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Abstract. In this paper we define an invariant of a pair of a 6 dimensional symplectic
manifold with vanishing 1st Chern class and its relatively spin Lagrangian submanifold with
vanishing Maslov index. This invariant is a function on the set of the path connected com-
ponents of bounding cochains (solutions of the A∞ version of the Maurer-Cartan equation
of the filtered A∞ algebra associated to the Lagrangian submanifold). In the case when the
Lagrangian submanifold is a rational homology sphere, it becomes a numerical invariant.

This invariant depends on the choice of almost complex structures. The way how it de-
pends on the almost complex structures is described by a wall crossing formula which involves
a moduli space of pseudo-holomorphic spheres.

1. Introduction. This paper is a continuation of [7, Subsection 3.6.4] and [5].
Let (M,ω) be a symplectic manifold of (real) dimension 2×3. We assume that c1(M) =

0 in H 2(M; Q). (Here we use a compatible almost complex structure of the tangent bun-
dle to define c1(M).) Let L ⊂ M be a relatively spin Lagrangian submanifold and µL :
H2(M,L; Z) → 2Z its Maslov index homomorphism. (See [7, Subsection 2.1.1].) We as-
sume that µL is 0. In this paper we consider such a pair (M,L). A typical example is a pair
of a Calabi-Yau 3-fold M and its special Lagrangian submanifold L. This is one of the most
interesting cases of (homological) mirror symmetry. Our main purpose of this paper is to de-
fine and study an invariant of such (M,L). It is independent of the various choices involved
in the construction but depends on the almost complex structures J of M .

We consider M(L; J ; Λ+) the set of ‘Λ+-valued points of a Maurer-Cartan formal
scheme’ of the filtered A∞ structure associated to L. This is the set of gauge equivalence
classes of bounding cochains and defined in [7, Section 4.3]. (Here we include J in the no-
tation since J dependence is rather crucial in this paper.) We study the cyclic filtered A∞
algebra (Λ(L), 〈·〉, {mJ

k,β }) produced in [5] by modifying the construction of [7]. In our case

where µL is 0 we can reduce the coefficient ring to Λ0 = Λ
(0)
0,nov, that is the degree 0 part of

the universal Novikov ring with R coefficient. (See (9).)
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We denote by Λ+ its maximal ideal. Let [b] ∈ M(L; J ; Λ+). We define a superpotential
(without leading term) by:

(1) Ψ ′(b; J ) =
∞∑

k=0

∑
β∈H2(M,L;Z)

T β∩ω

k + 1
〈mJ

k,β(b, . . . , b), b〉 .

To obtain a superpotential which is independent of perturbations and other choices involved,
we need to add a constant term to Ψ ′(· ; J ). Note that mJ

k,β is defined by using the moduli
space Mk+1(β; J ) of pseudo-holomorphic discs with k + 1 marked points and of homology
class β ∈ H2(M,L; Z). We use M0(β; J ), the moduli space of J holomorphic discs, of
homology class β without marked point, to define

(2) mJ
−1,β “=” #M0(β; J ) .

(See Sections 3 and 4 for precise definition.) And put

(3) Ψ (b; J ) = Ψ ′(b; J ) +
∑

β∈H2(M,L;Z)

T β∩ωmJ
−1,β .

More precisely we assume that our almost complex structure J satisfies the following:

ASSUMPTION 1.1. There exists no nontrival J -holomorphic sphere v : S2 → M such
that v(S2) ∩ L 	= ∅.

By dimension counting we find that the set of such J is dense.

THEOREM 1.2. (1) If J satisfies the Assumption 1.1, then there exists a function

Ψ (· ; J ) : H 1(L; Λ+) → Λ+

which depends not only on J but also on the perturbations etc.
(2) There exists an isomorphism between the set M(L; J ; Λ+) and the set of critical

points of Ψ (· ; J ).
(3) The restriction of Ψ (· ; J ) to its critical point set M(L; J ; Λ+) depends only on

M,L, J and is independent of the choice of the perturbations etc.

We call Ψ (· ; J ) a superpotential. The value Ψ (b; J ) depends only on the path connected
component of [b] ∈ M(L; J ; Λ+). See Proposition 2.8.

COROLLARY 1.3. If L is a rational homology sphere in addition, then M(L; J ; Λ+)

is one point. So the value of Ψ (· ; J ) at that point is an invariant of M,L, J .

In Sections 2 and 3 we develop the theory of the superpotential of cyclic filtered A∞
algebras of dimension 3 with additional data corresponding to mJ

−1,β . In Section 2 we fix our
cyclic filtered A∞ algebras and review the construction of the superpotential and its gauge
invariance. We next study its relation to pseudo-isotopies of cyclic filtered A∞ algebras to
complete the algebraic part of the proof of Theorem 1.2 in Section 3. The algebraic structure
we assumed in Sections 2 and 3 are realized in Section 4, where the proof of Theorem 1.2 is
completed.
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We can extend the domain H 1(L; Λ+) of the definition of Ψ (b; J ) as follows. Let ei ,
i = 1, . . . , b1 be a basis of H 1(L; Z)/Torsion. We put b = ∑

xiei where xi ∈ Λ0. We put

yi = exi =
∞∑

k=0

1

k!x
k
i .

We define the strongly convergent Laurent power series ring

Λ0〈〈y1, . . . , yb1, y
−1
1 , . . . , y−1

b1
〉〉

as the set of formal sums

(4) f (y1, . . . , yb1) =
∞∑
i=1

T λiPi(y1, . . . , yb1)

where λi ∈ R≥0 with limi→∞ λi = ∞ and Pi is a Laurent polynomial for all i. (See [2].) We
remark that for each f as in (4) and y1, . . . , yb1 ∈ Λ0 with v(yi ) = 0, the sum

∞∑
i=1

T λiPi(y1, . . . , yb1)

converges in the T adic topology. Here v(·) is defined by

v
(∑

aiT
λi

)
= inf{λi ; ai 	= 0} .

Therefore f (y1, . . . , yb1) is well-defined.

THEOREM 1.4. (1) Ψ (b; J ) ∈ Λ0〈〈y1, . . . , yb1, y
−1
1 , . . . , y−1

b1
〉〉.

(2) There exists δ > 0 such that Ψ (· ; J ) is extended to

(5) {(y1, . . . , yb1) ; −δ < v(yi) < δ} .

(3) Its critical point set is identified with M(L; J )δ which is introduced in Theorem
1.2 [5].

(4) The restriction of Ψ (· ; J ) to M(L; J )δ is independent of the perturbations etc.
and depends only on M,L, J .

We prove Theorem 1.4 in Section 7.
In Section 5 we use the canonical models constructed in [7, Section 4.5] and [5, Section

10], to rewrite the definition of Ψ .
In Section 6 we discuss the way how the superpotential Ψ depends on almost complex

structures. The main result is Theorem 1.5 below. We assume that J0 and J1 satisfy Assump-
tion 1.1. We take a path J = {Jt ; t ∈ [0, 1]} of tame almost complex structures joining
them. Let Mcl

1 (α; J ) be the moduli space of J holomorphic stable maps of genus zero in M

of homology class α ∈ H2(M; Z) and with one marked point. Here cl in the notation means
that this is a moduli space of stable maps from closed Riemann surfaces. The moduli space
Mcl

1 (α; J ) has a Kuranishi structure of (virtual) dimension 2. We put

(6) Mcl
1 (α;J ) =

⋃
t∈[0,1]

{t} × Mcl
1 (α; Jt ) .
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Using the evaluation map evint : Mcl
1 (α;J ) → M we obtain a virtual fundamental chain

evint∗ ([Mcl
1 (α;J )]) of dimension 3. Since J0 and J1 satisfy Assumption 1.1 it follows that

L ∩ evint(∂Mcl
1 (α;J )) = ∅ .

Therefore

(7) n(L; α;J ) = [L] ∩ evint∗ ([Mcl
1 (α;J )]) ∈ Q

is well-defined. Moreover it depends only on M,L, α, J0, J1 and is independent of the path
J .

THEOREM 1.5. Let [b] ∈ M(L; J0; Λ+). We take the canonical isomorphism I∗ :
M(L; J0; Λ+) → M(L; J1; Λ+) in [7, Section 4.3]. Then we have:
(8) Ψ (I∗(b); J1) − Ψ (b; J0) =

∑
α∈H2(M;Z)

T α∩ωn(L; α;J ) .

Theorem 1.5 is proved in Section 6. In Section 8 we discuss some conjectures, open
problems, and relations to various related topics.

REMARK 1.6. (1) The superpotential of the form (1) appears in the physics literature
[18, 22].

(2) The idea to include the 2nd term of (3) to obtain a numerical invariant of Lagrangian
submanifold is due to D. Joyce. It was communicated to the author by P. Seidel around 2002,
who also explained him the importance of cyclic symmetry for this purpose. (However the
appearance of the nontrivial wall crossing by the change of J was unknown at that time.)

(3) The appearance of the nonzero wall crossing term in the right-hand side of (8) is
closely related to the phenomenon discussed in [7, Section 3.8 and Subsection 7.4.1]. Around
the same time as the authors of [7] found this phenomenon, a similar observation was done
independently by M. Liu [17].

(4) A related homological algebra was discussed before by [3, 15]. The part concerning
the second term of (3) is not discussed there.

(5) All the A∞ algebras and pseudo-isotopies between them which appear in the geo-
metric situation in this paper, are unital. We omit the argument on unitality since it is a
straightforward analog of the one in [5].

The author would like to thank to Y.-G. Oh, H. Ohta, and K. Ono. Joint works with them
are indispensable for the author to write this paper. The author would like to thank referees
for helpful comments.

NOTATIONS. The Novikov ring Λ0 is defined by:

(9) Λ0 =
{ ∞∑

i=0

aiT
λi ; ai ∈ R, λi ∈ R≥0, lim

i→∞ λi = ∞
}

,

where T is a formal variable.
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We consider a free graded Λ0 module C such that

(10) C = C ⊗R Λ0 ,

where C is an R vector space. We define C[1] by shifting the grading. Namely:

(11) C[1]k = Ck+1 .

We denote by deg, deg′, the degree and shifted degree of elements of C, C[1], respectively.
Namely:

(12) deg′ = deg −1 .

We put

(13) Bk(C[1]) = C[1] ⊗Λ0 · · · ⊗Λ0 C[1]︸ ︷︷ ︸
k times

and

(14) Bk(C[1]) = C[1] ⊗ · · · ⊗ C[1]︸ ︷︷ ︸
k times

.

2. Superpotentials and their gauge invariance. Let (C, 〈·〉, {mk,β }) be a G-gapped
cyclic filtered A∞ algebra of dimension 3. (See [5, Definition 6.1].) Namely mk,β : Bk(C[1])
→ C[1] is an R linear map for each β ∈ G and k, with (β, k) 	= (0, 0), such that

mk =
∑
β∈G

T E(β)mk,β

(we define E below) satisfies A∞ relation

0 =
∑

k1+k2=k+1

k1∑
i=1

(−1)∗mk1(x1, . . . ,mk2(xi, . . . , xi+k2−1), . . . , xk)

where ∗ = deg′ x1 + · · · + deg′ xi−1.

〈·, ·〉 : C
k ⊗ C

3−k → R is a symmetric nondegenerate inner product such that

〈mk,β(x1, . . . , xk), x0〉 = (−1)(deg′ x0)(deg′ x1+···+deg′ xk)〈mk,β(x0, . . . , xk−1), xk〉 .

In the general situation of [7, Condition 3.1.6], [5, Definition 6.2], G is a discrete sub-
monoid of R≥0 × 2Z. In this paper we always assume

(15) G ⊂ R≥0 × {0} .

Namely G ⊂ R≥0. The map E : G → R is the identity. In our case

mk,β : Bk(C[1]) → C[1]
is always of degree 1 (after degree shift). We put C+ = C ⊗R Λ+.

In Sections 2 and 3 where we discuss A∞ algebras we assume either C is finite dimen-
sional or C is a de Rham complex.
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DEFINITION 2.1. We define

Ψ ′ : C1+ → Λ0

by

(16) Ψ ′(b) =
∞∑

k=0

∑
β∈G

T E(β)

k + 1
〈mk,β(b, . . . , b), b〉 .

REMARK 2.2. (1) More precisely the right-hand side of (16) converges in the T adic
topology. In various cases, it converges in the topology of [5, Definition 13.1]. (It converges
in the case of filtered A∞ algebras of Lagrangian Floer theory by [5, Theorem 1.2] .) See
Section 7 on the convergence.

(2) Since deg′ b = deg b − 1 = 0. We have

deg′ mk,β(b, . . . , b) = 1 .

Namely deg mk,β(b, . . . , b) + deg b = 3. Therefore in the case when the dimension of our
cyclic filtered A∞ algebra is 3, the inner product in the right-hand side of (16) is well-defined.

We fix a basis ei ∈ C and put b = ∑
xiei . Then Ψ ′(b) = ∑

β∈G Pβ(x1, . . . ) where Pβ

is a formal power series. Therefore we can differentiate Ψ ′ formally. We have:

PROPOSITION 2.3. If b ∈ C1+ then the differential of Ψ ′ vanishes at b if and only if

(17)
∞∑

k=0

∑
β∈G

T E(β)mk,β(b, . . . , b) = 0 .

This is [7, Proposition 3.6.50] . (17) is called the A∞ Maurer-Cartan equation.

DEFINITION 2.4. M̃(C; Λ+) is the set of all b ∈ C1+ satisfying (17).

We next review the definition of the gauge equivalence from [7, Section 4.3] . We con-
sider

(18) b(t) =
∑

β:E(β)>0

T E(β)bβ(t) , c(t) =
∑

β:E(β)>0

T E(β)cβ(t) ,

where bβ(t), cβ(t) are polynomials with coefficients in C
1
, C

0
, respectively.

DEFINITION 2.5. (See [7, Proposition 4.3.5].) We say b0 ∈ M̃(C; Λ+) is gauge
equivalent to b1 ∈ M̃(C; Λ+) if there exist b(t), c(t) as in (18) such that:

(1) b(0) = b0, b(1) = b1.
(2)

(19)
d

dt
b(t) +

∞∑
k=0

∞∑
l=0

∑
β∈G

T E(β)mk+l+1,β(

k︷ ︸︸ ︷
b(t), . . . , b(t), c(t),

l︷ ︸︸ ︷
b(t), . . . , b(t)) = 0 .

It is proved in [7, Lemma 4.3.4] that the gauge equivalence is an equivalence relation. We
denote by M(C; Λ+) the set of gauge equivalence classes.
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REMARK 2.6. It follows from (1), (2) that b(t) ∈ M̃(C; Λ+) for any t . (See [7,
Lemma 4.3.7] .)

PROPOSITION 2.7. If b0 ∈ M̃(C; Λ+) is gauge equivalent to b1 ∈ M̃(C; Λ+) then

Ψ ′(b0) = Ψ ′(b1) .

PROOF. We have

(20)

d

dt
Ψ ′(b) = d

dt

∞∑
k=0

∑
β∈G

T E(β)

k + 1
〈mk,β(b(t), . . . , b(t)), b(t)〉

=
∞∑

k=0

∑
β∈G

T E(β)

k + 1

〈
mk,β(b(t), . . . ,

db(t)

dt
, . . . , b(t)), b(t)

〉

+
∞∑

k=0

∑
β∈G

T E(β)

k + 1

〈
mk,β(b(t), . . . , b(t)),

db(t)

dt

〉

=
∞∑

k=0

∑
β∈G

T E(β)

〈
mk,β(b(t), . . . , b(t)),

db(t)

dt

〉
.

Since b(t) ∈ M̃(C; Λ+), it follows that (20) is zero. �

By Proposition 2.7 we obtain

(21) Ψ ′ : M(C; Λ+) → Λ0 .

We remark that in the proof of Proposition 2.7 we only use the existence of families b(t) in
M̃(C; Λ+) joining b0 and b1. In other words, we did not use the existence of c(t). Therefore
we have:

PROPOSITION 2.8. If the map t �→ b(t) ∈ M̃(C; Λ+) is a C1 map then

Ψ ′(b(0)) = Ψ ′(b(1)) .

REMARK 2.9. Proposition 2.8 may imply that the superpotential is locally constant on
M(C; Λ+) and so Ψ ′ depends only on ‘irreducible components’ of M(C; Λ+). Since the
property of M(C; Λ+) as a topological space can be rather complicated, we do not try to
study this point in this paper.

3. Pseudo-isotopy invariance. In [5, Definition 8.5], it is defined that (C, 〈·〉, {mt
k,β },

{ctk,β}) is a pseudo-isotopy of cyclic filtered A∞ algebras if:
(1) mt

k,β and ctk,β are smooth. Namely

t �→ mt
k,β(x1, . . . , xk)

is smooth. (That is the coefficients are smooth functions of t ∈ [0, 1].)
(2) For each (but fixed) t , the triple (C, 〈·〉, {mt

k,β }) defines a cyclic fitered A∞ algebra.
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(3) For each (but fixed) t , and xi ∈ C[1], we have

(22) 〈ctk,β (x1, . . . , xk), x0〉 = (−1)∗〈ctk,β (x0, x1, . . . , xk−1), xk〉 ,

where ∗ = (deg′ x0)(deg′ x1 + · · · + deg′ xk).
(4) For each xi ∈ C[1]

(23)

d

dt
mt

k,β(x1, . . . , xk)

+
∑

k1+k2=k+1

∑
β1+β2=β

k1∑
i=1

(−1)∗ctk1,β1
(x1, . . . ,m

t
k2,β2

(xi, . . . ), . . . , xk)

−
∑

k1+k2=k+1

∑
β1+β2=β

k1∑
i=1

mt
k1,β1

(x1, . . . , c
t
k2,β2

(xi, . . . ), . . . , xk) = 0 .

Here ∗ = deg′ x1 + · · · + deg′ xi−1.
(5) mt

k,0 is independent of t . ctk,0 = 0.
(6) mt

k,β has degree 1. ctk,β has degree 0.

REMARK 3.1. In case C is the de Rham complex of a manifold L, we define the
smoothness in (1) above in a slightly different way. Namely it means that if xi are smooth
differential forms on L then mt

k,β(x1, . . . , xk) is a smooth differential form on [0, 1] × L.

DEFINITION 3.2. (1) (C, 〈·〉, {mk,β }, {m−1,β}) is said to be an inhomogeneous cyclic
filtered A∞ algebra if (C, 〈·〉, {mk,β }) is a cyclic filtered A∞ algebras and m−1,β ∈ R. We
also assume m−1,0 = 0.

(2) (C, 〈·〉, {mt
k,β }, {ctk,β}, {mt

−1,β}) is said to be a pseudo-isotopy of inhomogeneous

cyclic filtered A∞ algebras if (C, 〈·〉, {mt
k,β }, {ctk,β}) is a pseudo-isotopy of cyclic filtered A∞

algebras,

t �→ mt
−1,β

is a real valued smooth function and if

(24)
d

dt
mt

−1,β +
∑

β1+β2=β

〈ct0,β1
(1),mt

0,β2
(1)〉 = 0 .

Let (C, 〈·〉, {mt
k,β }, {ctk,β}) be a pseudo-isotopy of cyclic filtered A∞ algebras. We consider

cyclic filtered A∞ algebras (C, 〈·〉, {m0
k,β }) and (C, 〈·〉, {m1

k,β }). By [5, Theorem 8.2] there
exists an isomorphism

(25) c = c(1; 0) : (C, 〈·〉, {m0
k,β }) → (C, 〈·〉, {m1

k,β })
of cyclic filtered A∞ algebras. (Namely c is a filtered A∞ homomorphism which has an
inverse, and which preserves inner product in the sense of [5, Definition 8.3].) It induces

c∗ : M(C, {m0
k,β}) → M(C, {m1

k,β})
by [7, Theorem 4.3.22]. The main result of this section is as follows.
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THEOREM 3.3. We have

(26) Ψ ′(c∗(b)) +
∑
β∈G

T E(β)m1−1,β = Ψ ′(b) +
∑
β∈G

T E(β)m0
−1,β .

PROOF. We also constructed

c(t; 0) : (C, 〈·〉, {m0
k,β }) → (C, 〈·〉, {mt

k,β })
in [5, Definition 9.4] . It is an isomorphism and depends smoothly on t . We put

b(t) = c(t; 0)∗(b) =
∞∑

k=0

∑
β∈G

T E(β)ck,β(t; 0)(b, . . . , b︸ ︷︷ ︸
k

)

and

(27)

f (t) = Ψ ′(b(t)) +
∑
β∈G

T E(β)mt
−1,β

=
∞∑

k=0

1

k + 1
〈mt

k(b(t), . . . , b(t)), b(t)〉 +
∑
β∈G

T E(β)mt
−1,β ,

where mt
k = ∑

β∈G T E(β)mt
k,β . (We will also use ctk = ∑

β∈G T E(β)ctk,β . ) We calculate the
derivative of f (t). The derivative of the first term is:

(28)

∞∑
k=0

1

k + 1

〈
dmt

k

dt
(b(t), . . . , b(t)), b(t)

〉

+
∞∑

k=0

1

k + 1

〈
mt

k(b(t), . . . ,
db(t)

dt
, . . . , b(t)), b(t)

〉

+
∞∑

k=0

1

k + 1

〈
mt

k(b(t), . . . , b(t)),
db(t)

dt

〉
.

The sum of the 2nd and the 3rd terms of (28) is:
∞∑

k=0

〈
mt

k(b(t), . . . , b(t)),
db(t)

dt

〉
= 0

by cyclic symmetry and the Maurer-Cartan equation of b(t).
We calculate the 1st term by using (23) and obtain:

(29)

−
∞∑

k=0

∑
k1+k2=k+1

k1−1∑
i=0

1

k + 1

〈
ctk1

(b(t), . . . , b(t)︸ ︷︷ ︸
i

,mt
k2

(b(t), . . . ), . . . ), b(t)

〉

+
∞∑

k=0

∑
k1+k2=k+1

k2−1∑
i=0

1

k + 1

〈
mt

k2
(b(t), . . . , b(t)︸ ︷︷ ︸

i

, ctk1
(b(t), . . . ), . . . ), b(t)

〉
.

We have

〈ctk1
(. . . ,mt

k2
(b(t), . . . ), . . . ), b(t)〉 = 〈ctk1

(b(t), . . . ),mt
k2

(b(t), . . . )〉
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and
〈mt

k2
(. . . , ctk1

(b(t), . . . ), . . . ), b(t)〉 = 〈mt
k2

(b(t), . . . ), ctk1
(b(t), . . . )〉

= −〈ctk1
(b(t), . . . ),mt

k2
(b(t), . . . )〉

by cyclic symmetry and [5, (56)]. Therefore (29) is equal to

(30) −
∞∑

k=0

∑
k1+k2=k+1

〈ctk1
(b(t), . . . ),mt

k2
(b(t), . . . )〉 .

Using the Maurer-Cartan equation for b(t) we find that (30) is equal to

〈ct0(1),mt
0(1)〉 .

By (24) this cancels with the derivative of the 2nd term of (27). Namely f (t) is independent
of t . �

DEFINITION 3.4. Let (C, 〈·〉, {mk,β }, {m−1,β}) be an inhomogeneous cyclic filtered
A∞ algebra. We call the function Ψ : M(C; Λ+) → Λ+, defined by

Ψ (b) = Ψ ′(b) +
∑
β∈G

T E(β)m−1,β

its superpotential.

4. Geometric realization. Let M be a 3 × 2 dimensional symplectic manifold with
c1(M) = 0 and L its relatively spin Lagrangian submanifold with vanishing Maslov index.

For β ∈ H2(M,L; Z) let Mk(β; J ) be the moduli space of stable J holomorphic maps
v : (Σ, ∂Σ) → (M,L) from a bordered Riemann surface Σ of genus 0 with connected
nonempty boundary ∂Σ , and with k boundary marked points that respect the counter clock-
wise cyclic order of the boundary, such that v is of homology class β. (See [7, Definition
2.1.27].)

In [5, Theorem 1.1], we defined a G-gapped cyclic filtered A∞ algebra (Λ(L), 〈·〉,
{mJ

k,β}) on its de Rham complex. Here G is the monoid generated by the subset {β ∩ ω ; β ∈
H2(M,L; Z), Mk(β; J ) 	= ∅} of R≥0. In this and the later sections, in the geometric sit-
uation, we denote by G the submonoid of H2(M,L; Z) generated by {β ∈ H2(M,L; Z) ;
Mk(β; J ) 	= ∅}, and put E(β) = β ∩ ω, by abuse of notation.

We also proved [5] that the pseudo-isotopy type of (Λ(L), 〈·〉, {mJ
k,β }) is independent of

the choice of J , perturbations, etc. The main result of this section is as follows.

THEOREM 4.1. If J satisfies Assumption 1.1, then there exists mJ
−1,β ∈ R such that

(Λ(L), 〈·〉, {mJ
k,β }, {mJ

−1,β}) is an inhomogeneous cyclic and gapped filetered A∞ algebra.
Moreover the pseudo-isotopy type of it depends only on M,L, J and is independent of

other choices involved in the definition.

PROOF. Let ev = (ev0, . . . , evk−1) : Mk(β; J ) → Lk be the evaluation maps at the
boundary marked points. (See [7, Subsection 2.1.1].)

In [5, Theorem 3.1 and Corollary 3.1], we proved the existence of a Kuranishi structure
of Mk(β; J ) with the following properties:
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(1) It is compatible with the forgetful map

(31) forgetk,0 : Mk(β; J ) → M0(β; J ) .

(See [5, Section 3] for the precise definition of this compatibility.)
(2) For k ≥ 1 the evaluation map ev0 : Mk(β; J ) → L is weakly submersive, in the

sense of [7, Definition A1.13].
(3) It is invariant under the cyclic permutation of the boundary marked points.
(4) We consider the decomposition of the boundary:

(32)
∂Mk+1(β; J ) =

⋃
1≤i≤j+1≤k+1

⋃
β1+β2=β

Mj−i+2(β2; J )ev0 ×evi Mk−j+i+1(β1; J ) .

(See [7, Subsection 7.1.1.]) Then the restriction of the Kuranishi structure of Mk+1(β; J ) to
the left-hand side coincides with the fiber product Kuranishi structure in the right-hand side.

(5) We consider the decomposition

(33) ∂M0(β; J ) =
( ⋃

β1+β2=β

(M1(β2; J ) ev0 ×ev0 M1(β1; J ))

)/
Z2 .

Then, the fiber product Kuranishi structure on M1(β2; J ) ev0 ×ev0 M1(β1; J ) (which is well-
defined by (2) coincides with the pull back of the Kuranishi structure to ∂M0(β; J ).

We remark that in general the decomposition of the boundary of ∂M0(β; J ) is given by

(34)

∂M0(β; J ) =
( ⋃

β1+β2=β

(M1(β2; J ) ev0 ×ev0 M1(β1; J ))

)/
Z2

∪
⋃
β̃

Mcl
1 (β̃; J ) evint ×M L .

Here Mcl
1 (β̃; J ) is the moduli space of stable maps of genus zero without boundary, one

marked point and of homology class β̃ ∈ H2(M; Z). The sum is taken over all β̃ ∈ H2(M; Z)

which goes to β by i∗ : H2(M; Z) → H2(M,L; Z). (See [7, Proposition 3.8.27] for the
second term of the right-hand side.) By Assumption 1.1 the 2nd term of the right-hand side
of (34) is an empty set.

Let E0 > 0. Then in [5, Theorem 5.1 and Corollary 5.1], we proved the existence of a
system of continuous families of multisections on the above Kuranishi spaces Mk(β; J ) with
β ∩ [ω] < E0 with the following properties:

(1) The families of multisections are transversal to 0.
(2) It is compatible with the forgetful map (31). (See [5, Section 5] for the precise

definition of this compatibility.)
(3) For k ≥ 1 the evaluation map ev0 induces a submersion of its zero set, in the sense

of [5, Definition 4.1.4].
(4) It is invariant under the cyclic permutation of the boundary marked points.
(5) It is compatible with the identification (32).
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(6) It is compatible with the identification (33).
Let ρi ∈ Λ(L) (i = 1, . . . , k) be differential forms on L. In [5, Section 6] we defined

(35) mJ,s
k,β(ρ1, . . . , ρk) = Corr(Mk+1(β; J ); ((ev1, . . . , evk), ev0))(ρ1 × · · · × ρk) .

Here the right-hand side is the smooth correspondence associated to the above continuous
family of perturbations. (See [5, Section 4].) (Note that (35) depends on the choice of family
of multisections. The symbol s is put to clarify this dependence.)

We next define mJ,s
−1,β . Let pt be the space consisting of one point. We have an obvious

map tri : M0(β; J ) → pt. Note Λ(pt) = R. Moreover

dimM0(β; J ) = dim L − 3 + µ(β) = 0 .

Therefore we have an R linear map:

Corr(M0(β; J ); (tri, tri)) : R → R .

DEFINITION 4.2. For β ∩ [ω] < E0, we put

mJ,s
−1,β = Corr(M0(β; J ); (tri, tri))(1) ∈ R .

In [5, Definition 6.5] we defined a notion of cyclic filtered A∞ algebra modulo T E0 . It
is defined in a similar way as cyclic filtered A∞ algebra but we require filtered A∞ relation
and cyclic symmetry only modulo T E0 .

DEFINITION 4.3. (1) An inhomogeneous cyclic filtered A∞ algebra modulo T E0 is

(C, 〈·〉, {mk,β ; E(β) < E0}, {m−1,β ; E(β) < E0})
such that (C, 〈·〉, {mk,β ; E(β) < E0}) is a cyclic filtered A∞ algebra modulo T E0 and
m−1,β ∈ R.

(2) A pseudo-isotopy of inhomogeneous cyclic filtered A∞ algebra modulo T E0 is

(C, 〈·〉, {mt
k,β ; E(β) < E0}, {ctk,β ; E(β) < E0}, {mt

−1,β ; E(β) < E0}) ,

where

(C, 〈·〉, {mt
k,β ; E(β) < E0}, {ctk,β ; E(β) < E0})

is a pseudo-isotopy of cyclic filtered A∞ algebras modulo T E0 (namely (22), (23) hold for
E(β) < E0) and (24) holds for E(β) < E0.

The modulo T E0 version of Proposition 2.7 and Theorem 3.3 can be proved by the same
proof.

(Λ(L), 〈·〉, {mJ,s
k,β }, {mJ,s

−1,β}) which we defined above is an inhomogeneous cyclic filtered

A∞ algebra modulo T E0 .

PROPOSITION 4.4. (Λ(L), 〈·〉, {mJ,s
k,β }, {mJ,s

−1,β}) is independent of the choice of a Ku-
ranishi structure and a family of multisections s satisfying the properties listed in this section,
up to pseudo-isotopy of inhomogeneous cyclic filtered A∞ algebras modulo T E0 .
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PROOF. Let us take two different choices of a system of Kuranishi structures and of
families of multisections. We consider [0, 1] × Mk(β; J ) and evaluation maps

ev = (ev0, . . . , evk−1) : [0, 1] × Mk(β; J ) → Lk, evt : [0, 1] × Mk(β; J ) → [0, 1] .

As in [5, Section 11 Lemmas 11.1 and 11.2], we have a system of Kuranishi structures and
continuous families of multisections on [0, 1] × Mk(β; J ) with the following properties:

(1) The families of multisections are transversal to 0.
(2) It is compatible with the forgetful map [0, 1]× (31).
(3) For k ≥ 1 the evaluation map

(evt , ev0) : [0, 1] × Mk(β; J ) → [0, 1] × L

is weakly submersive and induces a submersion of the zero set of family of multisections, in
the sense of [5, Definition 4.1.4].

(4) They are invariant under the cyclic permutation of the boundary marked points.
(5) It is compatible with the identification

[0, 1] × ∂Mk+1(β; J ) =
⋃

1≤i≤j+1≤k+1

⋃
β1+β2=β

[0, 1] × (
Mj−i+2(β2; J )ev0 ×evi Mk−j+i+1(β1; J )

)
which is induced from (32).

(6) It is compatible with the similar identification induced from (33).
(7)

evt : [0, 1] × M0(β; J ) → [0, 1]
is weakly submersive and induces a submersion on the zero set of family of multisections, in
the sense of [5, Definition 4.1.4].

(8) At t0 = 0, 1 the induced Kuranishi structures and families of multisecitons on
{t0} × Mk(β; J ) coincide with the given two choices of Kuranishi structures and of families
of multisections.

In [5, Section 11], we defined a pseudo-isotopy of cyclic filtered A∞ algebras as follows.
Let ρ1, . . . , ρk ∈ Λ(L). We put

(36)
Corr∗([0, 1] × Mk+1(β; J ); ((ev1, . . . , evk), (evt , ev0)))(ρ1 × · · · × ρk)

= ρ(t) + dt ∧ σ(t) ,

and define

(37) mt
k,β(ρ1, . . . , ρk) = ρ(t) , ctk,β (ρ1, . . . , ρk) = σ(t) .

We next define mt
−1,β . Let tri : [0, 1] × M0(β; J ) → pt be an obvious map to a point.

We take 1 ∈ Λ0(pt) = R and put the 0-form on [0, 1]
(38) Corr∗([0, 1] × M0(β; J ); (tri, evt ))(1) = ρ(t) .

We then define

(39) mt
−1,β = ρ(t) .
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LEMMA 4.5. (Λ(L), 〈·〉, {mt
k,β }, {ctk,β}, {mt

−1,β}) above defines a pseudo-isotopy of

inhomogeneous cyclic filtered A∞ algebras modulo T E0 .

PROOF. In [5, Section 11] it is proved that (Λ(L), 〈·〉, {mt
k,β }, {ctk,β}) is a pseudo-

isotopy of cyclic filtered A∞ algebras modulo T E0 . Therefore it suffices to check (24).
Let 0 ≤ t1 < t2 ≤ 1. We have:

∂([t1, t2] × M0(β; J ))

= ({t1, t2} × M0(β; J ))

∪
( ⋃

β1+β2=β

(
([t1, t2] × M1(β2; J )) (evt ,ev0) ×(evt ,ev0) ([t1, t2] × M1(β1; J ))

))/
Z2 .

We now apply Stokes’ formula ([5, Proposition 4.2]) to a closed 0-form 1 on the zero set of
multisections on [t1, t2] × M0(β; J ) and obtain:

m
t2−1,β − m

t1−1,β =
∑

β1+β2=β

∫ t2

t1

〈ct0,β1
(1),mt

0,β2
(1)〉dt .

By taking t2 derivative we obtain (24). �

The proof of Proposition 4.4 is now complete. �

We thus proved modulo T E0 version of Theorem 4.1. We next prove the following inho-
mogeneous version of [5, Theorem 8.1].

LEMMA 4.6. Let 0 < E0 < E1 and (C, 〈·〉, {mi
k,β }, {mi

−1,β}) be a G-gapped inho-

mogeneous cyclic filtered A∞ algebra modulo T Ei , for i = 0, 1. Let (C, 〈·〉, {mt
k,β }, {ctk,β},

{mt
−1,β}) be a pseudo-isotpy of G-gapped inhomogeneous cyclic filtered A∞ algebras modulo

T E0 between them.
Then, (C, 〈·〉, {m0

k,β }, {m0−1,β}) can be extended to a G-gapped inhomogeneous cyclic

filtered A∞ algebra modulo T E1 and (C, 〈·〉, {mt
k,β }, {ctk,β}, {mt

−1,β}) can be extended to a

pseudo-isotpy of G-gapped inhomogeneous cyclic filtered A∞ algebras modulo T E1 between
them.

PROOF. We may assume that G∩[E0, E1) = {E0}. In [5, Theorem 8.1] the extension to
the cyclic filtered A∞ algebra modulo T E1 and the extension to the pseudo-isotopy of cyclic
filtered A∞ algebras modulo T E1 are obtained. So it suffices to find mt

−1,β for E(β) = E1.
We define

mt
−1,β = m1−1,β +

∑
β1+β2=β

∫ 1

t

〈ct0,β1
(1) ,mt

0,β2
(1)〉dt .

It is easy to check (24). �

We next construct a gapped inhomogeneous cyclic filtered A∞ algebra

(Λ(L), 〈·〉, {mk,β }, {m−1,β}) .
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Let Ei be a sequence 0 < · · · < Ei < Ei+1 < · · · . We obtain a sequence

(Λ(L), 〈·〉, {mi
k,β }, {mi

−1,β}), i = 1, 2, . . .

of inhomogeneous cyclic filtered A∞ algebras modulo T Ei . By Lemma 4.5 we have a pseudo-
isotopy of inhomogeneous cyclic filtered A∞ algebras modulo T Ei

(40) (Λ(L), 〈·〉, {mi,t
k,β }, {ci,tk,β}, {mi,t

−1,β})
between (Λ(L), 〈·〉, {mi

k,β }, {mi
−1,β}) and (Λ(L), 〈·〉, {mi+1

k,β }, {mi+1
−1,β}).

We can then use Lemma 4.6 in the same way as [5, Section 12] and [7, Section 7.2],
to extend (Λ(L), 〈·〉, {mi

k,β }, {mi
−1,β}) to an inhomogenuous cyclic filtered A∞ algebra and

to extend (Λ(L), 〈·〉, {mi,t
k,β }, {ci,tk,β}, {mi,t

−1,β}) to a pseudo-isotopy of inhomogeneous cyclic
filtered A∞ algebras between

extension of (Λ(L), 〈·〉, {mi
k,β }, {mi

−1,β}) and (Λ(L), 〈·〉, {mi+1
k,β }, {mi+1

−1,β}) .

These two extensions are isomorphic to each other.
Therefore we have (Λ(L), 〈·〉, {mJ,s

k,β }, {mJ,s
−1,β}).

We can prove that the pseudo-isotopy type of (Λ(L), 〈·〉, {mJ,s
k,β }, {mJ,s

−1,β}) is independent
of the choice of system of Kuranishi structures and continuous families of multisections in the
same way as [5, Section 14] by working out the inhomogeneous version of pseudo-isotopy of
pseudo-isotopies. We omit the details of it. Instead, we complete the proof of Theorem 1.2
directly without using the inhomogeneous version of pseudo-isotopy of pseudo-isotopies but
using only the result of [5, Section 14] and ones of this paper.

Let (Λ(L), 〈·〉, {mi′
k,β }, {mi′

−1,β}) be an inhomogeneous cyclic filtered A∞ algebra mod-

ulo T Ei obtained by alternative choices. This sequence induces (Λ(L), 〈·〉, {mJ,s′
k,β }, {mJ,s′

−1,β}).
By Proposition 4.4, we can show that for each i we have a pseudo-isotopy modulo T Ei

between two inhomogeneous cyclic filtered A∞ algebras (Λ(L), 〈·〉, {mi
k,β }, {mi

−1,β}) and

(Λ(L), 〈·〉, {mi′
k,β }, {mi′

−1,β}). We denote it by (Λ(L), 〈·〉, {mi,t
k,β }, {ci,tk,β}, {mi,t

−1,β}).
By [5, Theorem 14.1], this pseudo-isotopy modulo T Ei extends to a pseudo-isotopy of

cyclic A∞ algebra. (We do not use the fact that it extends to a pseudo-isotpy of inhomoge-
neous cyclic A∞ algebras here.) Therefore by [7, Theorem 4.3.22], we have an isomorphism

(fi )∗ : M(Λ(L), {mi
k,β}; Λ+) ∼= M(Λ(L), {mi′

k,β}; Λ+) .

On the other hand, since (Λ(L), 〈·〉, {mi,t
k,β }, {ci,tk,β}, {mi,t

−1,β}) is a pseudo-isotopy modulo

T Ei of inhomogeneous cyclic filtered A∞ algebras, the modulo T Ei version of Theorem 3.3
implies

(41) Ψ ((fi )∗(bi); J ) ≡ Ψ (bi; J ) mod T Ei .

For i > j , we have isomorphisms

(ci,j )∗ : M(Λ(L), {mj
k,β}; Λ+) ∼= M(Λ(L), {mi

k,β}; Λ+)
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and

(c′i,j )∗ : M(Λ(L), {mj ′
k,β}; Λ+) ∼= M(Λ(L), {mi′

k,β}; Λ+) .

They are induced by the pseudo-isotopies of filtered A∞ algebras. (We obtain it from (40) by
the method of [5, Section 14]). Using the fact that (40) is a pseudo-isotopy modulo T Ei of
inhomogeneous cyclic filtered A∞ algebras, we have

(42) Ψ ((c′i,j )∗(bi); J ) ≡ Ψ (b; J ) mod T Ei , Ψ ((ci,j )∗(b′
i ); J ) ≡ Ψ (b′; J ) mod T Ei ,

where bi ∈ M(Λ(L), {mi
k,β}; Λ+) and b′

i ∈ M(Λ(L), {mi′
k,β}; Λ+).

Furthermore the construction of pseudo-isotopy of pseudo-isotopies in [5, Section 14]
implies

(43) (fi )∗ ◦ (ci,j )∗ = (c′i,j )∗ ◦ (fj )∗ .

We remark that there exists an isomorphism

(ci )∗ : M(Λ(L), {mj
k,β}; Λ+) ∼= M((Λ(L), 〈·〉, {mJ,s

k,β }, {mJ,s
−1,β}); Λ+)

such that (ci )∗ ◦ (ci,j )∗ = (cj )∗. We also have

(c′i )∗ : M(Λ(L), {mj
k,β}; Λ+) ∼= M((Λ(L), 〈·〉, {mJ,s′

k,β }, {mJ,s′
−1,β}); Λ+)

such that (c′i )∗ ◦ (c′i,j )∗ = (c′j )∗.
Moreover by (42) we have

(44) Ψ ((ci )∗(bi); J ) ≡ Ψ (bi; J ) mod T Ei , Ψ ((c′i )∗(b′
i ); J ) ≡ Ψ (b′

i; J ) mod T Ei .

Suppose f(b) = b′. (Namely b = (ci )∗(bi), b′ = (c′i )∗((fi )∗(bi)).)
Then (41), (43), (44) immediately imply

Ψ (b′; J ) ≡ Ψ (b; J ) mod T Ei .

Since this holds for any Ei , we proved Theorem 1.2.(3). The proof of Theorem 1.2 is now
complete. �

5. Relations to canonical models. In [7, Subsection 5.4.4] and [5, Section 10], we
defined a canonical model (H, 〈·〉, {mcan

k,β}) of a G-gapped cyclic filtered A∞ algebra (C, 〈·〉,
{mk,β}). Here H is the m1,0 cohomology of C and H = H ⊗R Λ0. We regard H ⊂ C

by taking an appropriate representative. Then H ⊂ C. (Note we assumed C is either fi-
nite dimensional or the de Rham complex Λ(L).) We also constructed a G-gapped cyclic
filtered A∞ homomorphism f : H → C, which is a homotopy equivalence. Suppose that
(C, 〈·〉, {mk,β }, {m−1,β}) is an inhomegeneous G-gapped cyclic filtered A∞ algebra. In this
section, we will define mcan

−1,β so that f∗ : M(H ; Λ+) → M(C; Λ+) preserves the superpo-
tentials.

To define mcan
−1,β we need some notations. We use results and notations of [5, Sections 9

and 10] in this section.
Let T be a ribbon tree. (We always assume that T is connected.) Let C0(T ) be the set of

vertices. We assume that we have its decomposition C0(T ) = Cint
0 (T ) � Cext

0 (T ) to interior
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vertices and exterior vertices. Let β(·) : Cint
0 (T ) → G be a map to a discrete submonoid G

of R≥0.

DEFINITION 5.1. We denote by Gr−(k, β) the set of Γ = (T , Cint
0 (T ), Cext

0 (T ),

β(·)) such that: (1)
∑

v∈C int
0 (T ) β(v) = β. (2) #Cext

0 (T ) = k + 1. (3) If β(v) = 0, then

v has at least 3 edges. (4) If v ∈ Cext
0 (T ) then v has exactly one edge.

The automorphism group Aut(Γ ) of an element Γ = (T , Cint
0 (T ), Cext

0 (T ), β(·)) of
Gr−(k, β) is the set of isomorphisms φ : T → T of ribbon trees which preserve the decom-
position C0(T ) = Cint

0 (T ) � Cext
0 (T ) and satisfies the relation β(φ(v)) = β(v).

We define Gr(k, β) as in [5, Definition 9.1]. Namely its element is an element of
Gr−(k, β) together with a choice of a base point which is an exterior vertex.

We remark that k = −1, 0, 1, . . . in Gr−(k, β). The case k = −1 is included. We also
remark that the automorphism of a rooted ribbon tree is trivial.

Let (v, e) be a flag of Γ , that is a pair of an interior vertex v and an edge e containing v.

Let b ∈ H
1
. We are going to define m(Γ ; b) ∈ R.

Let T0, . . . ,Tl be the irreducible components of Γ \ v. We number them so that e ∈ T0

and they respect the counter clockwise cyclic order of R2. Together with the data induced
from Γ , the tree Ti defines an element (Γi, v) ∈ Gr(ki, βi). Here the base point of (Γi, v) is
v for all i.

DEFINITION 5.2.

m(Γ, v, e; b) = 〈ml,β(v)(f(Γ1,v)(b, . . . , b), . . . , f(Γl ,v)(b, . . . , b)), f(Γ0,v)(b, . . . , b)〉 .

Here f(Γ,v) is defined in [5, Section 10]. We put m(Γ, v, e; b) = 0 if Γ has no interior vertex.

We remark that there is no sign in Definition 5.2, since the degree of b after shifted is
even.

LEMMA 5.3. m(Γ, v, e; b) is independent of v and e and depends only on Γ and b.

This is [5, Proposition 10.1]. Hereafter we write m(Γ ; b) in place of m(Γ, v, e; b).
In case T has exactly one interior vertex v, no exterior vertex, and β(v) = β, we define

(45) m(Γ ; b) = m−1,β

where Γ = (T, {v},∅, β(·)).
DEFINITION 5.4.

mcan
−1,β =

∑
Γ ∈Gr−(−1,β)

m(Γ )

#Aut(Γ )
.

We remark that we write m(Γ ) instead of m(Γ ; b), since in the case of Γ ∈ Gr−(−1, β)

there is no exterior vertex and hence b never appears.
(H, 〈·〉, {mcan

k,β }, {mcan
−1,β}) is an inhomegeneous G-gapped cyclic filtered A∞ algebra. Let

Ψ can : M(H ; Λ+) → Λ+
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be its superpotential. The filtered A∞ homomorphism f : H → C induces f∗ : M(H ; Λ+) →
M(C; Λ+) by

(46) f∗(b) =
∞∑

k=0

∑
β∈G

T E(β)fk,β(b, . . . , b) .

The main result of this section is:

THEOREM 5.5.

(47) Ψ (f∗(b)) = Ψ can(b) .

REMARK 5.6. We consider the case of C = Λ(L) with H 1(L; R) = 0. Then since
H 1 = 0, the set M(H ; Λ+) consists of one point 0. Therefore M(C; Λ+) also consists of
one point. The invariant of Corollary 1.3 is the value of the superpotential at this point.

Theorem 5.5 implies that this invariant is

(48)
∑
β∈G

T E(β)mcan
−1,β =

∑
β∈G

∑
Γ ∈Gr−(−1,β)

T E(β)

#Aut(Γ )
m(Γ ) .

PROOF OF THEOREM 5.5. Let b ∈ H 1+ = H
1 ⊗R Λ+. We define

(49) Φ(b) =
∞∑

k=−1

∑
β∈G

∑
Γ ∈Gr−(k,β)

T E(β)

#Aut(Γ )
m(Γ ; b) ∈ Λ+ .

LEMMA 5.7.

Φ(b) = Ψ can(b) .

PROOF. In view of Definition 5.4 it suffices to prove:

(50) 〈mcan
k,β(b, . . . , b), b〉 = (k + 1)

∑
Γ ∈Gr−(k,β)

m(Γ ; b)

#Aut(Γ )
.

We will prove (50) below.
Let Γ ∈ Gr−(k, β). Let {v0, . . . , vk} = Cext

0 (Γ ) such that v0, . . . , vk respect the coun-
terclockwise cyclic order of R2. Let ei be the unique edge containing vi . We define v′

i by
∂ei = {vi, v

′
i}. Then (Γ, vi ) is a rooted ribbon tree with root vi , for each i.

By the definition of mcan
k,β given in [7, Subsection 5.4.4], we have:

mcan
k,β(b, . . . , b) =

∑
Γ ∈Gr−(k,β)

k∑
i=0

m(Γ,vi)(b, . . . , b)

#Aut(Γ )
.

Here m(Γ,vi) is as in [7, Section 10].
This is because (Γ, vi) ∈ Gr(k, β) and (Γ, vi ) is the same element as (Γ, vj ) in Gr(k, β)

if and only if there exists an element of φ ∈ Aut(Γ ) such that φ(vi ) = vj .
Moreover

〈m(Γ,vi)(b, . . . , b), b〉 = m(Γ, v′
i , ei; b) ,
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where the right-hand side is defined in Definition 5.2. (See also [5, Definition 10.1].) By
Lemma 5.3, that is [5, Proposition 10.1], m(Γ, vi , ei; b) is independent of i and is m(Γ ; b).
This implies (50). The proof of Lemma 5.7 is complete. �

The next proposition completes the proof of Theorem 5.5. �

PROPOSITION 5.8. If b ∈ M̃(H ; Λ+), then we have:
(51) Φ(b) = Ψ (f∗(b)) .

PROOF.

LEMMA 5.9.

(52)

∑
β 	=0

T E(β)m−1,β+
∑

(l,β) 	=(1,0)

T E(β)

l + 1
〈ml,β(f∗(b), . . . , f∗(b)), f∗(b)〉

=
∞∑

k=−1

∑
β∈G

∑
Γ ∈Gr−(k,β)

T E(β)

#Aut(Γ )
#Cint

0 (Γ )m(Γ ; b) .

PROOF. Let Γ ∈ Gr−(k, β) and (v, e) be its flag. (We are considering the case when
Γ has at least one edge.) We obtain the irreducible components Γ0, . . . , Γl of Γ \v as before.
By definition we have

(53) 〈ml,β(v)(f(Γ1,v)(b, . . . , b), . . . , f(Γl ,v)(b, . . . , b)) , f(Γ0,v)(b, . . . , b)〉 = m(Γ ; b) .

We remark that the left-hand side of (53) is independent of (v, e) by Lemma 5.3 or [5, Propo-
sition 10.1]. If we take the sum of the right-hand side of (53) over all Γ, v with weight
T E(β)/#Aut(Γ ) then we obtain the sum of the terms k ≥ 0 in the right-hand side of (52).
(Note (Γ, v) may be isomorphic to (Γ, v′) by some element of Aut(Γ ). We take the sum over
Γ ∈ Gr−(k + 1, β) and v ∈ Cint

0 (Γ ), and not over the isomorphism classes of (Γ, v).)
We claim that the sum of the left-hand side of (53) over the pair of Γ ∈ Gr−(k + 1, β)

and v ∈ Cint
0 (Γ ), with weight T E(β)/#Aut(Γ ) is

(54)
∑

(l,β) 	=(1,0)

T E(β)

l + 1
〈ml,β(f∗(b), . . . , f∗(b)), f∗(b)〉 .

To prove this claim, we first remark that the automorphism of (Γ, v, e) is trivial. There-
fore, for each given Γ ∈ Gr−(k + 1, β) and its frag (v, e), we have

#{(v′, e′); (Γ, v′, e′) ∼= (Γ, v, e)} = #Aut(Γ ) .

On the other hand, the number of choices of e for given Γ, v is l + 1. Hence (54).
Finally we remark that the first term of (52) is equal to the sum of the right-hand side in

the case k = −1 and Γ has no edge, by (45).
We thus obtain (52). �
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LEMMA 5.10.

(55)

〈m1,0(f∗(b)), f∗(b)〉

= −2
∞∑

k=−1

∑
β∈G

∑
Γ ∈Gr−(k,β)

T E(β)

#Aut(Γ )
#Cint

1 (Γ )m(Γ ; b) .

Here Cint
1 (Γ ) is the set of interior edges. (We say an edge is an interior edge if it does

not contain an exterior vertex.)

PROOF. Let (v, e) be a flag of Γ ∈ Gr−(k, β) such that e is an interior edge. We define
m′(Γ, e, v; b) as follows. Let T ′

(0), T ′
(1) be the irreducible components of Γ \ e such that T ′

(0)

contains v. We put T(0) = T ′
(0) ∪ e, T(1) = T ′

(1) ∪ e. Using the data induced from Γ , the trees
T(0), T(1) induce (Γ(0), v

′) ∈ Gr(k(0), β(0)), (Γ(1), v) ∈ Gr(k(1), β(1)). (The roots of Γ(0),
Γ(1) are v′ and v, respectively.) We define

(56) m′(Γ, e, v; b) = 〈m1,0(f(Γ(1),v)(b, . . . , b)), f(Γ(0),v
′)(b, . . . , b))〉 .

SUBLEMMA 5.11.

(57) m′(Γ, e, v; b) = −m(Γ ; b) .

PROOF. We use [5, Lemma 10.1], its proof and notations there, during the proof of
Sublemma 5.11.

Let Γ, v, e be as in Sublemma 5.11. We put ∂e = {v, v′}. Let T0, . . . ,Tm be the irre-
ducible components of Γ \ v′. We number them so that v ∈ T0 and it respects the counter-
clockwise cyclic order of R2. Ti together with the data induced from Γ becomes (Γi, v

′),
whose root is v′. By definition

Γ(1) = Γ1 ∪ · · · ∪ Γm ∪ e .

Therefore by the definition in [5, Section 10], we have

(58) f(Γ(1),v)(b, . . . , b) = (G ◦ mm,β(v′))(f(Γ1,v
′)(b, . . . , b), . . . , f(Γm,v′)(b, . . . , b)) .

Therefore

(59)
m′(Γ, e, v; b) = 〈(m1,0 ◦ G ◦ mm,β(v′))(f(Γ1,v

′)(b, . . . , b), . . . ,

f(Γm,v′)(b, . . . , b)), f(Γ(0),v
′)(b, . . . , b)〉 .

By [5, Lemma 10.1] we have

(60) m1,0 ◦ G = −G ◦ m1,0 + Π − identity .

Since v is an interior vertex, then either β(v) 	= 0 or v has three or more edges. Therefore
(Γ(0), v

′) ∈ Gr(k(0), β(0)) with (k(0), β(0)) 	= (1, 0). It follows that f(Γ(0),v)(b, . . . , b) ∈ Im G.
We remark that

〈Im G, Im G + Im Π〉 = 0 .

Therefore
m′(Γ, e, v; b) = −〈mm,β(v′)(f(Γ1,v

′)(b, . . . , b), . . . , f(Γm,v′)(b, . . . , b)), f(Γ(0),v)(b, . . . , b)〉
= −m(Γ ; b),
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as required. The proof of the sublemma is complete. �

Lemma 5.10 now follows from Sublemma 5.11. �

Since Γ is a tree we have #Cint
0 (Γ ) − #Cint

1 (Γ ) = 1. Therefore Lemmas 5.9 and 5.10
imply Proposition 5.8. �

Using the proof of Theorem 5.5 and [5, Section 9], we can prove the following:

THEOREM 5.12. If two gapped inhomogeneous cyclic filtered A∞ algebras are
pseudo-isotopic to each other, then so are their canonical models.

We omit the proof since it is a straightforward analog and we do not use Theorem 5.12
in this paper.

6. Wall crossing formulas. In this section we prove Theorem 1.5. We first review
the definition of the numbers n(L; α;J ) in (7) in more detail.

We remark that n(L; α;J ) is a rational number since we can use multi (but finitely
many) valued section of Mcl

1 (α;J ) to define it. (The argument to do so is the same as [10].)
On the other hand, to prove Theorem 1.5 we need to choose a perturbation of Mcl

1 (α;J )

so that it is compatible with the one of Mk(β;J ). Here

(61) Mk(β;J ) =
⋃

t∈[0,1]
{t} × Mk(β; Jt ) .

Since we use a continuous family of multisections to perturb Mk(β;J ), we need to use a
continuous family of multisections also for Mcl

1 (α;J ). Actually this is the way taken in [5,
Sections 3 and 5].

There exists a Kuranishi structure and a continuous family of multisections on
Mcl

1 (α;J ) with the following properties:
(1) The evaluation map

(62) (evt , ev
int) : Mcl

1 (α;J ) → [0, 1] × M

is weakly submersive.
(2) The continuous family of multisections is transversal to 0 and (62) induces a sub-

mersion on its zero set.
(3) The image of the restriction of (evt , ev

int) to the zero set of the continuous family
of multisections is disjoint from {0, 1} × L.

This is [5, Lemmas 3.2 and 5.3]. Let tri : Mcl
1 (α;J ) → pt be the trivial map. We use

the above continuous family of multisections and define

(63) Corr(Mcl
1 (α;J ); (tri, evint))(1) ∈ Λ(M) .

(63) is a smooth differential form of degree

dimR M − dimR Mcl
1 (α;J ) = 6 − (6 + c1(M) ∩ [α] + 2 − 6 + 1) = 3 .
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DEFINITION 6.1. We put:

n(L; α;J ) =
∫

L

Corr(Mcl
1 (α;J ); (tri, evint))(1) ∈ R .

We also define:

n(L; α;J ; t) =
∫

L

Corr(Mcl
1 (α;J ) ∩ ev−1

t ([0, t]); (tri, evint))(1) ∈ R .

The submersivity of (evt , ev
int) implies that n(L; α;J ; t) is a smooth function of t .

THEOREM 6.2. In the situation of Theorem 1.5, (Λ(L), 〈·〉, {mJ0
k,β }, {mJ0−1,β}) is

pseudo-isotopic to (Λ(L), 〈·〉, {mJ1
k,β }, {mJ1−1,β + ∆(β)}) as inhomogeneous gapped cyclic fil-

tered A∞ algebras. Here

∆(β) =
∑

β̃:i∗(β̃)=β

n(L; β̃;J ) .

PROOF. We consider the moduli space (61) and the evaluation map

(evt , ev) = (evt , ev0, . . . , evk−1) : Mk(β;J ) → [0, 1] × Lk .

By [5, Section 11] we have a system of Kuranishi structures and families of multisections on
Mk(β;J ) for β ∩ ω < E0, with the following properties:

(1) The families of multisections are transversal to 0.
(2) They are compatible with the forgetful map

(64) forgetk,0 : Mk(β;J ) → M0(β;J ) .

(3) For k ≥ 1 the evaluation map

(evt , ev0) : Mk(β;J ) → [0, 1] × L

is weakly submersive and induces a submersion of the zero set of the family of multisections,
in the sense of [5, Definition 4.1.4].

(4) They are invariant under the cyclic permutation of the boundary marked points.
(5) It is compatible with the identification

∂Mk+1(β;J ) ⊃
⋃

t∈[0,1]

⋃
1≤i≤j+1≤k+1

⋃
β1+β2=β

{t} × (Mj−i+2(β2; Jt )ev0 ×evi Mk−j+i+1(β1; Jt )) ,

which is induced from (32). (Note the difference between the right and left hand sides is the
part t = 0, 1, which appears in (8).)

(6) We consider the inclusion:

(65)

∂M0(β;J ) ⊃
( ⋃

β1+β2=β

(M1(β2;J ) (evt ,ev0) ×(evt ,ev0) M1(β1;J ))

)/
Z2

∪
⋃

t∈[0,1]

⋃
β̃:i∗(β̃)=β

{t} × (Mcl
1 (β̃; Jt )evint ×M L) .
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Then the Kuranishi structures and the families of multisections are compatible with (65). We
use the Kuranishi structure and families of multisections on Mcl

1 (β̃; Jt ) which is explained in
this section for the second term of the right-hand side of (65).

(7) The evaluation map, evt : M0(β;J ) → [0, 1] is weakly submersive and induces a
submersion of the zero set of the family of multisections, in the sense of [5, Definition 4.1.4].

(8) At t0 = 0, 1 the induced Kuranishi structure and families of multisections on
Mk(β;J ) ∩ ev−1

t ({t0}) coincides with the given choices of the Kuranishi structures and the
families of multisections on Mk(β; Jt0).

This is mostly the same as the one we used in the proof of Proposition 4.4. The only
difference is the second term of (65). It appears since the fiber product Mcl

1 (β̃;J )evint ×M L

can be nonempty in the situation where we consider a one parameter family of almost complex
structures.

We now define mt
k,β , ctk,β for k ≥ 0 in the same way as (36), (37) using Mk(β;J ) in

place of [0, 1] × Mk(β; J ).
We finally define mt

−1,β as follows. We take 1 ∈ Λ0(pt) = R and put the 0-form on
[0, 1]
(66) Corr∗(M0(β;J ); (tri, evt ))(1) = ρ(t)

and define

(67) mt
−1,β = ρ(t) +

∑
β̃:i∗(β̃)=β

n(L; β̃;J ; t) .

We can prove (Λ(L), 〈·〉, {mt
k,β }, {ctk,β}) is a pseudo-isotopy of gapped cyclic filtered A∞

algebras modulo T E0 in the same way as [5, Section 11].
To prove (Λ(L), 〈·〉, {mt

k,β }, {ctk,β}, {mt
−1,β}) is an inhomogeneous pseudo-isotopy of

gapped cyclic filtered A∞ algebras modulo T E0 it suffices to prove (24). Let 0 ≤ t1 < t2 ≤ 1.
We have:

(68)

∂(M0(β;J ) ∩ ev−1
t ([t1, t2]))

= ({t1} × M0(β; Jt1)) ∪ ({t2} × M0(β; Jt2))

∪
⋃

β1+β2=β(M1(β2;J ) (evt ,ev0) ×(evt ,ev0) M1(β1;J )) ∩ ev−1
t ([t1, t2])

Z2

∪
⋃

t∈[t1,t2]

⋃
β̃:i∗(β̃)=β

{t} × (Mcl
1 (β̃; Jt)evint ×M L) .

We apply Stokes’ theorem ([5, Proposition 4.2]) to obtain:

(69) m
t2−1,β − m

t1−1,β =
∑

β1+β2=β

∫ t2

t1

〈ct0,β1
(1),mt

0,β2
(1)〉dt .

Here the sum of the 1st and the 3rd terms of (68) gives the left-hand side of (69).
We obtain (24) by differentiating (69).
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We remark

m1−1,β = m
J1−1,β +

∑
β̃:i∗(β̃)=β

n(L; β̃; J ) .

The proof of Theorem 6.2 is complete. (Actually we need to go from modulo T E0 version to
Theorem 6.2 itself. We omit the proof of this part since it is the same as the one for Theorems
1.2 and 4.1.) �

7. Convergence. In this section we prove Theorem 1.4. Actually most of the ideas of
the proof is in [5, Section 13]. Let b = ∑b1

i=1 xiei , where ei is a basis of H 1(L; R). We put
yi = exi . For β ∈ H2(M,L; Z) we define ∂iβ ∈ Z by ∂iβ = ∂β ∩ ei and define

(70) y∂β =
b1∏

i=1

y
∂iβ
i .

THEOREM 7.1. We regard the superpotential Ψ (b; J ) as a function of xi then we have:
(71) Ψ (b; J ) =

∑
β∈G

T β∩[ω]mJ
−1,βy∂β .

Theorem 1.4 (1) follows immediately from Theorem 7.1.

PROOF. Let ρ be a closed one form on L. By definition we have

〈mJ
k,β(ρ, . . . , ρ), ρ〉
= Corr(Mk(β; J ); (tri, (ev1, . . . , evk, ev0)))(ρ × · · · × ρ) ∈ Λ0(pt) = R .

Then, by the same argument as the proof of [5, Lemma 13.1], we have

〈mJ
k,β(ρ, . . . , ρ), ρ〉 = 1

k! (ρ ∩ ∂β)k+1mJ
−1,β .

Theorem 7.1 follows easily. �

We turn to the proof of Theorem 1.4 (2). We take a Weinstein neighborhood U of L.
Namely U is symplectomorphic to a neighborhood U ′ of the zero section in T ∗L. We choose
δ1 so that for c = (c1, . . . , cb1) ∈ [−δ1,+δ1]b1 the graph of the closed one form

∑b1
i=1 ciei is

contained in U ′. (Here we take a de Rham representative of ei ∈ H 1(L; R) and regard ei as a
closed one form.) We send it by the symplectomorphism to U and denote it by L(c). We may
take δ2 < δ1 so that if c = (c1, . . . , cb1) ∈ [−δ2,+δ2]b1 then there exists a diffeomorphism
Fc : M → M so that

Fc(L) = L(c) ,(72)

(Fc)∗J is tamed by ω .(73)

Then we have an isomorphism

(74) M0(L(c); (Fc)∗(β); (Fc)∗J ) ∼= M0(L; β; J ) .
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We can extend this isomorphism to their Kuranishi structures and families of multisections on
them. We can then use Proposition 5.8 and (74) to obtain:

(75) mJ
−1,β,L = m

(Fc)∗J
−1,(Fc)∗(β),L(c) .

Here we include L and L(c) in the notation to clarify the Lagrangian submanifold we study.
Theorem 7.1 and

β ∩ [ω] = (Fc)∗(β) ∩ [ω] −
∑

i

ci∂iβ

(See [5, Lemma 13.5].) then imply:

(76) Ψ (y; L(c); (Fc)∗(J )) = Ψ (y(c); L; J ) ,

where we put y(c)i = T −ci yi . In (76) we include L in the notation of the superpotentials to
clarify the Lagrangian submanifold we study. We regard the superpotential as a function of yi

by using Theorem 7.1.
Since the right-hand side converges in Λ〈〈y1, . . . , yb1, y

−1
1 , . . . , y−1

b1
〉〉, it follows that

Ψ (y(c); L; J ) converges for c = (c1, . . . , cb1) with |ci | < δ. This implies Theorem 1.4 (2).
Theorem 1.4 (3), (4) follows from Theorem 1.2. The proof of Theorem 1.4 is

complete. �
Once the convergence is established, Propositions 2.3, 2.7 and Theorems 3.3, 4.1, 5.5 are

generalized in the same way to our larger domain of convergence.

8. Concluding remarks.
8.1. Rationality and integrality.

CONJECTURE 8.1. In the situation of Corollary 1.3 we have Ψ can(0; J ) ∈ Λ
Q
0 .

We remark that a filtered A∞ structure on H(L) is constructed in [7] over Λ
Q
0,nov. In [5]

and in this paper, we work over R coefficient to use a continuous family of multisections and
the de Rham theory for construction. This is the reason why we can not prove Conjecture 8.1
by the method of this paper. A possible way to approach this conjecture is to use the theory
of Kuranishi homology by Joyce [14].

CONJECTURE 8.2. There exist integers oJ
β ∈ Z for each β ∈ H2(M,L; Z) such that

(77) Ψ can(0; J ) =
∑

d∈Z+:β/d∈H2(M,L;Z)

d−2T β∩ωoJ
β/d .

This is an anolog of the corresponding conjecture for Gromov-Witten invariants of genus
zero. (See [11].) The factor d−2 is discussed in [17]. There is a discussion on this conjecture
in [19].

8.2. Bulk deformations and generalizations to non Calabi-Yau cases etc. In this
paper we assumed dimC M = 3, c1(M) = 0, µL = 0. This assumption is used to define
mJ

−1,β . Namely it is used to show that the (virtual) dimension of M0(β; J ) is 0. We may use
bulk deformations ([7, Section 3.8]) to obtain a numerical invariant in some other cases, as
follows.
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We consider the moduli space Ml,k(β; J ) of bordered stable J -holomorphic curves of
genus zero with l interior marked points and k boundary marked points, one boundary com-
ponent and of homology class β. Let σ1, . . . , σl be closed forms on M . We may consider

Corr(Ml,0(β; J ); (evint, tri))(σ1, . . . , σl) ∈ Λ∗(pt) = R

if ∗ = n + µ(β) − 3 + 2l − ∑
deg σi = 0.

We obtain similar numbers by considering Ml,k(β; J ) and differential forms on L. The
algebraic structure behind this ‘invariant’ is not yet clear to the author. So the study of them is
a problem for future research. Another case where a numerical invariant is defined is the case
when M is a toric manifold and L is its T n orbit. In that case Ml,k(β; J ) for β ∈ H2(M,L; Z)

with Maslov index ≥ 2 only is related to our structures. See [8] and references therein for this
case.

8.3. The case of real points. We assume dimC M = 3 and let τ : M → M be a
J -anti holomorphic involution. We assume that L = {x ∈ M ; τ (x) = x} is nonempty. Then
it becomes a Lagrangian submanifold. We assume L is τ -relatively spin. (See [9] and [6,
Chapter 8] for its definition.) (If L is spin then it is τ -relatively spin.) Then in [9] and [6,
Chapter 8 Sections 34 and 38], we constructed mJ

k,β such that

(78) mJ
k,τ∗(β)(x1, . . . , xk) = (−1)k+1+∗mJ

k,β(xk, . . . , x1) ,

where ∗ = ∑
0≤i<j≤k deg′ xi deg′ xj . (See [6, Theorem 34.20] and [9, Theorem 1.5].) We can

combine the construction of [9] with the one in [5] and can define an inhomogeneous cyclic
filtered A∞ algebra (Λ(L), 〈·〉, {mJ

k,β }, {mJ
−1,β}) satisfying (78). Moreover mJ

−1,β satisfies

(79) mJ
−1,τ∗(β) = mJ

−1,β .

Then its superpotential satisfies

(80) Ψ (−b; J ) = Ψ (b; J ) .

In particular b = 0 is a critical point.

CONJECTURE 8.3. The critial value Ψ (0; J ) is equivalent to a special case of the
invariant by Solomon [20].

We can prove Ψ (0; J0) = Ψ (0; J1) if there exists a family of almost complex structures
Jt such that τ∗Jt = −Jt . In fact we can show

(81) n(L; β̃;J ) = −n(L; τ∗β̃;J )

for such J = {Jt }. (See [9, Subsection 6.4].)
If we can generalize this construction in the way suggested in Subsection 8.2, it seems

likely that we can reproduce the invariants of Solomon and Welschinger [24] and
Pandharipande-Solomon-Walcher [19].

The superpotential we defined in this paper is also likely to be related to the numbers
studied by Walcher [23]. (For such a purpose we need to include flat bundle on L. In fact
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in [23] it seems that several flat connections are used to cancel the wall crossing term which
appears in (8).)

8.4 Generalizations to higher genus and Chern-Simons perturbation theory.
The right-hand side of the formula (48) has obvious similarity with the invariant of Chern-
Simons perturbation theory ([1]). It seems very likely that we can combine two stories to
obtain an invariant counting the number of stable maps from bordered Riemann surface with
arbitrary many boundary components and of arbitrary genus. Its rigorous definition is not
known at the time of writing of this paper. The author is unable to do it at the time of writing
this paper because of the transversality problem. Here we describe some ideas and explain the
difficulty to make it rigorous.

Let T be a ribbon graph. Namely it is a graph together with a choice of cyclic order
of the sets of edges containing each vertex. It uniquely determines a compact oriented 2
dimensional manifold Σ(T ) without boundary and an embedding i : T → Σ(T ) such that
the cyclic order of the edges is induced by the orientation of Σ(T ) and that the connected
components of Σ(T ) \ T are all discs. (We do not assume that T or Σ(T ) is connected.)

Let C0(T ) be the set of vertices and let l = #C0(T ). For vi ∈ C0(T ), let ki be the
number of edges containing vi . Let ei,1, . . . , ei,ki be the set of such edges. The set of the pair
(vi , ei,j ) where i = 1, . . . , l, j = 1, . . . , ki is called a flag. Let Fl(T ) be the set of flags.

We next consider a compact oriented 2 dimensional manifold Σ with boundary ∂Σ . We
assume ∂Σ has at least l connected components ∂iΣ , i = 1, . . . , l and on ∂iΣ we put ki

boundary marked points. There may be other components of ∂Σ , on which we do not put
boundary marked points. (We remark that we do not assume that Σ is connected.) Each of
the boundary marked points thus corresponds to an element of Fl(T ).

Let β ∈ H2(M,L; Z) where M is a 6 dimensional symplectic manifold with c1(M) = 0
and L its relatively spin Lagrangian submanifold such that H 1(L; Q) = 0. We consider
the pair (j, v) where j is a complex structure on Σ and v : (Σ, ∂Σ) → (M,L) is a j -J
holomorphic map. Let M(Σ; β; L; J ) be the moduli space of such pairs. (We take the stable
map compactification. It has a Kuranishi structure of dimension #Fl(T ).) The evaluation map
at each boundary marked points gives

(82) ev : M(Σ; β; L; J ) → L#Fl(T ) .

We next consider the operator G : Λ(L) → Λ(L) of degree +1 as in [5, Lemma 10.1].
We can associate a distributional form G̃ on L × L of degree 2 such that

〈G(u), v〉 =
∫

G̃ ∧ (u × v) .

(See [1].) For each edge e of T we have πe : L#Fl(T ) → L2, that is the projection to the
factors corresponding to (v, e), (v′, e) where ∂e = {v, v′}. We now ‘define’

(83) m(T ; Σ; β; L; J ) =
∫
M(Σ;β;L;J )

ev∗
( ∏

e∈C1(T )

π∗
e (G̃)

)
.
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To define the right-hand side of (83) rigorously, we need to take an appropriate perturbation
of our moduli space M(Σ; β; L; J ) and use it to define its virtual fundamental chain.

The case when the genus of Σ is 0, Σ has only one boundary component, and T is a
tree, is worked out in this paper and [5]. In that case, it is important to find a perturbation
so that it is compatible with the process to forget boundary marked points. As we remarked
in [5, Remark 3.2], the way we constructed such a continuous family of multisections in this
paper and in [5] uses the fact that the genus of Σ is 0. So it can not be directly generalized to
higher genus case.

If we can find an appropriate way to rigorously define (83), we then put

(84) Ψ (S, T ; L; J ) =
∑
T ,Σ

S2−χ(Σ#Σ(T ))T β∩[ω]m(T ; Σ; β; L; J ) .

This is expected to become an invariant of M,L, J .
Here Σ#Σ(T ) is defined as follows. For each v ∈ C0(T ) we remove a small ball B(v)

centered at v from Σ(T ). We then glue ∂B(vi) with the i-th boundary component of Σ . We
thus obtain Σ#Σ(T ) which is a compact oriented 2 dimensional manifold with or without
boundary. χ(Σ#Σ(T )) is its Euler number. We take the sum for T ,Σ such that Σ#Σ(T )

is connected. (Here the sum is over the topological types of Σ and T . We actually need to
divide each term by the order of the appropriate automorphism group in a way similar to (48).)
S is a formal parameter which is called the string coupling constant in physics literature.

PROBLEM 8.4. Let M,L, J be a triple of symplectic manifold M , its relatively spin
Lagrangian submanifold L and its tame almost complex structure J , such that dim L = 3,
c1(M) = 0 = µL, H 1(L; Q) = 0. Define an invariant Ψ (S, T ; L; J ) so that at T = 0
it becomes perturbative Chern-Simons invariant and at S = 0 it becomes the invariant of
Corollary 1.3.

REMARK 8.5. The study of Chern-Simons perturbation theory suggests that we need
to fix a framing of L in order to obtain an appropriate perturbation.

When we generalize the story to the case H 1(L; Q) 	= 0, we need to consider the case
when T has exterior vertices and Σ has a boundary marked point on the component other
than l components ∂iΣ . In that case we expect to obtain a certain algebraic structure on
H 1(L; Λ0). We believe that involutive-bi-Lie infinity structure [4] is appropriate for this pur-
pose. More precisely this is the case when at least one element of H 1(L; Q) is assigned to
each of the connected component of the boundary. (In genus 0 it corresponds to mk,β with
k ≥ 0.) If we restrict to such cases, the wall crossing phenomenon (the J dependence) does
not seem to occur. Namely the algebraic structure is expected to be independent of J up to
homotopy equivalence. (This is certainly the case of genus zero as is proved in [5].)

8.5. Mirror to Donaldson-Thomas invariants. Let M be a symplectic manifold of
dimension 6 and c1(M) = 0. We consider the set L̃ag(M) of pairs (L, [b]) such that L is a
relatively spin Lagrangian submanifold with µL = 0 and [b] ∈ M(L; J ; Λ0).
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We say (L, [b]) ∼ (L′, [b′]) if there exists a Hamiltonian diffeomorphism F : M →
M such that L′ = F(L) and F∗(b) is gauge equivalent to b′. Let Lag(M) be the quotient
space. The quotient topology on Lag(M) is rather pathological. Namely it is likely to be non-
Hausdorff in general. We also need to take an appropriate compactification of this moduli
space by including singular Lagrangian submanifolds, for example. (Such a compactification
is not known at the time of writing this paper.)

On the other hand, we can define a ‘local chart’ of Lag(M) as follows. Let (L, [b0]) ∈
Lag(M). We take δ > 0 small so that for L(c) with c = ∑

ciei , |ci | < δ, there exists Fc as
in (72), (73). We consider

A(δ) = {(y1, . . . , yb1) ; yi ∈ Λ, |v(yi)| < δ} .

Then a neighborhood of (L, [b0]) is identified with the set of (y1 . . . , ym) ∈ A(δ) satisfying
the Maurer-Cartan equation

(85)
∞∑

k=0

∑
β∈H2(M,L;Z)

T E(β)mJ
k,β(b, . . . , b) = 0 , where b = log(y1)e1 + · · · + log(ym)em .

We remark the equation (85) is well-defined by Theorem 1.4.
yi = exi = T ci y ′

i with ci = v(yi) then b′ = ∑
log y ′

iei and L(c) defines an element of
Lag(M; (Fc)∗J ). (See Section 7 and [5, Section 13].) Using the independence of the Maurer-
Cartan scheme of almost complex structures, we obtain an element of Lag(M) = Lag(M; J ).
In this way the set M(L; J )δ in Theorem 1.4 can be glued. Its union can be identified with
Lag(M). Each of M(L; J )δ is a rigid analytic space and the glueing maps are morphisms of
rigid analytic spaces. Thus, one may regard Lag(M) as a kind of ‘non-separated rigid analytic
stack’.

We remark that the equation (85) is equivalent to

∇yΨ = 0 .

Thus our situation is similar to the one which appears in Donaldson-Thomas invariants.
(Thomas [21], Joyce [13], Kontsevich-Soibelman [16].) There the role of the superpotential
is taken by the holomorphic Chern-Simons invariant.

PROBLEM 8.6. (1) Find an appropriate stability condition for the pair (L, [b]) and
use it to construct a moduli space Lagst(M) of stable pairs (L, [b]) which has better properties
than Lag(M).

(2) Define an invariant which is the ‘order’ of Lagst(M) in the sense of virtual funda-
mental cycle.

(3) Prove that it coincides with Donaldson-Thomas invariant of the Mirror manifold of
M .

It seems to the author that this problem is very difficult to study at this stage.
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REMARK 8.7. After [5] had been put on the arXiv and at the time of final stage of
writing this article, a paper [12] was put on the arXiv, where a different construction of a
similar invariant as the one in Corollary 1.3 (over Q) is sketched.
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