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Abstract. The quaternionic KP hierarchy is the integrable hierarchy of p.d.e obtained
by replacing the complex numbers with the quaternions in the standard construction of the
KP hierarchy and its solutions; it is equivalent to what is often called the Davey-Stewartson
II hierarchy. This article studies its relationship with the theory of conformally immersed tori
in the 4-sphere via quaternionic holomorphic geometry. The Sato-Segal-Wilson construction
of KP solutions is adapted to this setting and the connection with quaternionic holomorphic
curves is made. We then compare three different notions of “spectral curve”: the QKP spec-
tral curve; the Floquet multiplier spectral curve for the related Dirac operator; and the curve
parameterising Darboux transforms of a conformal 2-torus in the 4-sphere.

1. Introduction. There is a well established connection between the Davey-
Stewartson (DS) hierarchy and conformal immersions of tori in R3 and R4 (a good survey
can be found in [25]). One compelling reason for studying this correspondence is that the
simplest “first integral” of this hierarchy represents the Willmore functional, and it may be
that a strategy based upon integrable systems could resolve the Willmore conjecture (see [17]
and [9] for two different perspectives on this).

But the original point of view makes it difficult to see the conformal invariance and
presents other problems in R4 (see [24]). These difficulties are avoided by using the theory
of quaternionic holomorphic curves, developed by the Berlin school [14, 5, 9, 1, 3, 2]. The
conformal 4-sphere is thought of as HP 1; a conformal immersion of a surface M becomes a
quaternionic line bundle over M whose dual bundle possesses a canonical quaternionic holo-
morphic structureD, the quaternionic analogue of a ∂̄-operator. This operatorD is essentially
the Dirac operator which plays the central role in the DS hierarchy.

The relationship between the DS hierarchy and the geometry of the immersed torus is still
not very well understood. There is at present no direct definition of the flows as deformations
of a torus (although, see [6] for an attempt at this); there is only an indirect construction for tori
of finite type via the linear motion on the spectral curve. For the spectral curve, Taimanov [20]
proposed the normalisation of the analytic curve of Floquet multipliers of the Dirac operator:
generically this non-compact with “infinite genus”. The quaternionic perspective [3, 2, 4]
provides a conformally invariant construction, and also gives a geometric interpretation of the
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smooth points on this curve, as parameterising “Darboux transformations” of the immersed
torus.

This article shows how to use the quaternionic point of view to give a more natural
link to the integrable hierarchy. The hierarchy can be obtained by replacing the field C with
the division algebra H in the standard constructions of the KP hierarchy and its solutions
(particularly, following [26, 27, 18]). This point of view is sufficiently rewarding that I feel
the new name “quaternionic KP” (QKP) hierarchy is justified. The plan of this article is to start
with the QKP theory and work towards quaternionic holomorphic geometry, paying particular
attention to the spectral data.

Properly thought of, the QKP hierarchy is a collection of Lax equations Lt = [P,L] for
a pseudo-differential operator with quaternionic coefficients

L = i∂y + U0 + U1∂
−1
y + · · · ,

and a differential operator P . These equations provide a commuting family of derivations on
a real differential algebra. One of these provides a real derivation ∂x for which

D = 1

2
(∂x + i∂y + U0) ,

plays the role of the Dirac operator.
This construction is purely algebraic: to reconnect with analysis, we adopt the Sato-

Segal-Wilson [18] point of view and realise the QKP equations as flows on a manifold, the
quotient of an infinite dimensional Grassmannian. This Grassmannian Gr(H ) possesses pretty
much all the properties that hold for KP, provided we are careful to distinguish between the
cases where the Dirac potential U0 is trivial or non-trivial. In particular, we show that:

(a) the QKP flows correspond to the action of an infinite dimensional abelian Lie group
Γ+ on Gr(H ) and the QKP solutions are parameterized by a quotient manifold M. This
manifold is the disjoint union of two manifolds, MKP, which is a copy of the ordinary KP
phase space and parameterises QKP solutions for which U0 is trivial, and MQKP, which
parameterizes solutions with non-trivial U0.

(b) the points of M which have finite dimensional Γ+-orbits correspond precisely to
the solutions which can be constructed from spectral data (i.e., a complete algebraic curve X
and other algebraic data on it), and the orbits themselves are open subvarieties of (generalised)
Jacobi varieties. We call these “of finite type”.
The object which mediates between Lax equations and points of Gr(H ) is the (quaternionic)
Baker function. This is an H -valued solution to the spectral problem Lψ = −ψζ which
admits a left H Fourier series expansion of the form

ψ(x, y, ζ ) = (1 + a1(x, y)ζ
−1 + · · · ) exp[(x + iy)ζ ] , ζ ∈ S1 .

Points of the Grassmannian Gr(H ) parameterise Baker functions which converge on |ζ | > 1.
For the QKP solutions of finite type there is a representative Baker function which extends to
a globally meromorphic function on the spectral curve. We call this the global Baker function:
it plays an important role in translating between the different notions of spectral curve.
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The Baker function satisfies Dψ = 0 for all ζ and can therefore be used to obtain homo-
geneous coordinates of a quaternionic holomorphic curve f : C → HP n, by evaluating ψ at
different values of ζ . When ψ is global these points give a divisor q on X and we show that
the (double) periodicity of such a curve is governed by the Jacobi variety of a singularisation
Xq of X. In that case f projects to a quaternionic holomorphic torus in HP 1 under any ho-
mogeneous projection from HP n: we can think of f as a common “linear system” for each
of these.

In this passage between QKP and quaternionic holomorphic curves two obstacles remain.
The first is that the periodicity conditions on the QKP spectral data imply that the whole QKP
operator L is “periodic” (the precise meaning of this is given in Theorem 3.9(c)). However,
given a conformal torus then it seems one only obtains “periodicity” of the Dirac operator D.
There is a Baker-type function in the kernel of the Dirac operator when the multiplier spectral
curve has finite type. But I was unable to show that the two Baker functions coincide without
knowing a priori that the QKP operator L is “periodic” (Remark 4.10). Secondly, when the
multiplier spectral curve is not of finite type it seems there can be no convergent multiplier
Baker function, which raises the problem of how to make the passage between QKP and
conformal tori at all. In particular, it is not clear how to describe integrable deformations in
this case. This may be possible using the theory of infinite genus Riemann surfaces [8, 16],
but that would take us out of the Grassmannian class of solutions discussed here.

In the case where the two Baker functions are the same, Section 6 relates three spectral
curves: the QKP spectral curve, the multiplier spectral curve, and what we call the Darboux
spectral curve. The Darboux spectral curve has a particularly neat characterisation via an
Abel map image of a punctured version of the QKP spectral curve X: when X is smooth the
punctured curve is just X \ q, whose Abel image lies in Jac(Xq), which possesses a natural
map to CP 2n+1. The multiplier and Darboux spectral curves can both be obtained from Xq,
which suggests that the singular curve Xq is the correct object for classifying quaternionic
holomorphic tori of finite type.

Acknowledgments. I would like to thank Christoph Bohle, Katrin Leschke, Franz Pedit and Ulrich
Pinkall for letting me see preliminary versions of [3, 4] and for explaining their work on quaternionic
holomorphic curves to me over a number of years. In particular, the idea that there might be a “quater-
nionic KP” explanation for the spectral curve of a conformally immersed torus is due to Ulrich Pinkall.
Some of these results were announced in the conference proceedings [13].

2. Quaternionic holomorphic curves. We begin by summarising the correspon-
dence between conformally immersed surfaces in S4 � HP 1 (as the space of left quater-
nionic lines in H 2) and quaternionic holomorphic curves (based on [5, 9]). Each immersed
surface f : M → S4 can be equated with a smooth (quaternionic) line subbundle L of the
trivial bundle H 2 = M × H 2 via f (p) = Lp.

The reader is warned at this point that we do not adopt the convention of [9] that all
quaternionic bundles are right H bundles, since this does not fit well with our construction
of the QKP hierarchy using differential operators, with coefficients over H , acting on the
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left on H -valued functions. Therefore L will be a left H -bundle and its quaternionic dual
L∗ = HomH (L,H ) a right H -bundle.

The theory of quaternionic holomorphic curves encodes the conformality of the map f
as follows. The differential df of any immersed surface f : M → HP 1 can be represented,
after the standard manner for maps into projective spaces, by δf ∈ Ω1

M(Hom(L,H 2/L))

where

δf : ψ �→ dψ mod L , ψ ∈ Γ (L) .
Here Γ (L) denotes the space of smooth sections of L. We also adopt the convention that, for
any vector bundle valued 1-form ω, ∗ω = ω ◦ JM where JM is the complex structure on M .
Now f is a conformal immersion if and only if there exists J ∈ EndH (L) with J 2 = −I for
which ∗δf = δf ◦ J . The pair (L, J ) is called a quaternionic holomorphic line bundle.

Further, L∗ inherits a complex structure, which we will also call J , and a canonical
quaternionic holomorphic structure

D : Γ (L∗) → Ω1(L∗) .

This is an H -linear operator satisfying, for any Ψ ∈ Γ (L∗) and µ : M → H :

∗DΨ = −JDΨ , D(Ψµ) = (DΨ )µ+ 1

2
(Ψ dµ+ JΨ ∗ dµ) .

It is characterised by the property that the natural inclusion (H 2)∗ ⊂ Γ (L∗) maps into the
kernel of D, i.e., into the space H 0

D(L
∗) of quaternionic holomorphic sections (see [5, §4.3]).

The definitions above apply equally well to line subbundles of H n+1 and provide the no-
tion of a quaternionic holomorphic curve in HP n. Conversely, given a complex quaternionic
line bundle (E, J ) equipped with a quaternionic holomorphic structure D, define H 0

D(E) to
be the kernel of D. When M is compact this space is finite dimensional (indeed, a Riemann-
Roch formula can be derived to calculate this dimension: see [9]). The “Kodaira construction”
follows through to give a quaternionic holomorphic curve

f : M → PH 0
D(E)

∗ ; p �→ E∗
p .(2.1)

A two dimensional H -subspace H ⊂ H 0
D(E) can be thought of as a linear system, in the

sense of algebraic curve theory. Provided H is well-positioned (has no base points) the dual
projection H 0

D(E)
∗ → H ∗ gives us a conformal immersion f : M → PH ∗ � HP 1.

2.1. The Dirac operator for a conformal torus in S4 with flat normal bundle. For
any complex quaternionic line bundle (L, J ) we define L̂ to be the complex line bundle whose
fibres are

L̂P = {σ ∈ LP ; Jσ = iσ } .
By definition, deg(L) is the degree of the complex line bundle L̂. Bohle [1, p.19] showed that
when M is a compact Riemann surface the degree of the normal bundle of f is 2 deg(L) −
deg(KM), where KM is the canonical bundle.
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Suppose we have a complex (right) quaternionic line bundle (E, J ) over a torusM , with
quaternionic holomorphic structure D. Let us assume this has degree zero, i.e., deg(Ê) = 0.
The complex bundle Ê inherits the complex holomorphic structure

∂̄J = 1

2
(D − JDJ ) .

The moduli space of degree zero holomorphic line bundles is isomorphic to the moduli space
H 1(M, S1) of Hermitian line bundles possessing a flat Hermitian connexion, so ∂̄J can be
extended in a unique way to a flat connexion ∇̂ which is also Hermitian with respect to some
Hermitian inner product on Ê. Now, if we represent M as C/Λ for some lattice Λ and let
π : C → M denote the universal cover then we can trivialise π∗Ê with a smooth ∇̂-parallel
sectionΦ which is therefore ∂̄J -holomorphic. This section is unique up to right multiplication
by a complex constant and has unimodular monodromyµ ∈ Hom(Λ, S1), i.e., for each λ ∈ Λ
and all z ∈ C

Φ(z+ λ) = Φ(z)µ(λ) .

For any Ψ ∈ Γ (E) we therefore have some H -valued function ψ on C for which Ψ = Φψ

and we observe that ψ has monodromy µ−1 along the lattice Λ. It follows that

DΨ = (DΦ)ψ +Φ
1

2
(dψ + i ∗ dψ) .

Now recall the decomposition D = ∂̄J + Q, where Q = (D + JDJ )/2 is called the
“Hopf field”, and write QΦ = Φdz̄U for some U : C → H . Since Q anti-commutes with J
it follows that U anti-commutes with i. Then

D(Φψ) = (Φdz̄)Dψ , D = ∂/∂z̄ + U .(2.2)

We call D the Dirac operator. For simplicity let us define

ker(D) = {ψ ∈ C∞(C,H );Dψ = 0} .
Then we have an identification

H 0
D(E) � {ψ ∈ ker(D);ψ(z + λ) = µ−1(λ)ψ(z) for all λ ∈ Λ} .(2.3)

Notice that D does not in general preserve the space of functions on the torus M , since for
any λ ∈ Λ and all z ∈ C

U(z+ λ) = µ(λ)−1U(z)µ(λ) = U(z)µ(λ)2 .(2.4)

Therefore D is doubly periodic if and only if Ê is a spin bundle. We know from [14] that this
is the case which corresponds to immersions into R3 (see also [1]). By (2.4) |U | is always a
function on M itself and the L2-norm of U over M is called the Willmore energy of D: it is
essentially the Willmore functional for the corresponding conformally immersed torus.
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2.2. The multiplier spectrum and the Baker function. For any degree zero quater-
nionic holomorphic (right H ) line bundle (E,D) over a torus C/Λ let (π∗E,D) denote its
pull-back to the universal cover π : C → C/Λ. Using this we construct the multiplier spec-
trum of (E,D):

Sp(E,D) = {χ ∈ Hom(Λ,C×); ∃Ψ ∈ H 0
D(π

∗E), Ψ �= 0, λ∗Ψ = Ψχ(λ) for all λ ∈ Λ} .
By fixing two generators forΛ we can identify Sp(E,D) with a subset of (C×)2. It has been
shown (see [25] for a survey of results) that Sp(E,D) is a complex analytic curve. Right
multiplication on H 0

D(π
∗E) by j induces on Sp(E,D) a real involution χ �→ χ̄ . Using the

isomorphism (2.3) we can write

Sp(E,D) = {χ ∈ Hom(Λ,C×); ∃ψ ∈ ker(D), ψ �= 0 ,

λ∗ψ = µ(λ)−1ψχ(λ) for all λ ∈ Λ} .(2.5)

Here µ is the monodromy for the flat bundle L∗.
The asymptotic structure of this spectrum is quite well understood (see [3, 25]) and is

described by comparison with the spectrum of the “vacuum” operatorD0 = ∂̄J , with vacuum
Dirac operator D0 = ∂/∂z̄. Let us assume for the moment that E is trivial (i.e., µ = 1).
Taking ψ(z, ζ ) = ezζ , for ζ ∈ C, we observe that D0ψ = 0 for all ζ and

ψ(z + λ, ζ ) = ψ(z, ζ )eλζ , for all z ∈ C, λ ∈ Λ .
Hence Sp(E,D0) contains an analytic curve of monodromies

C = {(eλ1ζ , eλ2ζ ) ∈ (C×)2; ζ ∈ C} , Λ = Z〈λ1, λ2〉 .
The full multiplier spectrum of D0 is C ∪ C̄. These two branches of Sp(E,D0) intersect
infinitely often in double points. When the monodromy µ is nontrivial the structure is the
same but with the branches C and C̄ shifted by appropriate factors.

The spectrum Sp(E,D) is asymptotic to Sp(E,D0) in the sense that outside a compact
subset of (C×)2 the former is contained in an arbitrarily small tube around the latter. Away
from the double points of Sp(E,D0) the curve Sp(E,D) is a graph over Sp(E,D0), while
near each double point Sp(E,D) either has a double point itself or is annular: in the latter case
Sp(E,D) resolves the double point into a handle. Now consider the curve C along |ζ | → ∞.
Either for every R > 0 the domain |ζ | > R contains at least one handle, or there is some R
for which Sp(E,D) only contains double points. In the latter case Sp(E,D) must have two
intersecting branches, one of which can be parameterised by ∆ = {ζ ; |ζ | > R}, thought of as
a punctured parameter disc about the point at infinity of C. Thus we have a map

χ : Λ×∆ → C× , χ(·, ζ ) ∈ Hom(Λ,C×) ,

which is holomorphic in ∆ for each λ. The following result is a direct consequence of [4,
Theorem 4.1 and Lemma 5.1] (cf. [25, §4]).

THEOREM 2.1. When Sp(E,D) has only double points along∆ there exists a function

ψ : C ×∆ → H
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satisfying:
(a) Dψ = 0 for all ζ ∈ ∆,
(b) ψ is holomorphic in ζ and limζ→∞ ψ(z, ζ )e−zζ = 1,
(c) ψ(z + λ, ζ ) = µ(λ)−1ψ(z, ζ )χ(λ, ζ ) for all z ∈ C, λ ∈ Λ.

Further, ψ is uniquely determined by ψ(0, ζ ).

We will call this function ψ(z, ζ ) the multiplier Baker function for Sp(E,D). By the
properties above it has the expansion (in left Fourier series)

ψ(z, ζ ) =
(

1 +
∞∑
j=1

aj (z)ζ
−j

)
exp(zζ ) , aj : C → H , |ζ | > R .

By rescaling ζ we may as well assume∆ is the punctured disc |ζ | > 1. In the next section we
will introduce the QKP Baker function, and later on we will consider under what conditions
we can show that the two agree.

The following example will help us understand later (Section 6) the difference between
the multiplier spectrum and the QKP spectral curve. It comes from the study of Hamiltonian
stationary Lagrangian (HSL) tori in R4.

EXAMPLE 2.2. Fix a torus C/Λ and equip C with its standard metric 〈z,w〉 = 1
2 (zw̄+

z̄w). We use this to embed the dual lattice Λ∗ in C. Fix some non-zero β0 ∈ Λ∗ and define
β(z) = 2π〈β0, z〉. Now consider the complex quaternionic line bundle (E, J ) where π :
E → C/Λ is the trivial right H -bundle and Jσ = Nσ for N = ejβi. This has quaternionic
holomorphic structure

Dσ = 1

2
(dσ +N ∗ dσ) .

From [11] we know that f : C/Λ → H is HSL with Maslov class β0 whenever Df = 0.
It is easy to check that Φ = ejβ/2i is a parallel section of π∗Ê for the unique flat Hermitian
connexion ∇̂ on Ê for which ∇̂′′ = ∂̄J , and the Dirac operator given by (2.2) is

D = ∂

∂z̄
− π

2
β0j .(2.6)

Notice that (Ê, J ) is trivial if β0/2 ∈ Λ∗ but otherwise a spin bundle, since the monodromy
of Φ is given by µ(λ) = eiβ(λ)/2 = ±1 for λ ∈ Λ.

We can explicitly calculate Sp(E,D) for this example by writing any solution ofDψ = 0
in the form

ψ(z) = [µ−1(z)ϕ1(z)+ jµ−1(z)ϕ2(z)] exp[πi(ξz+ ηz̄)] ,
where µ(z) = eiβ(z)/2 and ϕm areΛ-periodic complex valued functions, and ξ, η are complex
parameters which parameterise the logarithmic spectrum. Since the complex valued functions
ϕm are both Λ-periodic they can be represented by Fourier series

ϕm =
∑
α∈Λ∗

ϕmαe
2πi〈α,z〉 .
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There is a non-trivial solution to Dψ = 0 if and only if there exists α ∈ Λ∗ for which the
linear system (

α + η + β0/2 −iβ0/2
iβ̄0/2 ᾱ + ξ + β̄0/2

) (
ϕ1α

ϕ2α

)
=

(
0
0

)
,(2.7)

has a non-trivial solution. Thus if we set

Fα(η, ξ) = (α + η + β0/2)(ᾱ + ξ + β̄0/2)− |β0|2/4
we can describe the logarithmic spectrum Σ̃ of (E,D) as the union of infinitely many irre-
ducible rational curves:

Σ̃ =
⋃
α∈Λ∗

Cα , Cα = {(η, ξ) ∈ C2;Fα(η, ξ) = 0} .

Even though each component Cα is smooth the curve Σ̃ possesses infinitely many singular-
ities caused by the intersections of components. The dual lattice Λ∗ acts on Σ̃ by (η, ξ) �→
(η + α, ξ + ᾱ) and it is easy to see that this identifies all components Cα with one, say C0.
Thus

Sp(E,D) � Σ̃/Λ∗ � C0/ ∼
where ∼ is the equivalence relation on C0 defined by

(η, ξ) ∼ (η′, ξ ′) ⇔ (η′, ξ ′) = (η + α, ξ + ᾱ) for some α ∈ Λ∗ .

This identification creates the singularities of Sp(E,D), which are of two types.
(a) For each non-zero α ∈ Λ∗ the points (η, ξ) and (η + α, ξ + ᾱ) are identified

whenever

α

ᾱ
Z2 + αZ + |β0|2

4
= 0 , Z = ξ + β̄0

2
.

When the discriminant (which is proportional to |α|2 − |β0|2) is non-zero this gives two dis-
tinct intersections between C0 and Cα , which will both be double points provided no other
component of Σ̃ intersects here. The possibility of more components meeting in one point,
and hence higher order singularities, cannot be ruled out: the conditions are rather subtle and
depend upon both β0 andΛ. When the discriminant vanishes C0 and Cα meet tangentially at
one point. This introduces a cuspidal singularity.

(b) The point (0, 0) is identified with every point in the set

S =
{
(α, ᾱ);

∣∣∣∣α + β0

2

∣∣∣∣ =
∣∣∣∣β0

2

∣∣∣∣, α ∈ Λ∗
}
.

This includes (β0, β̄0) and therefore one of the above cusps is folded into this singularity.
This leads to the multiplier Baker function

ψ(z, ζ ) =
(

1 + j
πβ̄0

2
ζ−1

)
exp

(
− π2|β0|2z̄

4
ζ−1

)
ezζ ,(2.8)



THE QUATERNIONIC KP HIERARCHY 191

which is uniquely determined by its initial value ψ(0, ζ ) = 1 + j (πβ̄0/2)ζ−1. It follows that
the spaceH 0

D(E) of global quaternionic holomorphic sections is spanned by the sections Φψ
obtained by evaluating ψ at each ζ = πi(ᾱ + β̄0/2) for (α, ᾱ) ∈ S (cf. [11, Theorem 2.9]).

3. The QKP hierarchy.
3.1. Formal construction of the QKP hierarchy. The QKP hierarchy is a real form

of the two component KP hierarchy (and is referred to elsewhere, for example [20, 22], as
the Davey-Stewartson II hierarchy). It is constructed by the formal dressing method, working
entirely within a quaternionic framework, so that the comparison between KP and QKP is
quite literally the replacement of C by H . I will follow the purely algebraic approach given
in two papers by George Wilson [26, 27].

We begin by fixing a real differential algebra B, with derivation ∂y , of the form

B = R[u(k)αβ ] , for α, k = 0, 1, 2, . . . , β = 1, 2, 3, 4.

These generators are algebraically free but related under the derivation by

∂yu
(k)
αβ = u

(k+1)
αβ .

With this we construct a formal pseudo-differential operator with coefficients in B ⊗ H

L = i∂y + U0 + U1∂
−1
y + · · ·(3.1)

where

U0 = j (u03 + iu04) , Uα = uα1 + iuα2 + j (uα3 + iuα4) .

It is important for this construction that the leading coefficient i of L is regular for the Lie
algebra structure on H (i.e., the commutator of i has minimal dimension 2). This means we
may ignore the component of U0 which commutes with i.

The construction provides an infinite family of independent derivations on B, each of
which commutes with ∂y , via Lax equations. This is done via the formal dressing construction
to produce a subalgebra of the commutative algebra Z(L) of all pseudo-differential operators
(over B ⊗ H ) which commute with L. The method is summarised in the following two
theorems.

THEOREM 3.1 ([26]). There exists a formal operator of the form

K = 1 +
∑
k≥1

ak(i∂
−1
y )k

such that K−1LK = i∂y . Moreover, K is unique up to right multiplication by operators of
the form 1 + ∑

k≥1 ck∂
−k
y where each ck is a complex constant.

Note that the components of the coefficients ak do not belong to B but generate an ex-
tension algebra B̂.

THEOREM 3.2 ([26]). Let Z0(L) denote the image of the R-algebra homomorphism

C[∂y] → Z(L) ; P0 �→ P = KP0K
−1 .



192 I. MCINTOSH

Then the coefficients of P all lie in B⊗H and there is a derivation ∂P on B, characterised by

∂PL = [L,P+] , [∂P , ∂y ] = 0 ,(3.2)

where P+ denotes the differential operator part of P . For any two P,Q ∈ Z0(L) the deriva-
tions ∂P and ∂Q commute and satisfy

∂PQ+ = ∂QP+ + [Q+, P+] .
We single out one of these derivations for special attention: the derivation ∂L will be renamed
∂x .

REMARK 3.3. In particular, this includes a family of p.d.e of the form

∂PL+ = ∂xP+ + [L+, P+] .(3.3)

Historically these are the equations referred to as the hierarchy, since these are the equations
which occur in practical applications to physics and fluid dynamics (for example, the t2 flow
yields the Davey-Stewartson II equations). But this is misleading: the coefficients of P+ can-
not in general be expressed as differential polynomials in the coefficients of L+ and therefore
the equations (3.3) alone do not carry the information contained in the definition (3.2). There-
fore we follow Sato’s nomenclature, also used in [18], and call the system of equations (3.2)
the QKP hierarchy.

These derivations also extend to B̂ via ∂PK = P−K and we can introduce the formal
Baker function. In the purely algebraic setting it is a formal power series

ψ = (1 + a1ζ
−1 + · · · ) exp(xζ + iyζ ) = K exp(xζ + iyζ )

where ζ is a formal parameter (to make sense of this we can take an appropriate extension of
the differential algebra B̂). From the definition of L it follows that Lψ = −ψζ . Therefore

∂xψ + L+ψ = L−ψ + ψζ − ψζ − L−ψ = 0 .

Now we can extend the definition of ψ to

ψ = K exp

[ ∑
k∈N

(sk + itk)ζ
k

]

for real variables sk, tk . It is not hard to see that for every P0 ∈ C[∂y] we can find a sequence
t = (x, y, s2, t2, . . . ) for which, with the relabelling of ∂P as ∂t , we have ∂tψ + P+ψ = 0.

3.2. The Grassmannian class of solutions. Following Segal and Wilson [18] we can
construct an infinite dimensional Grassmannian Gr(H ) whose points essentially parameterise
the set of all formal Baker functions which actually converge for |ζ | = 1. It is well-known
that for the two component KP hierarchy this class of solutions “linearise” on a Grassmannian
Gr(C2) of subspaces of the Hilbert spaceH = L2(S1,C2). The QKP hierarchy is a real form
of two component KP obtained by imposing a reality condition: this is achieved by fixing a
left H action on H for which j acts conjugate linearly.

The quickest way to do this is to realise H as L2(S1,H ). We view H as having two
complex structures: the first arises from left multiplication by i ∈ H , the second comes from
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right multiplication by i. These structures are inherited by any space of H -valued functions.
We view H as a complex vector space with respect to the first complex structure. Then it has
the Hermitian inner product

〈f, g〉 =
∫
S1
(f ḡ)C

where ḡ is the quaternionic conjugate, and if q = a+ bj ∈ H for a, b ∈ C then qC = a. The
integral is normalised in the usual way so that 〈1, 1〉 = 1. To make calculations for differential
operators acting on the left, we represent each element of H in its left Fourier series

f (ζ ) =
∑
m∈Z

(um + vmj)ζ
m , |ζ | = 1 , um, vm ∈ C .

Thus we identify L2(S1,H ) with L2(S1,C2), so that

L2(S1,C2) → L2(S1,H ); (u, v) �→ u+ j v̄ ,(3.4)

where v̄(ζ ) = v(ζ̄ ). Both left H multiplication and right complex multiplication preserve the
polarization of H into orthogonal subspaces H+ and H− which consist of functions whose
left Fourier series have, respectively, only non-negative and only negative powers of ζ .

Now define Gr(C2) to be the space of all complex subspaces W ⊂ H (i.e., iW = W )
for which the projections pr+ : W → H+ and pr− : W → H− are respectively Fredholm
(of index zero) and Hilbert-Schmidt. Then Gr(C2) is a complex Hilbert manifold [15]. Inside
this we have the real submanifold

Gr(H ) = {W ∈ Gr(C2); jW = W } ,
the fixed point subspace of the real involution W �→ jW . As with the KP equations, we can
produce an abelian subgroup whose action on Gr(H ) corresponds to the QKP equations.

Define Γ ⊂ Cω(S1,C∗) to be the abelian subgroup of all non-vanishing analytic func-
tions with winding number zero, and let G denote its Lie algebra Cω(S1,C). Γ acts H -
linearly on H by

γ : H → H ; f �→ f γ .

Thus we have a representation Γ ⊂ GLres(H ), hence Γ acts on Gr(H ) as a real group: to
emphasize the definition we will write this action as γ ◦ W = Wγ . The group Γ factorises
into the product Γ−.Γ+ of two subgroups: Γ+, whose elements extend holomorphically into
the disc |ζ | < 1 and are unimodular at ζ = 0, and Γ−, whose elements extend holomorphi-
cally into the disc |ζ | > 1 and take a real positive value at ζ = ∞. (This slightly unusual
normalisation for Γ− and Γ+ makes our discussion of the Γ -orbits easier later on, since the
real scaling action is trivial but the action of the unimodular scaling plays an important role.)
We write G = G+ + G− for the corresponding Lie algebra splitting. We will parameterise
elements of Γ+ by writing each in the form

γ (t) = exp

[
it0 +

∑
k≥1

(sk + itk)ζ
k

]
, t = (s1, t1, . . . ) ∈ G+ .
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We will tend to use x, y instead of s1, t1 below, and write z = x + iy.
In the same manner as [18], we can assign to W ∈ Gr(H ) a convergent Baker function

and thereby obtain solutions to the QKP equations. Such an assignment only works when
the Γ+-orbit of W meets the big cell, i.e., the open dense subset of Gr(C2) consisting of all
W ∈ Gr(C2) for which pr+ : W → H+ is invertible. The following result shows that, like
the KP case, this condition is always satisfied.

THEOREM 3.4. Let W ∈ Gr(H ) and define

Γ1 = {exp((x + iy)ζ ); x, y ∈ R} � R2 .

Then the Γ1-orbit of W meets the big cell off a real analytic (proper) subvariety of R2. Con-
sequently the Γ+-orbit of W meets the big cell on the complement of a real analytic (proper)
subvariety of Γ+.

The proof is a variation on the proof of the corresponding result in [18] and will be
omitted here since this theorem does not play a central part in the subsequent discussion.
As a consequence, to every W ∈ Gr(H ) we can assign a convergent Baker function ψW as
follows. Since Γ+-orbits meet the big cell on open sets there is a function, defined for almost
all t ∈ G+,

ψW(t) = (1 + a1(t)ζ−1 + · · · )γ (t) ,(3.5)

taking values in W : it is characterised by the property that

pr+(ψW (t)γ (t)−1) = 1 .

Moreover, ψW uniquely determines W , since the set ψW(0), ψ ′
W(0), ψ

′′
W(0), . . . of all y

derivatives spans an H -subspace of H whose closure is W .
From now on we will set z = x + iy and, for notational convenience, we will use, for

example, γ (t0) to denote setting every parameter except t0 equal to zero.

THEOREM 3.5. To every W ∈ Gr(H ) we can assign a formal pseudo-differential op-
erator LW of the form (3.1) satisfying LWψW = −ψWζ . Consequently, for t = sk or t = tk ,
k ∈ N there exists a differential operator P+ for which

∂ψW/∂t + P+ψW = 0 , hence Lt = [P+, L] .
In particular, for each W we obtain a Dirac operator D = ∂/∂z̄ + UW for which UW =
−(a1 + ia1i)/2, DψW = 0 and the equations for ∂UW/∂t are (3.3).

The proof is identical to that for the KP hierarchy given in [18]. In particular, from ψW

we extract

ψ̃W (t) = 1 +
∑
k>0

ak(t)ζ−k ,

from which we obtain LW = KWi∂yK
−1
W using

KW = 1 +
∑
k>0

ak(t)(i∂−1
y )k .
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REMARK 3.6. Let Gr(C) to denote the Segal-Wilson Grassmannian for L2(S1,C).
We can embed this in Gr(H ) using V �→ V ⊕ V̄ , where the latter is the space {(u, v̄); u, v ∈
V } ⊂ Gr(C2). Points of Gr(H ) of this type yield solutions to the (complex scalar) KP hi-
erarchy of equations, since it is clear that the complex Baker function ψV which Segal and
Wilson assign to V ∈ Gr(C) is also our quaternionic Baker function ψW , for W = V ⊕ V̄ .
Therefore all calculations reduce to those of [18]. We will use GrKP to denote the image of
Gr(C) in Gr(H ) and denote its complement by GrQKP. We can characterise the points of GrKP

as follows.

LEMMA 3.7. W ∈ GrKP if and only if Wi = W , equally, if and only if the Dirac
potential UW is trivial.

PROOF. If W ∈ GrKP then clearly we have both Wi = W and UW = 0. Now if
Wi = W then W = V + jV where

V =
{

1

2
(f − if i); f ∈ W

}
.

In particular, 1
2 (ψW − iψW i) belongs to V and by uniqueness of the Fourier expansion for

Baker functions must equal ψW , hence ψW takes values in V . This means V ∈ Gr(C), since
derivatives of ψW generate V over C. ThusW ∈ GrKP.

Now suppose UW = 0 and set ∂ = ∂/∂z. Then ∂̄ψW = 0 and so if we write ψW =
ψ1 + jψ2, where both ψ1, ψ2 commute with i, we have ∂̄ψ1 = 0 and ∂ψ2 = 0. We notice
that, restricting ψW to x, y,

ψ1 = (1 + p1ζ
−1 + · · · ) exp(zζ ) , ψ2 = (q1ζ

−1 + · · · ) exp(zζ ) ,

for some complex valued functions p1, q1, . . . . Now ∂ψ2 = 0 means

(q1 + (∂q1 + q2)ζ
−1 + · · · + (∂qk + qk+1)ζ

−k + · · · )ezζ = 0 .

So ∂ψ2 = 0 if and only if qk = 0 for all k, i.e., ψ2 = 0. Therefore ψW = ψ1 and since
∂̄ψ1 = 0 the closure V of the complex subspace of W generated by ψW(0), ∂ψW(0), . . .
belongs to Gr(C). But V generates W over H and therefore W = V + jV , which is V ⊕ V̄

in our notation. �

3.3. QKP flows. An important consequence of the construction is that the action of
Γ+ generates the QKP flows, in the following very precise sense. Let t, t′ ∈ G+. Then, by
comparing Fourier series, we deduce that

ψWγ (t′)(t) = ψW(t − t′)γ (t′) ,(3.6)

and therefore, treating t as variable and t′ as a constant, we deduce

LWγ (t′)(t) = LW(t − t′) .(3.7)

Now, if our interest is purely in the QKP operator LW then, as with the KP hierarchy [18], we
observe that for any γ ∈ Γ− we have ψWγ = ψWγ , hence LWγ = LW . In fact we have the
following result.



196 I. MCINTOSH

THEOREM 3.8. The quotient space M = Gr(H )/Γ− is a manifold, and the map

M → {LW ;W ∈ Gr(H )} ; Γ− ◦W �→ LW

is bijective.

PROOF. It is easy to extrapolate from the proof of the analogous result in Segal and
Wilson [18, 2.4] that the subgroup of elements of Γ− of the form 1 + O(ζ−1) acts freely on
Gr(H ), while the constant scalars act trivially, hence M is a manifold. By Theorem 3.1 LW
uniquely determines ψW up to right multiplication by an element of Γ−, and ψW determines
W , so the map is bijective. �

Since Γ is abelian the group Γ+ acts on M and it is clear from (3.7) that the orbits
correspond to the flows of the QKP hierarchy. The action of the circle subgroup Γ0 =
{exp(it0); t0 ∈ R} ⊂ Γ+ turns out to be important. In the first place, the next theorem
shows that its orbits are either points or circles depending upon whether or not W ∈ GrKP,
and this distinction descends to the disjoint union M = MKP ∪ MQKP obtained by taking
the quotient of GrKP ∪ GrQKP by the action of Γ−.

For ease of notation, for any W ∈ Gr(H ) set W(t0, z) = Weit0+zζ , with the usual
convention that the absence of either variable denotes that it is zero.

THEOREM 3.9. (a) For anyW ∈ Gr(H )

LW(t0) = e−it0LWeit0 .(3.8)

(b) The group Γ0 acts trivially on MKP, while the space MQKP/Γ0 of Γ0-orbits in
MQKP is the quotient of MQKP by a free action of S1.

(c) Let Λ ⊂ C be a lattice, then LW(z + λ) = µ(λ)−1LW(z)µ(λ) for some µ ∈
Hom(Λ, S1) if and only if the map

C → M/Γ0 ; z �→ [LW(z)](3.9)

is Λ-periodic, where [LW ] denotes the Γ0-orbit of LW ∈ M.

PROOF. (a) First we observe that

e−it0ψW(z)eit0 = (1 + e−it0a1(z)e
it0ζ−1 + · · · ) exp(zζ ) ,

and that this takes values in W(t0). By the uniqueness of the Baker function, we deduce that
ψW(t0)(z) = e−it0ψW(z)eit0 . The formula (3.8) follows at once.

(b) The definition of the Γ+ action, combined with (3.8), yields

eit0 ◦ LW = LW(t0) = e−it0LWeit0 .

This is trivial if LW is purely complex, which by Lemma 3.7 is the case precisely when
W ∈ GrKP, so Γ0 acts trivially on MKP. Now observe that for any q ∈ H , e−iπ qeiπ = q .
Therefore if we define an S1 action on MQKP by eit0 ·LW = LW(t0/2) this action is free, since
the points in the subspace MQKP are those for which ψW is not purely complex. Clearly the
quotient of MQKP by this action equals MQKP/Γ0.
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(c) Suppose LW(z + λ) = µ(λ)−1LW(z)µ(λ) for some µ ∈ Hom(Λ, S1) and all
z ∈ C. By (3.7) and (3.8) this means

LW(z+λ)(z′) = LW(z)(z
′ − λ) = LW(z)µ(−λ)(z′)

thinking of µ(λ) ∈ Γ0. But the last has the same Γ0-orbit as LW(z), so [LW(z+λ)] = [LW(z)].
Conversely, suppose that (3.9) is Λ-periodic. Let

G = {exp(it0 + zζ ) ∈ Γ } = Γ0Γ1 ,

and let S ⊂ M be the G-orbit of LW . The projection M → M/Γ0 makes S a bundle over
the Γ1-orbit M � C/Λ of [LW ]. When LW ∈ MKP this projection is a bijection, so that
LW(z) is Λ-periodic and µ is trivial. Otherwise S → M is an S1-bundle, by (b), with a
natural flat connexion for which the action of Γ1 ⊂ G is horizontal. This makes z �→ LW(z) a
flat section over the universal cover C ofM and hence it has a monodromy µ′ ∈ Hom(Λ, S1).
The action of S1 is via Γ0 and therefore

LW(z+λ) = µ′(λ)−1LW(z)µ
′(λ) ,

which implies

LW(z
′ − λ) = µ′(λ)−1LW(z

′)µ′(λ) .

Taking µ = (µ′)−1 gives the required result. �

3.4. Solutions of finite type. By adapting the construction in [18] we can construct
many points W ∈ Gr(H ) corresponding to spectral data and thereby construct Baker
functions (using, for example, Riemann θ -functions). Our spectral data will be a collection
(X, ρ, P, ζ,L, ϕ) of the following.

(a) X is a complete, reduced, algebraic curve of arithmetic genus g , with fixed-point
free anti-holomorphic involution ρ. X need not be irreducible, but if it is reducible it must
have no more than two irreducible components and these must be swapped by ρ.

(b) P ∈ X is a smooth point and ζ−1 is a local parameter about P ,
(c) L is a holomorphic line bundle of degree g + 1 for which ρ∗L � L and L(−P −

ρP) is non-special. This induces a unique, up to sign, conjugate linear isomorphism ρ̄∗ :
L → L covering ρ and satisfying (ρ̄∗)2 = −1 (so ρ̄∗ is a quaternionic involution).

(d) ϕ is a holomorphic trivialising section of L over the disc∆P = {Q; |ζ(Q)−1| < 1}
and its boundary circle CP , both of which we assume contain no singular points of X.

REMARK 3.10. (i) There is no requirement thatX be smooth. In general we letXsm

denote the open variety of smooth points on X. It is possible for X to be disconnected but
Example 3.14 shows that this only leads to points in GrKP. When X is singular the condition
(c) is more strict than necessary. As explained in [18, p. 38], L need only be a maximal torsion
free coherent sheaf of rank 1 with χ(L) = 2.

(ii) The QKP spectral curve is the natural quaternionic analogue of the pointed curve
which appears in KP theory. It seems highly likely that Gr(H ) plays the same role for the
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moduli space of such curves that Gr(C) plays for the moduli space of all pointed complete
irreducible algebraic curves.

From this data we construct a point W ∈ Gr(H ): the points constructed this way will
be called of finite type (this terminology is justified by Theorem 3.16 below). To do this, first
identify S1 with the circle CP (and also with ρCP by the map ζ �→ ρ∗ζ ). Let X0 denote the
closed non-compact surface X \ (∆P ∪ ρ(∆P )). We define

w : H 0(X0,L) → H ; σ �→ (σ − j ρ̄∗σ)/ϕ .(3.10)

This is clearly C-linear. Now define W to be the closure of the image of w. A simple gener-
alisation of the Mayer-Vietoris argument in [18, §6] shows that W ∈ Gr(C2). Observe that
since ρ̄∗ is quaternionic on H 0(X0,L) we have

jw(σ) = w(ρ̄∗σ)

and thereforeW ∈ Gr(H ). The non-speciality condition on L(−P −ρP) ensures thatW lies
in the big cell (although this is not essential we may as well assume this since it happens in
the Γ+-orbit by Theorem 3.4).

The action of Γ on the spectral data is easily calculated. Clearly

w(σ)γ−1 = (σ − j ρ̄∗σ)/(ϕγ ) .

This twists the trivialisation ϕ into ϕγ , which we interpret as trivialisation for the line bundle
L ⊗ �(γ ). Here �(γ ) is a degree zero line bundle obtained by glueing the trivial bundles
over X0 and clos(∆P ) together using γ as a transition function, and glueing that to the trivial
bundle over clos(ρ(∆P )) using γ̄ (after identifying ζ with ρ∗ζ ). Since we will need to work
with these trivialisations later on we will be more precise about this by introducing better
notation (and then suppress this in most of what follows until we require it).

The construction of �(γ ) equips it with trivialising sections τP (γ ) and τ0(γ ), over∆P ∪
ρ∆P and X \ {P, ρP } respectively, satisfying the transition relation

τP (γ ) = γ τ0(γ ) over ∆P \ {P } ,(3.11)

and the ρ∗-conjugate of this about ρP . So by “ϕγ ” we really mean the trivialisation ϕτP (γ ).
Using this we obtain

H 0(X0,L ⊗ �(γ )) → Cω(S1,C) ; σ �→ σ/ϕτP (γ ) .

Now we observe that

σ

ϕτP (γ )
= στ0(γ )

−1

ϕ
γ−1 ,(3.12)

and στ0(γ )
−1 ∈ H 0(X0,L), hence Wγ−1 corresponds to replacing L by L ⊗ �(γ ) and ϕ by

ϕτP (γ ). We have therefore proved the following lemma.

LEMMA 3.11. If W corresponds to the spectral data (X, ρ, P, ζ,L, ϕ) and γ ∈ Γ

then Wγ−1 corresponds to the same data with L and ϕ replaced by L ⊗ �(γ ) and ϕγ .
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Notice that when γ ∈ Γ− the two line bundles are isomorphic and only the trivialisation
changes.

A consequence of this construction is the epimorphism of real groups � : Γ → JR(X),
where the target here is the connected component of the identity of the real subgroup

{L ∈ Jac(X); ρ∗L � L}
of the Jacobi variety of X. The restriction of � to Γ+ is still onto.

We can also characterise the Baker function in terms of the spectral data. Since L(−P −
ρP) ⊗ �(γ ) is almost always non-special (by Theorem 3.4) for almost all γ ∈ Γ there is a
unique σγ ∈ H 0(X,L(−ρP)⊗ �(γ )) for which σγ /(ϕγ ) has value 1 at P : then σγ /(ρ̄∗ϕγ̄ )
is locally holomorphic about ρP with a simple zero there. It follows from these properties
that ψW(γ ) = w(σγ ).

REMARK 3.12. This construction is at its most concrete in the case where the trivial-
ising section ϕ extends to a globally holomorphic section on the whole of X. Such a choice is
always possible for our spectral data (for example, using a non-zero section vanishing at ρP )
and we can choose∆P so that it contains no zeroes of ϕ. Thenψ1 = σγ /ϕ andψ2 = ρ̄∗σγ /ϕ
are both meromorphic functions on X \ {P, ρP }. It follows that ψW extends to X \ {P, ρP }
and we have

ψW : Γ+ ×X \ {P, ρP } �→ H ; ψW = ψ1 − jψ2 .(3.13)

Notice that these conditions on ϕ do not uniquely specify it. For if D denotes its divisor of
zeroes we are free to multiply ϕ by a rational function on X which does not vanish at P and
whose divisor of poles lies in the linear system |D|. Thus we cannot talk of a unique global
Baker function, but any two differ by such a rational function. Nevertheless, in what follows
we will use the phrase “the global Baker function” to refer to any one of these.

REMARK 3.13. Every other trivialisation ϕ′ of L over ∆P is of the form sϕ, where
s is a non-vanishing holomorphic function on ∆P . This can be factorised into s = γ ′eit0
where γ ′ ∈ Γ−. By previous observations we conclude that this change of trivialisation has
the effect

ψW �→ e−it0ψWeit0γ ′ .
It follows that the quotient map Gr(H ) → M amounts to discarding from the spectral data
almost all the information given by the choice of trivialisation: the remainder being the iden-
tification it gives between fibres of L over P and ρP . The further quotient M → M/Γ0

discards even this information. In particular, when dealing with QKP solutions we may as
well work with global Baker functions.

EXAMPLE 3.14. Consider taking X = Y ∪ Ȳ , a disjoint union of two copies of the
same irreducible complete algebraic curve, with Ȳ equipped with the opposite complex struc-
ture to Y . Then ρ : (P1, P2) → (P2, P1) is a fixed point free anti-holomorphic involution. It
is not hard to see that if we equip Y with the spectral data described in [18], i.e., fix P ∈ Y

with local parameter ζ−1, a line bundle LY over Y of degree equal to the genus of Y and a
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local trivialisation ϕ about P , then we automatically obtain our quaternionic spectral data,
with L given by L|Y = LY and L|Ȳ = ρ∗LY . It follows that the pointW ∈ Gr(H ) we obtain
has the form W = V ⊕ V̄ , where V is the point in the Grassmannian Gr(C) built from the
data on Y . Therefore, by Remark 3.6, spectral curves of this type only result in solutions to
the KP hierarchy.

Now let us consider the Γ+-orbits in MQKP and MQKP/Γ0. LetXp be the singular curve
obtained by identifying the two points P and ρ(P ) together to form an ordinary double point
and define JR(Xp) to be the connected component of the identity of thereal group

{L′ ∈ Jac(Xp); ρ∗L′ � L′} .

LEMMA 3.15. JR(Xp) is an S1-bundle over JR(X).

PROOF. Think of L′ as L ∈ Jac(X) equipped with an isomorphism between the fibres
LP and Lρ(P ). An isomorphism between ρ∗L′ and L′ is a conjugate linear isomorphism of
ρ∗L with L which identifies the fibre isomorphisms. Therefore, given a fixed isomorphism
ρ∗L � L we can only vary the fibre identification by a unimodular scaling, hence the fibres
of JR(Xp) are free S1-orbits. �

As a corollary to Remark 3.13 and the previous lemma we see how the real groups
JR(Xp) and JR(X) sit geometrically with respect to the QKP phase space MQKP. The equiv-
alent theorem for the KP hierarchy is well-known and can be deduced from [18].

THEOREM 3.16. Suppose W ∈ GrQKP is of finite type, then the Γ+-orbit of LW ∈
MQKP can be identified with the real group JR(Xp), while the Γ+-orbit of [LW ] ∈ MQKP/Γ0

can be identified with JR(X). Moreover, LW is of finite type if and only if it admits only finitely
many independent non-stationary QKP flows.

The last claim in this theorem is explained in §6.1 where we briefly discuss the recon-
struction of the spectral curve from the QKP operator LW via its ring of commuting differen-
tial operators.

REMARK 3.17. It is natural to ask whether there are any W ∈ GrQKP whose Γ+-orbit
lies entirely in the big cell. When X is smooth and has genus g ≤ 2 there are always QKP
solutions which are globally defined. To see this, we need to find L of degree g + 1 for which
L(−P −ρP)⊗L is non-special for all L ∈ JR(X). This is trivial for g = 0. More generally,
this JR(X)-orbit lies in the real slice Picg−1(X)

ρ of Picg−1(X). For g = 1 the orbit must
avoid the unique special line bundle, namely the trivial bundle. Since Picg−1(X)

ρ has two
connected components for g = 1 we can take any L(−P − ρP) to be any point lying on the
component not containing the trivial bundle. For g = 2 the special line bundles of degree
g − 1 lie in the image of the map X → Picg−1(X) which sends Q to OX(Q). This image
cannot intersect the real slice Picg−1(X)

ρ , for if OX(Q) � OX(ρQ) thenQ = ρQ, but ρ has
no fixed points. Hence for g = 2 any choice of real line bundle L of degree 3 provides global
solutions to the QKP hierarchy.
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We finish this section by discussing the Γ1-orbits. Let us identify Γ1 with C by ezζ �→ z.
We wish to characterise the homomorphism � : C → JR(X). This is straightforward: �(z)
is obtained from the trivial bundle by twisting it by ezζ about P and ρ∗ezζ about ρ(P ). It
follows that � is uniquely determined by the property that

∂�

∂z

∣∣∣∣
z=0

= ∂AP

∂ζ−1

∣∣∣∣
ζ−1=0

(3.14)

where AP : Xsm → Jac(X) is the Abel map with base point P and we interpret this equation
by identifying TeJR(X)

C with Te Jac(X) � T
1,0
e Jac(X). As a corollary to this and Theorem

3.9 we deduce the following.

THEOREM 3.18. Suppose W ∈ GrQKP arises from spectral data and its Γ1-orbit
lies entirely in the big cell. Then there is a lattice Λ ⊂ C for which LW(z + λ) =
µ(λ)−1LW(z)µ(λ) for some µ ∈ Hom(Λ, S1) if and only if �(z) is Λ-periodic.

REMARK 3.19. This monodromy µ ∈ Hom(Λ, S1) corresponds to a flat S1-bundle S
over C/Λ, the principal S1-bundle for the dual L∗ to our quaternionic holomorphic curve L.
But we can also interpret this as follows. Using � we can pull back the S1-bundle JR(Xp) to
an S1-bundle over C/Λ, which is a Lie group and isomorphic to S. This comes equipped with
a flat connexion as follows. By the construction above we have a natural homomorphism of
real groups

Γ+ → JR(Xp) → JR(X) .

When this is restricted to Γ1 it gives � and a lift �p : C → S on its universal cover. This
determines a flat connexion on S with monodromy which is, by Theorem 3.9, µ.

4. Construction of quaternionic holomorphic curves.

4.1. Construction via the Baker function. In this section we will suppose thatW ∈
Gr(H ) has been chosen so that the Γ1-orbit of [LW ] is a torus C/Λ: let µ ∈ Hom(Λ, S1) be
the corresponding monodromy of LW . In that case there is a quaternionic holomorphic line
bundle (E, J,D) over C/Λ whose Dirac operator D has Dirac potential UW .

For any left H -linear form α ∈ W∗ the function ψ : C → H ; ψ = α(ψW ) lies in
the kernel of D. It corresponds to a section in H 0

D(E) whenever ψ(z + λ) = µ(λ)−1ψ(z)

for all z ∈ C, λ ∈ Λ. The dimension of H 0
D(E) will be bounded below by the number of

independent α ∈ W∗ possessing the same monodromy. In particular, with sufficiently many
of these we obtain quaternionic holomorphic immersions of C/Λ in HP n.

Equivalently, to obtain a coordinate free perspective, let V ⊂ W be an H -subspace of
H -codimension n+ 1, and suppose it has the two properties:

(a) ψW(z) does not belong to V for any z (we will say V is well-positioned in W ),
(b) for every λ ∈ Λ we have

ψW(z+ λ)− µ(λ)−1ψW(z) ∈ V , for all z ∈ C .
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Then we may define a map

f : C/Λ → P (W/V ) � HP n ; z +Λ �→ [ψW(z)+ V ] ,(4.1)

where the square brackets denote the corresponding left H -line in W/V .

THEOREM 4.1. The map f : C/Λ → HP n given by (4.1) is a quaternionic holomor-
phic curve.

The proof is just an instance of the general principle linking quaternionic holomorphic
curves to quaternionic holomorphic sections of the dual bundle, but we will give it here since
it makes explicit the complex structure J on L.

PROOF. Over C the map f has a global lift f̃ = ψW + V : we can think of this as
a section of the pullback to C of the line bundle L corresponding to f . This has complex
structure J for which J f̃ = if̃ . Now

∗δf − δf ◦ J : f̃ �→ −2idz̄
∂f̃

∂z̄
mod L .

But since ∂ψW/∂z̄ = −UWψW this is identically zero, whence f is a quaternionic holomor-
phic curve. �

REMARK 4.2. For every γ ∈ Γ− we know that ψWγ = ψWγ . Therefore the quater-
nionic holomorphic curve determined by (W, V ) is congruent (i.e., equivalent up to the right
action of PGL(n+ 1,H ) on HP n, created by the choice of isomorphism W/V � H n+1) to
the one determined by (Wγ, V γ ) when γ ∈ Γ−. Similarly, since ψWeit0 = e−it0ψWeit0 the
curve (4.1) is unchanged, up to congruence of HP n, by the action of Γ0.

To study the periodicity conditions let us first consider the more general map

f : Γ → P (W/V ) ; γ �→ [ψW(γ )+ V ] .(4.2)

Here we have extended ψW to a function on Γ by identifying Γ+ with Γ/Γ−, i.e., ψW is
constant on Γ− cosets. Now let

ΓV = {γ ∈ Γ ;Wγ = W,V γ = V } .
Then ΓV acts on W/V and we define Γ P

V ⊂ ΓV to be the subgroup of those elements which
fix P (W/V ) pointwise. For example, when W = H+ and V = H+ζ 2 we have

ΓV = {a0 + a1ζ + · · · ∈ Γ ; a0 ∈ C×} , Γ P
V = {a0 + a2ζ

2 + · · · ∈ Γ ; a0 ∈ R×} .
LEMMA 4.3. The map f : Γ → P (W/V ) in (4.2) is constant on Γ−Γ0Γ

P
V cosets,

and therefore it descends to JV = Γ/(Γ−Γ0Γ
P
V ).

PROOF. It suffices to check the invariance of f along Γ0Γ
P+ cosets. Let γ ′ ∈ Γ and

γ ∈ Γ P+ , then by (3.6) we have

ψW(γ
′γ−1) = ψWγ (γ

′)γ−1 .
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Therefore, modulo V this is independent of γ . Similarly, by (3.6) and the proof of Theorem
3.9(a),

ψW(γ
′e−it0) = e−it0ψW(γ ′)(4.3)

and therefore the projective map f is constant along Γ0-orbits. �

COROLLARY 4.4. Let �V : C → JV be the homomorphism (of real groups) obtained
by the composition C � Γ1 → Γ → JV . Then f : C → P (W/V ) factors through this.
Hence a sufficient condition for (4.1) to be Λ-periodic is that �V be Λ-periodic.

4.2. A construction for solutions of finite type. Let us now consider a more concrete
version of the above construction which applies to solutions of finite type. The spectral data
(X, ρ, P, ζ,L, ϕ) provides us with W ; we can choose a H -codimension n + 1 H -subspace
Wq ofW as follows. Fix a ρ-invariant divisor q consisting of 2n+ 2 distinct smooth points in
X \ {P, ρP }. We will write

q = Q0 + · · · +Qn + ρ(Q0)+ · · · + ρ(Qn) .

We may choose the local parameter disc ∆P so that q ⊂ X0. Let Wq correspond to the
subspace H 0(X0,L(−q)) of holomorphic sections of L which vanish on q: it is a left H -
subspace since q is ρ-invariant. Since X0 is a Stein manifold it follows, by calculating the
cohomology of the sheaf exact sequence

0 → L(−q) → L → Lq → 0 ,(4.4)

that dimC(W/Wq) = deg(q) = 2n+ 2.
Now consider the dependence of f on the choice of trivialisation ϕ. By Remark 3.13

any change of trivialisation has the form ϕ �→ ϕes0+it0γ ′ where γ ′ ∈ Γ−. By Remark 4.2 this
only alters f by congruence. Further, a change of local parameter ζ amounts to rescaling the
parameter z in the Dirac operator. Therefore it is enough to be given (X, ρ, P,L, q) to have
f well-defined up to congruence in HP n: we may as well take ψW to be the global Baker
function. The condition above that f be well-defined is that ψW does not vanish on q for any
z ∈ C. We can think of Wq as the kernel of n+ 1 left H -linear forms evQ0, . . . , evQn on W ,
where evQ is obtained by extending the map “evaluation atQ” to all ofW (it is straightforward
to check that evρQ = evQu for some u ∈ H×). In this case, in homogeneous coordinates,
and up to congruence in HP n,

f (z) = [ψW(z,Q0), . . . , ψW (z,Qn)] .(4.5)

Further, for any H -codimension two subspace V satisfying Wq ⊂ V ⊂ W we obtain a
projection of f onto P (W/V ) � HP 1, which will be a conformal immersion provided V is
well-positioned in W . Equally, this arises from a well-positioned two H -dimensional linear
system in the dual space (W/Wq)

∗.
To study the periodicity conditions for f when it arises from this construction we begin

by showing that when V = Wq the group JV appearing in Lemma 4.4 is isomorphic to a
real subgroup of a generalised Jacobi variety. Let Xq be the singularization of X obtained
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by identifying the points of q together simply. The real involution ρ descends to Xq, so its
generalised Jacobian Jac(Xq) has a real subgroup JR(Xq) which is the connected component
of the identity of the real subgroup of ρ̄∗-fixed line bundles over Xq. Let Xsm

q denote the
curve of smooth points on Xq (this is just Xsm \ q) and let Aq

P : Xsm
q → Jac(Xq) denote the

Abel map for Xq, with base point P . Let �q : C → JR(Xq) be the unique homomorphism of
real groups determined by the property

∂�q

∂z

∣∣∣∣
z=0

= ∂Aq
P

∂ζ−1

∣∣∣∣
ζ−1=0

.(4.6)

LEMMA 4.5. For a pair (W,Wq) given by spectral data (X, ρ, P,L, q) in the manner
above, we have JWq � JR(Xq) and �Wq = �q.

PROOF. First we note that an equivalent way of describing �q above is that the line bun-
dle �q(z) is obtained using transition functions ezζ and ez̄ρ

∗ζ to glue together trivial bundles
as in (3.11), but where X \ {P, ρP } is replaced by its singularisation Xq \ {P, ρP }. This ex-
tends naturally to a real homomorphism �q : Γ → JR(Xq) by using γ and ρ∗γ as transition
functions.

Now γ lies in ker(�q) precisely when γ factorises into a product γ = αβ where α
extends holomorphically to ∆P and β extends holomorphically to (Xq)0, i.e., β represents
the boundary of a holomorphic function on X0 which takes the same value at each point of
q. Clearly Γ−Γ0 equals the group of all boundaries of the type α, while the boundaries of the
type β are exactly those which, by multiplication, fix

H 0(X0,L)/H 0(X0,L(−q)) � W/Wq

projectively, since they act by scaling. Hence ker(�q) = Γ−Γ0Γ
P
Wq

, whence the result. �

REMARK 4.6. One knows (from e.g., [19]) that Jac(Xq) is a group extension of
Jac(X):

1 → K → Jac(Xq)
πq→ Jac(X) → 1 ,(4.7)

whereK is a linear algebraic group. In our caseK � (C×)2n+2/C×. The real automorphism
ρ̄∗ acts on Jac(Xq) and preserves K . Define KR = K ∩ JR(Xq), then

KR � (C×)n+1/R× .

This is the kernel of the restriction of πq to JR(Xq).

We can now achieve a more precise understanding of how the map f factors through
Jac(Xq) by considering the natural twistor lift which every quaternionic holomorphic curve
f : M → HP n possesses. This is a map f̂ : M → CP 2n+1 for which T ◦ f̂ = f , where
T : CP 2n+1 → HP n is the twistor projection assigning to every left C-line in H n+1 its
left H -line. The lift arises as follows: the corresponding line bundle L ⊂ H n+1 possesses a
unique complex structure J for which ∗δf = δf J . The twistor lift f̂ is given by the complex
line subbundle L̂ ⊂ L of i-eigenspaces of J . Now let f̃ : C → H n+1 represent ψW +Wq
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in some choice of coordinates on W/Wq and write f = H f̃ . It follows from the proof of
Theorem 4.1 that f̂ = Cf̃ .

THEOREM 4.7. Given spectral data as above, the natural twistor lift of f : C → HP n

is a composite of the form

f̂ : C
�q→ Jac(Xq)

θ→ CP 2n+1 ,(4.8)

where θ is a rational map.

PROOF. We will show that f̂ comes from a construction similar to the one given in [12]
for harmonic tori. To this end, let E → Jac(X) denote the complex rank 2n+ 2 vector bundle
with fibres EL = H 0(X, (L ⊗ L)q). It was shown in [12] that we can embed Jac(Xq) into
the bundle of (complex) projective frames of E and therefore the tautological section of the
pullback π∗

q Jac(Xq) of Jac(Xq) over itself globally (and algebraically) trivialises bundle PE ′
of complex projective space of E ′ = π∗

qE , by canonically identifying each fibre of PE ′ with
PH 0(X,Lq) � CP 2n+1. This works as follows: each point of Jac(Xq) should be thought
of as a line bundle L ∈ Jac(X) equipped with a trivialising section of Lq determined up to
scaling. This fixes a projective identification of (L⊗L)q with Lq by tensor product. We will
denote this canonical trivialisation by

τ : PE ′ → Jac(Xq)× PH 0(X,Lq) .(4.9)

Now define

U = {L′ ∈ Jac(Xq);L(−P − ρP)⊗ πq(L
′) is non-special} .

This is an affine open subvariety of Jac(Xq) and it is a consequence of Theorem 3.4 that
JR(Xq) ∩ U is the complement of a real analytic subvariety of JR(Xq). For each L ∈ πq(U)
the vector space H 0(X,L(−ρP)⊗ L) is one-dimensional and therefore the bundle PE ′ pos-
sesses an algebraic section s : U → PE ′ corresponding to the injection

H 0(X,L(−ρP) ⊗ L) → H 0(X,L ⊗ L) → H 0(X, (L ⊗ L)q) .(4.10)

Now we define θ : Jac(Xq) → CP 2n+1 by θ = τ ◦ s, having fixed some projective linear
identification of PH 0(X,Lq) with CP 2n+1. This is algebraic on the affine open subvariety U
and therefore rational. The theorem is proved once we have shown that, via the identification

H 0(X,Lq) = H 0(X0,L)/H 0(X0,L(−q))
w→ W/Wq ,

derived from (3.10), the map f̂ corresponds to θ ◦�q. To see this we note that �q(z) is defined
using the transition relation (3.11) to glue together the trivial bundles over X \X0 and (Xq)0,
and therefore can be thought of as �(z) equipped with the trivialisation τ0(z) restricted to q.
But now we recall that the global Baker function in (3.13) is the result of applying (3.10) to
the global section σγ ∈ H 0(X,L(−ρP) ⊗ �(γ )) pulled back to a section of L over X0 by
σz → σzτ0(z)

−1. When we restrict this to Lq we see that this generates the line τ ◦ s ◦ �q(z)
in H 0(X,Lq). Hence f̂ = θ ◦ �q. �
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REMARK 4.8. From the previous proof we see that f = T ◦f̂ is directly obtained from
the H -line subbundle of E ′ whose fibres are the left H -lines H 0(X,L ⊗ L) ⊂ H 0(X, (L ⊗
L)q). Notice that if Wq ⊂ V ⊂ W for a well-positioned H -codimension two subspace V
and fV : C → HP 1 is the corresponding projection of f then the twistor lift of fV is the
projection of f̂ onto CP 3, i.e., the map

f̂V : C → P C(W/V ) ; z �→ C · (f̃ (z)+ V ) .

Now we return to the question of when the map f is doubly periodic.

THEOREM 4.9. Let f : C → HP n correspond to the spectral data above and suppose
that it is linearly full (i.e., its image does not lie in some HP n−1). Then f and � : C → Jac(X)
are simultaneously Λ-periodic if and only if �q is Λ-periodic.

This implies that the monodromy of the corresponding Dirac potential (2.4) is that of the
flat S1-bundle S over C/Λ described in Remark 3.19.

PROOF. That the Λ-periodicity of �q is sufficient follows at once from Corollary 4.4
and Lemma 4.5. Now suppose both f and � are Λ-periodic. Then f̂ is Λ-periodic, and �q

determines a homomorphism

h : Λ → KR ⊂ ker(πq); h(λ) = �q(λ).

In this situation we can use [12, Lemma 1] to deduce that there is an injective homomorphism
ofKR into PGL(n+1,H ) which allows us to write f (z+λ) = f (z)h(λ) for all λ ∈ Λ. Now
since f is linearly full we can, after possibly a congruence, find homogeneous coordinates for
f (z) so that these are all non-zero at some z, hence h must be the identity, whence �q is
Λ-periodic. �

REMARK 4.10. I was unable to find a way to remove the assumption that � be Λ-
periodic: it amounts to the difference between knowing that the Dirac potential has Λ-
monodromy (2.4) (which follows from the periodicity of f ) and knowing that the full QKP
operator LW has Λ-monodromy (i.e., [LW ] is Λ-periodic). The former implies the latter if
one knows a priori that the QKP Baker function has property (c) of Theorem 2.1. We will see
later in the article that under the assumption that � is Λ-periodic we do get agreement of the
two Baker functions.

REMARK 4.11. In the case where X has genus 0 or 1 the map � : C → Jac(X) is not
injective, so the periodicity condition on � does not uniquely determine a lattice Λ ⊂ C. But
the arithmetic genus of Xq is at least 2n + 1 ≥ 3 hence �q is always injective, therefore it
uniquely determines the lattice Λ when such a lattice exists.

Finally, let us note a condition under which the conformal torus in HP 1 can be immersed
in R3, at least in the case where X is a smooth curve. Recall from the discussion at the end of
§2.1 that f : M → S4 lies in some R3 if and only if Ê is a spin bundle, hence if and only if
S is a spin bundle.
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PROPOSITION 4.12. WhenX is a smooth curve the bundle S above is a spin bundle if
the divisor P − ρP has order two (in which case X is hyperelliptic).

PROOF. One knows (e.g., from [19]) that pulling back line bundles along the Abel map
gives an isomorphism between Jac(X) and its dual Jac(X)∗ (the moduli space of flat line
bundles on Jac(X)). One also knows from [19, VII] that the flat line bundle over Jac(X) with
principal bundle Jac(Xp) is pulled back to OX(P − ρP). Hence S is a spin bundle whenever
OX(2P − 2ρP) is trivial, i.e., when P − ρP is a divisor of order two. �

It can be shown that this condition obliges the “even” flows of the QKP hierarchy to be
trivial, in which case we obtain the modified Novikov-Veselov hierarchy, as one expects from
[22].

5. Darboux transformations. We will follow the notion of Darboux transformations
introduced by Bohle et al. in [3]. It generalises the classical notion of a Darboux transform
between isothermic surfaces in S3, in which both surfaces envelope the same sphere congru-
ence.

Let us recall first, from [5], that we can identify the set of all oriented round 2-spheres in
S4 with the set

Z = {S ∈ EndH (H
2); S2 = −I } .

This identification gives to each S ∈ Z the 2-sphere {L ∈ HP 1; SL = L}, which we will
also denote by S. The orientation is given by the complex structure each 2-sphere inherits
from S. Given a Riemann surface, M , a sphere congruence is a map S : M → Z . Now let
f : M → S4 be a conformal map. We say f envelopes a sphere congruence S : M → Z
if f (p) ∈ S(p) and the oriented tangent plane of f (M) at f (p) agrees with that of S(p).
In terms of the line subbundle L ∈ H 2 corresponding to f , these two conditions can be
expressed as

SL = L , and ∗ δf = Sδf = δf S .

It is a classical result that two conformal maps which envelope the same sphere congruence
must both be isothermic (see [1, Cor. 67, p. 78] for a modern proof), therefore Bohle et al. [3]
(see also [1]) relax the condition slightly to achieve a broader class of transformations. We
will say a conformal map f : M → S4 left-envelopes a sphere congruence S : M → Z if
f (p) ∈ S(p) and their oriented tangent planes agree up to action of SU2 on Tf (p)S4 as the
left component in the epimorphism SU2 × SU2 → SO4 (the notion of a right-envelope is
defined similarly). In terms of the line bundle L the property of being a left-envelope can be
expressed as

SL = L , and ∗ δf = Sδf .

DEFINITION 5.1 ([3]). Let f : M → S4 be a conformal map of a Riemann surface
M . Another conformal map f � : M → S4 is a Darboux transform of f if f (p) �= f �(p) for
all p ∈ M and there exists a sphere congruence S : M → Z which is enveloped by f and
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left-enveloped by f �. In terms of the line bundles L,L� this means

H 2 = L⊕ L� , SL = L, SL� = L� , ∗δf = Sδf = δf S , and ∗ δf � = Sδf � .(5.1)

Strictly speaking, we want to allow singular Darboux transformations of a torus: those
for whichL∩L� is trivial except at finitely many points (see [3]). We want to understand what
Darboux transformations look like for maps arising from a pair (W, V ) of the type above. First
we invoke a simple result from [3] which gives a neat characterization for Darboux transforms.

LEMMA 5.2 ([3]). Let f, f � : M → HP 1, with corresponding line bundles L,L�, be
conformal immersions so that H 2 = L ⊕ L�. Then f � is a Darboux transform for f if and
only if ∗δf � = J δf � where ∗δf = δf J and we identify H 2/L� with L using projection along
the splitting.

It is easy to check that the sphere congruence which is enveloped by f and left-enveloped
by f � is given by S|L = J and S|L� = J̃ where ∗δf = J̃ δf , again using the splitting to
identify L� with H 2/L.

LEMMA 5.3. Let f : M → P (W/V ) � HP 1 be the conformal map defined by
equation (4.1). Given λ ∈ C, 0 < |λ| < 1, define Wλ = W(1 − λζ ), Vλ = V (1 − λζ ) and
let f λ : M ′ → HP 1 be the map corresponding to the pair (Wλ, Vλ). Then f λ is a Darboux
transform of f over their common domainM ∩M ′.

PROOF. We assume, without loss of generality, that M = M ′ is an open domain in C.
Let V = Wλ/Vλ and let f, f λ : M → PV denote the conformal maps with lifts

f̃ = ψW(1 − λζ )+ Vλ , f̃ λ = ψWλ + Vλ ,

and line subbundlesL,Lλ ⊂ M×V . From the proof of Theorem 4.1 we know that ∗δf = δf J

for J f̃ = if̃ . I claim that there is a function b : M → H for which

f̃ λz = bf̃ λ − 1

λ
f̃ .(5.2)

Therefore

δf λ(f̃ λ) = −dz 1

λ
f̃ .

It follows that, since λ is complex, ∗δf λ = J δf λ. In light of the previous lemma, this proves
the theorem.

It remains to verify equation (5.2). This is a direct result of an identity for Baker func-
tions. Set

ψ = ψW(1 − λζ ), ψλ = ψWλ .

These have respective Fourier series expansions

ψ = (−λζ + (1 − aλ)+ · · · )ezζ ,
ψλ = (1 + aλζ−1 + · · · )ezζ .
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Therefore there is an H -valued function b for which(
ψλz + 1

λ
ψ − bψλ

)
e−zζ ≡ 0 mod O(ζ−1) .

SinceWλe
−zζ is transverse toH− almost everywhere (Theorem 3.4), the right-hand side must

be identically zero. Equation (5.2) follows. �

Notice that (1 − λζ ) ∈ Γ+, since its only zero is at λ−1. It is clear that the proof above
still works if we replace (1 − λζ ) by any representative in the coset (1 − λζ )Γ− ∈ Γ/Γ−. It
follows that in the case where Wq ⊂ V ⊂ W for some ρ-invariant divisor q ⊂ X \ {P, ρP }
this Darboux transform acts on the spectral data by fixing everything except the pair L, ϕ,
which it transforms by

(L, ϕ) �→ (LQ, ϕQ) , LQ = L(Q+ ρQ− P − ρP) ,(5.3)

where ζ(Q) = λ−1 and ϕQ is a local trivialising section of LQ over ∆P . In fact, provided Q
is not in the support of q, the transform (5.3) always yields a Darboux transform.

THEOREM 5.4. Let f : C/Λ → HP 1 be a quaternionic holomorphic torus corre-
sponding to the spectral data (X, ρ, P,L, q) and a choice of well-positioned two dimensional
linear systemH ⊂ (W/Wq)

∗. Assume that � : C → Jac(X) isΛ-periodic. LetXsm
q be the va-

riety of smooth points inXq. Then for everyQ ∈ Xsm
q \{P, ρP } there is a Darboux transform

fQ of f arising from the spectral data obtained from the transformation (5.3).

The linear system H is spanned by two linear forms each of which is a H -linear com-
bination of evaluation maps evQ0, . . . , evQn . Therefore fQ corresponds to the linear system
HQ ⊂ (W/Wq)

∗ determined by the same combination of evaluations. Since both � and f are
assumed Λ-periodic Theorem 4.9 ensures that �q is Λ-periodic, and therefore the Γ1-orbit of
LQ in Pic(Xq) is isomorphic to C/Λ. The proof now follows from Lemma 5.3 by choosing a
coordinate disc on X centred at P and containing Q but not any points in q. The singularities
of such a Darboux transform correspond to points where the Γ1-orbit of WQ, the point in
GrQKP corresponding to the transformed spectral data, leaves the big cell.

6. Spectral curves.
6.1. The QKP spectral curve. In the construction of W ∈ GrQKP from spectral data

we use the map w in (3.10). When this is restricted to the algebraic sections of L over X0

(i.e., those which have only poles at P, ρP ) we obtain an open dense subspace W alg ⊂ W .
The elements ofW alg are algebraic in the sense that their projections ontoH+ are polynomial
in ζ . Now if A denotes the coordinate ring of X \ {P, ρP } its real subalgebra

Aρ = {h ∈ A; ρ∗h = h} ,
acts on W alg by right multiplication, since w(hσ) = w(σ)h (where on the right-hand side we
restrict h to the circle CP ). Therefore

Aρ ↪→ AW = {h ∈ Cω(S1,C);W algh ⊂ W alg} .
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In fact it is easily shown that this inclusion is onto, so that Aρ � AW . Thus we recover
X \ {P, ρP } as Spec(AC

W), where AC
W is the complex subalgebra of Cω(S1,C) generated by

AW . Now (W alg)C , the complexification W alg +W algi ⊂ H , is a torsion free AC
W -module

and this recovers the rank one torsion free coherent sheaf L equipped with the trivialisation
implicit in the inclusion (W alg)C ⊂ H

alg
+ ⊕H−.

Now, in analogy with the KP case, it is clear that we can assign a commutative algebra
AW to any W ∈ GrQKP, but in general this will not be very useful: typically AW = R, and
even if it is not so trivial we only obtain spectral data of the type we desire when (W alg)C

is locally rank one. Nevertheless, we can always obtain Aρ as a commutative algebra of
differential operators over H , and this connects us to the stationary QKP flows. The proof of
the following lemma is obtained mutatis mutandis from [18, Remark 6.4].

LEMMA 6.1. GivenW ∈ GrQKP to each h ∈ AW there is a unique pseudo-differential
operator P(h) ∈ Z0(LW) for which the differential operator part P(h)+ satisfies
P(h)+ψW = ψWh. The R-algebra {P(h)+; h ∈ AW } is isomorphic to AW . It follows
that [P(h)+, LW ] = 0 and therefore the QKP solution corresponding to W is stationary for
every flow ∂P(h).

One consequence of this lemma is that LW admits only finitely many independent non-
stationary QKP flows precisely when the algebra AW possesses an element of every suffi-
ciently high order, and therefore (W alg)C is locally rank one. Hence LW is a solution of finite
type.

6.2. The curve of Darboux transforms. Assume we have a quaternionic holomor-
phic torus f : C/Λ → HP n obtained from spectral data (X, ρ, P,L, q) as described above.
According to Bohle et al. [3] there will be a holomorphic curve in CP 3 given by the Dar-
boux transforms of any torus in HP 1 obtained from f by projection. We are going to use the
interpretation of the Darboux transform given in (5.3) to work directly with f and view the
curve of Darboux transforms as an algebraic curve in CP 2n+1. For this purpose, let fQ be the
quaternionic holomorphic torus obtained from the transformation (5.3). Any projection of f
onto HP 1 then has a Darboux transform by applying the same projection to f Q (see Remark
4.8).

Since fQ = f ρQ, a direct consequence of Theorem 5.4 is a geometric realisation of the
Klein surface Xsm

q /ρ (recall that Xsm
q ⊂ X\q is the subvariety of smooth points), since we

obtain from it a map

F : (C/Λ)× (Xsm
q /ρ) → HP n ; (p,Q + ρQ) �→ fQ(p) .(6.1)

Here we define f P = f . An immediate consequence of Theorems 4.7 and 5.4 is that this
factors through the generalised Jacobian Jac(Xq) via

(C/Λ)× (Xsm
q /ρ) → Jac(Xq); (z,Q+ ρQ) �→ �q(z)⊗ OXq(Q+ ρQ− P − ρP) .
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Post-composition of this with T ◦ θ : Jac(Xq) → HP n (cf. Remark 4.8) gives us F . For each
p ∈ C/Λ let us define

ξp : Xsm
q /ρ → HP n ; ξp(Q) = F(p,Q) = fQ(p) .

This has a natural twistor lift, an algebraic map fromXsm
q into CP 2n+1, which factors through

the Abel map into the generalised Jacobian Jac(Xq), as a consequence of Theorem 4.7.
Let S2Xsm

q denote the symmetric product ofXsm
q with itself; equally, think of it as the set

of all divisors of degree two supported on Xsm
q . Because Xsm

q excludes q and all singularities
of X, this symmetric product admits an Abel map

Aq
P+ρP : S2Xsm

q → Jac(Xq) ; A+ B �→ OXq(A+ B − P − ρP) .(6.2)

We can embedXsm
q algebraically in S2Xsm

q viaQ �→ Q+ρP ; we can also embedXsm
q /ρ real

algebraically by thinking of it as the curve of pairsQ+ρQ forQ ∈ Xsm
q . By post-composing

each of these with the Abel map (6.2) we obtain

α : Xsm
q → Jac(Xq) ; Q �→ OXq(Q− P) ,

β : Xsm
q /ρ → Jac(Xq) ; Q+ ρQ �→ OXq(Q+ ρQ− P − ρP) .

From the discussion above we see that, if L corresponds to the base point p ∈ C/Λ,

ξp = T ◦ θ ◦ β .
We define

ξ̂p = θ ◦ α : Xsm
q → CP 2n+1 .(6.3)

The image of ξ̂p will be called the Darboux spectral curve. It is clearly an algebraic curve.

THEOREM 6.2. ξ̂p is a twistor lift of ξp.

This can be summarised by the following commutative diagram, in which the top line is
the algebraic map ξ̂p and the bottom line is ξp.

Xsm
q

α→ Jac(Xq)
θ→ CP 2n+1

↓ ↓ T
Xsm

q /ρ
β→ JR(Xq)

T ◦θ→ HP n .

(6.4)

PROOF. First we note that OXq(A + B − P − ρP) can be thought of as the bundle
OX(A + B − P − ρP) together with the fibre identification over q uniquely determined by
the rational section with divisor A+ B − P − ρP (there is only one of these, up to scaling).
Consequently the canonical trivialisation of the complex projective bundle PE ′ over Jac(Xq)

(described in the proof of Theorem 4.7) works as follows over α(Xsm
q ). Let σQ be a non-zero

rational section of OX(Q − P) with divisor Q − P . Recall from (4.4) that Lq denotes the
skyscraper sheaf which is L restricted to q. The canonical trivialisation of PE ′ identifies fibres
over α(Xsm

q ) via the isomorphism

ι1 : H 0(X,L(Q− P)q) → H 0(X,Lq) ; s �→ s/σQ ,
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thinking of σQ restricted to q. Similarly, over β(Xsm
q ) we have an isomorphism

ι2 : H 0(X,LQq ) → H 0(X,Lq) ; s �→ s/(σQρ̄
∗σQ) .

Now recall from (4.10) that θ is the result of applying this trivialisation to the line subbundle
of E ′ which picks out the complex line

H 0(X,L(−ρP) ⊗ L) ⊂ H 0(X, (L ⊗ L)q) = E ′
L′ , L = πq(L

′) ,(6.5)

while its twistor projection T ◦ θ corresponds to the quaternionic line

H 0(X,L ⊗ L) ⊂ H 0(X, (L ⊗ L)q) .

The statement of the theorem is that

T ◦ θ ◦ α(Q) = T ◦ θ ◦ β(Q+ ρQ) .(6.6)

To prove this, consider

ι−1
2 ◦ ι1(s) = sρ̄∗σQ ,

when s is a non-zero globally holomorphic section of L(Q−P) with a zero at ρP . The result
is a globally holomorphic section of LQ, since the simple pole of ρ̄∗σQ at ρP is cancelled
by the zero of s. Thus ι1(s) lies in the H -subspace of H 0(X,Lq) given by the image of
H 0(X,LQ) under ι2. This proves (6.6). �

6.3. The multiplier spectrum. Here we will examine how the multiplier spectrum
Sp(L∗,D) is related to the spectral curve X in the case of a quaternionic holomorphic curve
L arising from spectral data in the manner of Section 4.2.

Suppose that we have a conformally immersed torus f : C/Λ → HP 1 of finite type,
with spectral data (X, ρ, P,L, q), i.e., we suppose that the map �q : C → JR(X) is Λ-
periodic. We may as well assume q is the largest ρ-invariant divisor of distinct smooth points
which we can choose with this property. We will show how the multiplier spectrum Sp(L∗,D)
arises from the sections of π∗L∗ obtained by evaluating the global Baker function at different
points of X \ {P, ρP }.

To X we can assign the subgroup

ΓX = {γ ∈ Γ ; γ extends hol. to h : X \ {P, ρP } → C×, ρ∗h = h} .
Notice that Γ− ∩ ΓX = R+ while Γ0 ∩ ΓX = {1}. Clearly we have an exact sequence

1 → Γ−Γ0ΓX → Γ
�→ JR(X) → 1 .

In particular this gives us homomorphisms

µ : ker(�) → Γ0 ; χ : ker(�) → ΓX

defined by the unique factorisation

γ = γ−µ(γ )−1χ(γ ) , γ ∈ ker(�) ,

where γ− is normalised by γ− = 1 +O(ζ−1).
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LEMMA 6.3. The global Baker function ψW for this spectral data satisfies

ψW(t′ + t) = µ(γ )−1ψW(t′)χ(γ ) ,(6.7)

whenever γ = γ (t) ∈ Γ+ ∩ ker(�).

PROOF. The transformation due to Γ0 comes directly from equation (4.3). So let us
assume γ has trivial Γ0 factor and that �(γ ) � OX. Since we are dealing with a global Baker
function there is a trivialisation ϕ over P which extends holomorphically to X. Let ϕ(γ ) be
the trivialisation for L ⊗ �(γ ) obtained by twisting the 1-cocycle for (L, ϕ) by γ . Then

ψW(γ ) =
(

σ

ϕ(γ )
− j

ρ̄∗σ
ϕ(γ )

)
γ ,

where σ is the global section of L(−ρP) normalised by σ |P = ϕ|P . Since γ = γ−χ(γ ) by
assumption, the isomorphism L ⊗ �(γ ) � L equates ϕγ− with ϕ(γ ), hence

ψW(γ ) =
(
σ

ϕ
− j

ρ̄∗σ
ϕ

)
γ−1− γ = ψW(1)χ(γ ) .

Equation (6.7) follows easily from this by replacing L with L ⊗ �(γ ′). �

Now let us restrict � to Γ1 � C. Here it has kernel Λ and we obtain homomorphisms

µ : Λ → S1 ; χ : Λ → ΓX .

We may think of χ as a function on Λ×X \ {P, ρP }. Thus to each point Q ∈ X \ {P, ρP }
we get a function ψW(z,Q) : C → H with the properties

DψW(z,Q) = 0 , ψW (z+ λ,Q) = µ(λ)−1ψW(z,Q)χ(λ,Q) .

Hence χ(λ,Q) ∈ Sp(L∗,D).

THEOREM 6.4. Let f : C/Λ → HP 1 be a non-constant conformal immersion of
finite type from GrQKP, with global Baker function ψ(z,Q) on C × X \ {P, ρP }, and for
which the flat bundle L∗ has monodromy µ ∈ Hom(Λ, S1). Define

χ : Λ×X \ {P, ρP } ; χ(λ,Q) = ψ(0,Q)−1µ(λ)ψ(λ,Q) .

For any pair of generators λ1, λ2 of Λ the holomorphic map

X \ {P, ρP } → Sp(L∗,D) ; Q �→ (χ(λ1,Q), χ(λ2,Q))(6.8)

is surjective onto Sp(L∗,D). Moreover, this map factors through the covering map X \
{P, ρP } → Xq \ {P, ρP }.

PROOF. This map is clearly holomorphic and non-constant when f is non-constant, and
therefore the image is an analytic subvariety of Sp(L∗,D). The image also contains annuli
about each of P, ρP , by the symmetry of the real involution. Since Sp(L∗,D) has at most two
irreducible components, one about each of P, ρP , the image must agree with Sp(L∗,D). At
each point of Q ∈ q we know from Theorem 4.9 that ψ(z,Q) corresponds to a quaternionic
holomorphic section of L∗, i.e., it has trivial multiplier. Hence the map (6.8) factors through
Xq. �
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6.4. A comparison of spectral curves. Taimanov [22] initially proposed that, when
it has finite genus, the normalisation Σ of Sp(L∗,D) should be the spectral curve, and this
is the definition used in [3, 4]. But Σ lacks the subtlety necessary to be useful, because it
throws away crucial information. It does this at two levels: (i) it throws away the information
contained in the divisor q, (ii) unless X is smooth, which it need not be, it throws away
the information of singularities in X. Examples of the latter case have been discussed by
Taimanov himself, in the context of the generalised Weierstrass representation, in [21, 23, 25].

The virtue of the Sp(L∗,D) is that it is directly constructed from the Dirac operator,
equally, the quaternionic holomorphic structure (L∗,D). This means that it is more properly
an invariant of the quaternionic holomorphic curve f : C/Λ → HP n given by (2.1) (where
n+1 = dimH H

0
D(E)). Provided we take q to be the maximal divisor on which the multiplier

of the Baker function is trivial, Xq is likewise an invariant of this quaternionic holomorphic
curve. Congruence of f in HP n, which is the natural equivalence relation on such curves,
gives a broader equivalence than congruence of any of the projections of f into S4, but it
is clear from all the discussions above that this is the correct notion of equivalence from the
point of view of spectral data. The virtue of Xq over Sp(L∗,D) is that it is algebraic and has
no spurious singularities.

For example, in the case of Example 2.2 earlier, q is a divisor of distinct points on X �
C∞, and therefore Xq is a partial resolution of Sp(L∗,D): it keeps the essential information
about where the multipliers are trivial but discards the singularities caused by its immersion
into the plane by (6.8).

This prompts the question of how to describeXq as a cover of Sp(L∗,D)without passing
through the QKP construction. I suspect the answer is something like the following: the kernel
of the Dirac operator should determine over Sp(L∗,D) a coherent analytic sheaf E whose
sections represent functions ψ(z, ζ ) which satisfy Dψ = 0 for each ζ , are holomorphic in ζ ,
and have the appropriate multiplier at ζ . The sheaf of algebras Hom(E, E) would be the model
for the structure sheaf of X \ {P, ρP }. Notice that this is consistent with the construction of
X as the compactification of Spec(AC

W) since AW is isomorphic to an algebra of operators
preserving the kernel of D. This instantly makes E a maximal sheaf over X \ {P, ρP } which
should be both rank one and torsion free.
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