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Abstract. We generalize the concept of Sato Grassmannians of locally linearly com-
pact topological vector spaces (Tate spaces) to the Beilinson category of the “locally compact
objects”, or Generalized Tate Spaces, of an exact category. This allows us to extend the Kapra-
nov dimensional torsor Dim and determinantal gerbe Det to generalized Tate spaces and unify
their treatment in the determinantal torsor. We then introduce a class of exact categories, that
we call partially abelian exact, and prove that if the base category is so, then Dim and Det are
multiplicative in admissible short exact sequences of generalized Tate spaces. We then give a
cohomological interpretation of these results in terms of the Waldhausen K-theoretical space
of the Beilinson category. Our approach can be iterated and we define analogous concepts for
the successive categories of n-dimensional (generalized) Tate spaces. In particular we show
that the category of Tate spaces is partially abelian exact, so we can extend the results for Dim
and Det obtained for 1-Tate spaces to 2-Tate spaces, and provide a new interpretation in the
context of algebraic K-theory of results of Kapranov, Arkhipov-Kremnizer and Frenkel-Zhu.
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1. Introduction. Let k be a field, and consider the Tate space V = k((t)). For such
a space V , the group GL(V ) (sometimes called the “Japanese group” GL(∞)) has proper-
ties which are quite different from those of the naively defined group GL∞ = ⋃

GL(n).
In particular, it is typically disconnected, with π0(GL(V )) = Z. This has been interpreted
by Kapranov in [12] in terms of the dimensional torsor Dim(V ), naturally associated with V ,
which gives rise to a class inH 1(GL(V ),Z) = Hom(GL(V ),Z). Kapranov also proves that,

2000 Mathematics Subject Classification. Primary 18E10; Secondary 19D10.
Key words and phrases. Grassmannian, Tate space, Waldhausen space, loop space, delooping, torsor, gerbe,

exact category.
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for all Tate spaces V , the dimensional torsor Dim(V ) is multiplicative with respect to admissi-
ble short exact sequences of Tate spaces. A similar result is also proved for the determinantal
gerbe Det(V ).

In the language of exact categories, Kapranov’s results amount to the consideration of the
dimensional torsor Dim(V ) and the determinantal gerbe Det(V ) for the objects V of the exact
category of Tate spaces T = lim←→Vect0(k) (see Section 5), where Vect0(k) is the category of
finite dimensional vector spaces over the field k.

In this paper we propose a topological interpretation of the theory of the dimensional
torsor Dim(V ) and the determinantal gerbe Det(V ). This is achieved through a generalization
of these concepts to the Beilinson category lim←→A, where A is an exact category. Objects of
lim←→A will serve as categorical generalizations of Tate spaces referred to in the title of this
article. We prove the multiplicativity of Dim(V ), and sketch the analogous theory for the
determinantal gerbe Det(V ), under the extra assumption that A has pullbacks of admissible
monomorphisms and pushouts of admissible epimorphisms. We call such categories “par-
tially abelian exact”, since they can equivalently be described as exact categories such that,
for any morphism f which is the composite of an admissible monomorphism followed by
an admissibe epimorphism, f can be written in a unique way (up to isomorphisms) as the
composite of an admissible epimorphism followed by an admissible monomorphism.

This new setting, which employs exact categories of generalized Tate spaces replacing
the category T , finds a natural interpretation in the framework of higher algebraic K-theory.
In fact, we interpret Dim and Det and their corresponding “multiplicative” properties as coho-
mological invariants of the Waldhausen space S(lim←→A), the fundamentalK-theoretical space
of the exact category lim←→A. In turn this interpretation yields that these constructions can be
seen as “first and second step” of a delooping relation between S(A), understood as a space
of “finite-dimensional (or discrete)” objects, and S(lim←→A), understood as a space of “semi-
infinite dimensional (or locally compact)” objects. We next apply our theory to the category
T2 = lim←→(T ) = lim←→lim←→Vect0(k), whose objects can be called 2-Tate spaces. For example, for
a field k, the space k((t))((s)) is a 2-Tate space over k. Study of 2-Tate spaces was recently
taken up by Arkhipov and Kremnizer in [1] and by Frenkel and Zhu in [6], in connection with
representations of double loop groups. In the same order of ideas, Gaitsgory and Kazhdan
have recently provided a categorical framework for the study of the representations of the
group G(F ), where G is reductive and F is a 2-dimensional local field [7]. In a recent paper
[5], Drinfeld defined the notion of dimensional torsor in a more general situation of modules
over a commutative ring, and defined the étale local notion of Tate module.

Our results provide a categorical foundation for such study. The peculiarity of our ap-
proach can be described as follows. Various authors (e.g., [1], [6]) have proposed the con-
struction of the determinantal gerbe Det(V ), when V is either a 1- or a 2-Tate space. These
authors start with the construction of Det(V ) when V is a 1-dimensional Tate space, and then
they lift their construction to the 2-dimensional case, by generalizing each 1-dimensional con-
cept (and corresponding proposition) introduced to the new context. In our theory, we propose
a K-theoretical interpretation of this 1-dimensional vs. 2-dimensional interplay. We achieve
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this through (1) the systematic use of the language of iterated ind/pro-categories over a par-
tially abelian exact category A, and (2) the study of the behaviour of the Waldhausen space
of an exact category A under the functor lim←→ of Beilinson. This point of view allows us to
produce a single construction which accounts for both cases. Indeed, we recover the theory
of 1-dimensional Tate space when we let A = Vect0(k), and the theory of 2-dimensional Tate
spaces when we let A = T . This is made possible by the fact (proved in Theorem 5.5) that the
category T is partially abelian exact, so our theory can be applied to T . In detail, we obtain
a shift map from the n-th cohomology of S(A) to the (n + 1)-th cohomology of S(lim←→A)
for low dimensions n. More exactly, for n = 1 and A = Vect0(k), we start with a 1-cocycle
on S(A) which gives rise to a 2-cocycle on S(lim←→A) which in turns provide a 3-cocycle on
S(lim←→lim←→A); for n = 2 the same argument gives, starting from a 2-cocycle on S(A), a 3-
cocycle on S(lim←→A), which in turn gives a 4-cocycle on S(lim←→lim←→A), i.e., a 2-gerbe on the
objects of the category T2 of 2-Tate spaces. In this paper we provide a detailed treatment of
the constructions on the category T , and sketch the constructions for the category T2, whose
details will be spelled out in a subsequent paper.

In order to generalize the dimensional torsor and the determinantal gerbe to the objects
X of the Beilinson category lim←→A, for A exact, we introduce an appropriate concept of Grass-
mannians for lim←→A, which generalizes the Sato Grassmannians, originally defined by Sato in
[19] for the category of Tate spaces. Our definition uses the language of ind/pro-objects on A,
which has the advantage to allow us to define formally in the same way the Grassmannians
for all the iterated categories lim←→lim←→A, . . . , lim←→nA. We then study the behavior of the Grass-
mannian of an objectX with respect to admissible short exact sequences of lim←→A, when A is
partially abelian exact. This allows us to define the determinantal torsor D for the objects of
the Beilinson category lim←→A. This is a torsor defined over a certain Picard category P . When
P = V (A), the symmetric category of virtual objects on A defined by Deligne (cf. [4]), the
determinantal torsorD(X) encloses the datum of theK0(A)-torsor Dim(X) and of theK1(A)-
gerbe Det(X). In particular, for A = Vect0(k), they are K0(A) = Z and K1(A) = k∗, and
this construction provides a unified treatment of the Kapranov Z-dimensional torsor Dim(V )
and k∗-gerbe Det(V ), and extends the theory of [12] to the generalK-theoretic setting.

Acknowledgments. This paper is the second part of the dissertation that I presented to the Faculty
of the Graduate School of Yale University in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy in Mathematics. I would like to express my gratitude to my advisor, Mikhail
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version of this work and made many remarks; in particular, he pointed out to me the importance of the
symmetry condition for determinantal theories, which appears to be crucial in the developement of the
theory here proposed. I also would like to thank the referee for the patience in reading the paper and the
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2. The Waldhausen space. In this section and in the next, we refer to Appendix A
and B for the basic material on exact categories and Picard categories, and to [8] and [21] for
the terminology relative to simplicial categories.
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2.1. The Waldhausen S-construction. Given an exact category, Waldhausen [21]
associates to it a simplicial category S•(A), whose geometric realization (as defined e.g. in [8]
or in [9]) S(A) provides a topological model for the K-theory of A, i.e., Ki(A) = πi+1S(A)
(see [22]).

DEFINITION 2.1. Let A be an exact category and n ≥ 0 an integer. The category
Sn(A) is defined as the category whose objects are data {a} consisting of

• objects aij ∈ A, given for each (i, j) with 0 ≤ i ≤ j ≤ n.
• morphisms φklij : aij → akl , given for i ≤ k, j ≤ l (we shall write (i, j) ≤ (k, l))

such that the following conditions are satisfied.
(1) For all (i, j, k), with i ≤ j ≤ k,

aij
φikij−→ aik

φ
jk
ik−−→ ajk

is an admissible short exact sequence of A.
(2) If (i, j) ≤ (k, l) ≤ (m, n), we have a commutative diagram

φmnij = φmnkl φklij .
A morphism between two objects a → b of Sn(A) is by definition a collection of isomor-

phisms aij
∼→ bij , for all i ≤ j , making the resulting diagrams commutative.

In particular, aii = 0 and we see that {a} gives rise to a rigidified admissible filtration of
objects of A of length n, i.e., a sequence a = 0 ↪→ a1 ↪→ a2 ↪→ · · · ↪→ an of n admissible
monomorphisms toghether with a compatible choice of an object aij , in the isomorphism class
of each quotient aj/ai , for i ≤ j such that there is a commutative diagram

(2.2) a01
� � �� a02

����

� � �� a03

����

� � �� . . . �
� �� a0n

����
a12

� � �� a13

����

� � �� . . . � � �� a1n

����
a23

� � �� . . . �
� �� a2n

����
...

����
an−1,n

whose horizontal arrows are admissible monomorphisms and the vertical arrows are admissi-
ble epimorphisms.

For each n ≥ 0, we define a functor ∂0 : Sn(A) → Sn−1(A) by erasing the top row of
(2.2) and reindexing. Then, ∂0(a) = a12 ↪→ · · · ↪→ a1n, with ∂0(a)i,j = ai+1,j+1; we define
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a functor ∂i : Sn(A) → Sn−1(A) for all 0 < i ≤ n by erasing the row ai,∗ and the column
a∗,i .

The functors si : Sn(A) → Sn+1(A), for 0 ≤ i ≤ n are defined by doubling the object
ai in a. Then, we have the following proposition.

PROPOSITION 2.3 (cf. [21]). The system (Sn(A), ∂i , sj ) forms a simplicial category
S•(A).

Next, the geometric realization of S•(A) is constructed as follows. Since S•(A) is a
simplicial category, we consider the geometric realizations |Sn(A)| of the categories Sn(A).
These form a simplicial topological space BS•(A); we then take the geometric realization
of BS•(A), and write it S(A). Thus, S(A) = |S•(A)|. This space is called the Waldhausen
space associated with the exact category A. Notice that the simplicial space BS•(A) is a
bisimplicial set, and the space S(A) can be interpreted as the geometric realization of this
bisimplicial set.

REMARK 2.4. The geometric realization S(A) is thus constructed out of the (p, q)-
bisimplices Δp × Δq glued together along the face maps of the bisimplicial set S•(A). The
bisimplices of dimension less than or equal to 3 are parametrized as follows:

• Δ0 ×Δ0: only one point (basepoint) ∗ in S(A).
• Δ1 × Δ0: one for each object {a} of A; geometrically, this gives rise in S(A) to a

loop (embedded circle) at ∗ which we denote by |a|.
• Δ1 × Δ1: one for each isomorphism {a ∼−→ b} of A, giving rise to a homotopy

between the loops |a| ∼ |b|, hence to an element of π2(S(A), ∗).
• Δ2 × Δ0: one for each admissible short exact sequence {σ : a′ ↪→ a � a′′}. Geo-

metrically, 2-simplexes as in Figure 1.
• Δ2 × Δ1: one for each isomorphism of admissible short exact sequences {σ0

∼−→
σ1 : σ0, σ1 ∈ S2,0(A)}. Geometrically, the filled prism whose bottom is the 2-simplex
|σ0| and whose top is the 2-simplex |σ1|.
• Δ1 ×Δ2: one for each composable pair of isomorphisms of A: {a ∼−→ b

∼−→ c}.
• Δ3 × Δ0: one for each rigidified admissible filtration of length 2 of A {τ : a1 ↪→
a2 ↪→ a3}. Geometrically, the filled tetrahedron generated by the ai’s as in Figure 2.

FIGURE 1.
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FIGURE 2.

• and so on.

In particular the space S(A) is connected, since |S0(A)| = ∗.
2.2. Iteration of the S-construction and delooping. In [22] Waldhausen proves also

that the space S(A) admits a delooping. Such delooping is constructed as the geometric real-
ization SS(A) of a bisimplicial category S•S•(A), obtained by “iterating” the S-construction.
Roughly speaking, the (p, q)-bisimplexes of S•S•(A) are (p, q)-rigidified admissible bifil-
trations of objects of A. By this expression we mean a commutative diagram

a11
� � ��

� �

��

a12� �

��

� � �� . . . � � �� a1q
� �

��
...

...
. . . ...

... � �

��

... � �

��

. . . ... � �

��
ap1

� � �� ap2
� � �� . . . � � �� apq

such that each horizontal and vertical arrow is an admissible monomorphism, and rigidified
similarly to Definition 2.1. We refer again to [22] for details. The clasifying space SS(A) =
|S•S•(A)| is thus the geometric realization of a trisimplicial set. We get S(A) = ΩSS(A),
and it is possible to furtherly iterate the S-construction to obtain an n-simplicial category
Sn• (A), and prove that S(A) = Ωn−1(Sn(A)). As a corollary, we have that S(A) is an infinite
loop space.
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Note that every object a of Sn(A) gives an object α(a) of SnS1(A) and an object β(a) of
S1Sn(A) (bifiltrations going purely horizontally or purely vertically). We have therefore two
maps of the suspension

ΣS(A)→ SS(A)

both adjoint to the delooping isomorphism

S(A)→ ΩSS(A) .

On the level of cells, each (p, q)-cell σ of S(A) gives rise to a (p, 1, q)-cell α(σ) and to a
(1, p, q)-cell β(σ) of SS(A). Notice that up to dimension 4, all cells of SS(A) are obtained
in this way except for the cells of the following type:

• Δ2 ×Δ2 ×Δ0: one for each diagram of objects of A:

(2.5) x1
1

� � ��
� �

��

x1 �� ��
� �

��

x1
2� �

��
x1

� � ��

����

x

����

�� �� x2

����

x2
1

� � �� x2 �� �� x2
2

whose rows and columns are admissible short exact sequences.

REMARK 2.6. It is important to notice that in the diagram (2.5) one has to impose the
admissibility of the sequences of the quotients. Namely, for general exact categories A this
condition does not descend from the admissibility of the monomorphisms which appear in the
top left square.

2.3. Determinantal theories on exact categories with values on Picard categories.
Let A be an exact category and P a symmetric Picard category.

DEFINITION 2.7. A P-valued determinantal theory on A is a pair (h, λ), where h is
a functor S1(A) → P such that h(0) = 1 and λ is a system of isomorphisms given for all
admissible short exact sequences σ = a′ ↪→ a � a′′ of A

λσ : h(a′)⊗ h(a′′) ∼−→ h(a)

which are natural with respect to isomorphisms of admissible short exact sequences. These
data are required to satisfy the following condition.
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• For all admissible filtration of length 2 of A, a1 ↪→ a2 ↪→ a3 with a compatible
choice of quotients, we have a commutative diagram

(2.8) h(a1)⊗ h
(
a2

a1

)
⊗ h

(
a3

a2

)

λ⊗1
��

1⊗λ �� h(a1)⊗ h
(
a3

a1

)

λ

��
h(a2)⊗ h

(
a3

a2

)
λ

�� h(a3)

(where we have omitted for simplicity the associator of P).

A morphism of determinantal theories (h, λ) → (h′, λ′) is a collection of morphisms
{fi : h(ai)→ h′(ai)} of P , such that, for all admissible short exact sequences a′ ↪→ a � a′′,
the diagram

h(a′)⊗ h(a′′) λ ��

fa′⊗fa′′
��

h(a)

fa

��
h′(a′)⊗ h′(a′′) λ′ �� h′(a)

commutes.

It is clear that every morphism of determinantal theories is an isomorphism.

REMARKS 2.9. (1) From the functoriality of h it follows that if f : a ∼−→ b is an
isomorphism, and σ : a ∼−→ b � 0 (resp. σ : 0 ↪→ a

∼−→ b), one has λσ = h(f ) : h(a) =
h(a)⊗ h(0) ∼−→ h(b).

(2) The conditions defining a determinantal theory on A can be interpreted as condi-
tions that hmust satisfy on the simplices of dimension at most 3 of the simplicial Waldhausen
category S•(A). Indeed, notice in the first place that h is a functor S1(A)→ P . Next, refer-
ring to the description of low-dimensional bisimplexes given in Section 2.1, h is completely
determined as a map which sends:

• bisimplexes of typeΔ0 ×Δp(= ∗ in S(A))→ the null object 1,
• bisimplexes of typeΔ1 ×Δ0→ objects of P ,
• bisimplexes of typeΔ1 ×Δ1→ isomorphisms of P ,
• bisimplexes of typeΔ1 ×Δ2→ compositions of isomorphisms of P ,
• bisimplexes of typeΔ2 ×Δ0→ isomorphisms of type λσ of P ,
• bisimplexes of typeΔ2 ×Δ2→ diagrams expressing the naturality of λσ in P ,
• bisimplexes of typeΔ3 ×Δ0→ commutative diagrams of type (2.8).

DEFINITION 2.10. Let A be an exact category and P a Picard symmetric category.
The category (groupoid) Det(A,P) whose objects are the P-valued determinantal theories
on A and morphisms the isomorphisms of determinantal theories is called the category of
P-valued determinantal theories on A.
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2.4. Symmetric vs. non-symmetric determinantal theories. We introduce now the
“symmetric versions” of the notions of determinantal theory and of Det(A,P), which will be
central in the developement of our theory, as follows:

DEFINITION 2.11. Let P be a symmetric Picard category, with symmetry σ . A P-
valued symmetric determinantal theory on A is a P-valued determinantal theory (h, λ) on A,
such that, for all diagrams of type (2.5), the diagram
(2.12)

h(x1
1)⊗ h(x1

2 )⊗ h(x2
1 )⊗ h(x2

2)

λ⊗λ
��

1⊗σ⊗1 �� h(x1
1)⊗ h(x2

1)⊗ h(x1
2 )⊗ h(x2

2)

λ⊗λ
��

h(x1)⊗ h(x2)

λ
�����������������

h(x1)⊗ h(x2)

λ
������������������

h(x)

is commutative.

A morphism of symmetric determinantal theories is defined as in the general case.

DEFINITION 2.13. If P is a symmetric Picard category, we define Detσ (A,P) to be
the groupoid whose objects are the symmetric P-valued determinantal theories on A, and
whose morphisms are the morphisms of determinantal theories.

REMARK 2.14. Thus, the datum of a symmetric determinantal theory is equivalent
to a collection of data on the cells of SS(A) up to dimension 4, which (h, λ) must satisfy.
Indeed, all such cells come from those of S(A), except for those of type Δ2 × Δ2 × Δ0, for
which we impose the additional condition (2.12). Notice also that (2.12) implies (2.8), if we
let the left column in (2.5) to be the admissible short exact sequence x1

1 = x1 � 0.

The next proposition, which is a reformulation of a result due to Deligne (cf. [4, 4.8])
will be useful to perform computations.

PROPOSITION 2.15. Let (h, λ) be a determinantal theory on A, with values in the
symmetric Picard category P with symmetry σ . Then (h, λ) is symmetric if and only if for
each pair of objects a, b of A, the diagram

(2.16) h(a)⊗ h(b)
σ

�������������������
λ �� h(a ⊕ b) = h(b ⊕ a)

λ−1

��
h(b)⊗ h(a)

commutes.

PROOF. We add the details to the argument sketched by Deligne. Since A is an ex-
act category, it is closed under pushouts of admissible monomorphisms. Hence the diagram
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x1 ↪→ x1
1 ←↩ x1 admits a pushout, which we denote by x1 + x1, and in the resulting square

x1
1� �

��

� � �� x1
� �

��
x1

� � �� x1 + x1

all the morphisms are admissible monomorphisms. The arrow x � x2
2 is an admissible epi-

morphism, and it is easy to see that its cokernel is the arrow x1 + x1 ↪→ x induced by the
pushout diagram. Therefore the second arrow is an admissible monomorphism and thus

x1 + x1 ↪→ x � x2
2

is an admissible short exact sequence in A. It follows that x2
2
∼−→ x

x1 + x1
.

We can consider then the admissible filtrations

x1
1 ↪→ x1 ↪→ x1 + x1 ↪→ x

x1
1 ↪→ x1 ↪→ x1 + x1 ↪→ x

of x in A. In particular, from x1
1 ↪→ x1 ↪→ x and x1

1 ↪→ x1 ↪→ x we obtain that the diagram

(2.17) h(x1
1)⊗ h(x1

2 )⊗ h(x2)

λ⊗1

��

1⊗λ �� h(x1
1 )⊗ h

(
x

x1
1

)
h(x1

1)⊗ h(x2
1 )⊗ h(x2)

1⊗λ��

λ⊗1

��
h(x1)⊗ h(x2)

λ
�� h(x) h(x1)⊗ h(x2)

λ��

is commutative.

On the other hand, from x1
1 ↪→ x1 + x1 ↪→ x, and observing that

x1 + x1

x1
1

∼−→ x1
2 ⊕ x2

1 ,

we obtain that the diagram

h(x1
1)⊗ h(x1

2 ⊕ x2
1)⊗ h(x2

2)

λ⊗1

��

1⊗λ �� h(x1
1 )⊗ h

(
x

x1
1

)

λ

��
h(x1 + x1)⊗ h(x2

2) λ
�� h(x)
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commutes. Similarly, taking quotients of the first filtration above by x1
1 we obtain that the

diagram

h(x1
2)⊗ h(x2

1)⊗ h(x2
2 )

λ⊗1

��

1⊗λ �� h(x1
2 ⊕ x2

1 )⊗ h(x2
2)

λ
��

h(x1
1)⊗ h(x2

2 ) λ
�� h

(
x

x1
1

)

also commutes. Since h is symmetric, the latter diagram, tensorized with h(x1
1) and compared

with the diagram (2.17), yields the diagram (2.12). This proves the “if” clause of the state-
ment. For the “only if” part, we observe that the commutative diagram (2.16) is just the case
x1

1 = x2
2 = 0 of the commutative diagram (2.12). Thus, the proposition is proved. �

EXAMPLES 2.18. (1) Let k be a field and A = Vect0(k) the abelian category of
finite dimensional vector spaces on k. Let G = k∗, and P = Tors(G). For an object V ∈
Vect0(k), let us denote by Λmax the top exterior power of V . Then we have a G-torsor

det(V ) = Λmax − {0} ,
called the determinantal space of V . For every short exact sequences of vector spaces V ′ ↪→
V � V ′′, we have natural identifications

λV ′,V ,V ′′ : det(V ′)⊗ det(V ′′)→ det(V ) .

The collection {det(V ), λ}V ∈Vect0(k) forms a determinantal theory on A (see [12]). This de-
terminantal theory is non-symmetric.

(1′) (Sketch) The non-symmetric determinantal theory det(V ) has a symmetric analog.
Let us consider the category PicZ

k (see Appendix). For any V in Vect0(k), let det(V ) be the
graded 1-dimensional vector space consisting of the top exterior power Λmax(V ) in degree
dim(V ). Then, the correspondence V 
→ det(V ) is a symmetric determinantal theory with
values in PicZ

k .
(2) The universal determinantal theory. The geometric description of the bisimplexes

of S(A) of dimension less than or equal to 3 has a natural interpretation in terms of the
universal determinantal theory. This is a determinantal theory with values in the category
of virtual objects (cf. Appendix B). Namely, (hu, λu) : A → V (A) is defined as follows.
Referring to the notations used in Remark 2.4, for all object a ∈ A, hu(a) is the loop |a| of
S(A), interpreted as on object of V (A). Given σ : a′ ↪→ a � a′′, |σ | is a homotopy class of
homotopies between the composition of the loops |a′| ∗ |a′′| and |a|, and it can be interpreted
as an arrow

λuσ = |σ | : hu(a′)⊗ hu(a′′) ∼−→ hu(a) .

of V (A).
We claim that the pair (hu, λu) defines a symmetric determinantal theory. Indeed, let

τ be a1 ↪→ a2 ↪→ a3. Interpret |τ | (see Figure 2) as a class of homotopies between the
composition of the even faces of |τ |, as in Figure 3, i.e., the arrow of V (A):
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FIGURE 3. Even composition.

FIGURE 4. Odd composition.

hu(a3)
(1⊗∂0(τ ))∂2(τ )−−−−−−−−→ hu(a1)⊗ hu

(
a2

a1

)
⊗ hu

(
a3

a2

)

and the composition of the odd faces of |τ |, as in Figure 4, i.e., the arrow of V (A):

hu(a3)
(1⊗∂1(τ ))∂3(τ )−−−−−−−−→ hu(a1)⊗ hu

(
a2

a1

)
⊗ hu

(
a3

a2

)
.

Thus, |τ | yields the commutativity, up to an isomorphism α of associativity of V (A), of a
diagram of type (2.8), with h = hu and λ = λu. Similar interpretations give the functoriality
of h and the naturality of λuσ with respect to σ . Thus (hu, λu) is a determinantal theory. A
direct application of Proposition 2.15 shows that it is symmetric. We call it the universal
determinantal theory on A. This terminology is justified by the following theorem, which in
the symmetric case is due to Deligne (cf. [4, 4.3]), and which explains how to reconstruct any
P-valued determinantal theory from the universal determinantal theory.



SATO GRASSMANNIANS FOR GENERALIZED TATE SPACES 501

THEOREM 2.19. (1) Let P be a Picard category and Fun⊗(V (A),P) the category
of Picard functors V (A)→ P . Then there exists an equivalence of categories

Det(A,P) ∼−→ Fun⊗(V (A),P) .

(2) Let P be a symmetric Picard category, and Fun⊗σ (V (A),P) the category of sym-
metric Picard functors V (A)→ P . Then there exists an equivalence of categories

Detσ (A,P)
∼−→ Fun⊗σ (V (A),P) .

3. Sato Grassmannians in an exact category. Let A be an exact category and let
us consider its Beilinson category lim←→A of locally compact objects over A (or generalized
Tate spaces; see Appendix A). Fix any object X ∈ lim←→A. We sketch a general theory of
the Grassmannian of the generalized Tate space X, which generalizes the concept of the Sato
Grassmannian of a Tate space X, when A = Vect0(k).

DEFINITION 3.1. The Sato Grassmannian of the object X is the set Γ (X) of all the
admissible subobjects [V ↪→ X], such that V ∈ Proa(A) and X/V ∈ Inda(A).

In other words, for a subobject of X, the statement “[V ↪→ X] ∈ Γ (X)” means that
there is an admissible short exact sequence of lim←→A:

V ↪→ X � X

V

such that V is in Proa(A) and X/V is in Inda(A).
In such a situation, and when the class of the monomorphismm : V ↪→ X is known, we

shall simply say that V is in Γ (X). Let thus X ∈ lim←→A be given through a specific ind-pro
system {Xi}, X = “lim−→”i∈IXi . The existence of the monomorphism m : V ↪→ X implies

the existence of an i ∈ I and an admissible monomorphism of Proa(A): mi : V ↪→ Xi .
By composing with the structure maps of the ind-system {Xi}, we obtain that there is an
admissible monomorphismmj : V ↪→ Xj for all j ≥ i. Then we can write the quotientX/V
as

“ lim−→
i∈I

”

(
Xi

V

)
.

The condition expressed in the definition implies that this is a strict admissible ind-system of
A. Therefore, each quotient object Xi/V is in A.

THEOREM 3.2. Let X ∈ lim←→A and V ↪→ W be an admissible monomorphism in
Proa(A), with W ∈ Γ (X). Then V ∈ Γ (X) if and only if W/V ∈ A.

PROOF. (“If” part) Let V ↪→ W ↪→ X be the composition of two admissible monomor-
phisms. We want to show that X/V ∈ Inda(A).
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We get the diagram

(3.3) V �� W

��

�� X

��
W

V
�� X

V

��
X

W

where the horizontal arrows are admissible monomorphisms, and the vertical ones admissible
epimorphisms. In particular, we get an admissible short exact sequence W/V ↪→ X/V �
X/W in lim←→A, with W/V ∈ A and X/W ∈ Inda(A), since W ∈ Γ (X). But Inda(A) is
closed under extensions in lim←→A (cf. [17]), hence it follows X/V ∈ Inda(A), i.e., [V ↪→
X] ∈ Γ (X).

(“Only if” part) It is clear from the same diagram. �

3.1. Partially abelian exact categories.

DEFINITION 3.4. (1) Let (A, E) be an exact category. We say that A is closed un-
der admissible intersections, or simply that A satisfies the admissible intersection condition
(AIC), if any pair of admissible monomorphisms with the same target, a′ ↪→ a ←↩ a′′ has a
pullback p in A, and in the resulting diagram

p� �

��

� � �� a′� �

��
a′′ �

� �� a

all the morphisms are admissible monomorphisms.
(2) Dually, we say that A satisfies (AIC)o, if any pair of admissible epimorphisms with

the same source: b � b′, b � b′′, has a pushout q in A, and in the resulting diagram

b

��

�� b′

��
b′′ �� q

all the morphisms are admissible epimorphisms.

LEMMA 3.5. Let (A, E) be closed under admissible intersections. Consider the pull-
back diagram of the admissible monomorphisms a ↪→ c, b ↪→ c:
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(3.6) p
� �

��

� � i �� a � �

��
b

� �

i′
�� c .

Let j = coker(i) and j ′ = coker(i ′) be admissible epimorphisms. Then, there exists a unique
(not necessarily admissible) monomorphismm′′ of A, making the diagram

p
� �

��

� � i �� a � �

��

j �� q
� �

m′′
���
�
�

b
� �

i′
�� c

j ′
�� d

commutative.

PROOF. The above lemma holds in any abelian category. It is thus valid in the abelian
envelope F of A. In particular,m′′ is a monomorphism of A. �

LEMMA 3.7. In the situation of Lemma 3.5, let us extend the diagram (3.6) to a 3× 3
diagram

(3.8) p� �

m′
��

� � i �� a � �

m

��

j �� q � �

m′′
��

b
� �

i′
��

e′
��

c

e

��

j ′
�� d

e′′
��

r
i′′

�� s
j ′′

�� t

by passing to the cokernels in the abelian envelope F , where (m′′, e′′) and (i ′′, j ′′) are short
exact sequences in F , while (i, j), (i ′, j ′), (m, e), (m′, e′) are admissible short exact se-
quences in A. In this case, the bottom right square is a pushout diagram.

PROOF. The proof is a direct verification of the universal property of pushouts relative
to the bottom right square. �

PROPOSITION 3.9. If A satisfies both (AIC) and (AIC)o, then in diagram (3.8) m′′ is
an admissible monomorphism and e′′ an admissible epimorphism. As a result, (3.8) represents
an object of the category S2S2(A), of the delooping S•S•(A) of S•(A) (cf. Subsection 2.2).
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PROOF. From Lemma 3.7 we know that the diagram

c

e

��

j ′ �� d

e′′
��

s
j ′′

�� t

is a pushout diagram of the admissible epimorphisms e and j ′. Since A satisfies (AIC)o, it
follows that t ∈ A and that j ′′, e′′ are admissible epimorphisms. Therefore, from Lemma
A.1, m′′ = ker(e′′) is an admissible monomorphism. �

DEFINITION 3.10. An exact category (A, E) is called partially abelian exact (PAE)
if every arrow f which is the composite of an admissible monomorphism followed by an
admissible epimorphism can be factored in a unique way as the composite of an admissible
epimorphism followed by an admissible monomorphism.

For example, an abelian category is partially abelian exact. In Section 5 we shall give an
example of an exact category which is not partially abelian exact.

THEOREM 3.11. The category (A, E) is partially abelian exact if and only if A satis-
fies both (AIC) and (AIC)o.

PROOF. We first show that if A satisfies (AIC) and (AIC)o, then A is partially abelian

exact. Let f be the composite x
m
↪→ y

e
� z of an admissible monom followed by an admissi-

ble epi e. Let k ↪→ y be the kernel of e, which is an admissible monomorphism, and consider
the pullback p of k ↪→ y and m. We obtain the diagram

p� �

m′
��

� � �� k � �

��
x

e′
��

� �

m
�� y

e

��
z′

h
����� z ,

in which m′ : p ↪→ x is an admissible monomorphism and e′ = coker(m′) ∈ A. From
Lemma 3.5 there exists a unique admissible monomorphism h : z′ ↪→ z for which the bottom

square commutes. Thus, x
e′
� z′ h

↪→ z is the required factorization of f .
Conversely, suppose that A is partially abelian exact. We first show that A satisfies

(AIC). Let k ↪→ y ←↩ x be a diagram of admissible monomorphisms of A. Let z : = y/k
and apply the factorization condition to the composite x ↪→ y � z. Then we obtain the
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diagram

k � �

m

��
x

e′
��

� � �� y

e

��
y � �

i′′
�� z

where e′ is an admissible epimorphism and i ′′ an admissible monomorphism.
From the universal property of m = ker(e), we obtain a unique morphism k′ → k for

which the diagram

(3.12) k′ i ��
� �

m′
��

k � �

m

��
x

e′
��

� � �� y

e

��
y � �

i′′
�� z

is commutative.
It is clear that i is a monomorphism in F , hence in A, and that the top square is cartesian.

We want to prove that i is an admissible monomorphism. Consider the admissible epimor-
phism j ′ = coker(i ′), and the epimorphism j = coker(i) in F . Since the top square of (3.12)
is cartesian in F , we obtain, from Lemma 3.5, a unique monomorphismm′′ : k/k′ ↪→ y/x in
F making the diagram

k′� �

��

� � i �� k � �

m

��

j �� k/k′� �
m′′

��
x

� �

i′
�� y

j ′
�� y/x

commutative.
Let us write f the composite j ′ · m in the previous diagram. Since m is an admissi-

ble monomorphism, and j ′ an admissible epimorphism, we can factor f as a composition

k
a
� z

b
↪→ y/x where a is an admissible epimorphism and b an admissible monomorphism.

In the abelian envelope F we thus obtain two decompositions of f as an admissible epimor-
phism followed by an admissible monomorphism. Since in an abelian category every arrow
has an essentially unique such decomposition, it must be k/k′ ∼→ z, and j is an admissible
epimorphism. Since i = ker(j), it follows from Lemma A.1 that i is an admissible monomor-
phism, as required.
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By duality, A satisfies also (AIC)o. This concludes the proof of the theorem. �

3.2. Grassmannians and intersections. In this section and the next we clarify the
behavior of Γ (X) under admissible short exact sequences of lim←→A. The main result is The-
orem 3.29, which roughly speaking allows us to lift an element U ∈ Γ (X) along admissible
monomorphisms Y ↪→ X and to project it along admissible epimorphisms X � Z of lim←→A
to elements of the Grassmannians of Y and Z, respectively, under the assumption that A is
partially abelian exact. We start by showing that Γ (X) is closed under the operation of taking
the intersection of two elements, under the condition that A satisfies (AIC).

THEOREM 3.13. Let A be an exact category satisfying (AIC). Let X ∈ lim←→A and
[U ↪→ X], [V ↪→ X] ∈ Γ (X). For all m : U ↪→ X,n : V ↪→ X in their respective equiva-
lence classes, the diagram

(3.14) U
� � m �� X V�

�n��

can be completed to a pullback diagram in lim←→A

(3.15) U ∩ V� �

��

� � �� U� �

��
V

� � �� X

such thatU∩V ↪→ U andU∩V ↪→ V are admissible monomorphisms, and, after composing
the arrows of (3.15), we get [U ∩ V ↪→ X] in Γ (X).

LEMMA 3.16. Let A be an exact category satisfying (AIC), and F its abelian enve-
lope. Suppose that we have two pullback diagrams

(3.17) P � �

j1

��

� � i1 �� A� �

j2

��

P ′′� �
l1

��

� � k1 �� A′′� �
l2

��
B

� �

i2

�� Z , B ′′ � �

k2

�� Z′′ ,
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where all the morphisms are admissible monomorphisms, and there are admissible epimor-
phisms e : A � A′′, f : Z � Z′′, g : B � B ′′ for which we have a commutative diagram

(3.18) P
� � ��

� �

��

A� �

��

e������
��

��
��

P ′′ �
� ��

� �

��

A′′� �

��

B
� � ��

g������
��

��
��

Z

f������
��

��
��

B ′′ �
� �� Z′′

such that the square

(3.19) B

g
����

� � �� Z

f
����

B ′′ �
� �� Z′′

is admissible and cartesian. Then there exists a unique morphism r : P → P ′′ for which the
above cubic diagram commutes, and r is an admissible epimorphism.

PROOF. The existence and uniqueness of r is a consequence of the universal property
of the pullback P ′′. We now prove that r is an admissible epimorphism, by showing that r is
an epimorphism of F whose kernel is in A, and then applying Lemma A.1.

Let thus consider the diagram (3.18) in the abelian envelope F . To prove that r is an
epimorphism of A, we use a diagram-chase argument.

Suppose, therefore, that an element a is given in P ′′. We want to construct a preimage
of a through r .

Construct, from a, the following elements: d = k1(a) ∈ A′′; c = l1(a) ∈ B ′′ and
e = k2(c) ∈ Z′′. Then, lift e to a preimage ẽ in Z, which exists since f is surjective. From
the cartesianity of the diagram (3.19), we get a unique element b ∈ B such that i2(b) = e and
g(b) = c.

Next, consider the preimages d̃ of d in A. If there exists a d̃ such that j1(d̃) = ẽ, then,
from the cartesianity of the left square in (3.17), we obtain a unique element x̃ ∈ P for which
i1(x̃) = d̃ and j1(x̃) = b. Thus, r(x̃) is the unique preimage of d in P , and r is surjective in
this case.

Suppose, on the other hand, that j2(d̃) �= ẽ for all preimage d̃ of d in A. In this case,
pick any j2(d̃) in Z. We get

f (j2(d̃)− ẽ) = (f · j2)(d̃)− f (ẽ) = e − e = 0 .
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For a given ẽ′ = j2(d̃) in Z, and from the cartesianity of the diagram (3.19), we obtain a
unique element b̃ in B, such that i1(b̃) = ẽ′ and g(b̃) = c. Now, the cartesianity of the left
square in (A.2) yields again a unique element x̃ in P for which j1(x̃) = b̃ and i1(x̃) = d̃ . We
thus have again

k1 · r(x̃) = (e · i1)(x̃) = d ,
and we reduce ourselves to the previous case. Then, r(x̃) = a, and r is an epimorphism.

We now prove that r is an admissible epimorphism. For this, we consider the following
double cubic diagram, which is the extension of the cubic diagram (3.18) to the kernels of the
epimorphisms there involved.

Let γ = ker(g), ε = ker(e), φ = ker(f ) be admissible monomorphisms, and s = ker(r),
the kernel of r in F . Then, we get the cubic diagram

A′ �
� ��

� �

ε

��

Z′� �

φ

��

P ′ �
� n ��

� �

s

��

� �

		��������
B ′

� �

		��������

� �

γ

��

A
� � ��

e
����

Z

f

����

P

r

����

� � j1 ��
� �

										
B

g

����

� �

										

A′′ �
� �� Z′′

P ′′
� �

		��������
� �

l1

�� B ′′
� �

		��������

in the category F . In this diagram the arrows composing the top square are monomorphisms
induced by the universal properties of the kernels involved. The columns (ε, e), (φ, f ), (γ, g)
are admissible short exact sequences of A, while the column (s, r) is a short exact sequence of
F . In order to prove that r is an admissible epimorphism, we shall prove that s = ker(r) is an
admissible monomorphism. The claim will then follow from Lemma A.1. It will be enough
to show that the square

(3.20) P ′� �
s

��

� � �� B ′� �
γ

��
P

� �

j1

�� B
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is cartesian in F . In fact, this will imply that it is the pullback square of two admissible
monomorphisms of A, i.e., γ and j1, thus, from the (AIC) condition and Lemma A.2, the
square is cartesian in A and s is an admissible monomorphism.

We shall use also in this case a diagram-chase argument. Let v ∈ P and u ∈ B ′ be two
elements such that j1(v) = γ (u) = w in B. This element w is sent by g to 0 of B ′′, since
g(w) = g · γ (u) and (γ, g) is an admissible short exact sequence. Thus, l1 · r(v) = 0. But l1
is a monomorphism, so r(v) = 0.

It follows that v belongs to the kernel of r , hence to the image of s. Let x ∈ P ′ be the
unique element such that s(x) = v. The cartesianity of (3.20) is proved if we can show that
n(x) = u. But this is clear. Actually, since all the morphisms involved in diagram (3.20) are
monomorphisms, and since γ (u) = w = j1 · s(x), n must send x into the unique preimage of
w in B ′, i.e., u. Thus, (3.20) is cartesian in F . Then r is an admissible epimorphism and the
proof of the lemma is complete. �

We notice that the proof of the claim that r is an epimorphism also proves the following
corollary.

COROLLARY 3.21. The resulting admissible square

P ′′

r
����

� � �� A′′

����
P

� � �� A

in diagram (3.18) is cartesian.

Using Lemma A.10 and Corollary 3.21, we obtain the following proposition.

PROPOSITION 3.22. Let U,V,Z be objects of Proa(A), with admissible monomor-
phisms U ↪→ Z and V ↪→ Z, which can be expressed as ladders of cartesian admissible
squares of A. Then the pullback U ×Z V exists in Proa(A) and in the resulting diagram

U ×Z V

��

�� U

m

��
V n

�� Z ,

the morphisms U ×Z V → U and U ×Z V → V are admissible monomorphisms which can
be expressed as ladders of cartesian admissible squares of A.

Let us now consider the case for lim←→A. Let X ∈ lim←→A and suppose X = “lim−→”jXj , for

Xj ∈ Proa(A). Let U ∈ Proa(A), and let m : U ↪→ X be an admissible monomorphism in
lim←→A. Since U in lim←→A is represented as a trivial ind-system of Proa(A), the datum of m
is equivalent to the datum of the existence of an index j and an admissible monomorphism
U ↪→ Xj in Proa(A).
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Then, if [U ↪→ X], [V ↪→ X] ∈ Γ (X), there are indices j1, j2 for which any pair of
representatives m : U ↪→ X, n : V ↪→ X are given in components by admissible monomor-
phisms of Proa(A), U ↪→ Xj1 , V ↪→ Xj2 , as ladders of cartesian squares in A. By taking
j = max(j1, j2), we can assume, without loss of generality, j1 = j2 = j .

The next lemma follows from Proposition 3.22.

LEMMA 3.23. With the same notation as above, the object U ×Xj V is a pullback in
lim←→A of the diagram (3.14).

We shall denote the object “lim−→”jU ×Xj V by U ∩V . We now can prove Theorem 3.13.

PROOF OF THEOREM 3.13. In Lemma 3.23 we have proved the existence, under the
assumptions of the Theorem, of a pullback square (3.15), where U ∩ V ∈ Proa(A), and
U ∩V ↪→ U,U ∩V ↪→ V are admissible monomorphisms from Proposition 3.22. It remains
to prove that [U ∩ V ↪→ X] ∈ Γ (X).

This can be achieved by the consideration of the induced admissible short exact sequence
in lim←→A

U

U ∩ V
� � �� X

U ∩ V
�� �� X

U
.

Since from Proposition 3.22 the monomorphismU ∩V ↪→ U can be expressed as a ladder of
cartesian squares, the quotient U/(U ∩ V ) is in A.

On the other hand, since [U ↪→ X] is in Γ (X), X/U is in Inda(A). Thus, in the above
short exact sequence, the first and the last term are in Inda(A), which, being closed under
extensions in lim←→A, forces X/(U ∩ V ) to be also in Inda(A). Then [U ∩ V ↪→ X] is in
Γ (X), and the theorem is proved. �

3.3. Grassmannians and short exact sequences. We now discuss the behavior of
Sato Grassmannians under admissible short exact sequences in lim←→A.

PROPOSITION 3.24. Let A be an exact category satisfying (AIC). Let m : X ↪→ Y be
an admissible monomorphism in lim←→A, and [U ↪→ Y ] an element of Γ (Y ). Then the diagram

(3.25) X
� � m �� Y

U
��





can be completed to a pullback diagram

(3.26) X
� � m �� Y

U ∩X � � ����





U ,
��
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where the object U ∩X is in Proa(A), all the maps are admissible monomorphisms, and the
resulting composition [U ∩X ↪→ X] is in Γ (X).

PROOF. Straightify m. Then, for all j , we can represent m by a system of monomor-
phisms

. . . �
� �� Xi−1� �

��

� � �� Xi� �

��

� � �� Xi+1� �

��

� � �� . . .

. . . �
� �� Yi−1

� � �� Yi
� � �� Yi+1

� � �� . . .

of Proa(A). Since U ∈ Proa(A), the existence of the admissible monomorphism U ↪→ Y in
lim←→A is equivalent to the existence of an i and of an admissible monomorphism U ↪→ Yi of
Proa(A). For this monomorphism we have the diagram, in Proa(A):

(3.27) Xi
� � �� Yi U .� ���

We straightify this diagram by writing, in components: Xi = “lim←−”j∈JXj , Yi = “lim←−”j∈J Yj ,

U = “lim←−”j∈JUj . We then obtain a diagram of objects of A

. . . �� �� Xj+1� �

��

�� �� Xj� �

��

�� �� Xj−1� �

��

�� �� . . .

. . . �� �� Yj+1 �� �� Yj �� �� Yj−1 �� �� . . .

. . . �� �� Uj+1
��





�� �� Uj
��





�� �� Uj−1
��





�� �� . . . .

In this diagram, the horizontal arrows are admissible epimorphisms, the vertical arrows admis-
sible monomorphisms, and the square corresponding to the morphism U ↪→ Y are cartesian.

We then construct, for each j , the pullback of

Xj
� � m �� Yj Uj� �n��

which exists since A satisfies (AIC). We are now in the hypotheses of Lemma 3.16; its appli-
cation gives us a strictly admissible pro-system {Xj ×Yj Uj }j , and then we obtain an object
“lim←−”j∈JXj ×Yj Uj , which is a pullback in Proa(A) of the diagram (3.27).
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Let us denote this pullback by Xi ×Yi U . For all i ≤ j we have a canonical map of
corresponding pullbacks, induced by the diagram

(3.28) Xi ×Yi U � � ��
� �

��

�	

��










Xi� �

��


�

����
��

��
��

Xj ×Yj U � � ��
� �

��

Xj� �

��

U
� � ��

id
��












 Yi�


����
��

��
��

U
� � �� Yj ,

and it is clear that such an arrow is a monomorphism. Then, the object “lim−→”i∈I (Xi ×Yi U) is

the pullback of the diagram (3.25). We shall denote this object by U ∩X.
A priori,U ∩X is an object of Ind Proa(A). However, for each i, we have from the above

cubic diagram an admissible monomorphism in Proa(A):

Xi ×Yi U
mi
↪→ U .

Therefore, the admissible monomorphisms {mi} form an inductive system of admissible
monomorphisms, which gives rise to an admissible monomorphism

“lim−→”
i∈I

(Xi ×Yi U) ↪→ U .

But U is in Proa(A), and then the object U ∩ X = “lim−→”i∈I (Xi ×Yi U) also belongs to

Proa(A). We therefore get a cartesian diagram of type (3.26), where all the morphisms are
admissible monomorphisms, and U ∩X ∈ Proa(A).

It is left to prove that [U ∩X ↪→ X] is in Γ (X). We argue as in the proof that U ∩X is
in Proa(A). Since the above square is cartesian, we get, on the quotients, a monomorphism

X

U ∩X ↪→ Y

U
.

A priori, the object X/(U ∩X) is in Inda Proa(A). But since [U ↪→ Y ] ∈ Γ (Y ), Y/U is in
Inda(A). Thus, X/(U ∩X) is in Inda(A), i.e., [U ∩X ↪→ X] ∈ Γ (X), and Proposition 3.24
is proved. �

Thus, for an admissible monomorphims X ↪→ Y in lim←→A, and for a given U ∈ Γ (Y ),
in order to prove that the “intersection” U ∩ X is an element of the Grassmannians of X,
it is sufficient to assume that A satisfies (AIC). However, to make sure that the quotient
U/(U ∩X) is an element of the Grassmannians of the quotient object Y/X, we need also
the dual condition (AIC)o. This is the content of the next statement.
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THEOREM 3.29. Let A be a partially abelian exact category. Let X ↪→ Y � Z be an
admissible short exact sequence of lim←→A, and let [U ↪→ Y ] in Γ (Y ) be given. Then we have
a commutative diagram

(3.30) U ∩X � � ��
� �

��

U �� ��
� �

��

U

U ∩X� �
m

��
X

� � �� Y �� �� Z ,

in which the top sequence is an admissible short exact sequence of Proa(A), such that the
arrow U/(U ∩X) ↪→ Z is an admissible monomorphism and [U/(U ∩X) ↪→ Z] is in
Γ (Z).

TERMINOLOGY. On the operations in Theorem 3.29, we shall say that U has been
lifted to X along the admissible monomorphismX ↪→ Y , and that U has been projected to Z
along the corresponding epimorphism Y � Z.

PROOF. Let us keep the same notations as in the proof of Proposition 3.24. As we have
seen, the diagram (3.26) is constructed from the diagrams (3.27) of Proa(A), by forming the
limit “lim−→”i∈I (Xi ×Yi U), which is still an object of Proa(A). Let us take the quotients of the

horizontal monomorphisms and get the following diagram, where the horizontal sequences
are admissible short exact sequences:

(3.31) U ×Yi Xi � � ��
� �

��

U �� ��
� �

��

U

U ×Yi Xi

Xi
� � �� Yi �� �� Zi .

We now prove the existence of an admissible monomorphism mi : U/(U ×Yi Xi) ↪→ Zi

making (3.31) commutative.
As in Proposition 3.24, write Xi = “lim←−”j∈JXi,j , Yi = “lim←−”j∈J Yi,j , U = “lim←−”j∈JUj ,

with Xi,j , Yi.j , Uj objects of A.
For all j we obtain cartesian diagrams

Uj ×Yi,j Xi,j � � ��
� �

��

Uj� �

��
Xi,j

� � �� Yi,j .
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Since A is partially abelian exact, we can apply Proposition 3.9, and we obtain commutative
diagrams

Uj ×Yi,j Xi,j � � ��
� �

��

Uj �� ��
� �

��

Uj

Uj ×Yi,j Xi,j� �

mi,j

��

Xi,j
� � �� Yi,j �� �� Yi,j

Xi,j

for all j , where the arrowsmi,j are admissible monomorphisms.
Taking projective limits, we get an admissible monomorphism in Proa(A):

mi = “lim←−”
j∈J

mi,j : “lim←−”
j∈J

Uj

Uj ×Yi,j Xi,j
↪→ “lim←−”

j∈J

Yi,j

Xi,j
.

Notice that

“lim←−”
j∈J

Uj

Uj ×Yi,j Xi,j
= U

U ×Yi Xi
and “lim←−”

j∈J

Yi,j

Xi,j
= Zi .

Thus, for all i we have an admissible monomorphismmi making the diagram

(3.32) U ×Yi Xi � � ��
� �

��

U �� ��
� �

��

U

U ×Yi Xi� �
mi

��
Xi

� � �� Yi �� �� Zi

commutative.
We then repeat the same argument, with this time taking inductive limits of the diagram

(3.32). When applying “lim−→”i∈I to the left square of (3.32) we get, as in Proposition 3.24, the

commutative diagram (3.26). When it is applied to the right square, we get an arrow

m = “lim−→”
i∈I

mi : “lim−→”
i∈I

U

U ×Yi Xi
↪→ “lim−→”

i∈I

Yi

Xi
,

i.e., an admissible monomorphism m : U/(U ∩X) ↪→ Z, for which Diagram 3.30 is
commutative. This proves the first assertion of the theorem. It is then left to prove that
[U/(U ∩X) ↪→ Z] is in Γ (Z). Let us repeat the same argument, this time to the columns
of Diagram 3.31, that is, we take this time the quotients in the vertical direction. We obtain a
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commutative diagram

U ∩X � � ��
� �

��

U� �

��
X

����

� � �� Y

����
X

U ∩X
� �

i
�� Y

U
,

where i is an admissible monomorphism of Inda(A). Then, we get a commutative diagram

U ∩X � � ��
� �

��

U �� ��
� �

��

U

U ∩X� �
m

��
X

� � ��

����

Y

����

�� �� Z

e

����
X

U ∩X
� �

i
�� Y

U j
�� �� Q ,

in which all the rows and columns are admissible short exact sequences, Q is the common
quotient and the bottom right square is a pushout square of admissible epimorphisms, as it
can be seen by the application of Proposition 3.9, or by dualizing Proposition 3.24.

Since [U ∩ X ↪→ X] ∈ Γ (X) and [U ↪→ Y ] ∈ Γ (Y ), we get that X/(U ∩X) and
Y/U are in Inda(A). Hence their quotient Q is in Inda(A). But Q is also the quotient
Z/(U/(U ∩X)), which is thus in Inda(A). This shows that U/(U ∩X) ∈ Γ (Z), and the
proof of the theorem is complete. �

COROLLARY 3.33. Let A be a partially abelian exact category and X1 ↪→ X2 an
admissible monomorphism of lim←→A. Suppose we have a pullback diagram

(3.34) U ′1
� � ��

� �

��

U1� �

��
U ′2

� � �� U2
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of admissible monomorphisms in Proa(A), where U1, U
′
1 ∈ Γ (X1), U2, U

′
2 ∈ Γ (X2). Then

we have an induced commutative diagram

U ′1
� � ��

� �

��

U1 �� ��
� �

��

U ′′1� �

��
U ′2

� � ��

����

U2

����

�� �� U ′′2

����
U ′2
U ′1

� � �� U2

U1

�� �� U
′′
2

U ′′1
,

where all the rows and columns are admissible short exact sequences. In particular, the
bottom row and, symmetrically, the right column, is an admissible short exact sequence in A.

4. The determinantal torsor on the Waldhausen space S(limA). See Appendix B
for the concepts related to torsors and gerbes used throughout this section.

4.1. The dimensional torsor.

DEFINITION 4.1. Let A be an exact category and G an abelian group.
(a) A function χ : Ob A → G is called a dimensional theory on A if, for any ad-

missible short exact sequence a′ ↪→ a � a′′ of A, the equality: χ(a) = χ(a′) + χ(a′′)
holds.

(b) Let χ be a dimensional theory and X ∈ lim←→A. A χ-relative dimensional theory
is a map d : Γ (X) → G such that, for all admissible monomorphisms U ↪→ V between
elements U,V ∈ Γ (X), we have

(4.2) d(V ) = d(U)+ χ
(
V

U

)
.

(c) Given a dimensional theory χ , we denote by Dimχ(X) the set of all χ-relative dimen-
sional theories on X.

As a consequence of (a), we have χ(0) = 0, and χ(a) = χ(a′) whenever a
∼−→ a′. In

particular, if U
∼−→ V in Γ (X), then d(U) = d(V ) for all d ∈ Dimχ(X). Moreover, let

K0(A) be the Grothendieck group of the exact category A. From the universal property of
K0(A), the datum of a dimension theory χ : Ob A → G is equivalent to the datum of a
homomorphism uχ : K0(A)→ G.

PROPOSITION 4.3. Let A be an exact category satisfying (AIC). Then, Dimχ (X) is a
G-torsor.

SKETCH OF PROOF. We first define an action G × Dimχ (X)
∗→ Dimχ (X) by letting

(g ∗ d)(U) := g + d(U) for all g ∈ G, d ∈ Dimχ(X), and U ∈ Γ (X). It is immediate that
this datum defines an action of G on Dimχ (X). We prove that it is free and transitive. To see
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this, let d, d ′ ∈ Dimχ(X) and fix U ∈ Γ (X). Write g := d(U)− d ′(U). Then it is enough
to prove that this g does not depend on U . The argument works as follows. Let U ↪→ U ′ be
in Γ (X). We have d(U ′) = d(U)+ χ (

U ′/U
)
, d ′(U ′) = d ′(U)+ χ (

U ′/U
)
.

Thus, since G is abelian, it follows that d(U ′)− d ′(U ′) = d(U)− d ′(U) = g . When U ′
is any element of Γ (X), Theorem 3.13 shows that U ∩ U ′ is in Γ (X). The consideration of
the diagram (3.15) proves that it is d(U ′)− d(U) = g also in this case. �

4.2. The universal dimensional torsor. It is possible to introduce a dimensional
torsor which is “universal” in the sense that it depends only on the categoryA via the Grothen-
dieck groupK0(A). This dimensional torsor will be denoted by Dim(X).

DEFINITION 4.4. Let ψ : Ob A → K0(A) be the dimensional theory sending each
a ∈ Ob A to its class [a] ∈ K0(A). We shall call this function ψ the universal dimensional
theory on A. We then define Dim(X) := Dimψ(X). Thus, Dim(X) is the K0(A)-torsor
associated with the identity on K0(A).

If χ : Ob A → G is any other dimensional theory, and uχ the corresponding group
morphismK0(A)→ G, we have the following proposition.

PROPOSITION 4.5. In the above situation, we have uχ∗(Dim(X)) = Dimχ (X).

EXAMPLE 4.6. The Kapranov Dimensional torsor Dim(V ). Let A = Vect0(k). We
have lim←→A = T , the category of Tate spaces. Let V ∈ T be a Tate space. Since K0(A) = Z,
Dim(V ) is a Z-torsor. This torsor is the Kapranov dimensional torsor associated to the Tate
space V , defined by Kapranov in [12].

4.3. Dimensional torsors form a symmetric determinantal theory. We now study
the behavior of the dimensional torsor with respect to admissible short exact sequences of
lim←→A, where A is a partially abelian exact category.

Let A be a partially abelian exact category and χ be a dimensional theory on A with
values in an abelian groupG. Consider, in lim←→A, any admissible short exact sequence: X′ ↪→
X � X′′. Let [U ↪→ X] ∈ Γ (X). Since A is partially abelian exact, from Theorem 3.29 we
get the admissible short exact sequence of Proa(A)

U ∩X′ ↪→ U � U

U ∩X′ ,

where [U ∩X′ ↪→ X′] ∈ Γ (X′) and
[
U/(U ∩X′) ↪→ X′′

] ∈ Γ (X′′).
Next, let d ′ ∈ Dimχ(X) and d ′′ ∈ Dimχ (X

′′). Define

(4.7) d(U) := d ′(U ∩X′)+ d ′′
(

U

U ∩X′
)

for all [U ↪→ X] ∈ Γ (X).
THEOREM 4.8. (1) The map d : Γ (X)→ G defined in (4.7) is a χ-relative dimen-

sional theory on X.



518 L. PREVIDI

(2) The induced map μ : Dimχ (X
′)× Dimχ(X

′′)→ Dim(X) given by μ(d ′, d ′′) = d
descends to a (iso-)morphism of G-torsors

μX′,X,X′′ : Dimχ (X
′)⊗ Dimχ(X

′′)→ Dimχ(X) ,

for which the pair (Dimχ (X),μ)X∈lim←→A is a symmetric determinantal theory on lim←→A with

values in the Picard category Tors(G).

PROOF. (1) Let U1 ↪→ U2 ↪→ X with [U1 ↪→ X], [U2 ↪→ X] ∈ Γ (X).
We have the relations

d(U2) := d ′(U2 ∩X′)+ d ′′
(

U2

U2 ∩X′
)
,

d(U1) := d ′(U1 ∩X′)+ d ′′
(

U1

U1 ∩X′
)
,

d ′(U2 ∩X′) := d ′(U1 ∩X′)+ χ
(
U2 ∩X′
U1 ∩X′

)

and

d ′′
(

U2

U2 ∩X′
)
:= d ′′

(
U1

U1 ∩X′
)
+ χ

⎛
⎜⎜⎝

U2

U2 ∩X′
U1

U1 ∩X′

⎞
⎟⎟⎠ .

It is enough to prove that d(U2) = d(U1)+ χ(U2/U1). This results from the above relations
thanks to the commutativity of G and because the sequence

U2 ∩X′
U1 ∩X′ ↪→

U2

U1
�

U2

U2 ∩X′
U1

U1 ∩X′
is an admissible short exact sequence of A from Theorem 3.29. Thus, since χ is defined on
K0(A), we have

χ

(
U2

U1

)
= χ

(
U2 ∩X′
U1 ∩X′

)
+ χ

⎛
⎜⎜⎝

U2

U2 ∩X′
U1

U1 ∩X′

⎞
⎟⎟⎠ .

Substituting this equality in the expression obtained for d(U2)− d(U1), we get χ(U2/U1), as
claimed.

(2) To check that μ descends to a (iso)morphism of torsors, it is enough to check that
μ(gd ′, d ′′) = μ(d ′, gd ′′) for all g ∈ G. But this is immediate from the definition of μ and
the commutativity of G.

In order to prove that (Dimχ (X),μ)X∈lim←→A is a determinantal theory we need to show

that the isomorphisms μ are natural with respect to isomorphisms of admissible short exact
sequences of lim←→A, and that the diagram (2.8) commutes for h(X) = Dim(X), ai = Xi for
i = 1, 2, 3 and λ = μ. We shall need a topological lemma about the Grassmannians.
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Consider the following diagram in lim←→A, where the horizontal arrows are admissible
monomorphisms and the vertical ones the corresponding cokernels:

(4.9) X1
� � �� X2

����

� � �� X3

����
X2

X1

� � �� X3

X1

����
X3

X2
.

We are given three dimensional theories, d1, d21, d32 on X1, X2/X1 andX3/X2, respectively.
The commutativity of the diagram (2.8) is equivalent to the equality

μ(μ(d1, d21), d32) = μ(d1, μ(d21, d32)) ,

as dimensional theories on X3.
Suppose that [U ↪→ X3] ∈ Γ (X3) is given. We construct first μ(μ(d1, d21), d32), by

applying (4.7).
We first lift U along X2 ↪→ X3 to U2 = U ∩ X2 ∈ Γ (X2). We then project U2 along

X3 � X3/X2 to an element U32 = U/U2 ∈ Γ (X3/X2). The element U2 is then lifted along
X1 ↪→ X2 to U1 = U ∩X1 ∈ Γ (X1), and then projected along X1 � X2/X1 to the element

U21 = U2

U1
= U ∩X2

U ∩X1
∈ Γ

(
X2

X1

)
.

We thus can write

μ(μ(d1, d21), d32) = d1(U1)+ d21(U21)+ d32(U32) .

We similarly construct μ(d1, μ(d21, d32)) as follows. We first lift U to the same U1 ∈
Γ (X1), since pullbacks are unique up to a unique isomorphism. We then project U along
X3 � X3/X1, to obtain U/U1 ∈ Γ (X3/X1). This element is then lifted along X2/X1 ↪→
X3/X1 to the element

U ′21 =
U

U1
∩ X2

X1
∈ Γ

(
X2

X1

)
,

and then projected alongX3/X1 ↪→ X3/X2 to the elementU ′32=(U/U1)/U
′
21 in Γ (X3/X2).

We thus have

μ(d1, μ(d21, d32))(U) = d1(U1)+ d21(U
′
21)+ d32(U

′
32) .

The proof of (4) is then an immediate consequence of the following lemma.

LEMMA 4.10. In the above situation, we have equalities U21 = U ′21 in Γ (X2/X1)

and U32 = U ′32 in Γ (X3/X2).
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PROOF. Both equalities are general properties which hold in any abelian category. The
first equality, in set-theoretical terms, reads

U ∩X2

U ∩X1
= ker

{
U

U ∩X1
→ X3

X2

}

as subobjects in
X2

X1
= ker

{
X3

X1
� X3

X2

}
.

The second equality is a consequence of the first, since (U/U1)/(U2/U1) = U/U2, and the
lemma is proved. �

It remains to check the symmetry of Dimχ (X). This is easily done directly using Propo-
sition 2.15. The proof of Theorem 4.8 is now complete. �

4.4. Cohomological interpretation of Dim(X) in terms of the Waldhausen space of
lim A. We refer to multiplicative torsors of degree n over the bisimplicial set determined by
S•(A) simply as multiplicative torsors of degree n over S(A).

For i = 0 the relation πi+1(S(A)) = Ki(A) gives π1(S(A)) = H1(S(A),Z) = K0(A)
(the Grothendieck group of the category A). So the universal dimensional theory on A gives
rise to a class ζ ∈ H 1(S(A),K0(A)).

EXAMPLE 4.11. It is immediate from the definitions that a 0-multiplicative G-torsor
on S(A) is a dimensional theory, and that a 1-multiplicative G-torsor on S(A) is a determi-
nantal theory on A.

It is then possible to re-interpret Theorem 4.8 in terms of the Waldhausen space of lim←→A,
as follows.

THEOREM 4.12. Let A be a partially abelian exact category. Let G be an abelian
group and χ : K0(A) → G a homomorphism. Therefore, the collection {Dim(X);X ∈
lim←→A} is a multiplicativeG-torsor on S(lim←→A).

COROLLARY 4.13. The class ζ inH 1(S(A),K0(A)) gives rise to a cohomology class
in H 2(S(lim←→A),K0(A)).

This result can be interpreted as a “first step delooping” between the first cohomology of
S(A) and the second cohomology of S(lim←→A).

PROOF. The theorem is a restatement of Theorem 4.8. The claims proved there are
equivalent to the statement that {Dim(X);X ∈ lim←→A} is a multiplicative torsor. The corol-
lary follows when we let G = K0(A). Then, from Theorem B.7, the induced multiplicative
K0(A)-torsor Dim(X) represents an element of H 2(S(lim←→A),K0(A)). �

4.5. The determinantal torsor Dh(X). Given a Tate space V , we generalize the con-
struction of the determinantal gerbe Det(V ) (cf. [12]) in two directions: in the first place we
consider any generalized Tate space X, provided that the exact base category A is partially
abelian exact; secondly, instead of a gerbe over an abelian group, we shall produce a torsor
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D over a symmetric Picard category P , which gives rise to the gerbe Det when we restrict to
π1(P), and to the torsor Dim when restricted to π0(P).

Let A be an exact category and X an object of lim←→A. Let (h, λ) be a determinantal
theory on A with values in a symmetric Picard category P .

DEFINITION 4.14. An h-relative determinantal theoryΔ on X is the datum consisting
of a pair (Δ, δ), whereΔ is a functionΔ : Γ (X)→ ObP with the following properties.

(1) For all admissible monomorphismU ↪→ V in Γ (X), there is an isomorphism

δU,V : Δ(U)⊗ h
(
V

U

)
∼−→ Δ(V ) ,

natural with respect to isomorphisms of admissible short exact sequences U ↪→ V � V/U .
(2) For all filtrations of length 2 of admissible monomorphisms in Γ (X), U1 ↪→

U2 ↪→ U3, there is a commutative diagram

(4.15) Δ(U1)⊗ h
(
U2

U1

)
⊗ h

(
U3

U2

)

δU1,U2⊗1

��

1⊗λ �� Δ(U1)⊗ h
(
U3

U1

)

δU1,U3

��
Δ(U2)⊗ h

(
U3

U2

)
δU2 ,U3

�� Δ(U3) ,

where, as before, we have omitted the associator for simplicity.

A morphism of h-relative determinantal theories f : (Δ, δ) → (Δ′, δ′) is a collection
of isomorphisms of P , {fU : Δ(U) → Δ′(U)}U∈Γ (X), such that, for U ↪→ V in Γ (X), the
diagram

Δ(U)⊗ h
(
V

U

)
δU,V ��

fU⊗1
��

Δ(V )

fV

��
Δ′(U)⊗ h

(
V

U

)
δ′U,V �� Δ′(V )

commutes. It is clear that any such morphism is invertible, hence an isomorphism.

DEFINITION 4.16. Let P be a Picard category, and let X be an object in lim←→A as be-
fore. We denote byDh(X,P), or simplyDh(X) if no confusion arises, the category (groupoid)
whose objects are h-relative determinantal theories on X with values in P and morphisms are
the morphisms of determinantal theories.

THEOREM 4.17. If the exact category A satisfies (AIC), then Dh(X) is a P-torsor.

PROOF. For all objects a ∈ P , (Δ, δ) ∈ Dh(X), and U in Γ (X), we define an action⊗
of P on Dh(X) by P ×Dh(X)→ Dh(X), (a,Δ)(U) 
→ a ⊗Δ(U).
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Let us fix (Δ0, δ0) and consider the induced functor

P −⊗Δ0−−−→ Dh(X) , b 
→ b⊗Δ0 .

We prove that this functor is an equivalence of categories. We first show that it is essentially
surjective.

Let (Δ, δ) ∈ ObDh(X) be given. We shall prove the existence of an object a ∈ P and
an isomorphism Δ

∼−→ a ⊗ Δ0 of determinantal theories. Choose [U ↪→ X] ∈ Γ (X). In P ,
consider the isomorphism naturally defined in P ,

Δ(U)
∼−→ Δ(U)⊗ 1

∼−→ Δ(U)⊗ (Δ0(U)
∗ ⊗Δ0(U))

α−→ (Δ(U)⊗Δ0(U)
∗)⊗Δ0(U) ,

where the first is the isomorphism given by 1 as a null object of P and the second is the
isomorphism of duality for objects of P . We let a := Δ(U)⊗Δ0(U)

∗, and we write the above
composition as fU : Δ(U) ∼−→ a⊗Δ0(U).We have to show the following: for allW1 ↪→ W2

in Γ (X), there are isomorphisms fW1 : Δ(W1)
∼−→ a ⊗ Δ0(W1) and fW2 : Δ(W2)

∼−→ a ⊗
Δ0(W2) for which the diagram

(4.18) Δ(W1)⊗ h
(
W2

W1

)
δW1,W2 ��

fW1⊗1

��

Δ(W2)

fW2

��
a ⊗Δ0(W1)⊗ h

(
W2

W1

) 1⊗δ0W1,W2 �� a ⊗Δ0(W2)

is commutative.
We start by defining fV for all V with U ↪→ V . In this case, fV is defined as the dotted

arrow of the diagram below, i.e., as the composite of the isomorphisms represented by full
arrows as the already defined morphisms:

(4.19) Δ(U)⊗ h
(
V

U

)
δU,V ��

fU⊗1
��

Δ(V )

fV

���
�
�
�

a ⊗Δ0(U)⊗ h
(
V

U

)
1⊗δ0U,V �� a ⊗Δ0(V ) .

Similarly one defines fV if V ↪→ U .
Next, let W ∈ Γ (X). To define fW , we consider the diagram

(4.20) U ∩W� �

��

� � �� W� �

��
U

� � �� X
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in lim←→A with [W ∩ U ] ∈ Γ (X), whose existence follows from Theorem 3.13. We apply the
diagram (4.19) to V = W ∩ U and U = U . This defines fW∩U .

From fW∩U we can define fW : Δ(W) → a ⊗ Δ0(W) using again the diagram (4.19).
In this situation U = U ∩W and V = W . This defines fW for all W ∈ Γ (X).

It therefore remains to prove that for all W1 ↪→ W2 in Γ (X), the diagram (4.18) com-
mutes, where fW1 and fW2 have been constructed according to the above procedure.

Let us first consider two elements V1, V2 ∈ Γ (X) such that U ↪→ V1 ↪→ V2. From the
isomorphism

λ : h
(
V1

U

)
⊗ h

(
V2

V1

)
∼−→ h

(
V2

U

)
,

we obtain the commutative diagram

(4.21) Δ(V1)⊗ h
(
V2

V1

)
δ−1⊗1 ��

fV1⊗1

��

Δ(U)⊗ h
(
V1

U

)
⊗ h

(
V2

V1

)

fU⊗1
��

1⊗λ �� Δ(U)⊗ h
(
V2

U

)

fU⊗1
��

δ �� Δ(V2)

fV2

��
a ⊗Δ0(V1)⊗ h

(
V2

V1

)
1⊗δ−1

0 ⊗1
�� a ⊗Δ0(U)⊗ h

(
V1

U

)
⊗ h

(
V2

V1

)
1⊗λ �� a ⊗Δ0(U)⊗ h

(
V2

U

)
δ �� a ⊗Δ0(V2) .

This diagram allows us to express fV2 in terms of fV1 . We have a similar diagram when
V1 ↪→ V2 ↪→ U .

Now let W1 ↪→ W2. Then, U ∩W1 ↪→ U ∩W2 ↪→ U and U ∩W1 ↪→ W1 ↪→ W2 are
admissible filtrations in Γ (X).

From the diagram (4.21), applied to the first filtration, we obtain a diagram of type (4.19),
with U ∩ W1 as U and U ∩ W2 as V . We compose this diagram with the diagram defining
fW2 . We get

Δ(U ∩W1)⊗ h
(
U ∩W2

U ∩W1

)
⊗ h

(
W2

U ∩W2

)
��

fU∩W1⊗1

��

Δ(W2)

fW2

��
a ⊗Δ0(U ∩W1)⊗ h

(
U ∩W2

U ∩W1

)
⊗ h

(
W2

U ∩W2

)
�� a ⊗Δ0(W2) .

On the other hand, we have isomorphisms

h

(
U ∩W2

U ∩W1

)
⊗ h

(
W2

U ∩W2

)
∼−→ h

(
W2

U ∩W1

)

from the first filtration and

h

(
W2

U ∩W1

)
∼−→ h

(
W1

U ∩W1

)
⊗ h

(
W2

W1

)

from the second. Thus,

h

(
U ∩W2

U ∩W1

)
⊗ h

(
W2

U ∩W2

)
∼−→ h

(
W1

U ∩W1

)
⊗ h

(
W2

W1

)
.



524 L. PREVIDI

The above diagram can thus be rewritten as

Δ(U ∩W1)⊗ h
(

W1

U ∩W1

)
⊗ h

(
W2

W1

)
��

fU∩W1⊗1

��

Δ(W2)

fW2

��
a ⊗Δ0(U ∩W1)⊗ h

(
W1

U ∩W1

)
⊗ h

(
W2

W1

)
�� a ⊗Δ0(W2) .

Composing this diagram with the diagram (4.19) defining fW1 , we finally get the diagram
(4.18), thus proving that the functor P → Dh(X) is essentially surjective.

We sketch the proof that the functor is full. This amounts to show that for all object of
P , the map

HomP (a, b)→ HomDh(X)(a ⊗Δ0, b ⊗Δ0) , h 
→ h⊗ 1Δ0

is surjective. We shall consider only the case a = b = 1, since the general case is treated with
the obvious modifications.

Let be f ∈ Aut(1 ⊗ Δ0)
∼−→ Aut(Δ0). Let us choose U ∈ Γ (X) and fU : Δ0(U)

∼−→
Δ0(U) be given. There is a unique g : 1→ 1 making the following diagram commute:

Δ0(U)⊗Δ0(U)
−1

��

f0⊗1
Δ0(U)

−1
�� Δ0(U)⊗Δ0(U)

−1

��
1 g

��������������� 1 .

For this g we have g ⊗ 1Δ0(U) = fU : 1⊗Δ0(U)→ 1⊗Δ0(U). It is sufficient to prove that
for all V ∈ Γ (X) the arrow g ⊗ 1Δ0(V ) coincides with fV . This will imply that f = g ⊗ 1Δ0 ,
and hence the functor is full.

Let V be an element of Γ (X). Consider the case U ↪→ V . In this case fV is the unique
arrow making the diagram

1⊗Δ0(U)⊗ h
(
V

U

)
1⊗δ0 ��

fU⊗1
��

1⊗Δ0(V )

fV

��
1⊗Δ0(U)⊗ h

(
V

U

)
1⊗δ0 �� 1⊗Δ0(V )
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commutative. From the diagram for the identity on (Δ0, δ0), applying g : 1 → 1 and using
the bifunctoriality of ⊗, we get the diagram

1⊗Δ0(U)⊗ h
(
V

U

)
1⊗δ0 ��

g⊗1Δ0(U)⊗1

��

1⊗Δ0(V )

g⊗1Δ0(V )

��
1⊗Δ0(U)⊗ h

(
V

U

)
1⊗δ0 �� 1⊗Δ0(V ) ,

and the equality g ⊗ 1Δ0(U) = fU . It follows that g ⊗ 1Δ0(V ) coincides with fV , as claimed.
The proof for the general case of an elementW ∈ Γ (X) follows the same pattern as the proof
that−⊗Δ0 is essentially surjective. Thus the functor is full. Injectivity of the map is obvious,
so the functor is also faithful and so an equivalence. �

4.6. Examples: the gerbe of determinantal theories Det(V ). As a corollary of
Proposition B.13 and of Theorem 4.17, we have the following

PROPOSITION 4.22. Let A be an exact category satisfying (AIC), h a determinan-
tal theory on A with values in a Picard category P , and (Δ, δ) an object of Dh(X). Then
Dh(X)(Δ,δ) is a π1(P)-gerbe.

With the same step-by-step method used to prove in Theorem 4.17 the existence of an
isomorphism of h-relative determinantal theories, we can prove the following lemma.

LEMMA 4.23. If P is a connected category, then Dh(X) is a connected groupoid.

Thus, if P is connected, for all (Δ, δ) we have Dh(X)(Δ,δ) = Dh(X), which is then a
π1(P)-gerbe.

EXAMPLES 4.24. (1) The Kapranov gerbe of determinantal theories Det(V ). Let k
be a field, A = Vect0(k), and P the category Vect1(k) of 1-dimensional vector spaces over
k. The category P is obviously a connected Picard category with π1(P) = k∗. Let h be the
determinantal theory on A which associates to each finite dimensional space its determinantal
space (as described in the example in Subsection 2.3). Finally, let V ∈ lim←→Vect0(k) be a Tate
space. From Lemma 4.23, Det(V ) := Dh(V ) is connected and thus a k∗-gerbe. It is called
the gerbe of determinantal theories of the Tate space V , which was introduced by Kapranov
in [12].

(2) Let A be an exact category satisfying (AIC),G an abelian group and P = Tors(G).
Let h be a determinantal theory on A with values on P . The category P is a connected Picard
category, so we have Dh(X)(Δ,δ) = Dh(X), for each such h and any determinantal theory
(Δ, δ). Since π1(P) = G, Dh(X) is aG-gerbe. In this case we shall employ also the notation
Deth(X), to emphasize that this is really the KapranovG-gerbe of determinantal theories of a
generalized Tate space X.
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4.7. The universal D(X). In analogy with the case of the dimensional torsor Dim(X),
it is possible to define a “universal” determinantal torsor D(X) over Picard categories.

DEFINITION 4.25. Let A be an exact category satisfying (AIC) and X an object of
lim←→A. The universal determinantal torsor is the V (A)-torsor D(X) : = Dhu(X, V (A))
associated with the symmetric universal determinantal theory on A, where hu is defined in
Subsection 2.3.

REMARK 4.26. It is possible to characterize D(X) by an appropriate 2-categorical
universal property. We postpone the precise statement and the discussion of this topic to a
later paper.

EXAMPLE 4.27. Let A = Vect0(k), and V ∈ lim←→A = T a Tate space. In this case,
the category of virtual objects P = V (A) has π0(P) = Z, and thus it is not connected. Since
π1(P) = k∗, the universal determinantal V (A)-torsor Dhu(V ) is a non-connected groupoid.
Each of its connected components D(V )(Δ,δ) is a k∗-gerbe, and all of these components com-
pose a set (indexed by Z) of copies of the Kapranov k∗-gerbe Det(V ).

4.8. Cohomological interpretation of Det(X) in terms of the Waldhausen space of
lim A.

THEOREM 4.28. LetG be an abelian group and A a partially abelian exact category.
Let (h, λ) ∈ Detσ (A,Tors(G)) be a symmetric determinantal theory on A with values in the
Picard category ofG-torsors. Then, the collection {Deth(X);X ∈ lim←→A}, defined in 4.24 (2),
is a multiplicativeG-gerbe of degree 1 on S(lim←→A).

SKETCH OF PROOF. The proof of this theorem is similar to, although considerably
longer than, the proof of Theorem 4.12. We emphasize only the most salient points. As
already noticed, (h, λ) can be interpreted as a symmetric multiplicative torsor on A. The core
of the proof consists in showing the existence of an equivalence of G-gerbes μ : Deth(X′)⊗
Deth(X′′)→ Deth(X) for an admissible short exact sequence X′ ↪→ X � X′′ in lim←→A.

For an admissible filtration U1 ↪→ U2 ↪→ U3 in Γ (X), consider the induced commuta-
tive diagram

U ′1
� � ��

� �

��

U1 �� ��
� �

��

U ′′1� �

��
U ′2

� � ��
� �

��

U2� �

��

�� �� U ′′2� �

��
U ′3

� � ��
� �

��

U3� �

��

�� �� U ′′3� �

��
X′ �

� �� X �� �� X′′
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whose left squares are pullbacks and the horizontal rows are admissible short exact sequences.
Then from Theorem 3.29 U ′′1 ↪→ U ′′2 ↪→ U ′′3 is an admissible filtration in Γ (X′′). Since A is
partially abelian exact, we can use Corollary 3.33, and thus we obtain an induced commutative
diagram

(4.29)
U ′3
U ′2

� � �� U3

U2

�� �� U
′′
3

U ′′2

U ′3
U ′1

� � ��







U3

U1







�� �� U
′′
3

U ′′1







U ′2
U ′1

� � ��
��





U2

U1

�� ��
��





U ′′2
U ′′1

��





whose rows and columns are admissible short exact sequences.
Let (Δ′, δ′) ∈ Deth(X′) and (Δ′′, δ′′) ∈ Deth(X′′). Let Δ be a function Γ (X) →

Tors(G) defined as Δ(U1) : = Δ′(U ′1) ⊗ Δ′′(U ′′1 ) and δ an arrow Δ(U1) ⊗ h (U2/U1) →
Δ(U2), defined as the composition

Δ(U1)⊗ h
(
U2

U1

)
= Δ′(U ′1)⊗Δ′′(U ′′1 )⊗ h

(
U2

U1

)

δ

��������������������������������������������

1⊗λ−1
�� Δ′(U ′1)⊗Δ′′(U ′′1 )⊗ h

(
U ′2
U ′1

)
⊗ h

(
U ′′2
U ′′1

)

1⊗σ⊗1
��

Δ′(U ′1)⊗ h
(
U ′2
U ′1

)
⊗Δ′′(U ′′1 )⊗ h

(
U ′′2
U ′′1

)

δ′⊗δ′′ .

��
Δ′(U ′2)⊗Δ′′(U ′′2 ) = Δ(U2)

We claim that (Δ, δ) is an object of Deth(X). This amounts to show that for this pair the
diagram (4.15) is commutative.

The proof consists in the construction of the diagram (4.15) by tensorizing the analogous
diagrams for the determinantal theories (Δ′, δ′) and (Δ′′, δ′′), by the use of the definitions of
Δ and δ. The resulting tensor product of the diagrams is equal to (4.15), provided that the
diagram

h

(
U ′2
U ′1

)
⊗ h

(
U ′3
U ′2

)
⊗ h

(
U ′′2
U ′′1

)
⊗ h

(
U ′′3
U ′′2

)

λ⊗λ
��

1⊗σ⊗1 �� h

(
U ′2
U ′1

)
⊗ h

(
U ′′2
U ′′1

)
⊗ h

(
U ′3
U ′2

)
⊗ h

(
U ′′3
U ′′2

)

λ⊗λ
��

h

(
U ′3
U ′1

)
⊗ h

(
U ′′3
U ′′1

)

λ

�������������������

h

(
U2

U1

)
⊗ h

(
U3

U2

)

λ

��



















h

(
U3

U1

)
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commutes. But (h, λ) is symmetric, and hence this diagram commutes from Definition 2.11,
applied to the diagram (4.29). Thereforeμ is well defined on the objects. The proof that μ is a
multiplicative equivalence in the sense of Definition B.8 is straightforward. Thus the theorem
follows. �

Since such a determinantal theory h can be interpreted as a multiplicative G-torsor of
degree 1 on S•(A), it determines a class in H 2(S(A),G). Then, from Theorem B.9, we
obtain the following, which is the analog of Corollary 4.13:

COROLLARY 4.30. The class [h] ∈ H 2(S(A),G) gives rise to a cohomology class in
H 3(S(lim←→A),G).

The corollary has an interpretation analogous to that of Corollary 4.13, as the “second
step delooping” of the cohomology of S(A) in terms of the cohomology of S(lim←→A).

5. Applications. Tate spaces and the iteration of the dimensional torsor. In this
section we focus on the abelian category A = Vect0(k) of finite dimensional vector spaces
over a field k.

5.1. Tate spaces.

DEFINITION 5.1. Let k be a field. The category T := lim←→Vect0(k) is called the cate-
gory of Tate vector spaces over k.

Let us denote by L0 the category of linearly compact topological k-vector spaces and by
L the category of locally linearly compact topological k-vector spaces and their morphisms,
as introduced in [15, II.27.1 and II.27.9]. We recall the following lemma and propositions,
whose proofs can be found in [17].

LEMMA 5.2. There are equivalences of categories

Φ0 : Pro(Vect0(k))
∼−→ Pros(Vect0(k))

∼−→ L0 .

In particular, the category L0 is an abelian category.

PROPOSITION 5.3. There is an equivalence of categories Φ : T ∼−→ L, whose restric-
tion to the category Pro(Vect0(k)) is Φ0.

As a consequence of Proposition 5.3, L is endowed with a structure of an exact category,
and it is self-dual (see Proposition A.8).

PROPOSITION 5.4. (a) Under the identification of Proposition 5.3, the class of ad-
missible monomorphisms of L coincides with the class of its closed embeddings.

(b) Similarly, the class of admissible epimorphisms in L coincides with the class of
continuous surjective morphisms p : B → C, such that the canonical bijection B/ker(p)→
C is a homeomorphism.

The above proposition, which is proved in [17], allows us to identify T and L. We
also recall that the category T is not abelian. For example, the inclusion k[t] ↪→ k[[t]] is a
non-admissible monomorphisms in T .
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THEOREM 5.5. The category T is partially abelian exact.

PROOF. From the equivalence T ∼−→ L of Propositions 5.3 and 5.4, the closure of T
under admissible intersections is clear, since the intersection of two closed subspaces of a
space X ∈ T is closed. Thus T satisfies (AIC). The dual condition (AIC)o comes from this
fact because of the self-duality of T . �

5.2. Sato Grassmannians. The concept of Sato Grassmannian, introduced for any
generalized Tate space X in Definition 3.1, coincides with the concept of semi-infinite Grass-
mannian in the case X is a Tate vector space (i.e., when A = Vect0(k)).

PROPOSITION 5.6. Let X be an object of T . Then the Sato Grassmannian of X coin-
cides with the set G(X) of open, linearly compact subspaces of X.

PROOF. (i) We first prove that Γ (X) ⊂ G(X). Let U ∈ Γ (X). By definition, U ∈
Pros(Vect0(k))

∼−→ L0, so U is a linearly compact subspace of X. Next, since U is closed in
X, the projection X � X/U is a continuous map. Since X/U ∈ Inds (Vect0(k)) ∼ Vect(k),
it follows that X/U is a discrete space. Thus, U = π−1(0) is open.

(ii) We now show that G(X) ⊂ Γ (X). Let V ∈ G(X) be an open, linearly compact
subspace of X. Since V is linearly compact, V ∈ Pros(Vect0(k)). Also, V is closed in X.
So from [15, 27.8], the inclusion V ↪→ X is a closed embedding, and hence an admissible
monomorphism. Since V is open, and is a linear subspace of X, we obtain that V is a nu-
clear subspace. Thus, from [15, 25.8(c)], the quotient X/V is discrete, i.e., is an object of
Inds (Vect0(k)). It follows that V ∈ Γ (X), and we are done. �

5.3. 2-Tate spaces.

DEFINITION 5.7. Let k be a field. The category T2 = lim←→T is called the category of
2-Tate spaces over k.

The category T2 is thus in a natural way an exact category, and it is of course possible
to further iterate the functor lim←→ and define, for all n, the exact category Tn = lim←→Tn−1 =
lim←→nVect0(k) of n-Tate spaces, but in this paper we shall be only concerned with 2-Tate
spaces. We remark however that our definition of n-Tate spaces coincides with that of
Arkhipov and Kremnizer, in [1].

5.4. Iteration. Since the category T is partially abelian exact from Theorem 5.5, it
is possible to extend the results on Dim and Det of the previous sections to the objects of the
category T2 of 2-Tate spaces.

Let Ξ ∈ T2 be a 2-Tate space. We shall denote, from now on, by Dim(1) the universal
dimensional Z-torsor Dim over the category T constructed in Section 4.2. As we have seen,
the collection of Dim(1)(V ), for V ∈ ObT forms a symmetric determinantal theory.

THEOREM 5.8. It is possible to define a (Z-tors)-torsor (i.e., a Z-gerbe), associated
to the object Ξ ∈ T2, as Dim(2)(Ξ) := DetDim(1) (Ξ).



530 L. PREVIDI

The gerbe Dim(2) is multiplicative with respect to admissible short exact sequences of
T2.

It is also possible to define Det(2)(Ξ), in analogy with Dim(2)(Ξ), as the universal deter-
minantal 2-gerbe ofΞ over the universal determinantal 1-gerbe Det(1)(X) = Det(X) on T . It
results a multiplicative 2-gerbe Det(2)(Ξ) := DetDet(1) (Ξ) over k∗.

This theory coincides with the theory of gerbel theories and 2-gerbes contained in [1]
and [6]. We postpone to a forthcoming paper a more detailed proof of this equivalence.

Appendix A. Exact categories and locally compact objects.
A.1. Generalities on exact categories. Let A be an exact category, in the sense of

Quillen [18], and F its abelian envelope. We recall some facts from [17].

LEMMA A.1. Let f : a � b be an epimorphism of F with a, b ∈ A. Then f is
an admissible epimorphism of A if and only if ker(f ) is in A. Dually, a monomorphism
g : c ↪→ d of F with c, d in A is an admissible monomorphism of A if and only if coker(g) is
in A.

LEMMA A.2. A pullback diagram in the category A remains a pullback diagram in
the category F .

DEFINITION A.3. An admissible subobject of an object a ∈ A is a class of admissible
monomorphisms a′ ↪→ a modulo the equivalence relation given by (a′ ↪→ a) ∼ (a′′ ↪→ a) if
and only if there exists an isomorphism a′ ∼−→ a′′ such that

a′ � 




�
��

��
��

�� a′′�


����
��

��
�

a

is commutative.

We recall that a commutative square

X

��

�� Y

��
Z �� V

is said to be admissible if the horizontal arrows are admissible monomorphisms and the verti-
cal ones are admissible epimorphisms. If such a square is cartesian, it is also cocartesian, and
vice versa.

A.2. Ind/Pro-exact categories and the Beilinson category. We refer to the papers
[2], [3], [10], [17] for the background on the language of ind-pro objects and the Beilinson
category lim←→A which is the natural setting of the concepts we are going to introduce.

DEFINITION A.4 ([3], [17]). The category Proa(A) (resp. Inda(A)) of strictly admis-
sible pro-objects (resp. ind-objects) of A is the subcategory of Pro(A) (resp. Ind(A)) whose
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objects have structure morphisms which are admissible epimorphisms (resp. monomor-
phisms). With an abuse of language, we shall refer to Proa(A), Inda(A) simply as the cate-
gories of strict ind- and pro-objects of A.

DEFINITION A.5 ([3], [17]). The Beilinson category of the exact category A is the
category denoted by lim←→A defined as the full subcategory of Inda Proa(A) whose objects are
formal limits “lim−→”j“lim←−”iXi,j , for (i, j) ∈ Z × Z, with i ≤ j , and for which the squares

(A.6) Xi′j

��

�� Xi′j ′

��
Xij �� Xij ′

defined for i ≤ i ′, j ≤ j ′, are cartesian (and thus they are automatically cocartesian). The
objects of such category will also be called generalized Tate spaces.

Objects of the Beilinson category lim←→A provide a model for local compactness in the
linear context (cf. [17]), generalizing the case of locally linearly compact vector spaces to
exact categories. For this reason lim←→A is also referred to sometimes as the category of locally
compact objects over the exact category lim←→A.

LEMMA A.7 (cf. [17]). When (A, E) is exact, the categories Ind(A), Pro(A),
Indaℵ0

(A), Proaℵ0
(A) and lim←→A inherit in a natural way the structure of exact categories.

We also recall the following from [3]:

PROPOSITION A.8. For any exact category A, (lim←→A)o = lim←→(Ao).

In particular, Vect0(k) = Vect0(k)
o, and so the category T is self-dual. In this paper,

we shall bound ourselves to countable ind- and pro-categories. We recall the exact structures
of the categories Ind(A), Pro(A) and lim←→A, by specifying the classes of their admissible
mono/epimorphisms, as worked out in [17]:

LEMMA A.9. Let m : X ↪→ Y be an admissible monomorphism of Ind(A). Then for
every ind-representation of the objects X and Y , say X = “lim−→”i∈IXi and Y = “lim−→”j∈J Yj ,

m can be written in components as {mij } in such a way that for every i there is a j and an

admissible monomorphism mij : Xi ↪→ Yj of A. Similarly, let n : A ↪→ B be an admissible
monomorphism of Pro(A). Then for every pro-representation of the objects A and B, say
A = “lim←−”i∈IAi and B = “lim←−”j∈JBj , n can be written in components as {nij } in such a way

that for every j there is an i and an admissible monomorphism nij : Ai ↪→ Bj of A.

As a consequence of the previous lemma, in [17, 4.19], we obtain the following lemma.
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LEMMA A.10 (Straightification of admissible monomorphisms). Let m : X ↪→ Y be
an admissible monomorphism of Ind(A). Then it is possible to express X and Y as ind-
systems X = “lim−→”i∈IXi and Y = “lim−→”i∈I Yi , and m = “lim−→”i∈Imi , where for each i ∈ I ,

mi : Xi ↪→ Yi is an admissible monomorphism of A. Similarly, let n : A ↪→ B an admissible
monomorphism of Proa(A). It is possible to expressA andB as pro-systemsA = “lim←−”i∈IAi
and B = “lim←−”i∈IBi , and n = “lim←−”i∈I ni , where for each i ∈ I , ni : Ai ↪→ Bi is an

admissible monomorphism of A.

The analogous propositions for admissible epimorphisms of Inda(A) and Proa(A) follow
from the ones above.

We call an object X of Ind(A) (resp. Y ∈ Pro(A)) a stabilizing object if it can be ex-
pressed as X = “lim−→”i∈IXi for a set of objects Xi (resp. as Y = “lim←−”j∈J Yj for a set of

objects Yj ), for which there exists an i0 such that the morphisms · · · → Xi−1 → Xi+1 →
Xi+1 → · · · are all isomorphisms for i ≥ i0. (resp. for which there exists a j0 such that
the morphisms · · · → Yj+1 → Yj → Yj−1 → · · · are isomorphisms). It is clear that a
stabilizing object in Ind(A) (resp., Pro(A)) is isomorphic to an object of A.

PROPOSITION A.11. Let m : X ↪→ Y be an admissible monomorphism in Proa(A).
Then the quotient Y/X is isomorphic to an object of A if and only if m is representable by a
ladder of cartesian squares.

The proof follows from a chase-diagram argument, and it is left to the reader.

COROLLARY A.12. Let X be an object of lim←→A, and X = “lim−→”j∈JXj , for an ind-

system of objects {Xj } in Proa(A). Then, for j < j ′, the quotient Xj ′/Xj is in A.

DEFINITION A.13. An object of lim←→A is said to be compact if it is isomorphic to an
object of Proa(A) and discrete if it is isomorphic to an object of Inda(A).

PROPOSITION A.14. If an objectZ is both compact and discrete, thenZ is isomorphic
to an object of A.

Appendix B. Multiplicative torsors and gerbes. LetG be an abelian group. By the
term G-torsor we mean a set T with an action of G which is free and transitive (sometimes
referred to in the literature as “torsor over a point”. We refer to [12] for the basic definitions
and properties of the category of G-torsors. Here we recall that the category Tors(G) of
the torsors over G is a symmetric Picard category (see [4] for the definition and the main
properties of Picard categories), with the monoidal structure given by the tensor product of
torsors. The Picard category Tors(G) is strictly symmetric. The dual of aG-torsor T is theG-
torsor Hom(T ,G). It is clear that Tors(G) is a connected Picard category, i.e., π0(Tors(G)) =
0. Futhermore, we have π1(Tors(G)) = G.

Similarly, we mean, by a G-gerbe g, a connected groupoid, such that for all pair of
objects x, y of g, the set of morphisms Homg(x, y) is given a structure of G-torsor, and the
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composition of morphisms is aG-bilinear map. We refer again to [12] for the main properties
of the 2-category of gerbes.

B.1. The category of virtual objects of an exact category. Following Deligne [4],
we associate to each exact category A a symmetric Picard category V (A), called the category
of virtual objects of A. Here is a slightly modified version of Deligne’s construction:
• An object of V (A) is a loop of S(A), γ : [0, 1] 
→ S(A) (cf. Subsection 2.1), with γ (0) =
γ (1) = ∗.
• A morphism γ1→ γ2 is a homotopy class rel ∗ of homotopies from γ1 to γ2.

The composite of two morphisms γ1
[F ]−−→ γ2

[G]−−→ γ3 is defined as the class of the
homotopy F ∗G : γ1 → γ3. Since F ∗ (G ∗ H) ∼ (F ∗G) ∗ H , the composition of arrows
is associative and V (A) is a category. The category V (A) is a Picard category, with the
tensor product on objects γ1⊗ γ2 defined as the composite of loops γ1 ∗ γ2. The associativity
constraint is given by the class of the standard homotopy of loops γ1∗(γ2∗γ3) ∼ (γ1∗γ2)∗γ3.
The unit object is the constant loop at 0. Further, V (A) admits a symmetry which makes it
into a symmetric Picard category. To see this, consider the direct sum ⊕ in the exact category
A. The operation ⊕ makes S(A) into an H -space, whose sum will be still denoted by ⊕,
commutative up to all higher homotopies. This defines a commutativity constraint on V (A),
via

γ1 ∗ γ2 ∼ γ1 ⊕ γ2 ∼ γ2 ⊕ γ1 ∼ γ2 ∗ γ1 ,

cf. [4, 4.2.2]. It is not difficult to see that the above isomorphism of V (A) makes V (A) into
a symmetric Picard category, with π0(V (A)) = K0(A) and π1(V (A)) = K1(A).

In general, V (A) is not strictly symmetric. When A = Vect0(k), the symmetric Picard
category V (A) is equivalent to the category PicZ

k of Z-graded 1-dimensional vector spaces
over k. This is a symmetric Picard category, with symmetry given as follows. Suppose that L
has degree a and M has degree b. Then, for all x ∈ L and y ∈ M , we define σx,y : x ⊗ y →
(−1)aby ⊗ x. The equivalence V (A) ∼ PicZ

k is mentioned in [5, 5.5.1].
B.2. Multiplicative torsors with degree. The concept of multiplicative (bi-)torsor

has been introduced by Grothendieck in connection with the problem of the description of
the second cohomology group of an abelian group G, and the classification of the central
extensions of a group by an abelian group in [11]. Although introduced in the context of
group cohomology, Grothendieck’s definition can be easily reworked for the more general
case of simplicial sets, which is the context in which we, at first, shall use this notation.

A pasting rule. Let C be the category of torsors over an abelian group G. This is a
monoidal, strictly symmetric category. We denote by c its symmetry. We introduce a notation
which shall help us to write in a compact form some particular compositions of morphisms of
C.

Let f : A→ B1 ⊗ B2 and g : B1 ⊗ B3 → C be two morphisms of C. Since dom(g) �=
cod(f ), these morphisms cannot be composed. However, we can define a new morphism, by
“pasting together” f and g , as follows:

(B.1) A⊗ B3
f⊗B3−−−→ B1 ⊗ B2 ⊗ B3

c⊗B3−−−→ B2 ⊗ B1 ⊗ B3
B2⊗g−−−→ B2 ⊗ C .
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We shall denote such a composition by “g · f ”. Similarly, one defines “h · g · f ”, and so on.

Simplicial sets and pasting of torsor morphisms. Let (Σ•, ∂i , si ) be a simplicial set (as
defined e.g. in [8] and [9]) andG an abelian group. Let Tρ be aG-torsor for all ρ ∈ Σn−1 and
ασ :⊗ T∂2i (σ )→

⊗
T∂2i+1(σ ) an isomorphism ofG-torsors for all σ ∈ Σn. Let τ ∈ Σn+1. It

is possible to construct the following composition, that we shall call the even composition of
the α’s:

Eτ := “ · · · · α∂2(τ ) · α∂0(τ )” ,

and the similarly defined odd composition, as

Oτ := “α∂1(τ ) · α∂3(τ ) · · · ·” ,
which are extended, respectively, to all the even/odd factors α∂i (τ ) in the indicated order.

The Street decomposition of a simplex. Following Street [20] we introduce a useful
way to decompose the boundary of a simplex σ of a simplicial set. Let σ ∈ Σn and ∂+(σ ) =
{∂2i (σ )}, ∂−(σ ) = {∂2i+1(σ )}. Then, we put (cf. [13])

∂++(σ ) =
⋃
∂+∂2i (σ ), ∂+−(σ ) =

⋃
∂+∂2i+1(σ ),(B.2)

∂−+(σ ) =
⋃
∂−∂2i (σ ), ∂−−(σ ) =

⋃
∂−∂2i+1(σ ).(B.3)

LEMMA B.4. For all σ ∈ Σn, we have: ∂++(σ ) = ∂−−(σ ) and ∂+−(σ ) = ∂−+(σ ).
PROOF. In fact, the lemma is just a restatement of the simplicial identities ∂i∂j =

∂j−1∂i , (i ≤ j). We leave the details to the reader. �

As a consequence, we have the following proposition.

PROPOSITION B.5. For all n ≥ 1 the domain of the even composition coincides with
the domain of the odd composition, and similarly for the target.

PROOF. The same argument used to prove Lemma B.4 shows that the domain of the
even composition is ∂++(σ ) and the domain of the odd composition is ∂−−(σ ). The Lemma
B.4 thus gives the identity of the domains. For the targets one similarly shows that the target
of the even composition is ∂+−(σ ) and the target of the odd composition is ∂−+(σ ) and uses
again Lemma B.4 to prove their identity. �

Multiplicative torsors of degree n. Because of the above proposition, the following
makes sense:

DEFINITION B.6. Let n ≥ 1. A multiplicativeG-torsor of degree (n− 1) on a simpli-
cial set Σ• is a datum T = {Tρ, ασ } consisting of

• a G-torsor Tρ for all ρ ∈ Σn−1,
• an isomorphism of G-torsors ασ :⊗ T∂2i (σ )→

⊗
T∂2i+1(σ ) for all σ ∈ Σn,

• an identity Eτ = Oτ for all τ ∈ Σn+1.

One defines similarly the concept of multiplicative torsor of degree n for a bisimplicial
(trisimplicial, etc.) set. Let {Tρ, ασ } and {T ′ρ, α′σ } be two multiplicative G-torsors of degree
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n − 1. A morphism between them is a collection of morphisms of the underlying G-torsors
fρ : Tρ → T ′ρ , defined for all ρ ∈ Σn−1, such that, for all σ ∈ Σn, the diagram

⊗
T∂2i (σ )

⊗f∂2i (σ )
��

ασ ��
⊗
T∂2i+1(σ )

⊗f∂2i+1(σ )

��⊗
T ′∂2i (σ ) α′σ

��
⊗
T ′∂2i+1(σ )

is commutative.
The collection of the multiplicative G-torsors of degree n over Σ• and their morphisms

forms a category (groupoid), that we shall denote by Multn(Σ•,G). It is clear that the tensor
product of the underlying torsors induces a strictly symmetric tensor product also for objects
of Multn(Σ•,G), which in turns induces a strictly symmetric Picard category structure on
Multn(Σ•,G), whose symmetry is defined as in Tors(G). Moreover, we have the following,
whose proof we postpone to a later paper.

THEOREM B.7. (a) The Picard group π0(Multn(Σ•,G)) is isomorphic to the (n +
1)-st cohomology group Hn+1(Σ•,G).

(b) The group π1(Multn(Σ•,G)) is isomorphic to Zn(Σ•,G), the group of simplicial
n-cocycles.

For example, a determinantal theory with values in the category Tors(G) is the same
thing as a multiplicativeG-torsor of degree 1 on the Waldhausen space S(A).

B.3. Multiplicative G-gerbes. In analogy with the concept of “multiplicative G-
torsor of degree n” over a simplicial (bisimplicial, trisimplicial, . . . ) set Σ•, it is also possible
to introduce the concept of multiplicativeG-gerbe of degree n overΣ•. Since in this work we
will only use multiplicative gerbes of degree 1, we shall bound ourselves to this case.

DEFINITION B.8. LetΣ• be a simplicial set andG an abelian group. A multiplicative
G-gerbe, is the datum (g, α, β) consisting of

(1) a G-gerbe gρ for all ρ ∈ Σ1,

(2) an equivalence of G-gerbes ασ : g∂2(σ ) ⊗ g∂0(σ )
∼−→ g∂1(σ ) for all σ ∈ Σ2,

(3) for all τ ∈ Σ3, a diagram, involving the α∂τ ’s, commuting up to a natural isomor-
phism βτ which can be written according to our pasting rule (B.1) as βτ : “α∂2(τ ) · α∂0(τ )”�
“α∂1(τ ) · α∂3(τ )”,

(4) for all υ ∈ Σ4, a cubic commutative diagram involving the β∂υ’s, which can be
written as “β∂4υ · β∂2υ · β∂0υ”= “β∂1υ · β∂3υ”.

Similarly, one defines multiplicative gerbes on bisimplicial (trisimplicial, etc.) sets.
It is possible to associate to a multiplicative gerbe of degree 1 a multiplicative torsor of

degree 2.

THEOREM B.9. A multiplicative G-gerbe (g, α, β) induces a multiplicative G-torsor
of degree 2 on Σ•.
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SKETCH OF PROOF. Let us consider a 2-simplex σ ∈ Σ2. Choose elements x0 ∈
g∂0σ , x1 ∈ g∂1σ and x2 ∈ g∂2σ . We define a G-torsor Tσ , associated to σ , as Tσ :=
Homg∂1σ

(ασ (x0 ⊗ x2), x1). Condition (3) of the definition of a multiplicative gerbe implies,
for all τ ∈ Σ3, the existence of an isomorphism ofG-torsors μτ : T∂0τ ⊗T∂2τ → T∂1τ ⊗T∂3τ ,
and condition (4) shows that for all υ ∈ Σ4, the isomorphisms μ∂υ satisfy condition (3) of
the definition of a multiplicative torsor of degree 2. Thus, (T , μ) is a multiplicative torsor of
degree 2. �

From this theorem it follows that a multiplicative gerbe of degree 1 gives rise to a class
in H 3(Σ•,G). More in general, a multiplicative gerbe of degree n induces a multiplicative
torsor of degree n+ 1 and thus it determines a class in Hn+2(Σ•,G).

B.4. Torsors over a Picard category. We recall here a generalization of the concept
of a torsor to Picard categories, which is discussed in a more general setting by Drinfeld in
[5].

DEFINITION B.10. Let (P,⊗, α, σ, 1) be a symmetric Picard category. A torsor over
P is a groupoid T , together with a bifunctor ⊗ : P × T → T , (x, a) 
→ x ⊗ a, wth the
following properties.

• There are natural isomorphisms βx1,x2,a : x1 ⊗ (x2 ⊗ a)→ (x1 ⊗ x2)⊗ a for which
the following diagram is commutative:

x1 ⊗ (x2 ⊗ (x3 ⊗ a))
βx1,x2 ,x3⊗a

��

1x1⊗βx2,x3 ,a �� x1 ⊗ ((x2 ⊗ x3)⊗ a)
βx1,x2⊗x3,a �� (x1 ⊗ (x2 ⊗ x3))⊗ a

αx1,x2,x3⊗1a

��
(x1 ⊗ x2)⊗ (x3 ⊗ a)

βx1⊗x2,x3,a

�� ((x1 ⊗ x2)⊗ x3)⊗ a .

• For all objects a ∈ T there is a natural isomorphism

(B.11) λa : 1⊗ a ∼−→ a

compatible with the associativity constraint and with the isomorphism β.

• For all objects a ∈ T , the induced functor P −⊗a−−→ T is an equivalence of categories.

Let T be a P-torsor. In Ob(T ) we introduce an equivalence relation by letting x ∼ y if
there is an isomorphism x → y. We denote by [x] the equivalence class of the object x. Let
π0(T ) := Ob(T )/∼. The proof of the following is trivial.

PROPOSITION B.12. Let T be a P-torsor. Then there is an induced action of the group
π0(P) on the set π0(T ), which makes π0(T ) into a torsor over the abelian group π0(P).

Now let P be a symmetric Picard category and T a torsor over P . Let x ∈ ObT and de-
note by Tx the connected component of T containing x. Thus, Tx is in particular a connected
groupoid. We have the following, whose proof we leave to the reader.

PROPOSITION B.13. For all x ∈ ObT , we have that Tx is a π1(T )-gerbe.
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In particular, for each object x ∈ T the gerbes Tx are pairwise equivalent. Thus, Propo-
sition B.13 together with Proposition B.12, imply that the datum of a torsor over a Picard
category encloses the datum of a torsor (over π0(P)) and of a gerbe (over π1(P)).
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