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REGULARIZED PERIODS OF AUTOMORPHIC FORMS
ON GL(2)

SHINGO SUGIYAMA

(Received December 22, 2011, revised December 26, 2012)

Abstract. In this paper, we study regularized periods of cusp forms and Eisenstein
series on GL(2) introduced by Masao Tsuzuki.

Introduction. In the theory of automorphic forms and automorphic representations, it
is an important problem to study the periods of automorphic forms, because central values
of automorphic L-functions appear in explicit formulas of the periods of automorphic forms.
So far, many works on the periods of automorphic forms have been done. For a remarkable
example, we should mention the paper [10], in which Waldspurger studied the central values
of several kinds of automorphicL-functions in connection with the toral period of cusp forms.

Let F be an algebraic number field and A its adele ring. In [9], Tsuzuki introduced a
notion of regularized periods of functions on GL(2,A) in the following way. For C > 0, let
B(C) be the space of all holomorphic functions β on {z ∈ C; | Re(z)| < C} satisfying that

(1) the equality β(z) = β(−z) holds,
(2) the estimate

|β(σ + it)| ≺ (1 + |t|)−l , σ ∈ [a, b]
holds for any [a, b] ⊂ (−C,C) and any l > 0.

Let B be the space of all entire functions β on C such that the restriction of β to {z ∈
C; | Re(z)| < C} is contained in B(C) for any C > 0. For β ∈ B, t > 0 and λ ∈ C,
we consider

β̂λ(t) := 1

2πi

∫ σ+i∞

σ−i∞
β(z)

z + λ
tzdz , (σ > −Re(λ)) .

For a function ϕ : GL(2, F )\GL(2,A) → C, β ∈ B, λ ∈ C and a unitary character η of
A×/F×, we consider

P
η
β,λ(ϕ) :=

∫
F×\A×

{β̂λ(|t|A)+ β̂λ(|t|−1
A )}ϕ

((
t 0
0 1

) (
1 xη

0 1

))
η(t)ηfin(xη,fin)d

×t ,

where xη = (xη,v)v∈ΣF ∈ A is the adele which will be defined in §4, xη,fin is the projection
of xη to the finite adele ring Afin of F and ηfin is the restriction of η to A×

fin. For the function
ϕ, we assume the following:

• For any β ∈ B there exists a constant C ∈ R such that if Re(λ) > C the integral
P
η
β,λ(ϕ) converges.
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• For any β ∈ B, the function {z ∈ C; Re(z) > C} � λ �→ P
η
β,λ(ϕ) has a meromorphic

continuation to a neighborhood of λ = 0.
• The constant term CTλ=0P

η
β,λ(ϕ) of the Laurent expansion of Pηβ,λ(ϕ) at λ = 0 is

proportional to the Dirac delta distribution supported at 0 as a linear functional of B.

Then, the proportionality constant Pηreg(ϕ) is called the regularized η-period of ϕ, i.e.,

CTλ=0P
η
β,λ(ϕ) = Pηreg(ϕ)β(0)

for all β ∈ B.
When F is totally real, Tsuzuki obtained the following results in [9].
(1) The regularized periods of cusp forms which are associated with cuspidal automor-

phic representations of GL(2) with square free conductor are explicitly described
in terms of central L-values.

(2) The regularized periods of Eisenstein series constructed by induced representations
from unramified characters of A×/F×R>0 are described in terms of the Hecke L-
functions.

In this paper, we generalize the above results (1) and (2). First we explain our result on cusp
forms. Let (π, Vπ) be a K∞-spherical cuspidal automorphic representation ofGL(2,A) with
trivial central character. We denote the conductor of π by fπ . Let n be an ideal of the integer
ring oF of F which is divided by fπ . Tsuzuki explicitly computed the regularized periods of
cusp forms in VK∞K0(n)

π in the case where F is totally real, assuming n is square free (cf. [9,
Lemma 7.4]). Here K0(n) is the congruence subgroup defined at the end of this section.

In this paper, we explicitly compute the regularized periods of cusp forms in the invari-
ant subspace V K∞K0(n)

π when the field F is an arbitrary number field and the ideal n is not
necessarily square free.

Let ΣF , ΣR , ΣC andΣfin be the set of all places of F , the set of all real places of F , the
set of all complex places of F and the set of all finite places of F , respectively. For an ideal a

of oF we denote by S(a) the set of v ∈ Σfin such that v divides a and denote by Sk(a) the set
of v ∈ S(a) such that the order ordv(a) of a equals k for any k ∈ N . Let{

ϕπ,ρ ; ρ ∈
n∏
k=1

Map(Sk(nf−1
π ), {0, . . . , k})

}
be an orthogonal basis of VK∞K0(n)

π which will be constructed in §4, where n is the maximal
nonnegative integer k such that Sk(nf−1

π ) 	= ∅ and Map(Sk(nf−1
π ), {0, . . . , k}) is the set of all

mappings from Sk(nf−1
π ) to {0, . . . , k}. We fix a family {πv}v∈ΣF consisting of unitarizable

irreducible admissible representations such that π ∼= ⊗
v∈ΣF πv . Let η be a unitary character

of A×/F×R>0 satisfying the following conditions:

(
)

{
v ∈ ΣR ∪ΣC ⇒ ηv = | · |tvv for some tv ∈ iR ,
fη is relatively prime to n ,

where fη is the conductor of η. We denote the Gauss sum associated with η by G(η), which
will be defined in §1. Then, we prove the following theorem.
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MAIN THEOREM A. Let η be a character of A×/F×R>0 satisfying the condition (
).
Then, for any ρ = (ρ1, . . . , ρn) ∈ ∏n

k=1 Map(Sk(nf−1
π ), {0, . . . , k}), there exist explicitly

computable polynomialsQπvρk(v),v(ηv,X) ∈ C[X] for any v ∈ Σfin−S(fη) and k ∈ {0, . . . , n}
such that

Pηreg(ϕπ,ρ) = G(η)
{ n∏
k=1

∏
v∈Sk(nf−1

π )

Q
πv
ρk(v),v

(ηv, 1)

}
L(1/2, π ⊗ η) .

Here L(s, π ⊗ η) denotes the standard L-function of π ⊗ η. Indeed, Qπvk,v(ηv, 1) is given as
the following.

• If c(πv) = 0 and (α, α−1) is the Satake parameter of πv , then

Q
πv
k,v(ηv, 1)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 (if k = 0) ,

ηv(�v)− α + α−1

q
1/2
v + q

−1/2
v

(if k = 1) ,

q−1
v ηv(�v)

k−2(αq
1/2
v ηv(�v)− 1)(α−1q

1/2
v ηv(�v)− 1) (if k ≥ 2) .

• If c(πv) = 1 and πv is isomorphic to σ(χv | · |1/2v , χv| · |−1/2
v ), then

Q
πv
k,v(ηv, 1) =

{
1 (if k = 0) ,

ηv(�v)
k−1(ηv(�v)− q−1

v χv(�v)
−1) (if k ≥ 1) .

• If c(πv) ≥ 2, thenQπvk,v(ηv, 1) = ηv(�v)
k for any k ∈ N0.

Next we explain our result on Eisenstein series. Let χ be a character of A×/F×R>0.
Let K be the standard maximal compact subgroup of GL(2,A). For ν ∈ C, we denote by
I (χ | · |ν/2A ) the space of all smooth functions f : GL(2,A) → C which are K-finite and
satisfy the condition

f

((
a b

0 d

)
g

)
= χ(a/d)|a/d|(ν+1)/2

A f (g)

for all
(
a b
0 d

) ∈ (
A× A
0 A×

)
and g ∈ GL(2,A). For f (ν) ∈ I (χ | · |ν/2A ), E(f (ν), g) denotes the

Eisenstein series for f (ν). Let n be an ideal of oF divided by f2
χ . Tsuzuki explicitly computed

regularized periods of E(f (ν), g) for f (ν) ∈ I (χ | · |ν/2A )K∞K0(n) in the case where F is totally
real, χ is unramified and n is square free (cf. [9, Lemma 7.5]).

In this paper we explicitly compute regularized periods of E(f (ν), g) for f (ν) ∈
I (χ | · |ν/2A )K∞K0(n) when the field F is an arbitrary number field, χ is an arbitrary charac-
ter and the ideal n is not necessarily square free. Let{

f (ν)χ,ρ ; ρ ∈
n∏
k=1

Map(Sk(nf−2
χ ), {0, . . . , k})

}
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be the subset of I (χ | · |ν/2A )K∞K0(n) constructed in §9, which is an orthonormal basis of

I (χ | · |ν/2A )K∞K0(n) if ν ∈ iR. Here n is the maximal nonnegative integer k such that

Sk(nf−2
χ ) 	= ∅. We write Eχ,ρ(ν, g) for E(f (ν)χ,ρ, g). Let N(fχ) and DF denote the abso-

lute norm of fχ and that of the global different of F/Q, respectively. Then we prove the
following theorem (see Theorem 37 in detail).

MAIN THEOREM B. Let η be a character of A×/F×R>0 satisfying the condition (
).
We assume ν ∈ iR if S(fχ ) = ∅. Then, for any ρ = (ρ1, . . . , ρn) ∈ ∏n

k=1 Map(Sk(nf−2
χ ),

{0, . . . , k}), there exists an explicitly computable meromorphic function Bηχ,ρ(s, ν) on C × C

such that

Pηreg(Eχ,ρ(ν,−))= (2π)#ΣCG(η)D−ν/2
F N(fχ )1/2−ν

×Bηχ,ρ(1/2, ν)
L((1 + ν)/2, χη)L((1 − ν)/2, χ−1η)

L(1 + ν, χ2)
.

We explain the structure of this paper. In §1, we introduce notations for fundamental ob-
jects and review notions of spherical functions and local new forms onGL(2, Fv) for v ∈ ΣF ,
where Fv denotes the completion of F at v. In §2, for v ∈ Σfin, we construct a basis of
I (χv)

K0(p
n
v) which is orthogonal for any GL(2, Fv)-invariant hermitian inner product, where

I (χv) is a unitarizable spherical principal series representation ofGL(2, Fv) with trivial cen-
tral character and pv denotes the maximal ideal of the integer ring of Fv . In §3, for v ∈ Σfin,

we construct an orthogonal basis of VK0(p
c(πv)+n
v )

πv , where (πv, Vπv ) is an infinite dimensional
unitarizable irreducible nonspherical representation of GL(2, Fv) with trivial central charac-
ter and c(πv) denotes the exponent of the conductor of πv . In §4, we construct a basis of
V

K∞K0(n)
π and explicitly compute modified global zeta integrals of cusp forms in V K∞K0(n)

π .
Moreover we construct polynomialsQπvk,v(ηv,X). In §5, we recall regularized periods defined
by Tsuzuki and prove Main Theorem A.

From §6 to §10, we consider regularized periods of Eisenstein series. In §6, we review
notions of induced representations of GL(2,A) and Eisenstein series on GL(2,A). In §7

and 8, we construct an orthonormal basis of I (χv | · |ν/2v )K0(p
2f (χv )+n
v ) if ν ∈ iR, where

I (χv | · |ν/2v ) denotes an induced representation from a ramified character χv| · |ν/2v of F×
v and

f (χv) denotes the exponent of the conductor of χv . In §9, we construct an orthonormal basis
of I (χ | · |ν/2A )K∞K0(n) if ν ∈ iR and compute constant terms E◦

χ,ρ(ν, g) of Eχ,ρ(ν, g) and
modified global zeta integrals of Eχ,ρ(ν, g)−E◦

χ,ρ(ν, g). In §10, we prove Main Theorem B
and compute regularized periods of the residue eχ,ρ,−1(g) and the constant term eχ,ρ,0(g) at
ν = 1 of Eχ,ρ(ν, g).

NOTATION. Let N be the set of natural numbers not including the number 0 and put
N0 := N ∪ {0}. For any sets A and B, we denote by Map(A,B) the set of all mappings from
A to B.

For any setX and two nonnegative functions f : X → R≥0 and g : X → R≥0, we write
f (x) ≺ g(x) if there exists C > 0 such that f (x) ≤ Cg(x), for all x ∈ X. For any set X
and its subset A, we denote the characteristic function of A by chA. For any condition P , the
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Kronecker symbol δ(P ) is defined by

δ(P ) :=
{

1 (if P is true) ,
0 (if P is false) .

Let F be an algebraic number field of degree dF and oF its ring of integers. Let ΣF ,
Σ∞, ΣR , ΣC and Σfin be the set of places of F , the set of infinite places of F , the set of
real places of F , the set of complex places of F and the set of finite places of F , respectively.
The completion of F at a place v ∈ ΣF is denoted by Fv . If v is a finite place of F , the
field Fv is a non-archimedean local field, whose ring of integers is denoted by ov . We fix a
uniformizer �v of ov once and for all, and denote by qv the cardinality of the residue field
ov/pv , where pv = �vov is the maximal ideal of ov. For any v ∈ ΣF , we write | · |v for the
normalized valuation of Fv . Let A and Afin be the adele ring of F and the finite adele ring of
F , respectively.

For an ideal a of oF , let S(a) denote the set of all v ∈ Σfin such that aov ⊂ pv . For all
k ∈ N , let Sk(a) denote the set of all v ∈ S(a) such that aov = pkv . Then, S(a) = ∐n

k=1 Sk(a),
where n is the maximal nonnegative integer m such that Sm(a) 	= ∅. We denote the absolute
norm of a by N(a).

For any algebraic subgroup M defined over F of G = GL(2) and v ∈ ΣF , groups
of Fv-rational points, F -rational points and A-rational points are denoted by Mv,MF and
MA, respectively. We denote the unit element of G by e. Let B be the Borel subgroup of G
consisting of all upper triangular matrices and Z the center of G. For v ∈ ΣF , we put

Kv :=

⎧⎪⎪⎨⎪⎪⎩
O(2,R) (if v ∈ ΣR) ,

U(2,C) (if v ∈ ΣC) ,

GL(2, ov) (if v ∈ Σfin) .

Then, K := ∏
v∈ΣF Kv is a maximal compact subgroup of GA. We set K∞ := ∏

v∈Σ∞ Kv

and K0(p
n
v) := {(

a b
c d

) ∈ Kv; c ≡ 0 (mod pnv)
}

for n ∈ N0. For an ideal a of oF , we put
K0(a) := ∏

v∈Σfin
K0(aov).

1. Preliminaries.
1.1. Local and global differents. For v ∈ Σfin, let pdvv be the local different of Fv .

Let DF be the discriminant of F/Q, which is defined as the absolute norm of the global
different of F/Q. Then,DF equals

∏
v∈Σfin

q
dv
v .

Let AQ be the adele ring of Q andψQ the additive character of AQ/Q with archimedean
component R � x �→ exp(2πix). Then, ψF := ψ ◦ trF/Q is a nontrivial additive character of
A/F and decomposed into a product of local additive characters ψFv (v ∈ ΣF ). Moreover,
p−dv
v equals the maximal fractional ideal of ov contained in KerψFv for any v ∈ Σfin.

1.2. Haar measures and Gauss sums. For v ∈ ΣF , let dxv be the self-dual Haar
measure of Fv with respect to ψFv . Then, the equalities vol([0, 1]) = 1, vol({σ + it; σ, t ∈
[0, 1]}) = 2 and vol(ov) = q

−dv/2
v hold for v ∈ ΣR , v ∈ ΣC and v ∈ Σfin, respectively.

We denote the Haar measure cvdxv/|xv|v of F×
v by d×xv , where cv = 1 for v ∈ Σ∞ and
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cv = (1 − q−1
v )−1 for v ∈ Σfin. We denote the Haar measure

∏
v∈ΣF d

×xv of A× by d×x.
We fix Haar measures dgv on Gv and dkv on Kv such that vol(Kv, dgv) = vol(Kv, dkv) = 1
for v ∈ ΣF , respectively. We denote the Haar measure

∏
v∈ΣF dkv of K by dk.

Let | · |A = ∏
v∈ΣF | · |v be the idele norm of A× and A1 = {x ∈ A×; |x|A = 1} the

norm one subgroup of A×. For y ∈ R>0, y denotes the idele whose v-component satisfies

y
v

=
{
y1/dF (v ∈ Σ∞) ,
1 (v ∈ Σfin) .

Then, A× is isomorphic to R>0 × A1 by the map A× � x �→ (|x|A, |x|A−1x) ∈ R>0 × A1.

Set G1
A = {g ∈ GA; | det g|A = 1} and A =

{(
y 0
0 y

)
; y > 0

}
. Then, we have GA = AG1

A.

For v ∈ Σfin and a quasi character χv of F×
v , the number f (χv) stands for the minimal

nonnegative integer f such that the restriction of χv to 1 + p
f
v equals identically one. The

ideal p
f (χv)
v is called the conductor of χv . We define the Gauss sum associated with χv by

G(χv) :=
∫

o×
v

χv(u�
−dv−f (χv)
v )ψFv (u�

−dv−f (χv)
v )d×u .

Then, G(χv) equals χv(�
−dv
v )q

−dv/2
v for any unramified quasi character χv of F×

v . For any
quasi character χ = ∏

v∈ΣF χv of A×/F×, we define the conductor of χ by the ideal fχ of

oF such that fχov = p
f (χv)
v for all v ∈ Σfin. We write χfin for

∏
v∈Σfin

χv . The Gauss sum
associated with χ is defined by

G(χ) :=
∏
v∈Σfin

G(χv) .

For v ∈ ΣF , we denote the trivial character of F×
v by 1v , and the trivial character of A× by

1. Throughout this paper, whenever we consider a quasi character χ of A×/F×, we assume
that χ(y) = 1 for all y ∈ R>0. Such a quasi character is a character.

1.3. Induced representations. For v ∈ ΣF and any quasi character χv of F×
v , I (χv)

denotes the space of all smooth functions f : Gv → C which are Kv-finite and satisfy the
condition

f

((
a b

0 d

)
g

)
= χv(a/d)|a/d|1/2v f (g)

for all
(
a b
0 d

) ∈ Bv and g ∈ Gv . Then, I (χv) is a (gv,Kv)-module if v ∈ Σ∞, where gv is the
complexification of the Lie algebra of Gv .

1.4. Spherical functions on GL(2,R) and GL(2,C). For v ∈ Σ∞, let πv be a Kv-
spherical unitarizable irreducible admissible (gv,Kv)-module with trivial central character.
Then, πv is isomorphic to I (| · |νv) for some ν ∈ C. The Whittaker model of πv with respect to
ψFv is denoted by Vπv . Let f πv0,v be the spherical vector in I (| · |νv) normalized so that f πv0,v(e)

equals one. For v ∈ ΣR (resp. v ∈ ΣC), we denote φ0,v the spherical Whittaker function in
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Vπv which corresponds to ΓR(1 + 2ν)f πv0,v (resp. (2π)−1ΓC(1 + 2ν)f πv0,v) by the isomorphism

I (| · |νv) � f �→ Wf (g) :=
∫
Fv

f

(
w0

(
1 x

0 1

)
g

)
ψFv (−x)dx ∈ Vπv ,

where w0 = (
0 −1
1 0

)
, ΓR(s) = π−s/2Γ (s/2) and ΓC(s) = (2π)−sΓ (s).

We define the local zeta integral by

Z(s, ηv, φ) =
∫
F×
v

φ

(
t 0
0 1

)
ηv(t)|t|s−1/2

v d×t

for any quasi character ηv of F×
v and φ ∈ Vπv . The defining integral converges absolutely for

Re(s) � 0 and Z(s, ηv, φ) has a meromorphic continuation to C as a function in s. If ηv is
of the form | · |tvv for some tv ∈ C, then

Z(s, ηv, φ0,v) = L(s, πv ⊗ ηv) =
{
ΓR(s + ν + tv)ΓR(s − ν + tv) (if v ∈ ΣR)
ΓC(s + ν + tv)ΓC(s − ν + tv) (if v ∈ ΣC)

holds (cf. [3, Proposition 3.4.6] and [11, Proposition (2.3.14)]).

1.5. Local new forms. For v ∈ Σfin, let πv be an infinite dimensional irreducible
admissible representation ofGv with trivial central character. The Whittaker model of πv with
respect to ψFv is denoted by Vπv . The local zeta integral Z(s, ηv, φ) for any quasi character
ηv of F×

v and φ ∈ Vπv is defined in the same way as the archimedean case.
We consider a compact open subgroup K0(p

n
v) of Kv for n ∈ N0. Then, {K0(p

n
v); n ∈

N0} gives a decreasing filtration of Gv . The invariant subspace V
K0(p

n
v)

πv is nonzero for some

n. We put c(πv) := min{n ∈ N0;V K0(p
n
v)

πv 	= 0}. By the theory of local new forms forGL(2),
we have the following proposition (cf. [6, p. 3], [7], and [8, Theorem 11.13]).

PROPOSITION 1. The dimension of VK0(p
c(πv)
v )

πv equals one. For any n ∈ N0, we have

V K0(p
c(πv)+n
v )

πv
=

n⊕
k=0

πv

(
�−k
v 0
0 1

)
VK0(p

c(πv)
v )

πv
.

There exists a unique element φ0,v ∈ V K0(p
c(πv)
v )

πv such that

Z(s, ηv, φ0,v) = vol(o×
v , d

×t)ηv(�v)−dvqdv(s−1/2)
v L(s, πv ⊗ ηv)

for any unramified quasi character ηv of F×
v .

REMARK 2. In fact, φ0,v is given by the following:

• If c(πv) = 0, then we have

φ0,v

(
�m
v 0

0 1

)
= q−(m+dv)/2

v

α
m+dv+1
1 − α

m+dv+1
2

α1 − α2
δ(m ≥ −dv)

for any m ∈ Z, where (α1, α2) is the Satake parameter of πv .
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• If c(πv) = 1, then πv is isomorphic to the special representation
σ(χv| · |1/2v , χv| · |−1/2

v ) for some unramified character χv of F×
v satisfying χ2

v = 1v ,
and we have

φ0,v

(
t 0
0 1

)
= χv(�

dv
v t)|�dv

v t|vch
p−dv
v
(t)

for any t ∈ F×
v .

• If c(πv) ≥ 2, then we have

φ0,v

(
t 0
0 1

)
= ch

�
−dv
v o×

v
(t)

for any t ∈ F×
v .

In addition, we assume that πv is unitarizable. Then, the Gv-invariant hermitian inner
product on the Whittaker model Vπv is given by

〈W1|W2〉 =
∫
F×
v

W1

(
t 0
0 1

)
W2

(
t 0
0 1

)
d×t

for anyW1,W2 ∈ Vπv (cf. [2, Theorem 12]). By a direct computation, we have the following.

LEMMA 3. We have

〈φ0,v|φ0,v〉

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q−dv/2
v

1 − q−2
v |α1α2|2

(1 − q−1
v |α1|2)(1 − q−1

v |α2|2)|1 − q−1
v α1α2|2

(if c(πv) = 0) ,

q
−dv/2
v (1 − q−2

v )−1 (if c(πv) = 1) ,

q
−dv/2
v (if c(πv) ≥ 2) .

2. A basis of the K0(p
n
v)-invariant subspace in a spherical representation. For

v ∈ Σfin, let πv be an infinite dimensional unitarizable irreducible spherical representation
of Gv with trivial central character. Then, πv is isomorphic to I (χv) for some unramified
quasi character χv of F×

v . We denote by f πv0,v the spherical vector in I (χv) normalized so that
f
πv
0,v(e) equals one.

Let H(Gv,Kv) be the vector space of all Kv-biinvariant functions f : Gv → C with
compact support. The space H(Gv,Kv) is called the spherical Hecke algebra of Gv . Let
M(2, ov) be the set of all 2 × 2 matrices with coefficients in ov . Set

T (pkv) := ch{g∈M(2,ov);(detg)ov=pkv}

for any k ∈ N0. We denote
(
�k
v 0

0 �l
v

)
by δv(k, l) for any k, l ∈ Z and set

R(pv) := chKvδv(1,1)Kv = chδv(1,1)Kv .

Then, T (pv), R(pv) and R(pv)−1 generate H(Gv,Kv) as an algebra. For simplicity we write
f0,v for f πv0,v in the proofs in this section.
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LEMMA 4. For every k ∈ N0, there exists bπv (k) ∈ R such that πv(T (pkv))f
πv
0,v =

bπv (k)f
πv
0,v .

PROOF. We prove this assertion by induction on k. For simplicity, we write bk for
bπv (k). The assertion holds for k = 0 because we can take b0 = 1. By the theory of the

spherical Hecke algebra, we have πv(T (pv))f0,v = q
1/2
v (α1 + α2)f0,v , where (α1, α2) =

(χv(�v), χv(�v)
−1) is the Satake parameter of πv . Since πv is unitarizable, α1 + α2 must

be real. Therefore the assertion holds for k = 1 because we can take b1 = q
1/2
v (α1 + α2).

Next, suppose k ≥ 0 and that there exists bj for every j ∈ {0, . . . , k + 1}. By the theory of
the spherical Hecke algebra, the equality T (pv)T (pk+1

v ) = T (pk+2
v ) + qvR(pv)T (p

k
v) holds

(cf. [1, Proposition 4.6.4]). By πv(T (pkv))f0,v = bkf0,v and πv(T (pk+1
v ))f0,v = bk+1f0,v ,

we have

πv(T (p
k+2
v ))f0,v = πv(T (pv))πv(T (p

k+1
v ))f0,v − qvR(pv)T (p

k
v)f0,v

= q
1
2
v (α1 + α2)bk+1f0,v − qvα1α2bkf0,v

= (q
1
2
v (α1 + α2)bk+1 − qvbk)f0,v .

Thus we can take bk+2 = q
1/2
v (α1 + α2)bk+1 − qvbk. �

REMARK 5. By solving the recurrence relation of bk, we obtain

bk = qk/2v

αk+1
1 − αk+1

2

α1 − α2

for any k ∈ N0.

LEMMA 6. For every k ∈ N0, there exists aπv (k) ∈ R such that

πv
(
chKvδv(k,1)Kv

)
f
πv
0,v = aπv (k)f

πv
0,v .

PROOF. We prove this assertion by induction on k. For simplicity, we write ak for
aπv (k). The assertion holds for k = 0 because we can take a0 = 1. Next, suppose k ≥ 1. By
definition, we have

T (pkv)= ch{g∈M(2,ov) ; (detg)ov=pkv} = ch⋃k
r=0 Kvδv(k−r,r)Kv

= ch∐�k/2�
r=0 Kvδv(k−r,r)Kv

=
�k/2�∑
r=0

chKvδv(k−r,r)Kv .

Since the central character of πv is trivial and α1α2 equals one,

bkf0,v = πv(T (p
k
v))f0,v =

�k/2�∑
r=0

πv
(
chKvδv(k−r,r)Kv

)
f0,v

=
�k/2�∑
r=0

(α1α2)
rπv

(
chKvδv(k−2r,0)Kv

)
f0,v
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= πv
(
chKvδv(k,0)Kv

)
f0,v +

�k/2�∑
r=1

ak−2rf0,v .

Thus we have ak = bk − ∑�k/2�
r=1 ak−2r ∈ R. �

REMARK 7. By solving the recurrence relation of ak, we obtain

ak =
{
bk (k = 0, 1) ,
bk − bk−2 (k ≥ 2) .

For any Gv-invariant hermitian inner product (·|·)v on I (χv), we put ‖f ‖v = √
(f |f )v

for any f ∈ I (χv).
LEMMA 8. For every k ∈ N0, there exists λπv (k) ∈ R such that(

πv(δv(−k, 0))f πv0,v

∣∣∣∣f πv0,v

)
v

= λπv (k)‖f πv0,v‖2
v

for any Gv-invariant hermitian inner product (·|·)v on I (χv). Here {λπv (k)}k∈N0 is indepen-
dent of the choice of a Gv-invariant hermitian inner product.

PROOF. For simplicity, we write λk for λπv (k). Let (·|·) be a Gv-invariant hermitian
inner product on I (χv). We have(

πv(δv(−k, 0))f0,v

∣∣∣∣f0,v

)
=

(
f0,v

∣∣∣∣πv(k1δv(k, 0)k2)f0,v

)
for any k1, k2 ∈ Kv . Hence, we have(

πv(δv(−k, 0))f0,v

∣∣∣∣f0,v

)
= 1

vol (Kvδv(k, 0)Kv)

∫
Kvδv(k,0)Kv

(
f0,v

∣∣∣∣πv(g)f0,v

)
dg

= 1

vol (Kvδv(k, 0)Kv)

(
f0,v

∣∣∣∣ ∫
Kvδv(k,0)Kv

πv(g)f0,vdg
)

= 1

vol (Kvδv(k, 0)Kv)

(
f0,v

∣∣∣∣πv(chKvδv(k,0)Kv

)
f0,v

)
.

Therefore we can take

λk = ak

vol (Kvδv(k, 0)Kv)
.

�

Here, we can explicitly compute vol (Kvδv(k, 0)Kv) by the following lemma.

LEMMA 9. For k ∈ N0, we have

vol (Kvδv(k, 0)Kv) =
{

1 (k = 0),

(qv + 1)qk−1
v (k ≥ 1).
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PROOF. This assertion is obvious for k = 0. For k ≥ 1, by the Iwasawa decomposition,
we have

Kvδv(k, 0)Kv =
k−1∐
r=1

{ ∐
b∈(ov/prv)×

(
�r
v b

0 �k−r
v

)
Kv

}
∐ { ∐

b∈ov/pkv

(
�k
v b

0 1

)
Kv

} ∐ (
1 0
0 �k

v

)
Kv .

Thus, we have

vol (Kvδv(k, 0)Kv) =
{ k−1∑
r=1

(qv − 1)qr−1
v + qkv + 1

}
vol(Kv).

Since vol(Kv) equals one, we obtain the assertion. �

PROPOSITION 10. For n ∈ N , there exists a unique finite set {f πv1,v, . . . , f
πv
n,v} of

I (χv)
K0(p

n
v) satisfying the following conditions (1) and (2):

(1) There exists a finite sequence {cπv (k, j)}1≤k≤n,0≤j≤k−1 of real numbers such
that

f
πv
k,v = πv(δv(−k, 0))f πv0,v −

k−1∑
j=0

cπv (k, j)f
πv
j,v for all k ∈ {1, . . . , n} .

(2) For any Gv-invariant hermitian inner product (·|·)v on I (χv), the set
{f πv0,v, . . . , f

πv
n,v} is an orthogonal basis of I (χv)K0(p

n
v).

Moreover, there exists a unique family {τπv (k, j)}0≤k≤n,0≤j≤k of real numbers such that(
πv(δv(−k, 0))f πv0,v

∣∣∣∣f πvj,v)
v

= τπv (k, j)‖f πv0,v‖2
v

for all k, j ∈ {0, . . . , n} and for any Gv-invariant hermitian inner product (·|·)v on I (χv).

PROOF. For simplicity, we write ck,j and τk,j for cπv (k, j) and τπv (k, j), respectively.
By Proposition 1, the finite set

{f0,v} ∪
{
fk,v = πv(δv(−k, 0))f0,v −

k−1∑
j=0

ck,j fj,v ; k ∈ {1, . . . , n}
}

is a basis of I (χv)K0(p
n
v) for any {ck,j }1≤k≤n,0≤j≤k−1 ⊂ R. We will prove the proposition by

induction on n. The assertion holds for n = 1 since we can take

c1,0 = λ1 = χv(�v)+ χ−1
v (�v)

q
1/2
v + q

−1/2
v

∈ R ,

τ0,0 = 1, τ1,0 = λ1,0, and τ1,1 = 1 − c1,0τ1,0, respectively (cf. [9, Lemma 6]).
Suppose that n ≥ 2 and that both {ck,j }1≤k≤n−1,0≤j≤k−1 and {τk,j }0≤k≤n−1,0≤j≤k have

been determined. Let (·|·) be aGv-invariant hermitian inner product on I (χv). By assumption
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and a direct computation, we obtain ‖fk,v‖2 = τk,k‖f0,v‖2 for all k ∈ {0, . . . , n − 1}. Thus
we have τk,k > 0 for all k ∈ {0, . . . , n− 1}.

Now we will show the existence of {cn,j }0≤j≤n−1. We can take τn,0 = λn obviously.
Assume k ∈ {1, . . . , n− 1}. If there exists {τn,j }0≤j≤k−1, we have(

πv(δv(−n, 0))f0,v

∣∣∣∣fk,v)
=

(
πv(δv(−n, 0))f0,v

∣∣∣∣πv(δv(−k, 0))f0,v −
k−1∑
j=0

ck,j fj,v

)

=
(
πv(δv(−(n− k), 0))f0,v

∣∣∣∣f0,v

)
−
k−1∑
j=0

ck,j

(
πv(δv(−n, 0))f0,v

∣∣∣∣fj,v)

=
(
λn−k −

k−1∑
j=0

ck,j τn,j

)
‖f0,v‖2 .

Hence we can take

τn,k := λn−k −
k−1∑
j=0

ck,j τn,j ∈ R .

Therefore, we can construct τn,k for all k ∈ {0, . . . , n− 1} inductively.
Next, assume k ∈ {0, . . . , n− 1} and we put

cn,k := τn,k

τk,k
∈ R .

Then, we have

(fn,v |fk,v)=
(
πv(δv(−n, 0))f0,v

∣∣∣∣fk,v) −
n−1∑
j=0

cn,j (fj,v |fk,v)

= τn,k‖f0,v‖2 − cn,k‖fk,v‖2

= (τn,k − cn,kτk,k)‖f0,v‖2

= 0 .

Thus we obtain {cn,j }0≤j≤n−1.
Finally, we show the existence of τn,n. In the same way as the above computation, we

have (
πv(δv(−n, 0))f0,v|fn,v

) =
(
λ0 −

n−1∑
j=0

cn,j τn,j

)
‖f0,v‖2 .

Hence we can take

τn,n := λ0 −
n−1∑
j=0

cn,j τn,j ∈ R .

�
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By the argument in the proof of Proposition 10, the family {cn,k} can be computed by the
following recurrence relations.

COROLLARY 11. For any n ∈ N , we have

• τn,k = λn−k −
k−1∑
j=0

ck,j τn,j for all k ∈ {1, . . . , n},

• τn,0 = λn, τ0,0 = 1,

• cn,k = τn,k

τk,k
for all k ∈ {0, . . . , n− 1}.

By induction on n and a direct computation, we can prove the following.

COROLLARY 12. We set α := α1. For n ∈ N , we have the following:

• τn,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qv
∑n
j=0 α

2j − ∑n−1
j=1 α

2j

αnq
n/2
v (1 + qv)

(if k = 0) ,

∑n−1
j=0 α

2j (qv − α2)(α2qv − 1)

αn+1q
(n−1)/2
v (1 + qv)2

(if k = 1) ,

(qv − α2)(α2qv − 1)(qv − 1)
∑n−k
j=0 α

2j

αn−k+2q
(n−k+4)/2
v (1 + qv)

(if n ≥ 2, 2 ≤ k ≤ n) ,

• cn,k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qv
∑n
j=0 α

2j − ∑n−1
j=1 α

2j

αnq
n/2
v (1 + qv)

(if k = 0) ,

∑n−k
j=0 α

2j

αn−kq(n−k)/2v

(if 1 ≤ k ≤ n− 1) .

3. A basis of the K0(p
n
v)-invariant subspace in a nonspherical representation. For

v ∈ Σfin, let πv be an infinite dimensional unitarizable irreducible admissible representation
with trivial central character. In this section, assume c(πv) ≥ 1.

Fix n ∈ N0 and assume c(πv) ≥ 2. In this case we define the inner product (·|·)v by
q
dv/2
v 〈·|·〉. For k ∈ {0, . . . , n}, we denote πv(δv(−k, 0))φ0,v by φk,v . Then, by Lemma 3 and

a direct computation, we have the following proposition.

PROPOSITION 13. {φ0,v, . . . , φn,v} is an orthogonal basis on
(
V

K0(p
c(πv)+n
v )

πv , (·|·)v
)

and we have ‖φ0,v‖v := √
(φ0,v|φ0,v)v = 1.

Next assume c(πv) = 1. Then we have πv = σ(χv| · |1/2v , χv | · |−1/2
v ) for some unramified

character χv of F×
v satisfying χ2

v = 1v . In this case we define the inner product (·|·)v by

q
dv/2
v (1 − q−2

v )〈·|·〉. By Lemma 3, we have ‖φ0,v‖v = 1.
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LEMMA 14. For every k ∈ N0, there exists λπv (k) ∈ R× such that(
πv(δv(−k, 0))φ0,v

∣∣∣∣φ0,v

)
v

= λπv (k) .

PROOF. We have〈
πv(δv(−k, 0))φ0,v|φ0,v

〉 = ∫
F×
v

χv(�
dv
v )q

−dv
v χv(�

−k
v t)|�−k

v t|vch
p−dv
v
(�−k

v t)

×χv(�dv
v )q

−dv
v χv(t)|t|vch

p−dv
v
(t)d×t

= q−2dv+k
v χv(�

−k
v )

∫
F×
v

|t|2vch
pk−dvv

(t)d×t

= q−2dv+k
v χv(�

−k
v )

∞∑
n=k−dv

∫
o×
v

|�n
v u|2vd×u

= q−2dv+k
v χv(�

−k
v )

q
2dv−2k
v

1 − q−2
v

vol(o×
v , d

×t)

= q−k
v χv(�

−k
v )

1 − q−2
v

vol(o×
v , d

×t) .

Therefore we can take λπv (k) = q−k
v χv(�

−k
v ) and λπv (k)must be real by χv(�v) ∈ {±1}. �

The proof of the following proposition is the same as that of Proposition 10.

PROPOSITION 15. There exists a unique finite set {φ1,v, . . . , φn,v} of V K0(p
c(πv)+n
v )

πv sat-
isfying the following conditions (1) and (2):

(1) There exists a finite sequence of real numbers {cπv (k, j)}1≤k≤n,0≤j≤k−1 such
that

φk,v = πv(δv(−k, 0))φ0,v −
k−1∑
j=0

cπv (k, j)φj,v for all k ∈ {1, . . . , n} .

(2) The set {φ0,v, . . . , φn,v} is an orthogonal basis of
(
V

K0(p
c(πv)+n
v )

πv , (·|·)v
)
.

By induction on n and a direct computation, we can prove the following.

COROLLARY 16. With the notation in the previous Proposition, set(
πv(δv(−k, 0))φ0,v

∣∣∣∣φj,v)
v

= τπv (k, j)

for all k, j ∈ {0, . . . , n}. Then, for n ∈ N we have the following:

• τπv (n, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

qnv χv(�v)
n

(if k = 0) ,

q2
vχv(�v)

2 − 1

qn−k+2
v χv(�v)n−k+2

(if 1 ≤ k ≤ n) ,
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• cπv (n, k) = 1

qn−kv χv(�v)n−k
(if 0 ≤ k ≤ n− 1) .

4. Zeta integrals of cusp forms on GL(2). Let π be a K∞-spherical cuspidal auto-
morphic representation ofGA with trivial central character, where the representation space Vπ
is contained in the space of cusp forms A0(GF \GA, 1). For any quasi character η of A×/F×
and ϕ ∈ Vπ , we define the global zeta integral by

Z(s, η, ϕ) :=
∫
F×\A×

ϕ

(
t 0
0 1

)
η(t)|t|s−1/2

A d×t , s ∈ C .

The defining integral converges absolutely for any s ∈ C, and hence Z(s, η, ϕ) is an entire
function in s.

We fix a family {πv}v∈ΣF consisting of unitarizable irreducible admissible representa-
tions such that π ∼= ⊗

v∈ΣF πv . The conductor of π is defined to be the ideal fπ of oF such

that fπov = p
c(πv)
v for all v ∈ Σfin. Let n be an ideal of oF which is divided by fπ . We

construct a basis of V K∞K0(n)
π .

For v ∈ Σfin satisfying the isomorphism πv ∼= I (χv) for some unramified quasi char-
acter χv , we denote by φk,v ∈ Vπv the Whittaker function corresponding to χv(�v)−dv (1 −
χ2
v (�v)q

−1
v )−1f

πv
k,v by the isomorphism

I (χv) � f �→ Wf (g) :=
∫
Fv

f

(
w0

(
1 x

0 1

)
g

)
ψFv (−x)dx ∈ Vπv ,

for all k ∈ {0, . . . , n}. Then, the function φ0,v coincides with the local new form which
appears in Proposition 1.

Let n be the maximal nonnegative integer m such that Sm(nf−1
π ) 	= ∅. For ρ =

(ρk)1≤k≤n ∈ ∏n
k=1 Map

(
Sk(nf−1

π ), {0, . . . , k}), let us denote by ϕπ,ρ the cusp form in

V
K∞K0(n)
π corresponding to⊗

v∈Σ∞
φ0,v ⊗

⊗
v∈S1(nf−1

π )

φρ1(v),v ⊗ · · · ⊗
⊗

v∈Sn(nf−1
π )

φρn(v),v ⊗
⊗

v∈Σfin−S(nf−1
π )

φ0,v

by the isomorphism Vπ ∼= ⊗
v∈ΣF Vπv .

For v ∈ S(fπ ), let (·|·)v be the Gv-invariant hermitian inner product on Vπv defined in
§3. For v ∈ Σ∞ ∪ (Σfin − S(fπ)), we take a Gv-invariant hermitian inner product (·|·)v on
Vπv such that ‖φ0,v‖v = 1. We obtain the following by the same proof as [9, Lemma 2.4].

PROPOSITION 17. The finite set{
ϕπ,ρ ; ρ ∈

n∏
k=1

Map(Sk(nf−1
π ), {0, . . . , k})

}
is an orthogonal basis of V K∞K0(n)

π . Here Vπ ⊂ L2(ZAGF \GA) is equipped with the L2-
inner product.
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LEMMA 18. For any unramified quasi character ηv of F×
v and any k ∈ N , we define

polynomialsQπvk,v(ηv,X) ∈ C[X] by the following recurrence relation.

Q
πv
k,v(ηv,X) = ηv(�v)

kXk −
k−1∑
j=0

cπv (k, j)Q
πv
j,v(ηv,X) ,

Q
πv
0,v(ηv,X) = 1 ,

where we put cπv (k, j) = 0 for all k ∈ N and j ∈ {0, . . . , k − 1}, if v ∈ Σfin satisfies
c(πv) ≥ 2. Then, for any v ∈ Σfin, k ∈ {0, . . . , n} and any unramified quasi character ηv of
F×
v , we have

Z(s, ηv, φk,v) = Q
πv
k,v(ηv, q

1/2−s
v )Z(s, ηv, φ0,v) .

PROOF. Suppose c(πv) ≥ 2. We have

Z(s, ηv, φk,v)=Z
(
s, ηv, πv(δv(−k, 0))φ0,v

)
= ηv(�v)

kqk(1/2−s)
v Z(s, ηv, φ0,v) .

Hence we can take Qπvk,v(ηv,X) = ηv(�v)
kXk .

Suppose c(πv) ∈ {0, 1}. We prove the assertion by induction on k. The assertion is
obvious for k = 0. Indeed, we can take Qπv0,v(ηv,X) = 1. Suppose k ≥ 1. We have

Z(s, ηv, φk,v)

= Z

(
s, ηv, πv(δv(−k, 0))φ0,v −

k−1∑
j=0

cπv (k, j)φj,v

)

= Z(s, ηv, πv(δv(−k, 0))φ0,v)−
k−1∑
j=0

cπv (k, j)Z(s, ηv, φj,v)

= ηv(�
k
v )q

k(1/2−s)
v Z(s, ηv, φ0,v)−

k−1∑
j=0

cπv (k, j)Q
πv
j,v(ηv, q

1/2−s
v )Z(s, ηv, φ0,v) .

Thus we can take

Q
πv
k,v(ηv,X) = ηv(�v)

kXk −
k−1∑
j=0

cπv (k, j)Q
πv
j,v(ηv,X).

�

By induction on k and a direct computation, we have the following.

COROLLARY 19. We have the following:

• If c(πv) = 0 and (α, α−1) is the Satake parameter of πv , then we have

Q
πv
k,v(ηv,X)
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=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 (if k = 0) ,

ηv(�v)X − α + α−1

q
1/2
v + q

−1/2
v

(if k = 1) ,

q−1
v ηv(�v)

k−2Xk−2(αq
1/2
v ηv(�v)X − 1)(α−1q

1/2
v ηv(�v)X − 1) (if k ≥ 2) .

• If c(πv) = 1 and πv is isomorphic to σ(χv | · |1/2v , χv| · |−1/2
v ), then we have

Q
πv
k,v(ηv,X) =

{
1 (if k = 0) ,

ηv(�v)
k−1Xk−1(ηv(�v)X − q−1

v χv(�v)
−1) (if k ≥ 1) .

• If c(πv) ≥ 2, then we have

Q
πv
k,v(ηv,X) = ηv(�v)

kXk

for any k ∈ N0.

We consider a character η of A×/F× satisfying

(
)

{
v ∈ Σ∞ ⇒ ηv = | · |tvv for some tv ∈ iR ,
fη is relatively prime to n .

For such η and ϕ ∈ VK∞K0(n)
π , we define the modified global zeta integral by

Z∗(s, η, ϕ) = ηfin(xη,fin)Z

(
s, η, π

(
1 xη

0 1

)
ϕ

)
, s ∈ C .

Here xη = (xη,v)v∈ΣF ∈ A is the adele whose v-component satisfies

xη,v =
{

0 (v ∈ Σ∞)
�

−f (ηv)
v (v ∈ Σfin)

and xη,fin is the projection of xη to Afin.

PROPOSITION 20. For any ρ = (ρ1, . . . , ρn) ∈ ∏n
k=1 Map(Sk(nf−1

π ), {0, . . . , k})
and η satisfying (
), we have

Z∗(s, η, ϕπ,ρ) = D
s−1/2
F G(η)

{ n∏
k=1

∏
v∈Sk(nf−1

π )

Q
πv
ρk(v),v

(ηv, q
1/2−s
v )

}
L(s, π ⊗ η) .

PROOF. We give a proof in the same way as [9, Lemma 2.5]. By definition, we have

Z∗(s, η, ϕπ,ρ)

=
∏
v∈Σ∞

Z

(
s, ηv, πv

(
1 xη,v

0 1

)
φ0,v

)

×
n∏
k=1

∏
v∈Sk(nf−1

π )

ηv(xη,v)Z

(
s, ηv, πv

(
1 xη,v

0 1

)
φρk(v),v

)
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×
∏

v∈Σfin−S(nf−1
π )

ηv(xη,v)Z

(
s, ηv, πv

(
1 xη,v

0 1

)
φ0,v

)
.

For v ∈ Σ∞, we have Z
(
s, ηv, πv

( 1 xη,v
0 1

)
φ0,v

) = L(s, πv ⊗ ηv). Next we consider the case

of v ∈ Σfin. Since fη is relatively prime to n, the character ηv is unramified if v ∈ S(nf−1
π ).

Therefore, for v ∈ S(nf−1
π ), by Proposition 1 we have

ηv(xη,v)Z

(
s, ηv, πv

(
1 xη,v

0 1

)
φρk(v),v

)
= Z(s, ηv, φρk(v),v)

= Q
πv
ρk(v),v

(ηv, q
1/2−s
v )Z(s, ηv, φ0,v)

= Q
πv
ρk(v),v

(ηv, q
1/2−s
v )vol(o×

v , d
×t)ηv(�v)−dvqdv(s−1/2)

v L(s, πv ⊗ ηv).

For v ∈ Σfin − S(nf−1
π ), if ηv is unramified, by Proposition 1 we have

ηv(xη,v)Z

(
s, ηv, πv

(
1 xη,v

0 1

)
φ0,v

)
= Z(s, ηv, φ0,v) = vol(o×

v , d
×t)ηv(�v)−dv qdv(s−1/2)

v L(s, πv ⊗ ηv) .

Suppose that ηv is ramified. We notice thatL(s, πv⊗ηv) is identically one. If c(πv) = 0,
by the definition of φ0,v , we have

φ0,v

(
�m
v 0

0 1

)
= q−(m+dv)/2

v

α
m+dv+1
1 − α

m+dv+1
2

α1 − α2
δ(m ≥ −dv)

for any m ∈ Z. By

φ0,v

( (
t 0
0 1

) (
1 �

−f (ηv)
v

0 1

))
= ψFv(t�

−f (ηv)
v )φ0,v

(
t 0
0 1

)
, (t ∈ F×

v ) ,

the equality

ηv(xη,v)Z

(
s, ηv, πv

(
1 xη,v

0 1

)
φ0,v

)
= qdv(s−1/2)

v G(ηv)L(s, πv ⊗ ηv)

holds (cf. [9, Lemma 2.5]). If c(πv) = 1, then we have

ηv(xη,v)Z

(
s, ηv, πv

(
1 xη,v

0 1

)
φ0,v

)
=

∫
F×
v

ψFv (t�
−f (ηv)
v )χv(�

dv
v t)|�dv

v t|vchov (�
dv
v t)ηv(t�

−f (ηv)
v )|t|s−1/2

v d×t

= qdv(s−1/2)
v

∫
ov−{0}

ψFv (t�
−dv−f (ηv)
v )ηv(t�

−dv−f (ηv)
v )χv(t)|t|s+1/2

v d×t

= qdv(s−1/2)
v

∞∑
n=0

∫
�n
v o×

v

ψFv (t�
−dv−f (ηv)
v )ηv(t�

−dv−f (ηv)
v )χv(t)|t|s+1/2

v d×t
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= qdv(s−1/2)
v

∞∑
n=0

(χv(�v)q
−s−1/2
v )n

∫
o×
v

ψFv (t�
−dv−f (ηv)+n
v )ηv(t�

−dv−f (ηv)+n
v )d×t

= qdv(s−1/2)
v G(ηv)L(s, πv ⊗ ηv)

since
∫
o×
v
ψFv (t�

−dv−f (ηv)+n
v )ηv(t�

−dv−f (ηv)+n
v )d×t vanishes if and only if n 	= 0.

If c(πv) ≥ 2, we have

ηv(xη,v)Z

(
s, ηv, πv

(
1 xη,v

0 1

)
φ0,v

)
=

∫
F×
v

ψFv (t�
−f (ηv)
v )ch

�
−dv
v o×

v
(t)ηv(t�

−f (ηv)
v )|t|s−1/2

v d×t

= qdv(s−1/2)
v G(ηv)L(s, πv ⊗ ηv) .

Hence, we have

Z∗(s, η, ϕπ,ρ1,...,ρn )

=
∏
v∈Σ∞

L(s, πv ⊗ ηv)

×
n∏
k=1

∏
v∈Sk(nf−1

π )

Q
πv
ρk(v),v

(ηv, q
1/2−s
v )vol(o×

v , d
×t)ηv(�v)−dvqdv(s−1/2)

v L(s, πv ⊗ ηv)

×
∏

v∈Σfin−(S(nf−1
π )∪S(fη))

vol(o×
v , d

×t)ηv(�v)−dvqdv(s−1/2)
v L(s, πv ⊗ ηv)

×
∏

v∈S(fη)−S(nf−1
π )

qdv(s−1/2)
v G(ηv)L(s, πv ⊗ ηv).

This completes the proof. �

5. Regularized periods of cusp forms. In this section we prove Main Theorem A.
We fix a relatively compact set ω ⊂ {(

a b
0 d

) ; a, d ∈ A1, b ∈ A
}

such that BFω ={(
a b
0 d

) ; a, d ∈ A1, b ∈ A
}
. For any t > 0, set

S(t) := ω

{(
y1 0
0 y2

)
; y1, y2 > 0, y1/y2 > t

}
K .

The set S(t) is called a Siegel set of GA. There exists t0 > 0 such that GA = GFS(t0). We
take such t0 once and for all and we put S = S(t0) (cf. [4, §10]).

For C > 0, let B(C) be the space of all holomorphic functions β on {z ∈ C; | Re(z)| <
C} satisfying that

(1) the equality β(z) = β(−z) holds,
(2) the estimate

|β(σ + it)| ≺ (1 + |t|)−l , σ ∈ [a, b]
holds for any [a, b] ⊂ (−C,C) and any l > 0.
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Let B be the space of all entire functions β on C such that the restriction of β to {z ∈
C; | Re(z)| < C} is contained in B(C) for any C > 0. For β ∈ B, t > 0 and λ ∈ C,
we consider

β̂λ(t) := 1

2πi

∫
Lσ

β(z)

z+ λ
tzdz , (σ > −Re(λ)) .

Here we write Lσ for {z ∈ C; Re(z) = σ } and Lσ is equipped with the direction of increasing
imaginary part.

For β ∈ B, λ ∈ C, a character η of A×/F× satisfying (
) and a function ϕ : AGF \GA →
C, we consider

P
η
β,λ(ϕ) :=

∫
F×\A×

{β̂λ(|t|A)+ β̂λ(|t|−1
A )}ϕ

((
t 0
0 1

) (
1 xη

0 1

))
η(t)ηfin(xη,fin)d

×t .

For the function ϕ : AGF \GA → C, we assume the following:

• For any β ∈ B, there exists a constant C ∈ R such that if Re(λ) > C the integral
P
η
β,λ(ϕ) converges.

• For any β ∈ B, {z ∈ C; Re(z) > C} � λ �→ P
η
β,λ(ϕ) has a meromorphic continuation

to a neighborhood of λ = 0.
• the constant term CTλ=0P

η
β,λ(ϕ) of the Laurent expansion of Pηβ,λ(ϕ) at λ = 0 is

proportional to the Dirac delta distribution supported at 0 as a linear functional of B.

Then, the proportionality constant Pηreg(ϕ) is called the regularized η-period of ϕ, i.e.,

CTλ=0P
η
β,λ(ϕ) = Pηreg(ϕ)β(0)

for all β ∈ B.
In this case, it was proved by Tsuzuki [9, Lemma 7.3] that if ϕ is rapidly decreasing on

S ∩G1
A, then Pηβ,λ(ϕ) converges absolutely for any (β, λ) ∈ B × C, Pηreg(ϕ) can be defined,

and Pηreg(ϕ) = Z∗(1/2, η, ϕ).

THE PROOF OF MAIN THEOREM A. For any ρ=(ρ1, . . . , ρn) ∈ ∏n
k=1 Map(Sk(nf−1

π ),

{0, . . . , k}), by Proposition 20, we have

Pηreg(ϕπ,ρ)=Z∗(1/2, η, ϕ)

= G(η)
{ n∏
k=1

∏
v∈Sk(nf−1

π )

Q
πv
ρk(v),v

(ηv, 1)

}
L(1/2, π ⊗ η) .

Therefore, we obtain the formula in Main Theorem A by Corollary 19. �

6. Preliminaries for regularized periods of Eisenstein series. We fix a character
χ = ∏

v∈ΣF χv of A×/F×. For ν ∈ C, we denote by I (χ | · |ν/2A ) the space of all smooth
functions f : GA → C which are K-finite and satisfy

f

((
a b

0 d

)
g

)
= χ(a/d)|a/d|(ν+1)/2

A f (g)
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for all
(
a b
0 d

) ∈ BA and g ∈ GA. Here a function f : GA → C is said to be smooth if
a function GL(2, F ⊗Q R) � g∞ �→ f (g∞gfin) is C∞ for any gfin ∈ GL(2,Afin) and a
functionGL(2,Afin) � gfin �→ f (g∞gfin) is locally constant for any g∞ ∈ GL(2, F ⊗Q R).

If ν ∈ iR, then the space I (χ | · |ν/2A ) is unitarizable and a GA-invariant hermitian inner
product is given by

(f1|f2) =
∫

K
f1(k)f2(k)dk

for any f1, f2 ∈ I (χ | · |ν/2A ). We denote the norm
√
(f |f ) of f ∈ I (χ | · |ν/2A ) by ‖f ‖.

Similarly, we define a Gv-invariant hermitian inner product (·|·)v on I (χv | · |ν/2v ) and the
norm ‖ · ‖v of I (χv | · |ν/2v ) for ν ∈ iR by integration on Kv .

For ν ∈ C, we take f (ν) ∈ I (χ | · |ν/2A ). The family {f (ν)}ν∈C is called a flat section if
the restriction of f (ν) to K is independent of ν ∈ C. We define the Eisenstein series for f (ν)

by

E(f (ν), g) =
∑

γ∈BF \GF
f (ν)(γ g)

for g ∈ GA and ν ∈ C. If Re(ν) > 1, the defining series converges absolutely. If {f (ν)}ν∈C

is a flat section, E(f (ν), g) has a meromorphic continuation to C as a function in ν. The
function E(f (ν), g) is holomorphic on iR and has the only possible pole at ν = 1 on the half
plane Re(ν) > 0, which occurs only when χ2 = 1.

Let n be an ideal of oF . From this section, we assume the following:

• v ∈ Σ∞ ⇒ χv = | · |tvv for some tv ∈ iR,
• n is divided by f2

χ .

These conditions are equivalent to dim I (χ | · |ν/2A )K∞K0(n) ≥ 1.

For v ∈ Σ∞, we denote by f (ν)0,χv
the spherical vector in I (χv | · |ν/2v ) normalized so that

f
(ν)
0,χv

(e) equals one.

7. Local new forms for ramified induced representations. In this section, we as-
sume v ∈ S(fχ ). By [7, Proposition 2.1.2], we have the following.

PROPOSITION 21. The invariant subspace I (χv | · |ν/2v )K0(p
2f (χv)
v ) is of dimension one.

A nonzero vector in I (χv | · |ν/2v )K0(p
2f (χv)
v ) is given by

f
(ν)
0,χv

(g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χv(�

−f (χv)
v )q

f (χv)ν/2
v χv(a/d)|a/d|(ν+1)/2

v

(if g ∈
(
a ∗
0 d

)
γf (χv)+1K0(p

2f (χv)
v ), a, d ∈ F×

v ),

0 (if g /∈ BFγf (χv)+1K0(p
2f (χv)
v )),
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where we put

γi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 0

�i−1
v 1

)
(if i ∈ N) ,(

1 0

0 1

)
(if i = 0) .

Moreover we have

f
(ν)
0,χv

(
1 0
x 1

)
= χ−1

v (x)qf (χv)ν/2v ch
�
f(χv)
v o×

v
(x)

for any x ∈ F×
v .

For k ∈ N0, set

f̃
(ν)
k,χv

:= q−(k+f (χv))ν/2
v T (χv)πv(δv(−k, 0))f (ν)0,χv

,

where B(ov) := Bv ∩ Kv and T (χv) := vol(B(ov)γf (χv)+1K0(p
2f (χv)
v ))−1/2.

LEMMA 22. If ν ∈ iR, then I (χv | · |ν/2v ) is irreducible and we have ‖f̃ (ν)k,χv
‖v = 1 for

any k ∈ N0.

PROOF. Assume ν ∈ iR. By [7, Lemma 2.1.1] we have

Kv =
2f (χv)∐
i=0

B(ov)γiK0(p
2f (χv)
v ) .

Therefore we obtain

‖f (ν)0,χv
‖2
v =

∫
Kv

|f (ν)0,χv
(k)|2dk

=
2f (χv)∑
i=0

∫
B(ov)γiK0(p

2f (χv)
v )

|f (ν)0,χv
(k)|2dk

=
∫
B(ov)γf (χv)+1K0(p

2f (χv)
v )

|f (ν)0,χv
(k)|2dk

= vol(B(ov)γf (χv)+1K0(p
2f (χv)
v )) .

Hence ‖f̃ (ν)0,χv
‖v = 1. By definition, we obtain ‖f̃ (ν)k,χv

‖v = ‖f̃ (ν)0,χv
‖v = 1 for any k ∈ N0. �

Here T (χv) is explicitly computed by the following lemma.

LEMMA 23. We have{
vol(B(ov)γf (χv)+1K0(p

2f (χv)
v )) = q

−f (χv)
v (1 − q−1

v ) ,

T (χv) = q
f (χv)/2
v (1 − q−1

v )−1/2 .

PROOF. Assume ν ∈ iR. We note that the equality∫
Kv

|f (k)|2dk = qdv/2v

∫
Fv

∣∣∣∣f (
w0

(
1 x

0 1

))∣∣∣∣2

dx
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holds for any f ∈ I (χv | · |ν/2v ). By the Gv-invariance of the integration on Kv , we obtain

‖f (ν)0,χv
‖2
v =

∫
Kv

|f (ν)0,χv
(kw−1

0 )|2dk = qdv/2v

∫
Fv

∣∣∣∣f (ν)0,χv

(
w0

(
1 x

0 1

)
w−1

0

)∣∣∣∣2

dx

= qdv/2v

∫
Fv

∣∣∣∣f (ν)0,χv

(
1 0

−x 1

)∣∣∣∣2

dx

= qdv/2v

∫
F×
v

|χ−1
v (x)qf (χv)ν/2v ch

�
f(χv)
v o×

v
(x)|2dx

= qdv/2v

∫
�
f(χv)
v o×

v

dx.

By the proof of Lemma 22, the equality ‖f (ν)0,χv
‖2
v = vol(B(ov)γf (χv)+1K0(p

2f (χv)
v )) holds.

This completes the proof. �

LEMMA 24. For k ∈ N0, we have

W
f̃
(ν)
k,χv

(
t 0
0 1

)
= q(1−ν)dv/2−kν/2+(1/2−ν)f(χv)

v (1 − q−1
v )1/2G(χv)ch

�
−dv
v o×

v
(�−k

v t)

for any t ∈ F×
v .

PROOF. By [7, §2.4], we have

W
f
(ν)
0,χv

(
t 0
0 1

)
= χv(−1)qdv/2v ε(1, χv| · |ν/2v , ψFv )ch

�
−dv
v o×

v
(t) , t ∈ F×

v .

Since χv is ramified, we obtain

χv(−1)ε(1, χv| · |ν/2v , ψFv )= χv(−1)q−(f (χv)+dv)ν/2
v (1 − q−1

v )G(χ−1
v )

= q−(f (χv)+dv)ν/2
v (1 − q−1

v )G(χv) .
This completes the proof. �

LEMMA 25. For k ∈ N0 we have the following:

f̃
(ν)
k,χv

(γi) =
{
χv(�)

−k−f (χv)T (χv) (i = f (χv)+ k + 1) ,

0 (0 ≤ i ≤ 2f (χv)+ k , i 	= f (χv)+ k + 1) .

PROOF. This assertion is obvious for i = 0 since f (ν)0,χv
(e) = 0. When 1 ≤ i ≤

2f (χv)+ k, we have

f
(ν)
0,χv

((
1 0

�i−1
v 1

) (
�−k
v 0
0 1

))
= f

(ν)
0,χv

((
�−k
v 0
0 1

) (
1 0

�i−k−1
v 1

))
= χv(�v)

−kqkν/2v × χ−1
v (� i−k−1

v )qf (χv)ν/2v ch
�
f(χv)
v o×

v
(� i−k−1

v ).

This completes the proof. �
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PROPOSITION 26. For any k ∈ N0, the restriction of f̃ (ν)k,χv
to Kv is independent of

ν ∈ C. Fix n ∈ N0. If ν ∈ iR, the set {f̃ (ν)k,χv
; k ∈ {0, . . . , n}} is an orthonormal basis of

I (χv | · |ν/2v )K0(p
2f (χv)+n
v ).

PROOF. By Lemma 25, the first assertion is obvious. We assume ν ∈ iR. The set

{f̃ (ν)k,χv
; k ∈ {0, . . . , n}} is a basis of I (χv | · |ν/2v )K0(p

2f (χv )+n
v ) by Proposition 1. We show

the orthogonality of {f̃ (ν)k,χv
; k ∈ {0, . . . , n}}. By Lemma 22, we have ‖f̃ (ν)k,χv

‖v = 1 for any
k ∈ {0, . . . , n}. For any l, m ∈ {0, . . . , n} such that l 	= m, we have(

πv(δv(−l, 0))f (ν)0,χv

∣∣∣∣πv(δv(−m, 0))f (ν)0,χv

)
=

∫
Kv

πv(δv(m− l, 0))f (ν)0,χv
(k)f

(ν)
0,χv

(k)dk

= qdv/2v

∫
Fv

πv(δv(m− l, 0))f (ν)0,χv

(
w0

(
1 x

0 1

))
f
(ν)
0,χv

(
w0

(
1 x

0 1

))
dx .

Put

Φ1(x) := πv(δv(m− l, 0))f (ν)0,χv

(
w0

(
1 x

0 1

))
and

Φ2(x) := f
(ν)
0,χv

(
w0

(
1 x

0 1

))
.

By the Plancherel theorem, we have∫
Fv

Φ1(x)Φ2(x)dx =
∫
Fv

Φ̂1(x)Φ̂2(x)dx .

Here Φ̂1(x) and Φ̂2(x) are Fourier transforms of Φ1 andΦ2 with respect to ψFv , respectively.
Hence, by the equalities

πv(δv(m− l, 0))W
f
(ν)
0,χv

(
x 0
0 1

)
= χ−1

v (x)|x|ν/2v × |x|1/2v Φ̂1(x)

and

W
f
(ν)
0,χv

(
x 0
0 1

)
= χ−1

v (x)|x|ν/2v × |x|1/2v Φ̂2(x) ,

we obtain(
πv(δv(−l, 0))f (ν)0,χv

∣∣∣∣πv(δv(−m, 0))f (ν)0,χv

)
= qdv/2v

∫
Fv

Φ̂1(x)Φ̂2(x)dx

= qdv/2v (1 − q−1
v )

∫
F×
v

πv(δv(m− l, 0))W
f
(ν)
0,χv

(
x 0
0 1

)
W
f
(ν)
0,χv

(
x 0
0 1

)
d×x .

This equals zero by Lemma 24. �
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We denote by Mv(ν) : I (χv | · |ν/2v ) → I (χ−1
v | · |−ν/2v ) the intertwining operator defined

by the integral

(Mv(ν)f )(g) =
∫
Fv

f

(
w0

(
1 x

0 1

)
g

)
dx

if it converges.

LEMMA 27. For any k ∈ N0, we have

Mv(ν)f̃
(ν)
k,χv

= q−(k+f (χv))ν
v

ε(1 − ν, χ−2
v , ψFv )ε(1 + ν/2, χv, ψFv )

ε(1 − ν/2, χ−1
v , ψFv )

× L(ν, χ2
v )

L(1 − ν, χ−2
v )

f̃
(−ν)
k,χ−1

v

.

PROOF. If Re(ν) 	= ±1, the representations I (χv | · |ν/2v ) and I (χ−1
v | · |−ν/2v ) are irre-

ducible. Hence, we obtain this assertion by [7, Proposition 2.2.2]. By meromorphic continu-
ation, we obtain the assertion for ν such that Re(ν) = ±1. �

8. Local new forms for unramified induced representations. In this section we
assume v ∈ Σfin − S(fχ ). We denote by f (ν)0,χv

the spherical vector in I (χv | · |ν/2v ) normalized

so that f (ν)0,χv
(e) equals one. We set

f
(ν)
k,χv

:= πv(δv(−k, 0))f (ν)0,χv
−
k−1∑
j=0

c(ν)χv (k, j)f
(ν)
j,χv

for k ∈ N0. Here the sequence {c(ν)χv (k, j)}1≤k≤n,0≤j≤k−1 is given as follows:

c(ν)χv (k, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qv

∑k
l=0 a

2l − ∑k−1
l=1 a

2l

akq
k/2
v (1 + qv)

(if j = 0) ,

∑k−j
l=0 a

2l

ak−jq(k−j)/2v

(if 1 ≤ j ≤ k − 1) ,

where we put a := χv(�v)q
−ν/2
v . We note that if ν ∈ iR, the set {f (ν)k,χv

; k ∈ {0, . . . , n}} is an

orthogonal basis of I (χv | · |ν/2v )K0(p
n
v) by Proposition 10 and Corollary 12.

LEMMA 28. For any k ∈ N0, we have

πv(δv(−k, 0))f (ν)0,χv
(γi) =

{
a−kqk/2v (if i = 0) ,

ak+2−2iq
i−k/2−1
v (if 1 ≤ i ≤ k) .

PROOF. The assertion is obvious for i = 0. For i ≥ 1, we have(
1 0

�i−1
v 1

) (
�−k
v 0
0 1

)
=

(
� 1−i
v �−k

v

0 �i−k−1
v

) (
0 −1
1 �k+1−i

v

)
.
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We note
(

0 −1
1 �k+1−i

v

)
∈ Kv . Therefore we obtain

πv(δv(−k, 0))f (γi) = ak+2−2iqi−k/2−1
v

for i ≥ 1. �

LEMMA 29. We have the following:

• The equalities f (ν)0,χv
(γ0) = 1, f (ν)1,χv

(γ0) = q
1/2
v (qv − a2)

a(1 + qv)
and

f
(ν)
1,χv

(γ1) = a2 − qv

aq
1/2
v (1 + qv)

hold.

• For n ≥ 2, we have

f (ν)n,χv
(γk) =

⎧⎪⎪⎨⎪⎪⎩
(qv − 1)(qv − a2)a−nq(n−4)/2

v (if k = 0) ,

0 (if 1 ≤ k ≤ n− 1) ,

(a2 − qv)a
−nq(n−4)/2

v (if k = n) .

PROOF. We note that

f
(ν)
k,χv

(γi) = πv(δv(−k, 0))f (ν)0,χv
(γi)−

i−1∑
j=0

c(ν)χv (k, j)f
(ν)
j,χv

(γ0)−
k−1∑
j=i

c(ν)χv (k, j)f
(ν)
j,χv

(γi) .

By induction on n, Lemma 28 and a direct computation, we obtain the assertion. �

For k ∈ N0, we set

f̃
(ν)
k,χv

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f
(ν)
0,χv

(if k = 0) ,

(1 + q−1
v )q

−ν/2
v L(1 + ν, χ2

v )f
(ν)
1,χv

(if k = 1) ,(
qv + 1

qv − 1

)1/2

q−kν/2
v L(1 + ν, χ2

v )f
(ν)
k,χv

(if 2 ≤ k ≤ n) .

PROPOSITION 30. The restriction of f̃ (ν)k,χv
to Kv is independent of ν ∈ C for any

k ∈ N0. Fix n ∈ N0. If ν ∈ iR then the set {f̃ (ν)k,χv
; k ∈ {0, . . . , n}} is an orthonormal basis

of I (χv | · |ν/2v )K0(p
n
v).

PROOF. By a direct computation we have a−k(qv − a2) = qvχv(�v)
−kqkν/2v L(1 +

ν, χ2
v )

−1. Combining this and Lemma 29, we obtain the first assertion.

Assume ν ∈ iR. By the definition of f (ν)k,χv
, we have the following equality (cf. Corollary

12):

‖f (ν)k,χv
‖2
v =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 (if k = 0) ,
1

(1 + q−1
v )2

1

L(1 + ν, χ2
v )L(1 − ν, χ−2

v )
(if k = 1) ,

qv − 1

qv + 1

1

L(1 + ν, χ2
v )L(1 − ν, χ−2

v )
(if k ≥ 2) .
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This completes the proof. �

LEMMA 31. For any k ∈ N0, we have

Mv(ν)f̃
(ν)
k,χv

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q−dv/2
v

L(ν, χ2
v )

L(1 + ν, χ2
v )
f̃
(−ν)
0,χ−1

v

(if k = 0) ,

q−dv/2−kν
v

L(ν, χ2
v )

L(1 − ν, χ−2
v )

f̃
(−ν)
k,χ−1

v

(if 1 ≤ k ≤ n) .

PROOF. Applying [1, Proposition 4.6.7], we have

f
(ν)
0,χv

= q−dv/2
v

L(ν, χ2
v )

L(1 + ν, χ2
v )
f
(−ν)
0,χ−1

v

.

Combining this and the definition of f̃ (ν)k,χv
for k ∈ {0, . . . , n}, we obtain this assertion. �

REMARK 32. For k ≥ 1, we have

Mv(ν)f̃
(ν)
k,χv

= q−kν
v

ε(1 − ν, χ−2
v , ψFv )ε(1 + ν/2, χv, ψFv )

ε(1 − ν/2, χ−1
v , ψFv )

L(ν, χ2
v )

L(1 − ν, χ−2
v )

f̃
(−ν)
k,χ−1

v

.

9. Constant terms and zeta integrals of Eisenstein series. We consider the invari-
ant subspace I (χ | · |ν/2A )K∞K0(n). Let n be the maximal nonnegative integer m such that

Sm(nf−2
χ ) 	= ∅. For ρ = (ρk)1≤k≤n ∈ ∏n

k=1 Map(Sk(nf−2
χ ), {0, . . . , k}), let us denote by f (ν)χ,ρ

the vector in I (χ | · |ν/2A ) corresponding to⊗
v∈Σ∞

f
(ν)
0,χv

⊗
⊗

v∈S1(nf−2
χ )

f̃
(ν)
ρ1(v),χv

⊗ · · · ⊗
⊗

v∈Sn(nf−2
χ )

f̃
(ν)
ρn(v),χv

⊗
⊗

v∈Σfin−S(nf−2
χ )

f̃
(ν)
0,χv

by the isomorphism I (χ | · |ν/2A ) ∼= ⊗
v∈ΣF I (χv | · |

ν/2
v ). By Propositions 26 and 30, we obtain

the following.

PROPOSITION 33. For any ρ = (ρk)1≤k≤n ∈ ∏n
k=1 Map(Sk(nf−2

χ ), {0, . . . , k}), the

family {f (ν)χ,ρ}ν∈C is a flat section. If ν ∈ iR, the finite set{
f (ν)χ,ρ ; ρ ∈

n∏
k=1

Map(Sk(nf−2
χ ), {0, . . . , k})

}
is an orthonormal basis of I (χ | · |ν/2A )K∞K0(n).

Fix ρ ∈ ∏n
k=1 Map(Sk(nf−2

χ ), {0, . . . , k}). We write Eχ,ρ(ν, g) for E(f (ν)χ,ρ, g) and put

E◦
χ,ρ(ν, g) :=

∫
F\A

Eχ,ρ

(
ν,

(
1 x

0 1

)
g

)
dx .

The term E◦
χ,ρ(ν, g) is called the constant term of Eχ,ρ(ν, g). For k ∈ {1, . . . , n}, the sets

Uk(ρ), Rk(ρ) and R0(ρ) are defined as follows:

Uk(ρ) :=
n⋃

m=k
ρ−1
m (k)− S(fχ ), Rk(ρ) :=

n⋃
m=k

ρ−1
m (k) ∩ S(fχ ) ,
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R0(ρ) :=
( n⋃
m=0

ρ−1
m (0) ∩ S(fχ )

) ⋃
(S(fχ )− S(nf−2

χ )) .

For k ≥ 0, set

Sk(ρ) :=
{
R0(ρ) (if k = 0) ,
Uk(ρ) ∪ Rk(ρ) (if k ≥ 1) ,

R(ρ) := ⋃n
k=0Rk(ρ) and S(ρ) := ⋃n

k=0 Sk(ρ).

PROPOSITION 34. We have

E◦
χ,ρ(ν, g) = f (ν)χ,ρ(g)+D

−1/2
F Aχ,ρ(ν)

L(ν, χ2)

L(1 + ν, χ2)
f
(−ν)
χ−1,ρ

(g) ,

where

Aχ,ρ(ν)= N(fχ )−ν
n∏
k=0

∏
v∈Sk(ρ)

{
qdv/2v q−kν

v

ε(1 − ν, χ−2
v , ψFv )ε(1 + ν/2, χv, ψFv )

ε(1 − ν/2, χ−1
v , ψFv )

× L(1 + ν, χ2
v )

L(1 − ν, χ−2
v )

}
.

PROOF. By the same computation as [1, p. 352–354], we have

E◦
χ,ρ(ν, g)= f (ν)χ,ρ(g)+

∏
v∈Σ∞

(Mv(ν)f
(ν)
0,χv

)(gv)
n∏
k=1

∏
v∈Uk(ρ)

(Mv(ν)f̃
(ν)
k,χv

)(gv)

×
n∏
k=0

∏
v∈Rk(ρ)

(Mv(ν)f̃
(ν)
k,χv

)(gv)
∏

v∈Σfin−S(ρ)
(Mv(ν)f

(ν)
0,χv

)(gv) .

For v ∈ Σ∞, we have

(Mv(ν)f
(ν)
0,χv

)(gv) = L(ν, χ2
v )

L(1 + ν, χ2
v )
f
(−ν)
0,χ−1

v

(gv) ,

where Mv(ν) for v ∈ Σ∞ is the intertwining operator defined in the same way as the non-
archimedean case. Combining this with Lemma 27 and Remark 32, we obtain the asser-
tion. �

We fix a character η of A×/F× satisfying (
) in §4. For any v ∈ Σfin−S(fη) and k ∈ N0,

polynomialsQ(ν)k,χv (ηv,X) are defined as follows (cf. Corollary 19):

• For v ∈ Σfin − S(fχ ), set

Q
(ν)
k,χv

(ηv,X)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 (if k = 0) ,

ηv(�v)X − χv(�v)q
−ν/2
v + χv(�v)

−1q
ν/2
v

q
1/2
v + q

−1/2
v

(if k = 1) ,

q−1
v ηv(�v)

k−2Xk−2

×(χv(�v)q(1−ν)/2
v ηv(�v)X − 1)(χv(�v)−1q

(1+ν)/2
v ηv(�v)X − 1) (if k ≥ 2) .
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• For v ∈ S(fχ ), set

Q
(ν)
k,χv

(ηv,X) := ηv(�v)
kXk

for any k ∈ N0.

PROPOSITION 35. We put E�χ,ρ(ν, g) := Eχ,ρ(ν, g) − E◦
χ,ρ(ν, g). Then E�χ,ρ(ν,−)

is left BF -invariant. We have

Z∗(s, η,E�χ,ρ (ν,−))= (2π)#ΣCG(η)D−ν/2
F N(fχ )

1/2−ν

×Bηχ,ρ(s, ν)
L(s + ν/2, χη)L(s − ν/2, χ−1η)

L(1 + ν, χ2)
,

where

Bηχ,ρ(s, ν)=D
s−1/2
F

{ n∏
k=0

∏
v∈Sk(ρ)

Q
(ν)
k,χv

(ηv, q
1/2−s
v )L(1 + ν, χ2

v )

}

×
∏

v∈U1(ρ)

(1 + q−1
v )q−ν/2

v

n∏
k=2

∏
v∈Uk(ρ)

(
qv + 1

qv − 1

)1/2

q−kν/2
v

×
{ n∏
k=0

∏
v∈Rk(ρ)

qdv/2−kν/2
v (1 − q−1

v )1/2G(χv)
} ∏
v∈Σfin−R(ρ)

χv(�v)
dv .

PROOF. The assertion follows from the following facts (cf. Proposition 20 and [9,
Lemma 2.11]).

• We have

Z(s, ηv,Wf
(ν)
0,χv
) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(s + ν/2, χvηv)L(s − ν/2, χ−1

v ηv)

L(1 + ν, χ2
v )

(if v ∈ ΣR) ,

2π
L(s + ν/2, χvηv)L(s − ν/2, χ−1

v ηv)

L(1 + ν, χ2
v )

(if v ∈ ΣC) .

• For v ∈ U1(ρ), we have

Z(s, ηv,Wf̃
(ν)
1,χv
) = (1 + q−1

v )q−ν/2
v L(1 + ν, χ2

v )Q
(ν)
1,χv

(ηv, q
1/2−s
v )Z(s, ηv,Wf

(ν)
0,χv
) .

• For k ≥ 2 and v ∈ Uk(ρ), we have

Z(s, ηv,Wf̃
(ν)
k,χv

) =
(
qv + 1

qv − 1

)1/2

q−kν/2
v L(1 + ν, χ2

v )Q
(ν)
k,χv

(ηv, q
1/2−s
v )Z(s, ηv,Wf

(ν)
0,χv
) .

• For k ≥ 0 and v ∈ Rk(ρ), we have

Z

(
s, ηv, πv

(
1 1
0 1

)
W
f̃
(ν)
k,χv

)
=q(1−ν)dv/2−kν/2+(1/2−ν)f(χv)

v (1 − q−1
v )1/2G(χv)Q(ν)k,χv (ηv, q1/2−s

v )qdv(s−1/2)
v G(ηv) .
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• For v ∈ Σfin − R(ρ), we have

Z(s, ηv,Wf
(ν)
0,χv
)

=χv(�v)dvq−dvν/2
v qdv(s−1/2)

v G(ηv)L(s + ν/2, χvηv)L(s − ν/2, χ−1
v ηv)

L(1 + ν, χ2
v )

.

�

10. Regularized periods of Eisenstein series. In this section, we compute regular-
ized η-periods of Eχ,ρ(ν,−). For any characters χ1 and χ2 of A×/F×, we put δχ1,χ2 :=
δ(χ1 = χ2). The following lemma is needed in order to compute regularized periods of
Eisenstein series.

LEMMA 36 (9, Lemma 7.6). Let ξ be a character of A×/F×. Let λ andw be complex
numbers such that Re(w) < Re(λ). Then, for ε ∈ {0, 1}, we have∫

F×\A×
β̂λ(|t|A)ξ(t)(log |t|A)ε|t|wAd×t

=

⎧⎪⎪⎨⎪⎪⎩
δξ,1 vol(F×\A1)

β(−w)
λ−w

(if ε = 0) ,

δξ,1 vol(F×\A1)
β(−w)− β ′(−w)(λ−w)

(λ−w)2
(if ε = 1) ,

where the integral on the left-hand side converges absolutely.

THEOREM 37. Assume ν ∈ iR if S(fχ ) = ∅. Then the integral Pηβ,λ(Eχ,ρ(ν,−))
converges absolutely for any (β, λ) ∈ B × C such that Re(λ) > 1. If S(fχ ) = ∅, then
P
η
β,λ(Eχ,ρ(ν,−)) converges absolutely for any (β, λ) ∈ B × C. Moreover Pηreg(Eχ,ρ(ν,−))

can be defined and we have

Pηreg(Eχ,ρ(ν,−))= (2π)#ΣCG(η)D−ν/2
F N(fχ )1/2−ν

×Bηχ,ρ(1/2, ν)
L((1 + ν)/2, χη)L((1 − ν)/2, χ−1η)

L(1 + ν, χ2)
.

PROOF. Suppose S(fχ ) 	= ∅. For t ∈ A×/F×, we have

E◦
χ,ρ

(
ν,

(
t 0
0 1

) (
1 xη

0 1

))
= f (ν)χ,ρ

(
t txη

0 1

)
+D

−1/2
F Aχ,ρ(ν)

L(ν, χ2)

L(1 + ν, χ2)
f
(−ν)
χ−1,ρ

(
t txη

0 1

)
= 0 .

We notice that f̃ (ν)0,χv
(e) = f̃

(−ν)
0,χ−1

v

(e) = 0 for v ∈ S(fχ ). Thus Pηβ,λ(E
◦
χ,ρ(ν,−)) = 0 holds for

any (β, λ) ∈ B×C. We put f ηχ,ρ(z, ν) := Z∗(z+1/2, η,E�χ,ρ(ν,−)) and note that f ηχ,ρ(z, ν)
is entire on the whole z-plane by Proposition 35 and that S(fχ ) 	= ∅. By exchanging the order
of integrals, we have

P
η
β,λ(Eχ,ρ(ν,−)) = P

η
β,λ(E

�
χ,ρ(ν,−))
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=
∫
F×\A×

{β̂λ(|t|A)+ β̂λ(|t|−1
A )}E�χ,ρ

(
ν,

(
t 0
0 1

) (
1 xη

0 1

))
η(t)ηfin(xη,fin)d

×t

= 1

2πi

∫
Lσ

{f ηχ,ρ(z, ν)+ f ηχ,ρ(−z, ν)}
β(z)

λ+ z
dz

where σ > − Re(λ). This is justified by Proposition 35. By this we obtain both the conver-
gence of Pηβ,λ(Eχ,ρ(ν,−)) for (β, λ) ∈ B × C and the entireness of Pηβ,λ(Eχ,ρ(ν,−)) as a
function in λ. By the residue theorem, we have

CTλ=0P
η
β,λ(Eχ,ρ(ν,−))=

1

2πi

∫
Lσ

{f ηχ,ρ(z, ν)+ f ηχ,ρ(−z, ν)}
β(z)

z
dz

= 1

2πi

( ∫
Lσ

−
∫
L−σ

)
f ηχ,ρ(z, ν)

β(z)

z
dz

= Resz=0

{
f ηχ,ρ (z, ν)

β(z)

z

}
= f ηχ,ρ(0, ν)β(0) .

By Proposition 35 we obtain the second assertion when S(fχ ) 	= ∅.
Assume ν ∈ iR and S(fχ ) = ∅. Then the first assertion is obtained in the same way as

[9, Lemma 7.5]. We give a proof of the second assertion in the same way as [9, Lemma 51].
Assume Re(λ) > 1. Then, by Proposition 34, we have

P
η
β,λ(Eχ,ρ(ν,−))= Pχ(λ, ν)+D

−1/2
F Aχ,ρ(ν)

L(ν, χ2)

L(1 + ν, χ2)
Pχ−1(λ,−ν)

+Q+
χ,ρ(η, λ, ν)+Q−

χ,ρ(η, λ, ν) ,

where

Pχ±1(λ,±ν)
:=

∫
F×\A×

f
(±ν)
χ±1,ρ

(e)χ±(t)|t|(1±ν)/2
A η(t)ηfin(xη,fin){β̂λ(|t|A)+ β̂λ(|t|−1

A )}d×t

and

Q±
χ,ρ(η, λ, ν) :=

∫
F×\A×

E�χ,ρ

(
ν,

(
t 0
0 1

) (
1 xη

0 1

))
η(t)ηfin(xη,fin)β̂λ(|t|±1

A )d×t .

For Re(λ) > 1, by Lemma 36, the integral Pχ±1(λ,±ν) converges absolutely and we have

Pχ(λ, ν) = f (ν)χ,ρ(e)δχη,1 vol(F×\A1)

{
β((−ν − 1)/2)

λ− (ν + 1)/2
+ β((ν + 1)/2)

λ+ (ν + 1)/2

}
and

Pχ−1(λ,−ν) = f
(−ν)
χ−1,ρ

(e)δχ,η vol(F×\A1)

{
β((ν − 1)/2)

λ− (−ν + 1)/2
+ β((−ν + 1)/2)

λ+ (−ν + 1)/2

}
.
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We put f ηχ,ρ(z, ν) := Z∗(z + 1/2, η,E�χ,ρ(ν,−)). By exchanging the order of integrals, we
have

Q+
χ,ρ (η, λ, ν) = 1

2πi

∫
Lσ

f ηχ,ρ(z, ν)
β(z)

λ+ z
dz ,

where σ > 1/2. This is justified by Proposition 35. Hence the integral Q+
χ,ρ(η, λ, ν) is

holomorphic on Re(λ) > −σ , and has an analytic continuation to the whole λ-plane. In a
similar fashion, we have

Q−
χ,ρ(η, λ, ν) = 1

2πi

∫
L−σ

f ηχ,ρ(−z, ν)
β(z)

λ+ z
dz

for Re(λ) > σ > 1/2. Furthermore, the residue theorem gives us the equality

Q−
χ,ρ(η, λ, ν)

= 1

2πi

∫
Lσ

f ηχ,ρ(−z, ν)
β(z)

λ+ z
dz−

{
β((ν + 1)/2)

λ+ (ν + 1)/2
Resz=(ν+1)/2

+ β((−ν + 1)/2)

λ+ (−ν + 1)/2
Resz=(−ν+1)/2 + β((ν − 1)/2)

λ+ (ν − 1)/2
Resz=(ν−1)/2

+ β((−ν − 1)/2)

λ+ (−ν − 1)/2
Resz=(−ν−1)/2

}
f ηχ,ρ(−z, ν) .

Therefore, as a function in λ, the integral Pηβ,λ(Eχ,ρ(ν,−)) has a meromorphic continuation

to C. Moreover Pηβ,λ(Eχ,ρ(ν,−)) is holomorphic at λ = 0 by ν ∈ iR. By virtue of the
residue theorem, we obtain

CTλ=0P
η
β,λ(Eχ,ρ(ν,−))

= 1

2πi

∫
Lσ

{f ηχ,ρ(z, ν)+ f ηχ,ρ(−z, ν)}
β(z)

z
dz

−
{
β((ν + 1)/2)

(ν + 1)/2
Resz=(ν+1)/2 +β((−ν + 1)/2)

(−ν + 1)/2
Resz=(−ν+1)/2

+ β((ν − 1)/2)

(ν − 1)/2
Resz=(ν−1)/2 +β((−ν − 1)/2)

(−ν − 1)/2
Resz=(−ν−1)/2

}
f ηχ,ρ(−z, ν)

= Resz=0

{
f ηχ,ρ(−z, ν)

β(z)

z

}
= Z∗(1/2, η,E�χ,ρ(ν,−))β(0) .

By this and Proposition 35, we obtain the second assertion when S(fχ ) = ∅. �

We define two functions eχ,ρ,−1 and eχ,ρ,0 by the relation

Eχ,ρ(ν, g) = eχ,ρ,−1(g)
ν − 1

+ eχ,ρ,0(g)+ O(ν − 1) , (ν → 1) .

We compute regularized η-periods of eχ,ρ,−1 and that of eχ,ρ,0. The complete Dedekind zeta
function is denoted by ζF (s). We put RF := (2π)#ΣC Ress=1 ζF (s) = vol(F×\A1).
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LEMMA 38. We have

eχ,ρ,−1(g) = δ
(
χ2 = 1, fχ = oF , S(ρ) = ∅) (2π)−#ΣCD

−1/2
F RF

ζF (2)
χ−1(det g)

for any g ∈ GA.

PROOF. It is sufficient to examine poles of E◦
χ,ρ(ν, g) in order to obtain the informa-

tion of poles of Eχ,ρ(ν, g). By Proposition 34 it is sufficient to examine poles of

D
−1/2
F Aχ,ρ(ν)L(ν, χ

2)L(1+ν, χ2)−1. TheL-functionL(ν, χ2) has a possible simple pole at
ν = 1 on the half plane Re(ν) > 0 if and only if χ2 = 1. When χ2 = 1, the functionAχ,ρ(ν)
equals zero at ν = 1 unless χ2 = 1, fχ = oF and

⋃n
k=1 Im(ρk) = {0} hold. Therefore the

assertion follows from the same argument as [9, Lemma 2.13]. �

We obtain the following by the same proof of [9, Lemma 7.7].

THEOREM 39. For λ ∈ C such that Re(λ) > 0, we have

P
η
β,λ(eχ,ρ,−1) = δ

(
χ2 = 1, χ = η, fχ = oF , S(ρ) = ∅)2(2π)−#ΣCD

−1/2
F R2

F

ζF (2)

β(0)

λ
.

Moreover, we have Pηreg(eχ,ρ,−1) = 0.

For any character ξ of A×/F×, we define R(ξ), C0(ξ), and C1(ξ) by the relation

L(s, ξ) = R(ξ)

s − 1
+ C0(ξ)+ C1(ξ)(s − 1)+ O((s − 1)2) , (s → 1) .

We note R(ξ) = δξ,1(2π)−#ΣCRF for any character ξ of A×/F×.

THEOREM 40. Assume S(fχ ) = ∅. Then the integral Pηβ,λ(eχ,ρ,0) converges abso-
lutely for any (β, λ) ∈ B × C such that Re(λ) > 1. There exists an entire function f (λ) on C

such that

P
η
β,λ(eχ,ρ,0)

= δχη,1RFf
(1)
χ,ρ(e)

{
1

λ− 1
+ 1

λ+ 1

}
β(1)+ 2δχ,ηRF

D
−1/2
F f

(−1)
χ−1,ρ

(e)

L(2, χ2)

×
{
δχ2,1(2π)

−#ΣCRF

(
−ζ

′
F (2)

ζF (2)
Aχ,ρ(1)+ A′

χ,ρ(1)

)
+ C0(χ

2)Aχ,ρ(1)

}
β(0)

λ
+ f (λ)

− G(η)D−1/2
F RF

{
− δχη,1B̃

η
χ,ρ(1)

λ+ 1
+ δχ,ηB̃

η
χ,ρ(−1)

λ− 1

}
β(1)

− G(η)D−1/2
F

L(2, χ2)

{
− δ(χ = η = η−1)(B̃ηχ,ρ)

′(0)(2π)−#ΣCR2
F

β(0)

λ

− δχη,1B̃
η
χ,ρ(0)RFC0(χ

2)
β(0)

λ
+ δχ,ηB̃

η
χ,ρ(0)RFC0(χ

2)
β(0)

λ

+ δ(χ = η = η−1)B̃ηχ,ρ(0)(2π)
−#ΣCR2

F

β(0)

λ2

}
,
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where B̃ηχ,ρ(z) := ε(−z, χ−1η)B
η
χ,ρ(−z+ 1/2, 1). Moreover we have

CTλ=0P
η
β,λ(eχ,ρ,0) = G(η)D−1/2

F N(fχ )−1/2

L(2, χ2)

×
{

− 1

2
δ(χ = η = η−1)B̃ηχ,ρ(0)(2π)

−#ΣCR2
F β

′′(0)+ (2π)#ΣCaηχ,ρ(0)β(0)

}
,

where

aηχ,ρ(0) := −1

2
(B̃ηχ,ρ)

′′(0)δ(χ = η = η−1)(2π)−2#ΣCR2
F

+(B̃ηχ,ρ)′(0)(2π)−#ΣCRFC0(χ
2)(δχ,η − δχη,1)

−B̃ηχ,ρ(0)(2π)−#ΣCRFC1(χ
2)(δχ,η + δχη,1)+ B̃ηχ,ρ(0)C0(χη)C0(χη

−1) .

PROOF. We give a proof in the same way as [9, Lemma 7.8]. Assume Re(λ) > 1. We
have the expansion

eχ,ρ,0

((
t 0
0 1

) (
1 x

0 1

))
= χ(t)|t|Af (1)χ,ρ(e)+ e1

0(t)+ e2
0(t)

where

e1
0(t) := D

−1/2
F χ−1(t)f

(−1)
χ−1,ρ

(e)CTν=1

(
|t|(−ν+1)/2

A Aχ,ρ(ν)
L(ν, χ2)

L(1 + ν, χ2)

)
and

e2
0(t) := E�χ,ρ

(
1,

(
t 0
0 1

) (
1 x

0 1

))
.

By Lemma 36, we obtain∫
F×\A×

χ(t)|t|Af (1)χ,ρ(e){β̂λ(|t|A)+ β̂λ(|t|−1
A )}η(t)ηfin(xη,fin)d

×t

= δχη,1RFf
(1)
χ,ρ(e)

{
β(−1)

λ− 1
+ β(1)

λ+ 1

}
.

By a direct computation, we have

e1
0(t)=

D
−1/2
F χ−1(t)f

(−1)
χ−1,ρ

(e)

L(2, χ2)

{
R(χ2)

(
−L

′(2, χ2)

L(2, χ2)
Aχ,ρ(1)+ A′

χ,ρ(1)

)
+C0(χ

2)Aχ,ρ(1)− 1

2
R(χ2)Aχ,ρ(1) log |t|A

}
.

Thus, by Lemma 36, we obtain∫
F×\A×

e1
0(t){β̂λ(|t|A)+ β̂λ(|t|−1

A )}η(t)ηfin(xη,fin)d
×t

= 2δχ,ηRF
D

−1/2
F χ−1(t)f

(−1)
χ−1,ρ

(e)

L(2, χ2)

{
R(χ2)

(
−L

′(2, χ2)

L(2, χ2)
Aχ,ρ(1)+ A′

χ,ρ(1)

)
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+ C0(χ
2)Aχ,ρ(1)

}
β(0)

λ
.

Further, by the residue theorem, we have∫
F×\A×

e2
0(t){β̂λ(|t|A)+ β̂λ(|t|−1

A )}η(t)ηfin(xη,fin)d
×t

= f (λ)− (Resz=−1 + Resz=0 + Resz=1)

{
f ηχ,ρ (−z, 1)

β(z)

z+ λ

}
,

where

f (λ) := 1

2πi

∫
Lσ

{f ηχ,ρ(z, 1)+ f ηχ,ρ(−z, 1)} β(z)
z+ λ

dz

and σ > 1. Here we have the following:

Resz=1

{
f ηχ,ρ(−z, ν)

β(z)

z+ λ

}
= (2π)#ΣCG(η)D−1/2

F N(fχ)−1/2

L(2, χ2)

×B̃ηχ,ρ(1)L(2, χη−1)R(χη)
−β(1)
λ+ 1

,

Resz=−1

{
f ηχ,ρ(−z, 1)

β(z)

z+ λ

}
= (2π)#ΣCG(η)D−1/2

F N(fχ)−1/2

L(2, χ2)

×B̃ηχ,ρ(−1)L(2, χη)R(χη−1)
β(−1)

λ− 1
,

Resz=0

{
f ηχ,ρ(−z, 1)

β(z)

z+ λ

}
= (2π)#ΣCG(η)D−1/2

F N(fχ)−1/2

L(2, χ2)

{
− δ(χ = η = η−1)(B̃ηχ,ρ)

′(0)(2π)−2#ΣCR2
F

β(0)

λ

− δχη,1B̃
η
χ,ρ(0)C0(χη

−1)(2π)−#ΣCRF
β(0)

λ
+ δχ,ηB̃

η
χ,ρ(0)C0(χη)(2π)−#ΣCRF

β(0)

λ

+ δ(χ = η = η−1)B̃ηχ,ρ(0)(2π)
−2#ΣCR2

F

β(0)

λ2

}
.

This completes the proof of the first assertion.
By virtue of the residue theorem, we obtain

CTλ=0P
η
β,λ(eχ,ρ,0)=

1

2πi

∫
Lσ

{f ηχ,ρ(z, 1)+ f ηχ,ρ(−z, 1)}β(z)
z
dz

−(Resz=−1 + Resz=1)

{
f ηχ,ρ(−z, 1)

β(z)

z

}
= Resz=0

{
f ηχ,ρ(z, 1)

β(z)

z

}
= (2π)#ΣCG(η)D−1/2

F N(fχ )−1/2

L(2, χ2)

{
1

2
aηχ,ρ(−2)β ′′(0)+ aηχ,ρ(0)β(0)

}
,



408 S. SUGIYAMA

where aηχ,ρ(−2) and aηχ,ρ(0) are defined as

B̃ηχ,ρ(z)L(1 − z, χη)L(1 + z, χη−1) = a
η
χ,ρ(−2)

z2 + a
η
χ,ρ(−1)

z
+ aηχ,ρ(0)+O(z), (z → 0) .

This completes the proof of the second assertion. �

When χ is unramified, the regularized η-period of eχ,ρ,0 can not be defined generally.
However, it can be defined in a ramified case.

COROLLARY 41. We assume S(fχ ) 	= ∅. Then Pηreg(eχ,ρ,0) can be defined and

Pηreg(eχ,ρ,0) = (2π)#ΣCG(η)D−1/2
F N(fχ)−1/2Bηχ,ρ(1/2, 1)

L(1, χη)L(0, χ−1η)

L(2, χ2)
.

We note that both L(s, χη) and L(s, χ−1η) are entire functions by the condition (
).

PROOF. By assumption and Lemma 38, the function Eχ,ρ(ν, g) is holomorphic at ν =
1. Therefore we have

eχ,ρ,0

((
t 0
0 1

) (
1 xη

0 1

))
=Eχ,ρ

(
1,

(
t 0
0 1

) (
1 xη

0 1

))
.

We note that f ηχ,ρ(z, 1) is entire on the z-plane. By applying Theorem 37, we obtain

CTλ=0P
η
β,λ(Eχ,ρ(ν,−)) = f ηχ,ρ(0, 1)β(0) .

This completes the proof. �

COROLLARY 42. We assume S(fχ ) 	= ∅. For η satisfying both (
) and η2 = 1,
the value Pηreg(eχ,ρ,0) does not vanish if and only if ηv(�v) 	= χv(�v) holds for any v ∈⋃n
k=1 Uk(ρ).

PROOF. The value L(1, ξ) is nonzero for any nontrivial character ξ of A×/F× by
[5, Theorem 7-28]. Thus the values L(1, χη) and L(0, χ−1η) = ε(1, χη)−1L(1, χη) are
nonzero. For v ∈ Σfin − S(fχ fη), by a direct computation we have

Q
(1)
k,χv

(ηv, 1)

:=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 (if k = 0) ,

{ηv(�v)− χv(�v)}q−1/2
v + {η−1

v (�v)− χ−1
v (�v)}q1/2

v

q
1/2
v + q

−1/2
v

(if k = 1) ,

q−1
v ηv(�v)

k−2(χv(�v)ηv(�v)− 1)(qvχv(�v)−1ηv(�v)− 1) (if k ≥ 2) .

ThereforeBηχ,ρ (1/2, 1) vanishes if and only if there exists v ∈ ⋃n
k=1 Uk(ρ) such that η(�v) =

χv(�v). This completes the proof. �
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