
Tohoku Math. J.
63 (2011), 149–162

SHARED VALUES, PICARD VALUES AND NORMALITY
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Abstract. It is known that a family of meromorphic functions is normal if each func-
tion in the family shares a 3-element set with its derivative. In this paper we consider value
distribution and normality problems with regard to 2-element shared sets. First we construct an
example, by use of the Weierstrass doubly periodic functions, to show that a 3-element shared
set can not be reduced to a 2-element shared set in general. We obtain a new criterion of nor-
mal families and new Picard-type theorems. The proofs make use of some results in complex
dynamics. More examples are constructed to show that our assumptions are necessary.

1. Introduction and main results. A family F of meromorphic functions defined in
a plane domain D ⊂ C is said to be normal in D, if each sequence {fn} ⊂ F contains a
subsequence which converges spherically locally uniformly in D to a meromorphic function
or ∞. See [10, 20, 22].

It was Schwick [21] who first studied the relation between normality and shared values.
He proved that if there exist three distinct finite numbers aj , j = 1, 2, 3 such that every
function f in a family F of meromorphic functions satisfies

f −1({aj }; D) = (f ′)−1({aj }; D)

for j = 1, 2, 3, then the family F is normal in D. Here and in the sequel, f −1(E; D) stands
for the set {z ∈ D ; f (z) ∈ E}. For the case D = C, we simply write f −1(E) instead
of f −1(E; C). Schwick’s result has been improved by Pang-Zalcman [18] and Chang-Fang-
Zalcman [6]. They proved the following theorem.

THEOREM A. Let F be a family of functions meromorphic in D and a1, a2 distinct
finite numbers. If f −1({aj }; D) = (f ′)−1({aj }; D) for j = 1, 2 and for every f ∈ F , then F
is normal in D.

Recently, Liu-Pang [14] improved Schwick’s result as follows.

THEOREM B. Let F be a family of functions meromorphic in D and a, b, c distinct
finite numbers. If f −1({a, b, c}; D) = (f ′)−1({a, b, c}; D) for every f ∈ F , then F is
normal in D.
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Naturally, we may ask whether Theorem B remains true if the 3-element set {a, b, c} is
replaced by a 2-element set {a, b}. We first construct an example to show that the answer to
this question is negative in general.

EXAMPLE 1. For every n ∈ N, let ℘n be a doubly periodic function defined by the
following differential equation

(1.1) (℘ ′
n)

2 = 4(℘n)
3 + 12℘n + 9n2 , ℘n(0) = n ,

and let

fn(z) = 1

2n
℘ ′

n

(
nz

3

)
− 1

2
.

Then we have

n4(fn − 1)2(fn + 2)2 = (f ′
n − 1)(f ′

n + 2)2 .

Thus all poles of fn are triple and f −1
n ({−2, 1}) = (f ′

n)
−1({−2, 1}).

Next we show that the family {fn} is not normal at the origin. By (1.1), we have
|℘ ′

n(0)| = √
4n3 + 9n2 + 12n ≤ 5n

√
n and hence

|fn(0)| ≤ |℘ ′
n(0)|
2n

+ 1

2
≤ 3

√
n .

Again by (1.1), we also have ℘ ′′
n = 6(℘n)

2 + 6, so that

|f ′
n(0)| = |℘ ′′

n(0)|
6

= n2 + 1 .

Thus we have

f #
n (0) = |f ′

n(0)|
1 + |fn(0)|2 ≥ n2 + 1

1 + 9n
→ ∞ .

It follows from Marty’s theorem that {fn} is not normal at the origin.

However, we show that the answer is positive when the quotient a/b lies in some subdo-
main of C. To state our result, we denote

Ω0 = {z ∈ C ; z ∈ ∆̂(1, 1) or 1/z ∈ ∆̂(1, 1)} ,

where

∆̂(1, 1) = {z ∈ C ; |z − 1| < 1 or (z − 1)k = 1 for some positive integer k} .

That is to say, ∆̂(1, 1) is the disk ∆(1, 1) with some boundary points that are translates of
roots of unity. We remark that nonnegative real values and ∞ are in Ω0, while negative real
values are not.

We point out that if two nonzero complex numbers a, b satisfy | arg a/b| ≤ π/3, then
b/a ∈ Ω0.

THEOREM 1. Let F be a family of functions meromorphic in D and a, b distinct
nonzero constants such that b/a ∈ Ω0. If f −1({a, b}; D) = (f ′)−1({a, b}; D) for every
f ∈ F , then F is normal in D.
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COROLLARY 2. Let F be a family of functions meromorphic in D and a, b distinct
nonzero numbers such that | arg a/b| ≤ π/3. If f −1({a, b}; D) = (f ′)−1({a, b}; D) for
every f ∈ F , then F is normal in D.

The proof of Theorem 1 requires the following Picard-type theorems, which are of inde-
pendent interest. Actually the most hard part of the paper is to prove them. We also make use
of some results in complex dynamics.

THEOREM 3. Let a, b be two distinct nonzero numbers such that b/a ∈ Ω0 and f an
entire function satisfying f −1({0}) = (f ′)−1({a, b}). Then f is constant.

If b/a is not in Ω0, Theorem 3 does not hold in general. This is shown by the examples
f1(z) = z2 − z and f2(z) = sin z, each satisfying f −1({0}) = (f ′)−1({−1, 1}). We also note
that Theorem 3 does not hold for meromorphic functions, since the function f (z) = (z2−1)/z

satisfies f −1({0}) = (f ′)−1({1, 2}) and 2/1 = 2 is in Ω0.
For meromorphic functions, we have the following theorem.

THEOREM 4. Let a, b be two distinct numbers such that b/a ∈ Ω0 and f a meromor-
phic function satisfying f −1({0}) = (f ′)−1({a, b}).

(i) If ab = 0 and f is of order less than one, then f is constant.
(ii) If ab 	= 0 and f is nonconstant and of finite order, then either f (z) = a(z − z0) +

d(z − z0)
−n with b = (n + 1)a or f (z) = b(z − z0) + d(z − z0)

−n with a = (n + 1)b, where
d ( 	= 0) and z0 are constants and n is a positive integer.

(iii) If ab 	= 0 and b/a is not in N ∪ 1/N, then f is constant.

Here 1/N stands for the set {1/n; n ∈ N}.
Examples after Theorem 3 show that the assumption b/a ∈ Ω0 in the two results is nec-

essary. More examples can be found in the final section. However, we do not know whether
the set Ω0 can be enlarged. The functions f (z) = ez − 1 and f (z) = (e2z + 1)/(e2z − 1),
satisfying f −1({0}) = (f ′)−1({1, 0}), show that Theorem 4(i) is sharp. But we do not know
whether the hypothesis that f is of finite order is necessary for Theorem 4(ii).

We note that a Bank-Laine function f is an entire function satisfying f −1({0}) ⊂ (f ′)−1

({−1, 1}). The Bank-Laine functions arise in connection with solutions of second order ho-
mogeneous linear differential equations [2], and have been studied in many papers [2, 8, 9,
11, 12, 13].

The plan of the paper is as follows. In Section 2, we state and prove a number of auxiliary
results. In Section 3, we give the proofs of Theorems. In the final section, we make a few
remarks and construct several examples.

2. Auxiliary results. In this section, we state some known results, and prove the main
lemmas that are required in the proofs of our results.

LEMMA 1 ([10, Corollary to Theorem 3.5]). Let f be a transcendental meromorphic
function. Then for every positive integer k, either f or f (k) − 1 has infinitely many zeros.



152 J. CHANG AND Y. WANG

LEMMA 2 ([4, Corollary 2]). Let f be a meromorphic function of finite order ρ and
E be the set of its critical values. Then the number of asymptotic values of f is at most
2ρ+cardE′, where E′ stands for the derived set of E.

LEMMA 3 ([18, Lemma 2.2]). Let f be meromorphic on C such that the set of its finite
critical and asymptotic values is bounded. Then there exists a positive number r0 such that if
|z| > r0 and |f (z)| > r0, then

|f ′(z)| ≥ |f (z)| log |f (z)|
16π |z| .

LEMMA 4 (cf. [10, 22]). Let f be a meromorphic function on the plane such that its
spherical derivative f #(z) = |f ′(z)|/(1 + |f (z)|2) is uniformly bounded. Then f is of order
at most 2.

LEMMA 5 ([17, Lemma 2], cf. [16]). Let F be a family of meromorphic functions in a
domain D, all of whose zeros have multiplicity at least k, and suppose that there exists A ≥ 1
such that |f (k)(z)| ≤ A whenever f (z) = 0 and f ∈ F . Then if F is not normal at z0, there
exist, for each 0 ≤ α ≤ k,

(a) points zn ∈ D, zn → z0;
(b) functions fn ∈ F; and
(c) positive numbers ρn → 0

such that ρ−α
n fn(zn + ρnζ ) = gn(ζ ) → g(ζ ) locally uniformly with respect to the spher-

ical metric, where g is a nonconstant meromorphic function in C, all of whose zeros have
multiplicity at least k, such that g#(ζ ) ≤ g#(0) = kA + 1.

LEMMA 6 ([7, Lemma 12]). Let R be a rational function such that R′ 	= 0 on C. Then
either R = az + b or R = a/(z + c)n + b, where a ( 	= 0), b and c are constant, and n is a
positive integer.

LEMMA 7. Let f be a transcendental meromorphic function of finite order ρ. If f

satisfies f −1({0}) = (f ′)−1({0, 1}), then f ′ has finitely many zeros.

PROOF. Set F = z − f . Then F ′ = 1 − f ′. Since f −1({0}) = (f ′)−1({0, 1}), we
have F(z) = z if and only if F ′(z) is in {0, 1}. It follows that all critical values of F are
super-attracting fixed points of F . So by Lemma 2 or the Denjoy-Carleman-Ahlfors Theorem
[15, p.313], F has at most 2ρ finite asymptotic values.

Now suppose that f ′ has infinitely many zeros zn (n = 1, 2, . . . ), then we see that these
points zn are rationally indifferent fixed points of F with multiplier 1, and hence there exist
parabolic domains Un (n = 1, 2, . . . ) [1, Theorem 2.1] such that zn ∈ ∂Un and Fj →
zn locally uniformly in Un as j → ∞. However, we know that every parabolic domain
contains at least one singular value [3, Theorem 7]. Thus with at most 2ρ exceptions, Un

contains a critical value and hence a super-attracting fixed point of F . Since Fj → zn locally
uniformly in Un, zn coincides with the super-attracting fixed point, which is a contradiction.
This contradiction shows that f ′ has finitely many zeros. Lemma 7 is proved.
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LEMMA 8. Let f be a nonconstant entire functions of finite order such that f −1

({0}) = (f ′)−1({0, 1}). Then f is of the form f (z) = Ceλz − 1/λ for some nonzero con-
stants C and λ.

PROOF. Suppose first that f is transcendental. Then by Lemma 7, f ′ = PeQ, where
P ( 	≡ 0) and Q are a polynomials and Q is non-constant. It follows from f ′ = PeQ that
f ′ − 1 has finite many multiple zeros, and hence by the condition f −1({0}) = (f ′)−1({0, 1}),
(2.1)

f

f ′ − 1
= ReH ,

where R ( 	≡ 0) is a rational function and H is a polynomial.
Thus we have f = ReH (f ′ − 1) = ReH (PeQ − 1) and then

f ′ = [(RP)′ + RP(H ′ + Q′)]eH+Q − (R′ + RH ′)eH .

Since f ′ = PeQ, we then get

(2.2) MeQ − PeQ−H = N ,

where M = (RP)′ + RP(H ′ + Q′) and N = R′ + RH ′. If M ≡ 0, then H ′ + Q′ =
−(RP)′/(RP) → 0 as z → ∞. It follows that H + Q is a constant since H + Q is a
polynomial. On the other hand, since M ≡ 0, by (2.2), we can see that Q − H is also a
constant. Thus Q is a constant, which is a contradiction. Thus M 	≡ 0.

If N 	≡ 0, then by differentiating the both sides of (2.2), we obtain

(M ′ + MQ′)eQ − [P ′ + P(Q′ − H ′)]eQ−H = N ′ .

It with (2.2) yields that

(M ′ + MQ′)eQ − [P ′ + P(Q′ − H ′)]MeQ − N

P
= N ′ ,

so that (
M ′

M
− P ′

P
+ H ′

)
eQ =

(
N ′

N
− P ′

P
+ H ′ − Q′

)
N

M
.

Since Q is nonconstant, it follows that

M ′

M
− P ′

P
+ H ′ = N ′

N
− P ′

P
+ H ′ − Q′ = 0 .

Thus Q′ = N ′/N − M ′/M → 0 as z → ∞. Hence Q is a constant, which is a contradiction.
Thus N = R′ + RH ′ ≡ 0, and hence H ′ = −R′/R → 0 as z → ∞. This with

the fact that H is a polynomial shows that H is a constant, and then so is R. Thus by (2.1),
f ′ −1 = λf for some nonzero constant λ. It follows that f is of the form f (z) = Ceλz −1/λ.

Now consider the case that f is a polynomial. Since f −1({0}) = (f ′)−1({0, 1}), f ′ can
not be constant. Thus we may say

(2.3) f ′(z) =
m∏

j=1

(z − zj )
pj , f ′(z) − 1 =

n∏
j=m+1

(z − zj )
pj ,
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where pj , m, n (≥ m + 1 ≥ 2) are positive integers satisfying

(2.4)

m∑
j=1

pj =
n∑

j=m+1

pj = deg(f ′) = deg(f ) − 1 .

Since f −1({0}) = (f ′)−1({0, 1}), it follows from (2.3) that all zeros of f are zj , 1 ≤ j ≤ n,
where zj , 1 ≤ j ≤ m, have multiplicity pj + 1 while zj ,m + 1 ≤ j ≤ n, are simple zeros.
Thus

deg(f ) =
m∑

j=1

(pj + 1) + n − m =
m∑

j=1

pj + n .

From this with (2.4), we deduce that n = 1, which is impossible. Hence Lemma 8 is proved.

LEMMA 9. Let f be a nonconstant meromorphic function of finite order ρ and a, b

distinct nonzero finite values satisfying |a − b| < |a| or (a − b)k = ak for some positive
integer k. If f (z) = 0 if and only if f ′(z) is in {a, b}, then f is a rational function.

PROOF. We may assume a = 1 and then either |1 − b| < 1 or (1 − b)k = 1. First we
prove that f ′ − b has at most finitely many zeros. Set F = z − f . Then F ′ = 1 − f ′. Since
f (z) = 0 if and only if f ′(z) ∈ {1, b}, we have F(z) = z if and only if F ′(z) ∈ {0, 1 − b}. It
follows that all critical values of F are super-attracting fixed points of F . So by Lemma 2, F

has at most 2ρ finite asymptotic values.
Now assume the contrary that f ′ − b has infinitely many zeros, say {zn}. Then we have

F ′(zn) = 1 − b and hence F(zn) = zn. Since either 0 < |1 − b| < 1 or (1 − b)k = 1, zn are
either attracting fixed points or rationally indifferent fixed points of F .

If zn is an attracting fixed point, then there exists an attracting basin Un such that zn ∈ Un

and Fj → zn locally uniformly in Un as j → ∞ [1, Theorem 2.1]. However, a well-known
fact [3, Theorem 7] is that every attracting basin contains at least one singular value. Thus
with at most 2ρ exceptions, Un contains a critical value and hence a super-attracting fixed
point of F . Since Fj → zn locally uniformly in Un, zn coincides with the super-attracting
fixed point. It is a contradiction.

If zn is a rationally indifferent fixed point, then there exists a parabolic domain Un such
that zn ∈ ∂Un and Fkj → zn locally uniformly in Un as j → ∞ [1, Theorem 2.1]. However,
we know that every parabolic domain contains at least one singular value [3, Theorem 7].
Thus with at most 2ρ exceptions, Un contains a critical value and hence a super-attracting
fixed point of F . Since Fkj → zn locally uniformly in Un, zn coincides with the super-
attracting fixed point. Again this is a contradiction.

Thus f ′ − b has at most 2ρ zeros.
Next we show that f has finitely many zeros. Suppose that f has infinitely many zeros

ζn. Then ζn → ∞. Set G = z − f/b. Then G′ = 1 − f ′/b has at most 2ρ zeros. It follows
that G has at most finitely many critical values and hence has at most 2ρ finite asymptotic
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values. It follows from G(ζn) = ζn and Lemma 3 that, for sufficiently large n,

|G′(ζn)| ≥ |G(ζn)| log |G(ζn)|
16π |ζn| = log |ζn|

16π
→ ∞ .

However, since f (z) = 0 if and only if f ′(z) ∈ {1, b} and f ′ − b has at most 2ρ zeros, for
sufficiently large n, f ′(ζn) = 1 and hence G′(ζn) = 1 − 1/b. This is a contradiction.

Thus f has finitely many zeros. By Lemma 1, f is a rational function. Hence Lemma 9
is proved.

LEMMA 10. Let P be a nonconstant polynomial of degree k, and a and b distinct
nonzero finite values. If P(z) = 0 if and only if P ′(z) is in {a, b}, then k ≥ 2 and either
a + (k − 1)b = 0 or (k − 1)a + b = 0.

PROOF. Obviously, we have k ≥ 2. Let

(2.5) A = PP ′′

(P ′ − a)(P ′ − b)
.

Then A ( 	≡ 0) is a rational function. Since P(z) = 0 if and only if P ′(z) ∈ {a, b}, we see
that A has no pole. So A is a polynomial. Thus A(P ′ − a)(P ′ − b) = PP ′′. Comparing the
degrees and the coefficients, we see that A is a constant and A = (k − 1)/k. Thus by (2.5),

(2.6)
(k − 1)(a − b)

k
· P ′

P
= aP ′′

P ′ − a
− bP ′′

P ′ − b
.

Since P(z) = 0 if and only if P ′(z) ∈ {a, b} and ab 	= 0, all zeros of P are simple. Thus by
(2.6), all zeros of P ′ − a have the same multiplicity, say m, while all zeros of P ′ − b have the
same multiplicity, say n. Let P ′ −a and P ′ −b have s and t distinct zeros, respectively. Then

(2.7) sm = tn = k − 1 .

Since P(z) = 0 if and only if P ′(z) ∈ {a, b}, we have

(2.8) s + t = k .

By (2.7) and (2.8), we see that s and t are relatively prime. In fact, if s and t have a common
divisor q , then by (2.7) and (2.8), q is a common divisor of k and k − 1, which shows q = 1.
Thus by (2.7), st ≤ k − 1, and hence s(k − s) ≤ k − 1. It follows that s ≤ 1 or s ≥ k − 1.
Thus s = 1 or s = k − 1.

If s = 1, then t = m = k − 1 and n = 1. Thus P ′(z) = a + k(z − z0)
k−1, and hence

P(z) = az+C + (z− z0)
k. Since P ′(z0) = a, by the condition, we get P(z0) = 0, and hence

(2.9) P (z) = a(z − z0) + (z − z0)
k = (z − z0)[a + (z − z0)

k−1] .

Since each zero of P ′ − b = a − b + k(z − z0)
k−1 is a zero of P , by (2.9), we see that

a = (a − b)/k. That is, (k − 1)a + b = 0.
Similarly, for the case s = k − 1, we can get a + (k − 1)b = 0. Thus Lemma 10 is

proved.
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LEMMA 11. Let R be a non-polynomial rational function, and a and b distinct finite
values. If R(z) = 0 if and only if R′(z) ∈ {a, b}, then ab 	= 0 and either R(z) = a(z − z0) +
d/(z − z0)

n with b = (n + 1)a or R(z) = b(z − z0) + d/(z − z0)
n with a = (n + 1)b, where

d ( 	= 0) and z0 are constants and n is a positive integer.

PROOF. Let

(2.10) A = RR′′

(R′ − a)(R′ − b)
.

Then A ( 	≡ 0) is a rational function. Since R(z) = 0 if and only if R′(z) ∈ {a, b}, we see that
A has no pole. So A is a polynomial. Next we show that A is a constant.

Since R is a non-polynomial rational function, we have near z = ∞
R(z) = a0z

p[1 + o(1)] ,

where a0 is a nonzero constant and p is an integer. Thus by (2.10),

A = R

a − b

(
R′′

R′ − a
− R′′

R′ − b

)
= a0

a − b
zp[1 + o(1)] · O

(
1

z

)
= O(zp−1) .

Since A ( 	≡ 0) is a polynomial, it follows that p − 1 ≥ 0 and further p = 1 implies that A is
a constant.

Assume p ≥ 2. Then near ∞,

R = a0z
p[1 + o(1)], R′ = pa0z

p−1[1 + o(1)] , R′′ = p(p − 1)a0z
p−2[1 + o(1)] .

Thus by (2.10), we get A = ((p − 1)/p) [1 + o(1)]. It follows that A is a nonzero constant
with A = (p − 1)/p.

Now we prove that a and b are nonzero values. If ab = 0, say a = 0, and then b 	= 0.
By (2.10), we see that R′ 	= 0. In fact, if R′ has a zero z0 of multiplicity q ≥ 1, then by the
assumption that R(z) = 0 if and only if R′(z) is in {0, b}, z0 is a zero of R of multiplicity
q + 1, so that z0 is a zero of A of multiplicity q , which is impossible. Thus, since R′ 	= 0 and
R′ is a non-polynomial rational function, the value 0 is attained by R′(z) at z = ∞, which
contradicts that R′(z) = pa0z

p−1[1 + o(1)] with p ≥ 1. This proves that ab 	= 0.
Next we prove that at least one of R′ − a and R′ − b has no zero on C.
Suppose this is not the case. Since R(z) = 0 if and only if R′(z) ∈ {a, b} and ab 	= 0,

all zeros of R are simple. By (2.10),

(2.11) A(a − b)
R′

R
= aR′′

R′ − a
− bR′′

R′ − b
.

Calculating the residues of both sides of (2.11) at the zeros of R′ − a and R′ − b yields that
all zeros of R′ − a have the same multiplicity, say m, while all zeros of R′ − b have the same
multiplicity, say n, and

(2.12) A(a − b) = am = −bn .

Thus by (2.11) and (2.12),

(2.13) mn
R′

R
= n

R′′

R′ − a
+ m

R′′

R′ − b
.
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It follows that

(2.14) Rmn = C(R′ − a)n(R′ − b)m ,

where C is a nonzero constant. Since R = a0z
p[1 + o(1)] with p ≥ 1, by (2.14), we see that

(2.15) Rmn−(m+n) = C

(
R′ − a

R

)n (
R′ − b

R

)m

→ 0

as z → ∞. It follows that mn − (m + n) = (m − 1)(n − 1) − 1 < 0, so that either m = 1 or
n = 1. Say m = 1. Then by (2.14),

(2.16) Rn = C(R′ − a)n(R′ − b) .

Since R is non-polynomial, it has poles in C. Let z0 be a pole of R of multiplicity t ≥ 1. Then
by (2.16), nt = (n + 1)(t + 1). This is impossible.

Thus either R′ − a 	= 0 or R′ − b 	= 0.
If R′ − a 	= 0, then (R − az)′ 	= 0, so by Lemma 6,

R(z) − az = c + d

(z − z0)n
,

where d ( 	= 0), c and z0 are constants, n is a positive integer. Thus

(2.17) R(z) = (az + c)(z − z0)
n + d

(z − z0)n
, R′(z) − b = (a − b)(z − z0)

n+1 − nd

(z − z0)n+1
.

Since R(z) = 0 if and only if R′(z) is in {a, b} and R′ − a 	= 0, R and R′ − b have the same
zeros. It follows from (2.17) that c = −az0 and (a − b)/a = −n. Thus b = (n + 1)a, and

R(z) = a(z − z0) + d

(z − z0)n
.

Similarly, if R′ − b 	= 0, then a = (n + 1)b and

R(z) = b(z − z0) + d

(z − z0)n
.

Thus Lemma 11 is proved.

3. Proofs of theorems.

PROOF OF THEOREM 3. Suppose that f is nonconstant. Since ab 	= 0 and b/a ∈ Ω0,
we may say b/a ∈ ∆̂(1, 1). It follows that either |a − b| < |a| or (a − b)k = ak for some
positive integer k.

If f is of finite order, then by Lemma 9, f is a polynomial. Thus by Lemma 10, either
a = −pb or b = −pa, where p ∈ N. Each case contradicts either |a − b| < |a| or
(a − b)k = ak.

Thus f is of infinite order. It follows from Lemma 4 that for some sequence zn → ∞,
f #(zn) → ∞. Thus by Marty’s theorem, the family {gn(z) = f (zn + z)} of entire functions
is not normal at z = 0. Since f −1({0}) = (f ′)−1({a, b}), we see that |g ′

n(z)| ≤ |a| + |b|
whenever gn(z) = 0. Thus by Lemma 5, there exist points z∗

n → 0, positive numbers ρn → 0
and a subsequence of {gn}, say {gn} itself w.l.g., such that gn(z

∗
n + ρnζ )/ρn → g(ζ ) locally
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uniformly on C, where g is a nonconstant entire function satisfying g#(ζ ) ≤ |a| + |b| + 1.
By Lemma 4, g is of finite order. Using Hurwitz’s theorem, we can see that g−1({0}) =
(g ′)−1({a, b}). Thus by Lemmas 9 and 10, g is constant, which is a contradiction. Theorem 3
is proved.

PROOF OF THEOREM 4. (i) Since ab = 0, we may say a = 1 and b = 0. Now suppose
that f is nonconstant. By Lemma 7, f ′ has finitely many zeros. However, for a transcendental
meromorphic function f of order less than one, its derivative has infinitely many zeros [4,
Theorem 4 (a)]. So f is a rational function. By Lemma 8, f is not a polynomial. That is,
f is a non-polynomial rational function and has the property f −1({0}) = (f ′)−1({0, 1}). By
Lemma 11, such a rational function does not exist. Hence Theorem 4 (i) is proved.

Next we prove (ii) and (iii). Since b/a ∈ Ω0, we may say b/a ∈ ∆̂(1, 1). Thus either
|a − b| < |a| or (a − b)k = ak for some positive integer k. Now (ii) follows from Lemmas 9
and 11. To prove (iii), we assume f is nonconstant and consider two cases.

If f is of finite order, then by (ii), we have either a = pb or b = pa for some p ∈ N,
which is ruled out by the assumption.

So f is of infinite order. Next, by the same argument used in the proof of Theorem 3,
we can get a nonconstant meromorphic function g of finite order which satisfies g−1({0}) =
(g ′)−1({a, b}). By the above case, this is impossible. Hence (iii) is also proved.

The proof of Theorem 4 is completed.

PROOF OF THEOREM 1. Suppose that F is not normal at some point z0 ∈ D. Then the
family {g = f − a; f ∈ F} is also not normal at z0. Since f (z) is in {a, b} if and only if
f ′(z) is in {a, b}, we have |g ′(z)| ≤ |a| + |b| whenever g(z) = 0. Thus by Lemma 5, there
exist points zn → z0, positive numbers ρn → 0 and functions gn = fn − a such that

hn(ζ ) = (ρn)
−1gn(zn + ρnζ ) → h(ζ )

locally uniformly with respect to the spherical metric, where h is a nonconstant meromorphic
function in C such that h#(ζ ) ≤ h#(0) = |a| + |b| + 1. In particular, by Lemma 4, h is of
order at most two.

We claim that
(i) h(ζ ) = 0 if and only if h′(ζ ) is in {a, b},

(ii) each pole of h (if exists) is multiple, and
(iii) if h has a pole in C, then a/b is a negative rational number.
Proof of (i). Let h(ζ0) = 0. Then since h(ζ ) 	≡ 0, it follows from Hurwitz’s theorem

that there exist points ζn → ζ0 such that hn(ζn) = 0. It yields that gn(zn + ρnζn) = 0 and
hence fn(zn +ρnζn) = a. Thus by the condition, h′

n(ζn) = g ′
n(zn +ρnζn) = f ′

n(zn +ρnζn) is
in {a, b}. Since h′

n(ζn) → h′(ζ0), it follows that h′(ζ0) is in {a, b}. This proves that h(ζ ) = 0
only if h′(ζ ) is in {a, b}.

Next, we prove that h(ζ ) = 0 if h′(ζ ) is in {a, b}. Let h′(ζ0) be in {a, b}. We may assume
that h′(ζ0) = a. Since h#(0) = |a| + |b| + 1, we have h′(ζ ) − a 	≡ 0. Thus by Hurwitz’s
theorem, there exist points ζn → ζ0 such that h′

n(ζn) = a, so that g ′
n(zn+ρnζn) = a and hence
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f ′
n(zn + ρnζn) = a. Thus by the condition, fn(zn + ρnζn) is in {a, b}, so that gn(zn + ρnζn)

is in {0, b − a}, and hence hn(ζn) is in {0, (ρn)
−1(b − a)}. Since h is holomorphic at ζ0, it

follows that h(ζ0) = 0. The proof of claim (i) is completed.
Proof of (ii). Let ζ0 be a pole of h. Then ζ0 is a zero of H = 1/h. Since Hn =

1/hn → 1/h = H locally uniformly with respect to the spherical metric, there exists a closed
neighborhood U(ζ0) of ζ0 on which H and Hn for sufficiently large n are holomorphic, and
Hn → H uniformly. So Hn − ρn/(b − a) → H uniformly. Since H 	≡ 0 and H(ζ0) = 0,
by Hurwitz’s theorem, there exist points ζn → ζ0 such that Hn(ζn) − ρn/(b − a) = 0, so that
gn(zn+ρnζn) = b−a and hence fn(zn+ρnζn) = b. By the condition, h′

n(ζn) = f ′
n(zn+ρnζn)

is in {a, b}, so that |h′
n(ζn)| ≤ |a| + |b|. Thus by H ′

n = −h′
n/(hn)

2 = −h′
n(Hn)

2, we have

|H ′
n(ζn)| = |h′

n(ζn)||Hn(ζn)|2 ≤ |a| + |b|
|b − a|2 (ρn)

2 → 0 .

It follows that H ′(ζ0) = 0. Thus ζ0 is a multiple zero of H , and hence a multiple pole of h.
Thus the claim (ii) is proved.

Proof of (iii). Let ζ0 be a pole of h. By (ii), it has multiplicity m ≥ 2. Then as showed
in the proof of (ii), ζ0 is a zero of H of multiplicity m, and hence there exist m points ζ

(j)
n , j =

1, 2, . . . ,m such that ζ
(j)
n → ζ0 and Hn(ζ

(j)
n ) = ρn/(b − a). As showed in the proof of (ii),

we see that h′
n(ζ

(j)
n ) is in {a, b} and hence

H ′
n(ζ

(j)
n ) = −h′

n(ζ
(j)
n )[Hn(ζ

(j)
n )]2 is in

{
− (ρn)

2a

(b − a)2 ,− (ρn)
2b

(b − a)2

}
.

It follows that ζ
(j)
n are distinct and thus are simple zeros of Hn(ζ ) − ρn/(b − a). Choos-

ing a subsequence if necessary, we may assume that k points {ζ (j)
n }, 1 ≤ j ≤ k, sat-

isfy H ′
n(ζ

(j)
n ) = −(ρn)

2a/(b − a)2 and the other points {ζ (j)
n }, k + 1 ≤ j ≤ m, satisfy

H ′
n(ζ

(j)
n ) = −(ρn)

2b/(b − a)2, where k is independent of n. Thus by Cauchy’s residue theo-
rem,

Res

(
1

H
, ζ0

)
= lim

n→∞

m∑
j=1

Res

(
1

Hn − ρn/(b − a)
, ζ

(j)
n

)

= lim
n→∞

m∑
j=1

1

H ′
n(ζ

(j)
n )

= lim
n→∞

(
k

−(ρn)2a/(b − a)2
+ m − k

−(ρn)2b/(b − a)2

)
= lim

n→∞ − (b − a)2

(ρn)2

(
k

a
+ m − k

b

)
.

It follows that k/a + (m− k)/b = 0, so that a/b is a negative rational number and the residue
of h at ζ0 is zero. Thus (iii) is also proved.

Since negative rational numbers do not lie in Ω0, so by (iii), h is an entire function. Thus
by Theorem 3, h is constant, which is a contradiction.
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The proof of Theorem 1 is completed.

4. Examples and remarks.
a. Related to Theorem 4, we propose the following conjecture.

CONJECTURE 1. Let a, b be distinct non-zero finite values such that b/a 	∈ Q−, where
Q− stands for the set of negative rational numbers. Then there are no transcendental mero-
morphic functions satisfying f −1({0}) = (f ′)−1({a, b}).

The following examples show that if Conjecture 1 is true, then it is sharp in general.

EXAMPLE 2. The function f (z) = sin z satisfies f −1({0}) = (f ′)−1({−1, 1}).
EXAMPLE 3. Let ℘ be the Weierstrass doubly periodic function satisfying (℘ ′)2 =

4℘3 − g2℘ − g3 = 4℘3 − 12℘, and let f (z) = ℘ ′(z/3)/2. Then f satisfies the differential
equation f 4 = (f ′ − 2)2(f ′ + 1), and so f −1({0}) = (f ′)−1({−1, 2}).

EXAMPLE 4. Let ℘ be the Weierstrass doubly periodic function satisfying (℘ ′)2 =
4℘3 − g2℘ − g3 = 4℘3 + 1, and let f (z) = ℘ ′(z/2)/℘2(z/2). Then f satisfies the equation
f 6 = (f ′ − 3)3(f ′ + 1), and so f −1({0}) = (f ′)−1({−1, 3}).

EXAMPLE 5. Let ℘ be the Weierstrass doubly periodic function satisfying (℘ ′)2 =
4℘3−g2℘−g3 = 4℘3−20, and let f (z) = ℘(z/5)℘ ′(z/5)/2. Then f satisfies the differential
equation f 6 = (f ′ − 3)3(f ′ + 2)2, and so f −1({0}) = (f ′)−1({−2, 3}).

b. Theorem B is not true in general if the 3-element set is replaced by a 2-element set,
as shown by Example 1 and the following examples.

EXAMPLE 6. Let a be a nonzero value. For every positive integer n, let

fn(z) = a

2

(
1 + 1

n

)
enz + a

2

(
1 − 1

n

)
e−nz .

Then one can verify that n2[(fn)
2 − a2] = (f ′

n)
2 − a2, so that f −1

n ({−a, a}) = (f ′
n)

−1

({−a, a}). But {fn} is not normal at the origin.

EXAMPLE 7. Let b be a nonzero value. For every n ∈ N, let

fn(z) = b(n + 2 − √
n2 + 4)

2n
− b(

√
n2 + 4 − 2)

n(enz − 1)
.

Then we have

f ′
n(z) = b(

√
n2 + 4 − 2)enz

(enz − 1)2 	= 0 ,

and

b[f ′
n(z) − b] = (

√
n2 + 4 + 2)fn(z)[fn(z) − b] .

It follows that f −1
n ({0, b}) = (f ′

n)
−1({0, b}). However, the family {fn} is not normal at the

origin.
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EXAMPLE 8. For every n ∈ N, let hn be a doubly periodic function defined by the
following differential equation

(4.1) (h′
n)

2 = 1

4n
[(hn)

4 − 4hn] + 1 , hn(0) = √
n ,

and let

fn(z) = 1 + 2h′
n(nz) .

Then we have

n3(fn + 1)3(fn − 3)3 = (f ′
n + 1)(f ′

n − 3)3 .

Thus all poles of fn are double and f −1
n ({−1, 3}) = (f ′

n)
−1({−1, 3}).

Next we show that the family {fn} is not normal at the origin. By (4.1), we see that

|h′
n(0)| =

√
n2 − 4

√
n

4n
+ 1 ≤

√
n + 4

2

and hence |fn(0)| ≤ 1 + √
n + 4. Also by (4.1), h′′

n = [(hn)
3 − 1]/2n, so that |f ′

n(0)| =
2n|h′′

n(0)| = √
n3 − 1. Thus we have

f #
n (0) = |f ′

n(0)|
1 + |fn(0)|2 ≥

√
n3 − 1

1 + (1 + √
n + 4)2

→ ∞ .

It follows from Marty’s theorem that {fn} is not normal at the origin.

c. By the similar argument of proving [7, Theorem B], we can prove the following
result.

THEOREM 5. Let F be a family of meromorphic functions in D, k ≥ 2 an integer and
a, b two distinct nonzero complex values. If for every f ∈ F , all poles of f have multiplicity
at least k, and f −1({a, b}) = (f ′)−1({a, b}), then F is normal in D, provided that k, a, b

satisfy one of the following conditions:
(i) k ≥ 4 and a + b 	= 0,

(ii) k ≥ 3 and (a + b)(a + 2b)(2a + b) 	= 0, and
(iii) k ≥ 2 and (a + b)(a + 2b)(2a + b)(a + 3b)(3a + b) 	= 0.

The above Examples 1 and 6 through 8 show that the conditions of Theorem 5 about a

and b are sharp. In view of Theorems 1 and 5, we propose the following conjecture.

CONJECTURE 2. Let F be a family of functions meromorphic in D, and a, b two dis-
tinct nonzero finite values. If f −1({a, b}) = (f ′)−1({a, b}) for every f ∈ F , then F is normal
in D, so long as b/a 	∈ Q−.
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