, 7w, @ my)
vE Tin—(S(nfr HUS(Fy)

X l_[ g CTVDG ) Lis, 1y ® ).
veS(Fy—Smnfz)

This completes the proof. o

5. Regularized periods of cusp forms. In this section we prove Main Theorem A.
We fix a relatively compact set  C {(4%);a.d € A',b € A} such that Bro =
{(¢5);a,d e A',b e A}. Forany t > 0, set

0
S(@) :=w{<% );y1,y2>0,y1/y2>t}K.
»

The set G(z) is called a Siegel set of G 4. There exists #p > 0 such that G4 = GrGS(ty). We
take such 7y once and for all and we put & = G(#g) (cf. [4, §10]).

For C > 0, let B(C) be the space of all holomorphic functions 8 on {z € C; |Re(z)| <
C} satisfying that

(1) the equality B(z) = B(—z) holds,

(2) the estimate

Bo+inl <A +th™", o ela,b]
holds for any [a, b] C (—C, C) and any [ > 0.
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Let B be the space of all entire functions 8 on C such that the restriction of 8 to {z €
C;|Re(z)| < C} is contained in B(C) forany C > 0. For § € B,t > Oand A € C,
we consider

RGP

B, (1) :=
A 2wi Jp, 2+ A

dz, (o0 > —Re(})).

Here we write L, for {z € C; Re(z) = o} and L, is equipped with the direction of increasing
imaginary part.

For 8 € B, A € C, acharacter n of A*/F* satisfying (x) and a function ¢ : AGr\G 4 —
C, we consider

~ N _ t 0 1 X
P = [ Bttt + B2 (6 Do 7)) romesmas

For the function ¢ : AG p\G 4 — C, we assume the following:

e Forany 8 € B, there exists a constant C € R such that if Re(A) > C the integral
Pgﬁ , () converges.

e Forany g € B,{z € C;Re(z) > C} > A Pg’k(go) has a meromorphic continuation
to a neighborhood of 1 = 0.

e the constant term CTAZQPg ,(p) of the Laurent expansion of Pg’ ,(@atd = 0is
proportional to the Dirac delta distribution supported at O as a linear functional of 5.

Then, the proportionality constant Pr'ég () is called the regularized n-period of ¢, i.e.,

CTi—0Pg ;(9) = Py (9)B(0)

for all B € B.
In this case, it was proved by Tsuzuki [9, Lemma 7.3] that if ¢ is rapidly decreasing on
&GN GL, then Pg’)\(go) converges absolutely for any (8, 1) € B x C, Przg (¢) can be defined,

and Przg(qn) =Z*1/2,n,9).
THE PROOF OF MAIN THEOREM A. Forany p=(p1,...,p0n) € ]_[Z=1 Map(Sk (nf;l),
{0, ..., k}), by Proposition 20, we have

Png((pﬂaﬂ) = Z*(1/2, n, )
= g(n){ [T I 25w 1)}L(1/2, T®n).
k=l yesi(nfz")

Therefore, we obtain the formula in Main Theorem A by Corollary 19. O

6. Preliminaries for regularized periods of Eisenstein series. We fix a character
X = HuezF xv of AX/F>*. Forv € C, we denote by I(x]| - |VA/2) the space of all smooth
functions f : G4 — C which are K-finite and satisfy

(5 5)7) =xterarasaly™ >
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for all (82) € B4 and ¢ € G4. Here a function f : G4 — C is said to be smooth if
a function GL(2, F ®¢g R) > goo > [f(googfin) is C™ for any gan € GL(2, Afin) and a
function GL(2, Afin) 3 gfin = f(googfin) is locally constant for any g € GL(2, F ® g R).

If v € iR, then the space I (x| - |Z/ 2) is unitarizable and a G 4-invariant hermitian inner
product is given by

(ilf2) = /K AW BHEk

for any fi, f» € 1(x]-1%%). We denote the norm /(7Tf) of f € I(x|-1%?) by IfI.

Similarly, we define a G,-invariant hermitian inner product (-|-), on I (x| - IE/ 2) and the
norm | - ||y of 7 (x| - |/%) for v € i R by integration on K,.

For v € C, we take f) e I(x| - |VA/2). The family { f("},c is called a flat section if
the restriction of £ to K is independent of v € C. We define the Eisenstein series for f()

by

Ef 9= Y (Yo

y€Br\GFr

for g € G4 and v € C. If Re(v) > 1, the defining series converges absolutely. If { )}, cc
is a flat section, E(f(), g) has a meromorphic continuation to C as a function in v. The
function E(f(), g) is holomorphic on i R and has the only possible pole at v = 1 on the half
plane Re(v) > 0, which occurs only when x2? = 1.

Let n be an ideal of 0. From this section, we assume the following:

e vE Y= xy=|-|y forsomer, €iR,
e nis divided by 3.

These conditions are equivalent to dim 7 (x| - |Z/2)K0°K0(") > 1.
For v € ¥, we denote by fo(”)?u the spherical vector in I (x| - IE/ 2) normalized so that

fo(”;v (e) equals one.

7. Local new forms for ramified induced representations. In this section, we as-
sume v € S(f,). By [7, Proposition 2.1.2], we have the following.

2f(xv)
PROPOSITION 21. The invariant subspace I (xy| - |5/2)K0("” ) s of dimension one.
2f(xv)
A nonzero vector in I (xy| - Iﬂ/z)KO(p" N s given by

- v v 2 +1)/2
so(@y NG Yy afdlajd)y
v) ; a x

Jo.v. () = (if g€ (
0:Xv 0 d

0 (if 9 ¢ Brysow+1 Koo ")),

2t
)Vf(xv)HKO(puf(X N.a,d e FX),
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0 o
<wi—1 1) (if ieN),

(%) im0
0 1 yir= .

1 0 _
f()(,v)?u < ) =X, 1(x)qJ(Xu)V/2(:hwl)f()w)0;}< (x)

where we put

Moreover we have

x 1
forany x € F.
For k € Ny, set

T R PR ENCHE NI

2 v _
where B(0,) := B, N K, and T (x,) := vol(B(0,)¥ () +1Ko(ps! %)) ~1/2,

LEMMA 22. Ifv € iR, then I(xy| - |;/2) is irreducible and we have “fk(,vx)v lv =1 for
any k € Ny.

PROOF. Assume v € iR. By [7, Lemma 2.1.1] we have
2f(xv)
K, = [[ By)yiKom; ).
i=0
Therefore we obtain

1A 12 = /K A @Rk

Zf(Xv)
| o) () Pdk

= /B(omKo(p%f(*”))

v
/B(au))/f(xu>+1Ko(Pff(X")) |f0()2v (k)|2dk
= vol(B(©@u)ys (1) +1Ko(py ) .
Hence ||fo(’”)gv |l, = 1. By definition, we obtain ||f~k(’”)?v Iy = ||fé”)?u ly =1forany k € No. O
Here T'(x,) is explicitly computed by the following lemma.

LEMMA 23. We have
2 v — v _
VOl(B(00)Y £y + 1Ko (! X)) = g, T% (1 — g7,
v)/2 I
T(0) = qi *2(1 — g7 H~ 12,

PROOF. Assume v € i R. We note that the equality

/ £ 2dk = g / f(wo(1 ’“))
K, F, 0 1

2
dx
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holds for any f € I(xy]| - |v/ ). By the G-invariance of the integration on K,,, we obtain

2
_ 1 x
1t = [ v o Pk =t [ (1) wa)] o
2
) v) 0
qU / fOXL (_x 1)

_ qu/Z / |XU_1 (x)ql‘)f(xv)v/zchwf()(wa>< (x)lzdx
F o

—g®/2 d
X.
v /f()(v)ox
@y v

By the proof of Lemma 22, the equality || /") > = VOl(B(00)Y £y +1Ko(pa” **)) holds.
This completes the proof. O

dx

LEMMA 24. Fork € Ny, we have

t 0 -
_ (A=v)dy/2—kv/24+(1/2—V) f(xv) _ —1\1/2 —k
‘/ka(”)?t <0 l) _ v v 00 (1 q, ) g(xv)chw;dvoi(wv 1)

foranyt e FJ.
PROOF. By [7, §2.4], we have

t 0 ) 2
Wfo(,u)(u (O l) = XU(_l)qU / 8(17 XU' : ;/ ) I”FU)Cl'lw.v—dv0;< (t) ) IS FUX .

Since x, is ramified, we obtain
Xo(=De(l, xol - 12, ¥F,) = xo(=1gy YOOTER(0 — g7 HG ()
— qv—(f()(v)-i'du)v/z(l _ qv_l)g(Xv) .
This completes the proof. O

LEMMA 25. Fork € Ny we have the following:

{xv(w)—k—f<Xv>T(xv) (=fO)+k+1),

(V)
Jex O0O=<i=<2f(x0)+k, i# f(xo)+k+1).

PROOEF. This assertion is obvious for i = 0 since fo V) () = 0. Whenl < i <
2 f(xv) + k, we have

v 1 0\ (o, % 0
(e D)
w ((@7F 0 1 0
(60 (ot 1)

= xo(@v) g, x Xv_l(wé_k_l)ql{(x")”/zchwvfm)a;(W5_k_1).

This completes the proof. O
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PROPOSITION 26. For any k € Ny, the restriction of fk(’v)zu to Ky is independent of
v e C. Fixn € Ng. If v € iR, the set {fk % ,k € {0, ...,n}} is an orthonormal basis of
1G] 1)o7,

PROOF. By Lemma 25, the first assertion is obvious. We assume v € iR. The set
() k€ {0,....n)) is a basis of 1(x,| - [V/2K0®™"™ by Proposition 1. We show
the orthogonality of {f(”) k € {0,...,n}}. By Lemma 22, we have ||f(v) l, = 1 for any
ke{0,...,n} Foranyl,m € {0, ..., n} such that/ # m, we have

(m(a (—1.0) fs"),

70 (8o (—m. 0)) fy) )

_ / 7o Sutm — 1)) £ (03 (k)
K,

v 1 v !
_qgu/zfﬂ 708y (m —1,0) fo"). < (0 1)) foon <w° (0 )lc>>dx'

D1 (x) := 7y (8y(m — 10))f<v)< ((1) T))

(v) 1 x
oo )

By the Plancherel theorem, we have

Put

and

/ 1 (x)B2(0Vdx = / &1 () Ba(r)dx .
F, Fy

Here 551 (x) and @(x) are Fourier transforms of @ and @, with respect to ¥r, , respectively.
Hence, by the equalities

0
70 (8 (m — 1, ODW v (" ) = X | x x [}/ 21 (x)

0, xv O 1
and
x 0 —1 2 125~
Wfo(,”m <0 1) = %y O]y x x|V 2 @r(x),
we obtain

(m(a (—L.0) fy"),

_ dy/2 -1 x 0 x 0) 4
=g, (1 — )/ 7Ty (Sy(m — lO))WéuX)U <0 I)Wfo(u)()v (0 1>d X.

This equals zero by Lemma 24. O

7o (@Bu(—m, 0)) f3") ) = g2 / P (x) P2 (x)dx
Fv
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We denote by My (v) : I(xo| - |V/%) — 1O 1 o) the intertwining operator defined
by the integral
1 x
(My) f)(g) = | f|wo 0o 1)79 dx

LEMMA 27. Foranyk € No, we have

if it converges.

1 -V _25 1 25 )
M, (l))f(v) —q —(k+f()(u))vg( v, Xy ‘/fFU)g(_j‘ v/2, v, ¥F,)
e(l =v/2, xy ", ¥F,)
Lv,x2) s v
L(1—v, xy ) k!
PROOF. If Re(v) # =1, the representations I ()| - |v/ ) and I(Xv_1| lv J? ) are irre-

ducible. Hence, we obtain this assertion by [7, Proposition 2.2.2]. By meromorphic continu-
ation, we obtain the assertion for v such that Re(v) = +1. ]

8. Local new forms for unramified induced representations. In this section we
assume v € Zgn — S(fy). We denote by f,", (”) the spherical vector in 1 (x| - 1”/2) normalized

so that fov) (e) equals one. We set

R = mBu(=k, 0D fo'y, = Zc“(k N,

=A==V =

k k—
oy 0“21 - 1—11 at
; (f j=0),
akq /2
14+ qv)
Wk, j) =
Zk_d 21
i D (f l<j=<k-1,
qv
where we puta := )(,,(wv)qv_v/2 We note that if v € i R, the set {f(”) ke€{0,...,n}}isan
v/2

orthogonal basis of 1 (x| - [y *)¥0®) by Proposition 10 and Corollary 12.

LEMMA 28. Foranyk € No, we have

_k k)2 s
S (—k. 0 v) ':a‘h) Gf i ,
By (—K, ))fo’xu(yl) { k42— zlq:}—k/2—l (lf 1<i<k).

PROOF. The assertion is obvious fori = 0. Fori > 1, we have

1 0\ (e, * 0\ (&7 wF\(0 -1
CH Y A A N R Y AV / ey
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We note ((1) wl;ll—i ) € K,. Therefore we obtain
To(Bo(—k, 0) f (1) = a* 272 gl ~h/27!
fori > 1. O
LEMMA 29. We have the following:
1/2
v/ (qv — a2)

The equalities ") =1, ©) and
o q o, 2 2, (V0) f1y, () = a1 a0
a? —
fl(yv;v (1) = 1/276] hold.
I+ qv)
e Forn > 2, we have
(@v — Dlgy —ada g (if k=0),
2 () =10 (fl<k<n—1)),
g (=42 o
(a —qv)a " qy (if k=n).

PROOF. We note that

£ () = 0 (Bu (k. 0) £3) (i) — Zc“’(k NEY o) — Zc@(k NI () -

Jj=0 j=i
By induction on n, Lemma 28 and a direct computation, we obtain the assertion. O
For k € Ng, we set
Fo'en (if k=0),
o _ A +ay e L+ ) 1Y) Gf k=1),
fk’Xv '_ 1
qv+1 /2 kv/2 (v) .
1) @ PLA v DY, G 2<k=n).
qv —
PROPOSITION 30. The restriction of f(v)‘ to K, is independent of v € C for any
k € No. Fixn € No. If v € iR then the set {fk(v; sk €{0,...,n}} is an orthonormal basis

2
of 1 (x| - |2y Ko,

PROOF. By a direct computation we have a g, —a*» = qvxv(wv)_kq,]fv/zL(l +
v, x2)~!. Combining this and Lemma 29, we obtaln the first assertion.
Assume v € i R. By the definition of fk FRAL have the following equality (cf. Corollary

12):
1 Gf k = 0),
1 1 _
W 2 _ 2 —- (f k=1),
I fe Iy = (1+qv 2L +v, xHL( —v, x5 °)
v —1 1 .
Gf k£ >2).

QU+1L(1+U XL —v, x5 °
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This completes the proof. O

LEMMA 31. Foranyk € No, we have
_ L(v, x?) .
dy/2 v 7 ( k=0
ql} L(1+V Xv)fOX (lf‘ )’
—dy/2—kv L, Xu
v L(1—v, xo
PROOF. Applying [1, Proposition 4.6.7], we have

M (U)f(V) —
f( if 1 <k<n).

2
FO =i LOW X))
Qe =0 L1 4 v, x2) "0

Combining this and the definition of fk ) fork e {0, ..., n}, we obtain this assertion. O

REMARK 32. Fork > 1, we have
_kug(l v, XU_Za WFU)g(l + l)/2a Xvs WFU) L(Ua XS) 7(—v)

(V)
My(W) fry, = - - i
e(1=v/2, 30 ' ¥F,) LA —v, xR
9. Constant terms and zeta integrals of Eisenstein series. We consider the invari-
ant subspace I (x| - |VA/ 2)KOOKO("). Let n be the maximal nonnegative integer m such that

Sm(nf2) # 0. For p = (po)1=k=n € [Tf_ Map(Sk(nf, ), {0, ..., k}), let us denote by f)
the vectorin I (x| - |VA/ 2) corresponding to

® fO(,v)?u ® ® f;:)()v) X - ® ® fﬁgv()v) w ® ® fO(v)zt

ve€Xoo veSl(nf; ) veSn(n]‘; UEEﬁH—S(nf; )

by the isomorphism 7 (x| - |”/2) = ®U62F I(xy]- |v/ ). By Propositions 26 and 30, we obtain
the following.

PROPOSITION 33. Forany p = (p)i<k<n € [lj— Map(Sy(nf;2), {0, ... . k}), the
family {f)glfﬁ))}vec is a flat section. If v € i R, the finite set

{f;”z, : p e [ [Map(Si(nf?). (0. ..., k})}

k=1

is an orthonormal basis of 1 (x| - |Z/2)K°°K0(“).

Fix p € [1i_; Map(Sk(nff), {0, ..., k}). We write E, ,(v, g) for E(f(u) ¢) and put

1 x
E° = E .
x.pW 9) /F\A xop <V, (O 1) 9) dx

The term E;yp(v, g) is called the constant term of E, ,(v, g). For k € {1, ..., n}, the sets
Ui (p), Rr(p) and Ry (p) are defined as follows:

Uep) = | o' ) = SG). Reo) := | 0 () N S(y)

m=k m=k
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Ro(p) = ( U en'©n S(fx)) st = smi?).

m=0

For k > 0, set

Ro(p) (if k=0),

&@):{UumuRMm (f k> 1),

R(p) := U= Ri(p) and S(p) := U—o Sk(0)-

PROPOSITION 34. We have

o v L, x*) -
ES ,(v,9) = f()(9)+D xp( )mf;{)p(g),

where

e =, x 2 YE)e(l+v/2, xo, YE,)

(1) =N(f) ™" { /2 kv MR ZALG 3
Ao ’ In)vel;l(p) e(l —=v/2, xy 1, YE,)

9 L(1+v, Xv) }

L(1—v, %)

PROOF. By the same computation as [1, p. 352-354], we have

ES ,0.9)=f") 9+ [] M) fy) )(g»]‘[ [T M) 7" )

veXs k=1veUi(p)
x H [T Mm@ ] M) fs") (g
k=0 veRy(p) ve X —S(p)
For v € Y, we have
L(v, x2)

7%,

(v)
M) 33000 = T 0 Ty

where M, (v) for v € Y is the intertwining operator defined in the same way as the non-
archimedean case. Combining this with Lemma 27 and Remark 32, we obtain the asser-

tion.

a

We fix a character n of A*/F* satisfying (x) in §4. Forany v € X4,—S(f,) and k € Ny,

polynomials Q(”) (ny, X) are defined as follows (cf. Corollary 19):

e Forv e Z‘fm — 8(fy), set

0 (v, X)
1 if k=0),
—v/2 1 _v/2
o (@) X — Xv(w'v)‘]v1 + xv(@y) " qu Gf k=1),
o PRICETE

qv—lnv(w )k—2xk—2
1— 2 1 2 .
X (o (@0)gd ™ Py (@) X — D@ g ™ P nn@) X — 1) (Gf k > 2).
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e Forv € S(fy), set
0 (. X) = nu(@)* x*
for any k € No.

PROPOSITION 35. We put Ei,p(v, g) =Ey ,(v,9) — E;’p(v, g). Then E)“(,p(v, -)
is left Br-invariant. We have
h —v/2 _
Z*(s, 1, E3 ,(v, ) = @n)*¥e G D" *N(f,) />

L(s +v/2, xmL(s —v/2, x 'n)

B)7 5 9
*Bros V) LA +v. 0

where

n
s—1/2 —
0.0 =07 T1 T 0ff ol .50

k=0 veSk(p)

n 0+ 1\ 2
< [T a+aha?T] T1 (v ) q, "

veUy(p) k=2 vety(p) V90 T
n

x{]‘[ I1 qﬁ””"‘“/z(l—q,,‘l)”zg(xv)} [] x@)®.
k=0 veRy(p) veXfin—R(p)

PROOF. The assertion follows from the following facts (cf. Proposition 20 and [9,
Lemma 2.11]).

o We have
L(s 4+ v/2, xom)L(s = v/2, x; ') (if ve Zg)
L(14v, x2) ’
Z(s,nU,WfO(v)): Lis +v/2 VL( 2 -1 )
L Xv —
5y LG+ V/2 xum)LGs 2V/ Ko M) Gp e we).
L1+ v, x2)

e For v € Uj(p), we have
Z(s. . Wy ) = (g gy PLA+ v, D ) (1. 4> ™) Z(s 10 Wy ).
sXv s U Xv
e Fork > 2 and v € Ui(p), we have

qv+1
qv —1
e Fork > 0and v € R¢(p), we have

1 1
fonl o)

(IR AR=OIG0 (1 — g Y 2G ) 0 (s 4> a2 G

1/2
Z(s, 0, W ) = ( ) a0, LA+ v, ) 0 (s a0/ * ) Z (s, 10, Wi ).
k. xv ’ 70, xv

:ql)
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e Forv € Xu, — R(p), we have
Z(s, N, Wf(V) )
0, xv

/2 dus=1/2) G )L(S +v/2, xonu)L(s —v/2, x, 77v)

dy
=xv(@y)"q, L+, 2 )

a

10. Regularized periods of Eisenstein series. In this section, we compute regular-
ized n-periods of E, ,(v, —). For any characters x; and x> of AX/F>, we put 8y, ,, =
8(x1 = x2). The following lemma is needed in order to compute regularized periods of
Eisenstein series.

LEMMA 36 (9, Lemma7.6). Let& be acharacter of A*/F*. Let . and w be complex
numbers such that Re(w) < Re()). Then, for ¢ € {0, 1}, we have
/ o Bl )g ooz a7

sevol(\ah LY (if £=0),

ﬁ(—w) B =W —w)
(O — w)?

where the integral on the left-hand side converges absolutely.

8.1 Vol(F*\ A"

(if e=1),

THEOREM 37. Assume v € iR if S(f,) = 0. Then the integral P )\(Ex oV, =)
converges absolutely for any (8,)) € B x C such that Re(.) > 1. IfS(fX) = {, then
Pg’)\(EX,p(v, —)) converges absolutely for any (8, 1) € B x C. Moreover Przg(EX,p(v, =)
can be defined and we have

Pl (Ey o0, =) = @m)**e G D *N(f,) '/~
L((1+v)/2, xm LA =v)/2, x7'n)
L(1+v, x?
PROOF. Suppose S(fy) # 4. Fort € A*/F*, we have

26 D6 )

2
o (1 B0) y po1i2y LO. XD e (T 1) _
x:p <0 1 )+ Aee W T e lo 1) T
We notice that f") () = fg;”)l (€) =0 forv € S(fy). Thus P}, (ES (v, —)) = 0 holds for

any (B, 1) € BxC. Weput fy ,(z,v) := Z*(z+1/2,n, Ey,,(v, —)) and note that £y ,(z, v)
is entire on the whole z-plane by Proposition 35 and that S(f, ) # #. By exchanging the order
of integrals, we have

Py (Ex p(v, =) = P} (ES (v, =)

x B (1/2,v)
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3 3 1
=/FX\AX{MHA)+m(|t|;1>}E§(,p <v, (6 (1’) (0 ’;"))n(t)nﬁn(x,,,ﬁn)dxt

B(2)
2m/ (@) + 1 e

where 0 > — Re(A). This is justified by Proposition 35. By this we obtain both the conver-
gence of Pgﬁ)\(Exyp(v, —)) for (8, 1) € B x C and the entireness of Pgﬁ)\(Exyp(v, —))as a
function in A. By the residue theorem, we have

1
CTA:OP/;?J(EXW(V’ _))Z—./ (flp@v)+ £ ,(=z,v )}@d

“wlf [ e

=Res;=0 { p(Z, )@}

= £1,(0,1)B(0).

By Proposition 35 we obtain the second assertion when S(f,) # @.

Assume v € iR and S(f,) = . Then the first assertion is obtained in the same way as
[9, Lemma 7.5]. We give a proof of the second assertion in the same way as [9, Lemma 51].
Assume Re()) > 1. Then, by Proposition 34, we have

- L(v, x*)
1/2 X’p(l))m X 1()\. )

+Q;p(7), )"7 U) + Q;’p(?'], )\., l)) s

Pg’A(EX,p(U =) =Py(A,v) + Dy

where

Py i (2, £v)

- / FE @x* |
FX\ X

0@ nan oy i) Br (1214) + B (It 1t

and

t 0\ (1 A y
Q5 (02, v) = /F Y (v, (0 1) (0 x{’))n(t)nﬁn(xn,ﬁnmx(nﬁl)d 2

For Re(2) > 1, by Lemma 36, the integral P +1 (A, =v) converges absolutely and we have

Bl(=v—1)/2) = B((v+1)/2) }
A—@W+D/2  A+@+1))/2

Py, v) = f¥)(€)8yy.1 vol(F\A") {

and

Pxna,—v)=fifv,)p<e>8x,nvol<FX\A1>{ Po— DD, Py i }

A—(=v+1/2 A+(=v+1)/2
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We put f)'g,p(z, v):=Z%z+1/2,n, E):(yp(v, —)). By exchanging the order of integrals, we
have

1
Qi,p(nvk,w:%/ ety

where o > 1/2. This is justified by Proposition 35. Hence the integral Q oM, A, v) is
holomorphic on Re(A) > —o, and has an analytic continuation to the whole A-plane. In a
similar fashion, we have

ﬁ(z)

_ 1
Qx,p(n,k,V)=%/LUf (2w

for Re(A) > o > 1/2. Furthermore, the residue theorem gives us the equality

QoM A, v)
Y PRV Y TP
% Resz=(-v+1)/2 +fi(lzv_7_l)1/)2/)2 Res;——1)/2
% Res;=(—v-1)/2 }f;’,p(—z, v).

Therefore, as a function in A, the integral P A(E +.p (v, —)) has a meromorphic continuation
to C. Moreover Pg’)\(EX,p(v, —)) is holomorphlc at A = 0 by v € iR. By virtue of the
residue theorem, we obtain

CTom0 Py, (Ey o (. =)

27”/ {f,@v)+ £ (=2, v)}&d
IR ICESVEIr BUevE D)
W+ 1)/2 z=(v+1)/2 —v+1),2 7=(—v+1)/2
(v —1/2) (=v=1/2)
H Res.—w-1)/2 +% Res,—(—v—1),2 }f;,p(—z, V)

:Reszzo{ ) (o >@}=z*<1/2, m ES, (v, =) B(O)

By this and Proposition 35, we obtain the second assertion when S(f,) = . O

We define two functions ey , 1 and ey , o by the relation

ex,p,—1(9)
Eyp.g) = 228 e p0(g) + O =1, (= 1).

We compute regularized n-periods of ¢y, 1 and that of ey , 0. The complete Dedekind zeta
function is denoted by ¢ (s). We put R := (27)*%C Res;— ¢r(s) = vol(F*\Al).
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LEMMA 38. We have

(27[)—#25 D_1/2

eXaﬂ,—l(g)ZS(Xzzl’fX =oF,S(p) = ) r(2)

E oy (det g)

forany g € G4.

PROOF. It is sufficient to examine poles of EJ (v, g) in order to obtain the informa-
tion of poles of E, ,(v,g). By Proposition 34 it is sufficient to examine poles of
D;l/zAxyp(v)L(v, x2)L(1+v, x3)~!. The L-function L(v, x?) hasa possible simple pole at
v = 1 on the half plane Re(v) > 0 if and only if x> = 1. When x2 = 1, the function Ay o(v)

equals zero at v = 1 unless x2 =1, fy = or and | J;_, Im(px) = {0} hold. Therefore the
assertion follows from the same argument as [9, Lemma 2.13]. O

We obtain the following by the same proof of [9, Lemma 7.7].
THEOREM 39. For A € C such that Re(L) > 0, we have
_ —-1/2
2027)*¥e D' *R2 B(0)
¢r(2) A

Py, (exp—1) =8(x* =1, x =n,fy = o, S(p) = 0)

Moreover, we have Prgg(ex,p,_l) =0.

For any character & of A*/F*, we define R(§), Co(&), and C1 (&) by the relation

L(s, ) = ﬁ+Co(€)+C1(S)(S—1)+(9((s—1)) (s—>1D.

We note R(§) = 8¢.1(27) ~#*C¢ R for any character & of AX/F*.

THEOREM 40. Assume S(fy) = 9. Then the integral P A(ex 0,0) converges abso-
lutely for any (B, 1) € B x C such that Re(A) > 1. There exists an entire function f(\) on C
such that

Pg’)\(ex,p,O)

R 1 Nas R —1/2f( 1) (e)
Sxn.1 Ff (6){—1+A—+1}'B()+ . FT;&)
X {8;(2,1(271)—#ECRF < §FE2; xo (D) + A;(’p(1)> + CO(Xz)AX,p(l)}& o
- Syp1BY (1) 8, BT ,(=1)
-G Dy 12 {_ xn.1By.p PO }ﬁ(l)
A+1 P _1
D—1/2 0
gfz)zi){_‘s()(=n=n_l)(8 D) (O @r) e g2 22 ,3( )
B(0) ,3(0)

= 8yn1B} ,(ORFCo(X) == + 8.0 B] ,(ORFCo(x*) ==

i 0
+3(x=n=n""B] ,O)2r )‘#ECR%ﬁ)Ez) }
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where E;gp(z) = ¢g(—z, X_ln)B)'g,p(—z + 1/2, 1). Moreover we have

GD;'*N(,)~12

L2, x?)

CTo—0P), (ex.p.0) =

1 .
8 { =38 =n=n""B] Q@) TR ©) + (2n>#20a$3,p(o>ﬂ<o>} ,
where
1 -
a;,p(o) = _E(BQ;P)//(O)S(X =n= 77_1)(27T)_2#ECR%_
+(E;(7,p)/(0)(277)_#2cRFCO(XZ)(SX’,, _ 5)“]’1)

—B! (0)Q21) ¥ REC1(x®) (By.n + 8yn1) + BL ,(0)Co(xmColxn™").

PROOF. We give a proof in the same way as [9, Lemma 7.8]. Assume Re(1) > 1. We
have the expansion

con((5 1) (o 7)) = x0asgie+ e+ o

where

L, x> )

—-1/2 - - —v+1)/2
w00 = Dp " x ' 0 f,7) (@CTumy (mi,” A O T

1
doresi (-, )6 )

By Lemma 36, we obtain

and

fF e X@Oltla £{@1Br(114) + Br (el V() nsn ey in)d 1

B(=1) n B) } .

1
= S 1Rr [ (@) { =1 Al

By a direct computation, we have

e(1) =

DEl/zx‘l(t)f;iffp(e){R 2( L' 5%

L2, x?) _L(sz)Ax,p(l) +AM(1))

1
+Co(xH Ay p(1) — ER(x%AX,p(l) log m} :
Thus, by Lemma 36, we obtain

/ b Br(1t14) + Br (15O min G in)d ™
FX\AX

-1/2_ 1 (=1
D X f ) (e) L (2. v2
= 28X1'IRF il X l’p {R X2)< ( X )

L2, x?) —L(sz)f\x,p(l) +AM(1))
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+ Co(xM Ay, p(l)} ro

Further, by the residue theorem, we have

/F . e (OB114) + Br (el @ 1sin ey fin)d ™1

= F(%) = (Res,——1 +Res—o+Res,1) { 7o-a bt f)k} ,
where ,3( )
fO) = —/ (0@ D+ 1 =2
and o > 1. Here we have the following:
B | _ Co*FeGD, PN,/
Rese=t {f)?*"(_z’ i +A} L2 1)
xB) (VL2 xn~HR(xn) A’i( 1)

B(2) } @G Dy NG,
24+ 1) L2, x?)

xBJ (—1)L(2, xn)R(xn_l)

ReSZZ—l {f;’yp(_zv 1)

B(=1
-1’

ﬁ(z)}
Z+A

4x -1/2 —1/2
_ (27) Cg(’?)DF N(fy) { —S(x=n= n—l)(g;zyp)’(())(zn)—z#zcR%@

L@ 19
- 0
B, OCo0mn e e R P s, B 0)Cotom m e R Y

ReSZ=O { )?yp(_zv 1)

+3(x =77=17_1)B (0)(2 )~ 2#ECR2 ,3(0)}.

This completes the proof of the first assertion.
By virtue of the residue theorem, we obtain

1
CT*=0Pg,A(ex,p,0)=%/L {flp@ D+ f (=2 1)}&51

—(Res;=—1 +Res;=1) {f;],p(—z, 1)&}

=Res;= o{f (z, 1)&}

_ @m*Eegm D PN, { 1

L@ D) p(=2)B7(0) + a (0)/3(0)}
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where ay ,(—2) and a}. ,(0) are defined as

B) (@)Ll =z, xmL(+z, xn™") =

n n
ay,p(=2)  ay p(=1)
PR :

z +ay ,(0)+0(@), (z—0).

This completes the proof of the second assertion. o

When x is unramified, the regularized n-period of e, , o can not be defined generally.
However, it can be defined in a ramified case.

COROLLARY 41. We assume S(fy) # 0. Then Pr'ég(exypyo) can be defined and

L, xn)L©O, x~'n)
L2, x?)

Ply(ex.p0) = @)*¥eGm DL NG 2BY (172, 1)

We note that both L(s, xn) and L(s, x -1 n) are entire functions by the condition (x).

PROOF. By assumption and Lemma 38, the function E, ,(v, g) is holomorphic at v =
1. Therefore we have

won((o 9 )= (-G D)6 V)

We note that £ ,(z, 1) is entire on the z-plane. By applying Theorem 37, we obtain

CTi=0Pg , (Ex,p(v, =) = [} ,(0, DB(0).

This completes the proof. o
COROLLARY 42. We assume S(fy) # 9. For n satisfying both (x) and n? =1,
the value Png(ex,p,O) does not vanish if and only if n,(w,) # xy(@y) holds for any v €

Uzzl Ui (p).

PROOF. The value L(1, &) is nonzero for any nontrivial character & of A*/F* by
[5, Theorem 7-28]. Thus the values L(1, xn) and L(0, x ') = (1, xn)~'L(1, xn) are
nonzero. For v € X, — S(fy f;), by a direct computation we have

1
o) (o, 1)

1 Gf £k =0),
(@) = xo@)aw > + (@) = x; (@)} .
= /2, —1/2 Gf k=1,
gt qu

qu_lnv(wv)k_z()(v(wv)nv(wv) - 1)(QUXv(wv)_17]v(wv) -1 Gf £>2).

Therefore Bz,p (1/2, 1) vanishes if and only if there exists v € UZ=1 Uk (p) such that n(w,) =
Xv(@y). This completes the proof. O
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