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Abstract. We study the existence of connecting orbits for the Fujita equation with a
critical or supercritical exponent. For certain ranges of the exponent we prove the existence of
heteroclinic connections from positive steady states to zero and a homoclinic orbit with respect
to zero.

1. Introduction. In the theory of dynamical systems, heteroclinic connections be-
tween equilibria constitute a very important theme, because connecting orbits play a crucial
role in the description of the attractor. In particular, for gradient-like systems the attractor
consists of equilibria and connecting orbits. For semilinear parabolic equations in one space
dimension, the connection problem has been studied extensively since the beginning of 1980’s
(see, for example, [3, 4, 5, 6, 7, 8, 9, 18, 22, 23, 35]).

In this paper we consider the Fujita equation

(1) ut = �u+ |u|p−1u , x ∈ RN ,

where u = u(x, t) and � is the Laplace operator with respect to x. A solution of (1) is
called a global solution (or an ancient solution) if for some τ ∈ R, the solution exists for all
t > τ (or t < τ ). A solution of (1) is called an entire solution if the solution exists for all
t ∈ R. Our interest is the existence of connecting orbits for (1). By a connecting orbit, we
mean an entire solution of (1) that converges to steady states as t → ±∞. In particular, if
the solution connects two different steady states then it is called a heteroclinic orbit. If the
solution converges to the same steady state as t → ±∞ then it is called a homoclinic orbit.

Before stating our results on connecting orbits of (1), we introduce several critical expo-
nents. Concerning the existence of positive global solutions of (1), the Fujita exponent

pF := N + 2

N

is critical. In fact, if 1 < p ≤ pF then there is no positive global solution of (1). The exponent

psg := N

N − 2
, N > 2 ,

2000 Mathematics Subject Classification. Primary 35K55; Secondary 35B05, 35B40, 35V05.
Key words and phrases. Homoclinic orbit, heteroclinic orbits, ancient solutions, stationary solutions, self-similar

solutions.
∗Supported by the Slovak Research and Development Agency under the contract No. APVV-0414-07.
†Partly supported by the Grant-in-Aid for Scientific Research (A) (No. 19204014), Japan Society for the Pro-

motion of Science.



562 M. FILA AND E. YANAGIDA

is related to the existence of a singular steady state explicitly given by

u = ϕ∞(|x|) := L|x|−m , x ∈ RN \ {0}
with

m := 2

p − 1
, L := {m(N − 2 −m)}1/(p−1) .

Namely, ϕ∞ exists if and only if p > psg . Concerning the existence of positive regular steady
states, it is well known (see, e.g., [20, 34]) that the Sobolev exponent

pS :=


N + 2

N − 2
for N > 2 ,

∞ for N ≤ 2 ,

plays a crucial role. Namely, there is a family of positive radial solutions of

�ϕ + ϕp = 0 , x ∈ RN ,

if and only if p ≥ pS . We denote the solution by ϕ = ϕα(r), r = |x|, α > 0, where ϕα
satisfies

(2)


 (ϕα)rr + N − 1

r
(ϕα)r + (ϕα)

p = 0 , r > 0 ,

ϕα(0) = α , (ϕα)r(0) = 0 .

For each α > 0, the solution ϕα is decreasing in |x| and satisfies ϕα(|x|) → 0 as |x| → ∞.
Another important critical exponent is

pc :=


(N − 2)2 − 4N + 8

√
N − 1

(N − 2)(N − 10)
for N > 10 ,

∞ for N ≤ 10 .

It is known (see, e.g., [34]) that if pS < p < pc, every positive radial steady state intersects
with other positive radial steady states and the singular steady state infinitely many times.
For p ≥ pc, Wang [37] showed that the family of steady states {ϕα ; α > 0} is completely
ordered, that is, ϕα is increasing in α for every x. Moreover,

lim
α→0

ϕα(|x|) = 0 , lim
α→∞ϕα(|x|) = ϕ∞(|x|) .

The Lepin exponent

pL :=


N − 4

N − 10
for N > 10 ,

∞ for N ≤ 10 ,

is related to the existence of nonconstant positive radial backward self-similar solutions (see
Section 4). Such solutions exist if pS < p < pL (see [24, 25]), while for p > pL nonexis-
tence holds (see [27]).
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Before we recall some Liouville-type results on nonexistence of entire or ancient solu-
tions of (1), we introduce one more exponent

pB :=


N(N + 2)

(N − 1)2
for N > 1 ,

∞ for N = 1 ,

which first appeared in [2]. For 1 < p < pB there is no positive classical entire solution of (1)
(see [2] or in [34, Theorem 21.2]). For 1 < p < pS , it was shown in [30, 31] that there is no
positive radial classical entire solution of (1). Nonexistence of radial classical entire solution
of (1) with finite number of zeros was established in [1] for 1 < p < pS . For p > pc it was
shown in [33] that if u is a solution of (1) defined for t < 0 and such that

ϕα ≤ u(·, t) ≤ ϕβ, t < 0 ,

for some 0 < α < β ≤ ∞ then u(·, t) ≡ ϕγ for some γ > 0.
Concerning connecting orbits, the studies [11, 14, 16] revealed the possibility of connect-

ing equilibria by non-classical solutions which we call singular connections. By a singular
connection we mean a function u(·, t) which is a classical solution on the interval (−∞, T )

for some T ∈ R and blows up at t = T , but continues to exist as a weak solution on [T ,∞).
We note here that singular homoclinic orbits which tend to zero as t → ±∞ are known to
exist for (1) if pS < p < pL (see [13, 19]). These singular homoclinics are obtained by
continuing a backward self-similar solution which exists for t < T and blows up at t = T by
a forward self-similar solution defined for t > T (see Section 6).

The main results of this paper are the following: If pS ≤ p < pc then for every α > 0
there is a heteroclinic orbit connecting ϕα to zero. If p > pS then there is a homoclinic orbit
which tends to zero as t → ±∞. As far as we know, this is the first example of a homoclinic
orbit for a parabolic equation. As is well known, an energy functional is associated with (1),
namely

E[φ] := 1

2

∫
RN

|∇φ|2dx − 1

p + 1

∫
RN

|φ|p+1dx .

The homoclinic solution does not belong to the energy space, and this is why the energy does
not rule out the existence of a homoclinic orbit (see Corollary 6.3 for more details).

For a discussion of possible complicated dynamics of semilinear parabolic equations we
refer to the survey [29, Section 7].

In order to show the existence of connecting orbits, we first analyze the linearization
around stationary solutions and a backward self-similar solution. Then we employ the method
of Fukao, Morita and Ninomiya [17], which is based on construction of an approximate se-
quence of solutions by using suitable comparison functions.

This paper is organized as follows. In Section 2 we describe our main results. In Sec-
tions 3, 4 and 5, we summarize useful results on stationary solutions, backward self-similar
solutions and forward self-similar solutions, respectively. Proofs of the main results and some
related results are given in Section 6.
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2. Main results. Our first result concerns the existence of a homoclinic orbit.

THEOREM 2.1. Let pS < p < pL. Then there exists a homoclinic solution u of (1)
with the following properties:

(i) The solution is positive, radially symmetric in space with respect to the origin,
decreasing in |x|, and satisfies

lim|x|→∞u(x, t) = 0 , t ∈ R .

(ii) There exists a positive constant C0 such that

‖u(·, t)‖L∞(RN) = C0(−t)−1/(p−1) + o((−t)−1/(p−1))

as t → −∞.
(iii) There exist constants C1, C2 > 0 such that

C1t
−1/(p−1) < ‖u(·, t)‖L∞(RN ) < C2t

−1/(p−1)

for all t > 1.

REMARK. If N > 10 and p ≥ pL, we can find a homoclinic orbit that is positive but
not radially symmetric. In fact, we may write x = (x1, x2) ∈ Rj×RN−j with 3 ≤ j ≤ 10 and
consider solutions that are constant in the x2-direction and coincide with the above homoclinic
solution in the x1-direction.

If u is a homoclinic orbit then

uλ(x, t) := λmu(λx, λ2t)

is also a homoclinic orbit for any λ > 0. In the proof of Theorem 2.1 we construct a homo-
clinic orbit u with the property that as λ → ∞, uλ approaches a singular homoclinic orbit
that consists of a backward self-similar solution and a forward self-similar solution (see The-
orem 6.4 in Section 6). Such a singular homoclinic orbit was first found by Galaktionov and
Vázquez [19].

The next result concerns the existence of heteroclinic orbits that connect positive radial
stationary solutions to the trivial solution.

THEOREM 2.2. Let pS ≤ p < pc. For every α > 0 there exists an entire solution u of
(1) with the following properties:

(i) The solution is positive, radially symmetric in space with respect to the origin,
decreasing in |x|, and satisfies

lim|x|→∞u(x, t) = 0 , t ∈ R .

Moreover, the solution is decreasing in t .
(ii) There exist positive constants C0 and µ0 such that

‖u(·, t) − ϕα(| · |)‖L∞(RN) = C0 exp(µ0t)+ o(exp(µ0t))

as t → −∞.
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(iii) There exist constants C1, C2 > 0 such that

C1t
−(N−2)/2 < ‖u(·, t)‖L∞(RN) < C2t

−(N−2)/2 if p = pS ,

C1t
−1/(p−1) < ‖u(·, t)‖L∞(RN) < C2t

−1/(p−1) if pS < p < pc ,

for all t > 1.

The next result can be regarded as the existence of heteroclinic orbits that connect regular
steady states to infinity.

THEOREM 2.3. Let pS ≤ p < pc. For every α > 0 there exists an ancient solution u
of (1) with the following properties:

(i) The solution is positive, radially symmetric in space with respect to the origin,
decreasing in |x|, and satisfies

lim|x|→∞u(x, t) = 0 , t ∈ (−∞, T ) ,

where T < ∞ is the maximal existence time. Moreover, the solution is increasing in t .
(ii) There exist positive constants C0 and µ0 such that

‖u(·, t) − ϕα(| · |)‖L∞(RN) = C0 exp(µ0t)+ o(exp(µ0t))

as t → −∞.
(iii) The solution blows up at the origin at t = T and the blow-up is of Type I : There

exists C > 0 such that

‖u(·, t)‖L∞(RN ) ≤ C(T − t)1/(p−1)

as t ↑ T .

Finally we establish a result on the nonexistence of ancient solutions.

THEOREM 2.4. Let pS ≤ p < pc. Then there is no ancient solution of (1) such that

−ϕ∞(|x|) ≤ u(x, t) ≤ ϕ∞(|x|) , x ∈ RN \ {0} ,
for all t < 0.

This theorem implies that if pS ≤ p < pc then the only entire solution between the
singular steady states is the trivial solution.

3. Properties of stationary solutions. Let {ϕα(r) ; α > 0} be the family of solutions
of (2). The following lemma is due to [37, 26].

LEMMA 3.1. Let p ≥ pS . Then the solution of (2) has the following properties:
(i) ϕα > 0 for all r > 0 and ϕα → 0 monotonically as r → ∞.

(ii) If p = pS , then ϕα intersects exactly once with ϕβ (α �= β).
(iii) If pS < p < pc, then ϕα intersects infinitely many times with ϕβ (α �= β).
(iv) If p ≥ pc, then ϕα is increasing in α ∈ (0,∞) for every r > 0, and ϕα → ϕ∞ as

α → ∞.
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Concerning the asymptotic behavior of ϕα(r) as r → ∞, the following result was ob-
tained in [37, 26].

LEMMA 3.2. Let p ≥ pS . Then the solution of (2) has the following properties:
(i) If p = pS , then there exists C1 = C1(α,N) > 0 such that ϕα(r) = C1r

−(N−2) +
o(r−(N−2)) as r → ∞.

(ii) If p > pS , then there exists C2 = C2(p,N) > 0 such that ϕα(r) = C2r
−m +

o(r−m) as r → ∞.

Let U be the unique solution of the linearized problem

(3)


µU = Urr + N − 1

r
Ur + pϕp−1

α U , r > 0 ,

U(0) = 1 , Ur(0) = 0 .

LEMMA 3.3. Let pS ≤ p < pc. Then there exists a unique µ0 > 0 such that the
solution of (3) with µ = µ0 satisfies U(r) > 0 for all r > 0 and U(r) → 0 exponentially as
r → ∞.

PROOF. Take any β ∈ (0, α). Then by Lemma 3.1, Ũ := ϕα − ϕβ changes sign. Let
z > 0 be the first zero of Ũ . Then Ũ is positive on [0, z) and satisfies

(4)


 Ũrr + N − 1

r
Ũr + q(r)Ũ = 0 , r > 0 ,

Ũ (0) = α − β > 0 , Ũr (0) = 0 , Ũ (z) = 0 , Ũr (z) < 0 ,

where

q(r) := ϕ
p
α − ϕ

p
β

ϕα − ϕβ
.

Note that q(r) < pϕ
p−1
α for r ∈ [0, z). First we take µ = 0. Then multiplying (4) by U and

(3) by Ũ , subtracting, and integrating over [0, z], we obtain[
UrŨ − ŨrU

]z
0

= −
∫ z

0
rN−1{pϕp−1

α − q}UŨdr .
Here the left-hand side is positive, while the right-hand side is negative if U > 0 on (0, z).
HenceU must vanish at some r ∈ (0, z). SinceU depends onµ continuously,U must changes
sign for every sufficiently small µ > 0.

Now define

µ0 := sup{µ > 0 ; U(r) changes sign} .
If µ ≥ pαp−1, then µ > pϕ

p−1
α for all r > 0, so that U is increasing. This implies that µ0 is

finite. Again by continuity, U(r) has no zero for µ = µ0 and satisfies U(r) → 0 as r → ∞.
Thus we have µ0 ∈ (0,∞), so that the convergence is exponential.

Let U0 denote the solution of (3) with µ = µ0. Then we have

UrU0 − (U0)rU = (µ− µ0)

∫ r

0
ρN−1U(ρ)U0(ρ)dρ .
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Hence if µ > µ0, then it is easy to show that U/U0 is increasing in r > 0 and U can not
decay to 0 exponentially for µ > µ0. Conversely if µ < µ0, then U/U0 decreases as long as
U > 0 and U changes its sign. �

PROPOSITION 3.4. Let pS ≤ p < pc. Then the following (i), (ii) hold.
(i) There exists an entire solution of (1) such that u is decreasing in t and ‖u(·, t) −

ϕα(| · |)‖L∞(RN ) → 0 as t → −∞, and ‖u(·, t)‖L∞(RN) → 0 as t → +∞.
(ii) There exists an ancient solution of (1) such that u is increasing in t and ‖u(·, t) −

ϕα(| · |)‖L∞(RN ) → 0 as t → −∞.

PROOF. In the case (i) we first construct a subsolution u and a supersolution u as fol-
lows.

Let µ0 and U be as in Lemma 3.3 and choose ε ∈ (0, α) such that ϕα − εU > 0. If

u(r, t) := ϕα(r)− εeµ0tU(r) , r ≥ 0 , s ≤ 0 ,

then

ut − urr − N − 1

r
ur − up = ϕpα − up − pεeµ0tϕp−1

α U ≤ 0 .

To construct a supersolution we consider first the case when 1 < p < 2. In this case
we cannot proceed in the same way as in [17] because the nonlinearity u 
→ up : [0,∞) →
[0,∞) is not a C2-function. Let ψ be the solution of the ODE-problem

(5)



ψ ′ = µ0 − e(p−1)ψ, t ≤ 0 ,

ψ(0) = − 1

p − 1
log

(
1 + µ0

µ0

)
< 0 ,

which can be written explicitly as

ψ(t) = µ0t − 1

p − 1
log

(
1 + 1

µ0
eµ0(p−1)t

)
.

Now we take

u(r, t) := ϕα(r)− εeψ(t)U(r) , r ≥ 0, t ≤ 0 ,

and then

ut − urr − N − 1

r
ur − (u)p

= ϕpα − (u)p − pεeψϕp−1
α U − εeψψ ′U + µ0εe

ψU

≥ εeψU
[
p
(
(u)p−1 − ϕp−1

α

) − ψ ′ + µ0

]
≥ εeψU

[
−p(p − 1)

(
εeψU

)p−1 − ψ ′ + µ0

]
≥ εeψU

[
−e(p−1)ψ − ψ ′ + µ0

]
= 0 ,

where we have chosen ε > 0 such that ϕα > 2εU and p(p − 1)(εU)p−1 ≤ 1.
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If p ≥ 2 then we take ψ satisfying (5) with p = 2, choose ε > 0 such that p(p −
1)εUϕp−2

α ≤ 1, and use the inequalities

ϕp−1
α − (u)p−1 ≤ (p − 1)εUϕp−2

α eψ ≤ 1

p
eψ .

Using the supersolution u and a sequence of solutions {ui} of (1) with the initial data
ui(x,−i) = u(|x|,−i), we can show as in [17] that the sequence {ui} converges to a solution
u of (1) defined for t < 0 and decreasing in t . Therefore the solution can be continued for
t ≥ 0, and since there is no steady state between ϕα and 0, we have u → 0 as t → ∞.

In the case (ii) we construct a subsolution u and a supersolution u in the following way.
Let µ0 and U be as in Lemma 3.3 and let ε1 > 0 be specified later. If

u(r, t) := ϕα(r)+ ε1e
µ0tU(r) , r ≥ 0 , s ≤ 0 ,

then

ut − urr − N − 1

r
ur − up = ϕpα − up + pε1e

µ0t ϕp−1
α U ≤ 0 .

To construct a supersolution we again consider first the case when 1 < p < 2. Let Ψ be
the solution of

(6)

{
Ψ ′ = µ0 + e(p−1)Ψ , t ≤ 0,

Ψ (0) = 0 ,

which can be written explicitly as

Ψ (t) = µ0t − 1

p − 1
log

[
1 + 1

µ0

(
1 − eµ0(p−1)t)] .

If we set

u(r, t) := ϕα(r)+ ε2e
Ψ (t)U(r) , r ≥ 0, t ≤ 0, ε2 > 0 ,

then

ut − urr − N − 1

r
ur − (u)p

= ϕpα − (u)p + pε2e
Ψ ϕp−1

α U + ε2e
ΨΨ ′U − µ0ε2e

ΨU

≥ ε2e
ΨU

[
−p(

(u)p−1 − ϕp−1
α

) + Ψ ′ − µ0

]
≥ ε2e

ΨU
[
−p(p − 1)

(
ε2e

ΨU
)p−1 + Ψ ′ − µ0

]
≥ ε2e

ΨU
[
−e(p−1)Ψ + Ψ ′ − µ0

]
= 0 ,

where we have chosen ε2 > 0 such that ϕα > ε2U and p(p − 1)(ε2U)
p−1 ≤ 1.

If p ≥ 2 then we take Ψ satisfying (6) with p = 2, choose ε2 > 0 such that ϕα > ε2U ,
p(p − 1)ε2U(2ϕα)p−2 ≤ 1, and use the inequalities

(u)p−1 − ϕp−1
α ≤ (p − 1)ε2U(2ϕα)

p−2eΨ ≤ 1

p
eΨ .
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If we now take ε1 > 0 such that

ε1 < ε2

(
1 + 1

µ0

)−1/(p−1)

then

0 < u(r, t)− u(r, t) < ε2e
µ0t , r ≥ 0 , t ≤ 0 .

Since the subsolution u is increasing in t , by using a sequence of solutions {ui} of (1) with the
initial data ui(x,−i) = u(|x|,−i), we can show as in [17] that the sequence {ui} converges
to a solution u of (1) defined for t < 0 and increasing in t . �

4. Properties of backward self-similar solutions. For a solution u of (1) defined for
t ∈ (−∞, 0), we set

(7) w(y, s) = (−t)1/(p−1)u(x, t) , y = x√−t , s = − log(−t) .
Then we obtain the following equation for w:

(8) ws = �w − 1

2
y · ∇w − 1

p − 1
w + |w|p−1w , y ∈ RN , s ∈ R .

Let w = b(r), r = |y|, be any radially symmetric steady state of this equation. Then b must
satisfy

(9)


 brr + N − 1

r
br − r

2
br − 1

p − 1
b + |b|p−1b = 0 , r > 0 ,

b(0) = α , br(0) = 0 ,

for some α > 0. If b(r) > 0 for all r > 0, then

(10) u = B(x, t) := (−t)−1/(p−1)b((−t)−1/2|x|) , x ∈ RN, t < 0 ,

is called a (positive radial) backward self-similar solution of (1). We note that b = ϕ∞(r)
satisfies the equation in (9).

For a proof of the following lemma we refer to [24, 25] or [19, Theorem 12.1].

LEMMA 4.1. Let pS < p < pL. Then there exists α∗ > 0 such that the solution b of
(9) has the following properties:

(i) If α = α∗, then b(r) is positive for all r > 0, decreasing in r > 0, and intersects
exactly twice with ϕ∞. Moreover, there exists a constant l ∈ (0, L) such that b(r) = lr−m +
o(r−m) as r → ∞.

(ii) If α < α∗, then b(r) vanishes at some finite r .

Let b be the solution of (9) with b(0) = α∗, andW be the unique solution of the linearized
problem

(11)


µW = Wrr + N − 1

r
Wr − r

2
Wr − 1

p − 1
W + pbp−1W , r > 0 ,

W(0) = 1 , Wr(0) = 0 .



570 M. FILA AND E. YANAGIDA

LEMMA 4.2. Let pS < p < pL. Then there exists a unique µ0 > 0 such that the
solution of (11) with µ = µ0 satisfies W(r) > 0 for all r > 0 and W(s) = o(e−r2/4) as
r → ∞.

PROOF. Set

W̃ := b − ϕ∞ .

Then W̃ satisfies

W̃rr + N − 1

r
W̃r − r

2
W̃r − 1

p − 1
W̃ + q̃(r)W̃ = 0 , r > 0 ,

where

q̃(r) := bp − ϕ
p∞

b − ϕ∞
.

By Lemma 4.1, W̃ has exactly two zeros 0 < z1 < z2 < ∞ so that W̃(z1) = W̃ (z2) = 0 and
q̃(r) < pbp−1 for r ∈ (z1, z2). By the Sturm comparison theorem, W must vanish at some
r ∈ (z1, z2).

Next, define

µ0 := sup{µ > 0 ; W(r) changes sign} .
If µ ≥ −1/(p − 1) + pαp−1, then µ > −1/(p − 1) + pϕ

p−1
α for all r > 0. Then by the

equation

rN−1e−r2/4Wr =
∫ r

0
ρN−1e−ρ2/4

(
µ+ 1

p − 1
− pb(ρ)p−1

)
W(ρ) dρ ,

W and rN−1e−r2/4Wr are increasing in r > 0. Hence µ0 is finite. Since W depends on µ
continuously and every zero of W is nondegenerate,W does not change sign for µ = µ0. If
W changes sign for some µ1 > 0, then by the Sturm comparison theorem, W changes sign
for all µ < µ1. ThusW changes sign for all µ < µ0.

Set

W = er
2/4Ŵ .

Then we have the following relations:

Wr = 1

2
rer

2/4Ŵ + er
2/4Ŵr ,

Wrr =
(1

2
+ 1

4
r2

)
er

2/4Ŵ + rer
2/4Ŵr + er

2/4Ŵrr .

Substituting these in (11), we find that Ŵ satisfies the initial value problem

Ŵrr +

(
N − 1

r
+ r

2

)
Ŵr +

(
− µ− 1

p − 1
+ N

2
+ pbp−1

)
Ŵ = 0 ,

Ŵ (0) = 1 , Ŵr (0) = 0 .
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Hence Ŵ tends to ∞ or 0 exponentially as r → ∞. Since b(r) is decreasing in r > 0, the
function

q̂(r) := −µ− 1

p − 1
+ N

2
+ pbp−1(r)

changes sign at most once:

q̂(r) > 0 for r ∈ [0, r0) , q̂(r0) = 0 , q̂(r) < 0 for r ∈ (r0,∞)

for some r0. Note that Ŵr < 0 for r ∈ (0, r0).
Let µ < µ0. Then Ŵ is decreasing in r ∈ (0, z). Indeed, if Ŵr (r1) = 0 and W(r1) > 0,

then r1 > r0 and Wr(r) > 0 for all r > r1 so that Ŵ has no zero for r > r1, a contradiction.
Taking the limit r1 → r0, we find that Ŵ is positive and decreasing for all r > 0. Moreover,
it is easy to see from the equation that Ŵ → 0 as r → ∞. This impliesW(r) = o(e−r2/4) as
r → ∞. Finally, by the same argument as in the proof of Lemma 3.3, W > 0 for all r > 0
but can not decay to 0 as r → ∞ for µ > µ0. �

PROPOSITION 4.3. Let pS < p < pL, and let b be the solution of (9) with b(0) =
α∗. Then there exists an ancient solution of (8) such that w is decreasing in s and ‖w(·, s)
− b(| · |)‖L∞(RN) → 0 as s → −∞.

PROOF. To show the existence of an ancient solution of (8) that converges to b expo-
nentially as s → −∞, we employ an idea of Fukao, Morita and Ninomiya [17] to (8). We
first construct a subsolution w and a supersolution w as follows.

Let µ0 and W be as in Lemma 4.2 and choose ε ∈ (0, α∗) such that b − εW > 0. If

w(r, s) := b(r)− εeµ0sW(r) , r ≥ 0 , s ≤ 0 ,

then

ws −wrr − N − 1

r
wr + r

2
wr −wp + 1

p − 1
w

= bp −wp − pεeµ0sbp−1W ≤ 0 .

To construct a supersolution we distinguish two cases as before. Consider first the case
when 1 < p < 2. Let ψ be the solution of the ODE-problem (5) and set

w(r, s) := b(r)− εeψ(s)W(r) , r ≥ 0 , s ≤ 0 .

Then

ws −wrr − N − 1

r
wr + r

2
wr − (w)p + 1

p − 1
w

= bp − (w)p − pεeψbp−1W − εeψψ ′W + µ0εe
ψW

≥ εeψW
[
p
(
(w)p−1 − bp−1) − ψ ′ + µ0

]
≥ εeψW

[
−p(p − 1)

(
εeψW

)p−1 − ψ ′ + µ0

]
≥ εeψW

[
−e(p−1)ψ − ψ ′ + µ0

]
= 0 ,

where we have chosen ε > 0 such that b > 2εW and p(p − 1)(εW)p−1 ≤ 1.
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If p ≥ 2 then we take ψ satisfying (5) with p = 2, choose ε > 0 such that p(p −
1)εWbp−2 ≤ 1, and use the inequalities

bp−1 − (w)p−1 ≤ (p − 1)εWbp−2eψ ≤ 1

p
eψ .

Using the supersolution w, we define a sequence of solutions {wi} of (8) with the initial
data wi(y,−i) = w(|y|,−i). Although the right-hand side of (8) includes a gradient term,
we can show as in [17] that the sequence {wi} converges to a solution w of (8) defined for
s < 0 and decreasing in s. �

5. Properties of forward self-similar solutions. For a solution u of (1) defined for
t ∈ (0,∞), we set

(12) v(y, s) = t1/(p−1)u(x, t) , y = x√
t
, s = log t .

Then we obtain the following equation for v:

(13) vs = �v + 1

2
y · ∇v + 1

p − 1
v + |v|p−1v , s ∈ R , y ∈ RN .

Let v = f (r), r = |y|, be any radially symmetric steady state of this equation. Then f must
satisfy the initial value problem

(14)


 frr + N − 1

r
fr + r

2
fr + m

2
f + |f |p−1f = 0 , r > 0 ,

f (0) = α , fr(0) = 0 ,

for some α > 0. We denote the solution of the initial value problem by fα(r). If fα(r) > 0
for all r > 0, then

(15) u = Fα(x, t) := t−1/(p−1)fα(t
−1/2|x|) , x ∈ RN , t > 0 ,

is called a (positive radial) forward self-similar solution of (1). We note that f = ϕ∞(r)
satisfies the equation in (14).

It was shown in [21] that (14) has a unique global solution fα , and it satisfies the condi-
tion

fα(r) = lαr
−m + o(r−m) as r → ∞

with some constant lα depending continuously on α.
The next result is due to [21, 28, 36].

LEMMA 5.1. Let p ≥ pS . Then for any α > 0, the solution fα(r) of (14) is positive
for all r > 0, and lα is positive and continuous in α > 0. Moreover, there exists α∗ =
α∗(p,N) ∈ (0,∞] with the following properties:

(i) α∗ < ∞ if pS ≤ p < pc and α∗ = ∞ if p ≥ pc.
(ii) The solution fα(r) of (14) is increasing in α ∈ (0, α∗) for every r > 0.

(iii) lα is increasing in α ∈ (0, α∗).
(iv) If pS ≤ p < pc, then lα → 0 as α → 0 and lα∗ > L.
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LEMMA 5.2. Let p ≥ pS . For any l ∈ (0, L), there exists α ∈ (0, α∗) such that
fα(r) = lr−m + o(r−m) as r → ∞ and 0 < fα(r) < ϕ∞(r) for all r > 0.

PROOF. By Lemma 5.1, for any l ∈ (0, L), there exists α ∈ (0, α∗) such that lα = l.
Suppose that fα intersects with ϕ∞ and let 0 < z1 < z2 be two zeros of Y (r) := fα − ϕ∞
such that Y (z1) = Y (z2) = 0 and Y (r) > 0 for r ∈ (z1, z2). We take β > 0 such that
β ∈ (α, α∗) and set Z(r) := fβ − ϕ∞.

The functions Y (r) and Z(r) satisfy the equations

Yrr + N − 1

r
Yr + r

2
Yr + 1

p − 1
Y + η(r)Y = 0 , r > 0 ,

Zrr + N − 1

r
Zr + r

2
Zr + 1

p − 1
Z + ζ(r)Z = 0 , r > 0 ,

respectively, where

η(r) := f
p
α − ϕ

p∞
fα − ϕ∞

, ζ(r) := f
p
β − ϕ

p∞
fβ − ϕ∞

.

Here since fα < fβ , we have η(r) < ζ(r) for r ∈ [z1, z2]. Then by the Sturm comparison
theorem, Z must vanish at some r ∈ (z1, z2), a contradiction. �

6. Proofs of the main results. In this section we complete the proofs of Theorems 2.1
through 2.4. We also give some related results.

We begin with the following lemma.

LEMMA 6.1. Assume that u(·, 0) ∈ L∞(RN).
(i) Let psg < p < pc. If 0 ≤ u(x, 0) ≤ ϕ∞(|x|) for all x ∈ RN \{0}, then the solution

of (1) satisfies ‖u(·, t)‖L∞(RN ) → 0 as t → ∞.

(ii) Let p ≥ pc. If 0 ≤ u(x, 0) ≤ ϕ∞(|x|) for all x ∈ RN \ {0} and

lim sup
|x|→∞

|x|mu(x, 0) < L ,

then the solution of (1) satisfies ‖u(·, t)‖L∞(RN) → 0 as t → ∞.

PROOF. For (i), see [19, 36]. The assertion (ii) is proved in [32, Theorem 4.5]. �

By Lemma 5.2, for any l ∈ (0, L), there exists a unique αl > 0 such that the solution of
(14) satisfies the following two conditions:

fαl (r) = lr−m + o(r−m) as r → ∞ ,

0 < fαl (r) < Lr−m for all r > 0 .

We give a sufficient condition for the convergence of solutions of (13) to fαl (|y|).
LEMMA 6.2. Let pS ≤ p < pc. Suppose that v satisfies the following two conditions:

0 ≤ v(y, 0) ≤ ϕ∞(|y|) for y ∈ RN \ {0} ,
v(y, 0) = l|y|−m + o(|y|−m) as |y| → ∞ ,
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with some l ∈ (0, L). Then the solution of (13) exists for all s > 0 and ‖v(·, s)
− fαl (| · |)‖L∞(RN) → 0 as s → ∞.

PROOF. Let u be the corresponding solution of (1). Then by Lemma 6.1, u exists for
all t > 0 and becomes smaller than fα∗ in finite time. Then we can apply [15, Lemma 3.1] to
show that for any ε > 0, there exists sε > 0 such that

fαl−ε(|y|) < v(y, s) < fαl+ε(|y|) for all y ∈ RN , s > sε .

Since ε > 0 is arbitrary, this implies the uniform convergence to fαl . �

Now we are in a position to complete the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. Letw be the ancient solution of (8) given in Proposition 4.3.
Then the corresponding solution u of (1) given by

u = (−t)−1/(p−1)w(y, s) , y = x√−t , s = − log(−t) , t < 0 ,

is an ancient solution of (1) satisfying (i) and (ii). Since there is no positive steady state of
(9) below b, the solution w becomes smaller than ϕ∞ in finite time. This implies that u also
satisfies u < ϕ∞ for some finite t . Then from Lemma 6.2, we see that (iii) holds. �

COROLLARY 6.3. Let N = 3, 4 and pS < p < pL. If u is the homoclinic orbit
constructed in the proof of Theorem 2.1, then E[u(·, t)] = +∞ for all t ∈ R.

PROOF. Since

E[u(·, t)] =
∫ R

0
rN−1

(
1

2
u2
r − 1

p + 1
up+1

)
dr

+
∫ ∞

R

rN−1
(

1

2
u2
r − 1

p + 1
up+1

)
dr =: I1 + I2 ,

where I1 is finite and

(16) I2 ∼ h(l, p)

∫ ∞

R

rN−3−2mdr , h(l, p) := l2

2
− lp+1

p + 1
,

for R large enough, we obtain I2 = ∞ if N − 3 − 2m > −1 and h(l, p) > 0, which is
equivalent to p > pS and

l <

(
p + 1

2

)1/(p−1)

.

The last inequality holds for N = 3, 4 because l < L and p > pS . �

We note that in the case N > 4, the right-hand side of (16) is infinite if h(l, p) �= 0, but
it is not easy to determine the sign of h(l, p).

If B is the backward self-similar solution given by (10) with b as in Lemma 4.1 (i), and
Fα is the forward self-similar solution given by (15) with α ∈ (0, α∗) and lα = l, then

lim
t↑0
B(x, t) = lim

t↓0
Fα(x, t) = l|x|−m , x ∈ RN \ {0} ,
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and

u∞(x, t) :=



B(x, t) (x, t) ∈ RN × (−∞, 0) ,

l|x|−m (x, t) ∈ (RN \ {0})× {0} ,
Fα(x, t) (x, t) ∈ RN × (0,∞) ,

is an entire weak solution of (1) (see [19]), which converges uniformly to zero as t → ±∞.
If u is a homoclinic orbit, then

uλ(x, t) := λmu(λx, λ2t) , λ > 0 ,

is also a homoclinic orbit. In the next theorem we show the convergence of uλ to u∞ as
λ → ∞.

THEOREM 6.4. Let u be the homoclinic orbit constructed in the proof of Theorem 2.1.
Then uλ(x, t) approaches the singular homoclinic orbit u∞ in the following sense:

(i) For any τ < 0, uλ(x, t)/B(x, t) → 1 as λ → ∞ uniformly in (x, t) ∈ RN ×
(−∞, τ ), where B is the backward self-similar solution given by (10) with b as in
Lemma 4.1 (i).

(ii) For any τ > 0, uλ(x, t) → Fα(x, t) as λ → ∞ uniformly in (x, t) ∈ RN×(τ,∞),
where Fα is the forward self-similar solution given by (15) with α ∈ (0, α∗) and lα = l.

PROOF. Let w(y, s) be the ancient solution of (8) given as above. Then we have

w(y, s)

b(|y|) → 1 as s → −∞

uniformly in y ∈ RN . In the original variables x and t < 0, this implies

(−t)1/(p−1)u(x, t)

b((−t)−1/2|x|) → 1 as t → −∞ .

Transforming t → λ2t , x → λx with λ > 0, this is rewritten as

(−λ2t)1/(p−1)u(λx , λ2t)

b((−λ2t)−1/2|λx|) → 1 as λ2t → −∞ .

Hence for any τ < 0, we have

λmu(λx, λ2t)

(−t)−1/(p−1)b((−t)−1/2|x|) = uλ(x, t)

B(x, t)
→ 1 as λ → ∞

uniformly in (x, t) ∈ RN × (−∞, τ ). Thus (i) is proved.
Next, let us consider the properties of the entire solution for t > 0. Let v be the corre-

sponding solution of (13). By Lemma 6.2, we have

v(y, s) → fαl (|y|) as s → ∞
uniformly in y ∈ RN . In the original variables x and t > 0, this implies

t1/(p−1)u(x, t) → fαl (t
−1/2|x|) as t → +∞ .
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Transforming t → λ2t , x → λx with λ > 0, this is rewritten as

(λ2t)1/(p−1)u(λx, λ2t) → fαl ((λ
2t)−1/2|λx|) as λ2t → +∞ .

Hence for any τ > 0, we have

λmu(λx, λ2t) → t−1/(p−1)fαl (t
−1/2|x|) as λ → ∞

uniformly in RN × (τ,∞). This completes the proof of (ii). �

The following result is a consequence of [10, Theorems 1.2 and 1.3].

LEMMA 6.5. Let p > pF . Suppose that

0 ≤ u(x, 0) ≤ ϕ∞(|x|) for x ∈ RN \ {0}
and

k1|x|−d ≤ u(x, 0) ≤ k2|x|−d for |x| > R

with some positive constants d > m, k1, k2 and R. Then the solution of (1) exists globally in
time and there are constants C1, C2 > 0 and t1 > 1 such that

C1gd (t) ≤ ‖u(·, t)‖L∞(RN ) ≤ C2gd (t) for t ≥ t1 ,

where

gd(t) :=



t−d/2 if m < d < N ,

t−N/2 ln t if d = N ,

t−N/2 if d > N .

PROOF OF THEOREM 2.2. Let u be the ancient solution of (1) given in Proposition 3.4
(i). Then the assertion (i) is clear from the construction of the ancient solution. Since u is be-
low the steady state ϕα and decreasing in t , u exists globally in time and becomes smaller
than ϕ∞ in finite time. Then the conclusion immediately follows from Lemmas 3.2 and
6.5. �

PROOF OF THEOREM 2.3. Let u be the ancient solution of (1) given in Proposition 3.4
(ii). Then the assertion (i) is clear from the construction of the ancient solution defined for
t < T , where T > 0 is the maximal existence time of the solution.

Let B1 be the unit ball centered at the origin. Since the solution is radial and decreasing
in r = |x|, we can show in a similar manner to [16] that the solution is bounded on ∂B1 for
t ∈ (−∞, T ). On the other hand, since U = ut satisfies the inequality

Ut ≥ �U ,

it follows from the maximum principle that ut = U > δ for all t ∈ (0, T ) and x ∈ B1.
Following an argument in [16], we set

J := ut − εup ,
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and take ε > 0 so small that J (x, 0) > 0 for x ∈ B1 and J (x, t) > 0 for (x, t) ∈ ∂B1×(0, T ).
Since

Jt −�J = utt − εpup−1ut − {�ut − εp(p − 1)up−2|∇u|2 − εpup−1�u}
= (ut −�u)t − εpup−1(ut −�u)+ εp(p − 1)up−2|∇u|2
≥ pup−1ut − εpu2p−1

= pup−1J,

we have J (x, t) > 0 for all (x, t) by the maximum principle. Thus we obtain the inequality

ut ≥ εup

for all (x, t) ∈ B1 × (0, T ).
Thereforem(t) := maxu = u(0, t) satisfies the inequality

mt ≥ εmp

for some ε > 0. This shows that T < ∞ and the blow-up is of Type I. �

PROOF OF THEOREM 2.4. Suppose that there exists such an ancient solution u. By
Lemma 5.1 (iv), there is a forward self-similar solution Fα(x, t) with lα > L. Since

Fα(x, t) → l|x|−m as t ↓ 0 ,

and u is bounded by the singular steady state, we have

−Fα(x, t + τ ) < u(x, t) < Fα(x, t + τ ) , x ∈ RN, t > τ ,

where τ > 0 is an arbitrary constant. Setting t = 0, we obtain

−Fα(x, τ ) < u(x, 0) < Fα(x, τ ) , x ∈ RN .

Letting τ → ∞, we have Fα(x, τ ) → 0 so that u(x, 0) ≡ 0, a contradiction. �
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[32] P. POLÁČIK AND E. YANAGIDA, On bounded and unbounded global solutions of a supercritical semilinear



HOMOCLINIC AND HETEROCLINIC ORBITS 579

heat equation, Math. Ann. 327 (2003), 745–771.
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