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Abstract. In this paper we investigate the image of the l-adic representation attached
to the Tate module of an abelian variety defined over a number field. We consider simple
abelian varieties of type III in the Albert classification. We compute the image of the l-adic
and mod l Galois representations and we prove the Mumford-Tate and Lang conjectures for a
wide class of simple abelian varieties of type III.

1. Introduction. Our main objective in this paper is the computation of the images
of the Galois representations:

ρl : GF → GL(Tl(A)) ,

ρl : GF → GL(A[l]) ,
attached to certain abelian varieties of type III according to the Albert classification list
(cf. [20, p. 201, Theorem 2]). We also prove the Mumford-Tate and Lang conjectures for
these varieties. To be more precise, the main results of this paper concern the following class
of abelian varieties:

DEFINITION 1.1. Abelian variety A/F defined over a number field F is of class B, if
the following conditions hold:

(i) A is a simple abelian variety of dimension g .
(ii) R = EndF̄ (A) = EndF (A) and the endomorphism algebra D = R ⊗Z Q is of

type III in the Albert list of division algebras with involution.
(iii) The field F is such that, for every l, the Zariski closure G alg

l of the image ρl(GF )
in GLVl(A)/Ql is a connected algebraic group.

(iv) g = 2eh, where h is an odd integer and e = [E : Q] is the degree of the center E
of D.

The organization of the paper and its main results are as follows. In Sections 2 and 3,
we give an explicit description of the endomorphism algebra and its involution for an abelian
variety of type III as well as the relation to various bilinear forms coming from Weil pairing.
This detailed treatment of endomorphism algebras and bilinear forms differs significantly
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from that of [6] and [2]. Due to our approach the proof of Theorem 3.29, in Section 3, is
achieved in an explicit way. Theorem 3.29 is an important tool which gives us symmetric
nondegenerate forms out of symplectic forms coming from the Weil pairing. These symmetric
forms are defined over the rings of integers in the completions of the center of D at primes
over l for l � 0. In Section 4 we compute Lie algebras that lead to the determination of
(G

alg
l )′ (Theorem 4.19). In Section 5 we apply Theorem 4.19 in the proof of the Mumford-

Tate conjecture for the abelian varieties of class B:
THEOREM 5.11. If A is an abelian variety of class B, then

G
alg
l = MT(A)⊗ Ql ,

for every prime number l, where MT(A) denotes the Mumford-Tate group of A, i.e., the
Mumford-Tate conjecture is true for A.

This generalizes the result of Tankeev [32] who proved the Mumford-Tate conjecture
for abelian varieties of type III, with similar dimension restrictions, such that End(A) ⊗ Q

has center equal to Q. In particular, Theorem 5.11 implies the result of Tankeev [32] for
abelian varieties over number fields such that G alg

l is connected for every l. We have been
very recently informed by A. Vasiu about his results [35] where he proves some cases of the
Mumford-Tate conjecture for abelian varieties of types I through IV.

On the way of the proof of Mumford-Tate conjecture, we also compute explicitly the
Hodge group and prove that it is equal to the Lefschetz group. However this is not enough to
get the Hodge conjecture for abelian varieties of type III of class B (cf. [21]). Note that the
proof of Mumford-Tate conjecture and equality of Hodge and Lefschetz groups for abelian
varieties of type I and II of class A in [2] gave us the Hodge and Tate conjectures for these
abelian varieties. In Section 6 (Theorem 6.29) we estimate the images ρl(G′

F ) and ρl(G′
F )

where G′ := [G, G] denote the closure of the commutator subgroup for any profinite group
G. This estimation gives the following theorem.

THEOREM 6.31. If A is an abelian variety of class B, then for l � 0

ρl(G
′′
F ) =

∏
λ|l

SO(Tλ, ψλ)(Oλ)
′ ,

ρl(G
′′
F ) =

∏
λ|l

SO(Aλ[λ], ψλ)(kλ)
′ .

Let κ be the Z-bilinear, non-degenerate, alternating pairing κ : Λ×Λ → Z given by the
polarization of A, whereΛ is the Riemann lattice such thatA(C) = Cg/Λ. Let CR(Sp(Λ, κ))
be the centralizer of R in Sp(Λ, κ). In the proof of Proposition 6.23 we show that:

CR(Sp(Λ, κ))⊗Z Zl ∼=
∏
λ|l

SO(Tλ, ψλ) for l � 0 .

In Section 7 we prove the following generalization of the open image theorem of Serre
[27], [29].
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THEOREM 7.2. Let A be an abelian variety of class B and let r(l) be the number of
primes over l in OE. Then:

(i) ρl(GF ) is open in CR(GSp(Λ, κ))(Zl ) for every prime number l,

(ii) ρl(G
′
F ) has index dividing 2r(l) in CR(Sp(Λ, κ))(Zl ) for l � 0,

(iii) ρl(G
′′
F ) = CR(Sp(Λ, κ))(Zl )

′ for l � 0.

For other results concerning the images of Galois representations coming from abelian
varieties, see also [33], [34].

2. Abelian varieties of type III and their endomorphism algebras. Let A/F be a
simple abelian variety of dimension g such thatD = EndF̄ (A)⊗Z Q = EndF (A)⊗Z Q and
the polarization of A is defined over F. We assume that A/F is an abelian variety over F of
type III according to the Albert’s classification list. Hence D is a definite quaternion algebra
overE with center E, a totally real extension of Q of degree e such that, for every imbedding
E ⊂ R,

D ⊗E R = H .

Observe that in this case [D : E] = 4 so g = 2eh where e = [E : Q] and h is an integer.
We take l � 0 such that A has good reduction at all primes over l (cf. [30]) and the algebra
D splits over all primes over l and l does not divide the degree of the polarization. Let RD

be a maximal order in D. Since R = EndF̄ (A) is an order in D, we observe that R ⊗Z Zl =
RD ⊗Z Zl for l that does not divide the index [RD : R]. Since R is a finitely generated free
Z-module, we check that R ∩ E = O 0

E is an order in OE.

To get explicit information about the algebra D we start with a more general framework.
Let D be a division algebra with two involutions ∗1 and ∗2 and the center E. For each x ∈ D
we will denote x∗i to be the image of the involution ∗i acting on x. By Skolem-Noether
Theorem [24, p. 103], there is an element a ∈ D such that for each x ∈ D we have:

x∗2 = ax∗1a−1 .(2.1)

Because ∗i ◦ ∗i = idD, applying ∗2 to (2.1), we get

a∗1 = εa(2.2)

for ε ∈ E and applying ∗1, we check that ε2 = 1. Hence ε = 1 or ε = −1 (cf. [20, p. 195]).
Observe that the center ofD is invariant under any involution ofD. Hence, by (2.1), c∗1 = c∗2

for every c ∈ E. Let E0 = {c ∈ E ; c∗1 = c∗2 = c}. Then E/E0 is an extension of degree at
most 2.

For a simple abelian variety of type III, E = E0 and E is totally real (cf. [20, p. 194]).
Also in this case ε = 1 in (2.2) (cf. [20, pp. 193–196]). Hence a ∈ E and ∗2 = ∗1. Therefore
the division algebra D coming from a simple abelian variety of type III has a unique positive
involution ∗ , i.e., the Rosati involution. Moreover the map D → D given by α → α∗ is an
isomorphism of E-algebras so by [24, p. 96, Corollary 7.14 ], the algebraD gives an element
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of order 1 or 2 in Br(E). Since D is a noncommutative division algebra, it gives an element
of order 2 in Br(E).

By [24, Theorem 32.20], every central simple E-algebra is cyclic. This shows that D is
isomorphic, as an E-algebra, to the division algebra

D(c, d) := {a0 + a1α + a2β + a3αβ ; α2 = c, β2 = d, αβ = −βα} .(2.3)

This isomorphism induces the unique positive involution on D(c, d) which will also be de-
noted by ∗. Therefore ∗ must be the natural positive involution

(a0 + a1α + a2β + a3αβ)
∗ = a0 − a1α − a2β − a3αβ

on D(c, d). From now on we identify D with D(c, d). Since D ⊗E R = H for every
imbedding E → R, we observe that c and d are totally negative numbers. Put L = E(α). Let
η = a0 + a1α and γ = a2 + a3α. Hence

η + γβ = a0 + a1α + a2β + a3αβ .

For an element δ = e+fα ∈ L with e, f ∈ E, put δ̄ = e−fα. The field L splits the algebra
D(c, d). Namely we have an isomorphism of L algebras:

D(c, d)⊗E L → M2,2(L)(2.4)

(η + γβ)⊗ 1 �→
[
η γ

dγ̄ η̄

]
.

From this isomorphism it is clear that

(η + γβ)∗ = Tr0(η + γβ)− (η + γβ)

because by definition

Tr0(η + γβ) = Tr

[
η γ

dγ̄ η̄

]
= 2a0 ,

where Tr 0 denotes the reduced trace (see [24, pp. 112–116]) from D(c, d) to E. The involu-
tion on M2,2(L) induced by ∗ is of the following form:

B ∗ = J tBJ−1(2.5)

where B ∈ M2,2(L) and

J =
[

0 1
−1 0

]
.

REMARK 2.6. It is clear that if we take in the above computations, instead of L =
E(α), the field E(β) or E(αβ), then they also split the algebra D by a formula similar to
(2.4), and the involution ∗ will induce on M2,2(E(β)) and M2,2(E(αβ)) the involution given
by formula (2.5).
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Note that any maximal commutative subfield ofD(c, d) has form E(a1α+ a2β+ a3αβ)

for some a1, a2, a3 ∈ E not all equal to zero. If Nr0 : D(c, d) → E denotes the reduced
norm, then, for every η + γβ ∈ D(c, d), we have

Nr0(η + γβ) = det

[
η γ

dγ̄ η̄

]
= (η + γβ)∗(η + γβ)

=a2
0 − a2

1c − a2
2d + a2

3cd = a2
0 − (a1α + a2β + a3αβ)

2 .

(2.7)

For some a1, a2, a3 ∈ E not all equal to zero, put α′ := a1α + a2β + a3αβ. If β ′ :=
b1α + b2β + b3αβ is an element of D(c, d), put c1 := a3b2 − a2b3, c2 := a1b3 − a3b1 and
c3 := a1b2 − a2b1. Then

α′β ′ = a1b1c + a2b2d − a3b3cd + c1dα + c2cβ + c3αβ(2.8)

and

det


 a1 a2 a3

b1 b2 b3

dc1 cc2 c3


 = −d c2

1 − c c2
2 + c2

3 ≥ 0 .(2.9)

Since c < 0 and d < 0, the determinant in (2.9) is zero if and only if the elements α′
and β ′ are linearly dependent over E. Hence it is possible to find β ′ in such a way that
a1b1c + a2b2d − a3b3cd = 0 and the determinant in (2.9) is nonzero. With this choice of
β ′, we see that c′ := α′2 < 0, d ′ := β ′2 < 0 and α′β ′ = −β ′α′. We observe that, for any
a′

0, a
′
1, a

′
2, a

′
3 ∈ E

(a′
0 + a′

1α
′ + a′

2β
′ + a′

3α
′β ′)∗ = a′

0 − a′
1α

′ − a′
2β

′ − a′
3α

′β ′ .(2.10)

Hence D(c, d) = D(c′, d ′), and we can use the field L = E(α′) and the isomorphism (2.4)
for this field to split our algebraD(c′, d ′). Recall that D(c, d)⊗E R ∼= H for any imbedding
E → R, so D(c′, d ′)⊗E R ∼= H for any imbedding E → R. Hence all numbers c, d, c′, d ′
are negative in any imbedding E → R.

For a given prime number l, throughout the paper, λ will denote an ideal in OE such that
λ|l and w will denote an ideal of OL such that w|λ.

Let S be a finite set of primes of Z such that it contains 2 and all prime numbers divisible
by primes in the decomposition of c and d. Moreover we assume that S contains the prime
numbers divisible by prime ideals of OE that are ramified primes for the algebra D (cf. [24,
Theorem 32.1]). We can also assume that S is big enough so that RS := R ⊗O0

E
OE,S is a

maximalOE,S order ofD with RS∩E = OE,S andRS = OE,S+OE,Sα+OE,Sβ+OE,Sαβ.

LEMMA 2.11. Let l /∈ S and λ | l. There is a finite set S′ of prime numbers such
that S ⊂ S′ and l /∈ S′, and there are elements α′ := a1α + a2β + a3αβ ∈ RS and
β ′ := b1α + b2β + b3αβ ∈ RS ′ := RS ⊗OE,S

OE,S ′ such that

(i) c′ := α′2 and d ′ := β ′2 are relatively prime to λ and α′β ′ = −β ′α′,
(ii) D(c, d) = D(c′, d ′) and RS ′ = OE,S ′ + OE,S ′α′ + OE,S ′β ′ + OE,S ′α′β ′,
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(iii) the maximal commutative subfield L = E(α′) of D(c, d) gives the isomorphism
(2.4) which induces the imbedding of OE,S ′ -algebras

RS ′ → M2,2(OE,S ′) ,(2.12)

(iv) for Rλ := RS ⊗OE,S
Oλ the imbedding (2.12) yields, after tensoring with Oλ, the

isomorphism of Oλ-algebras

Rλ 
 M2,2(Oλ) .(2.13)

PROOF. By [24, Theorems 22.4, 22.15 and 24.13], there is a maximal ideal M ⊂ R
such that Nr0(M) = λ. Let P ⊂ M be the unique prime ideal of R corresponding to M (cf.
[24, Theorem 22.15]). By our choice of l and [24, Theorem 32.1], we get λR = P . It follows
by [24, Theorem 22.10 and Corollary 24.12] that there is an element t ∈ λ \ λ2 such that
Nr0(m) = t for some m = a0 + a1α + a2β + a3αβ ∈ M. Formula (2.7) gives

t = a2
0 − (a1α + a2β + a3αβ)

2 = a2
0 − ca2

1 − da2
2 + cda2

3 .

Since t ∈ λ \ λ2, it is clear that ai /∈ λ for some 0 ≤ i ≤ 3. By multiplying the last formula
by −c, −d and cd, we get additional three formulas

−ct = (ca1)
2 − (a0α + ca3β + a2αβ)

2 = (ca1)
2 − ca2

0 − d(ca3)
2 + cda2

2 ,

−dt = (da2)
2 − (da3α + a0β + a1αβ)

2 = (da2)
2 − c(da3)

2 − da2
0 + cda2

1 ,

cdt = (cda3)
2 − (da2α + ca1β + a0αβ)

2 = (cda3)
2 − c(da2)

2 − d(ca1)
2 + cda2

0 .

Based on these four formulas, we put

α0 := a1α + a2β + a3αβ , L0 := E(α0) ,

α1 := a0α + ca3β + a2αβ , L1 := E(α1) ,

α2 := da3α + a0β + a1αβ , L2 := E(α2) ,

α3 := da2α + ca1β + a0αβ , L3 := E(α3) .

If a0 /∈ λ, then the equality t = a2
0 − (α0)

2 shows that (α0)
2 is a square in O×

λ . So λ
splits in L0.

If a1 /∈ λ, then ca1 /∈ λ and the equality −ct = (ca1)
2 − (α1)

2 shows that (α1)
2 is a

square in O×
λ . So λ splits in L1.

If a2 /∈ λ, then da2 /∈ λ and the equality −dt = (da2)
2 − (α2)

2 shows that (α2)
2 is a

square in O×
λ . So λ splits in L2.

If a3 /∈ λ, then cda3 /∈ λ and the equality cdt = (cda3)
2 − (α3)

2 shows that (α3)
2 is a

square in O×
λ . So λ splits in L3.

Thus we can choose α′ = a1α + a2β + a3αβ to be an appropriate αi , and L equal to
correspondingLi for some elements a1, a2, a3 ∈ OE,S .Observe that c′ := α′2 = ca2

1 +da2
2 −

cda2
3 /∈ λ by above constructions. We will construct β ′ := b1α + b2β + b3αβ ∈ D such that:

ca1b1 + da2b2 − cda3b3 = 0 ,(2.14)
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d ′ := β ′2 = cb2
1 + db2

2 − cdb2
3 /∈ λ .(2.15)

Because c′ /∈ λ, without loss of generality, we can assume that a1 /∈ λ. The case a2 /∈ λ

is done in the same way and ditto the case a3 /∈ λ under observation that (αβ)2 = −cd.
Because c < 0, d < 0, −cd < 0 in every real imbedding E → R, the equation (2.14) shows
that α′ and β ′ are linearly independent over E and α′ β ′ = −β ′ α′.

Consider the following cases.
(1) If a2, a3 ∈ λ , we can take any b2 ∈ λ and b3 /∈ λ, and compute b1 from (2.14)

to find out that b1 ∈ λ and (2.15) holds.
(2) If a2 /∈ λ and a3 ∈ λ , we can take any b2 /∈ λ, and b3 ∈ λ, and compute b1 from

(2.14) to find out that b1 ∈ λ and (2.15) also holds. Similarly we treat the case a2 ∈ λ and
a3 /∈ λ.

(3) If a2 /∈ λ and a3 /∈ λ and if c is not a square mod λ , then taking any b2, b3 /∈ λ

such that b1 = d(ca3b3 − a2b2)/(a1c) ∈ λ we find out that (2.15) holds. Note that, in the
case c is a square mod λ we can simply take α′ = α, β ′ = β and L = E(α) from the very
beginning to prove the lemma.

Define S′ := S ∪ {p ; p divisible by primes of OE dividing a1, c
′ and d ′}. Note that

with this choice of S′ we get β ′ ∈ RS ′ . Observe that using formula (2.8) and (2.14),

−c′d ′ = (α′β ′)2 = c2
1d

2c + c2
2c

2d − c2
3cd = −cd(−c2

1d − c2
2c + c2

3) .

By formula (2.9) and definition of S′, we get equality of free OE,S ′ -modules: OE,S ′α +
OE,S ′β+OE,S ′αβ = OE,S ′α′ +OE,S ′β ′ +OE,S ′α′β ′. This gives RS ′ := RS ⊗OE,S

OE,S ′ =
OE,S ′ + OE,S ′α′ + OE,S ′β ′ + OE,S ′α′β ′.

Observe that the elements 1⊗1, α′ ⊗1, β ′⊗1 and α′β ′⊗1 are mapped correspondingly,
via the imbeding (2.12), to elements[

1 0
0 1

]
,

[
α′ 0
0 −α′

]
,

[
0 1
d ′ 0

]
,

[
0 α′

−d ′α′ 0

]
.

Since λ splits completely in L = E(α′) and λ does not divide c′ we get α′ ∈ Oλ
×. Since λ

does not divide d ′ either, we observe that the matrices eij ∈ M2,2(Oλ) are in the image of the
map (2.13), where eij has the (i, j)-entry equal to 1 and all other entries are 0. Hence (2.13)
is an isomorphism of Oλ-algebras. �

3. Bilinear forms associated with abelian varieties of type III. Put Rl = R ⊗ Zl

andDl = D⊗Ql . The polarization ofA gives a Z-bilinear non-degenerate alternating pairing

κ : Λ×Λ → Z ,(3.1)

where Λ is the Riemann lattice such that A(C) = Cg/Λ. This pairing, upon tensoring with
Zl ([19, diagram on page 133]), becomes Zl-bilinear non-degenerate alternating pairing

κl : Tl(A)× Tl(A) → Zl ,(3.2)
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derived easily from the Weil pairing. If l does not divide the degree of the polarisation of A,
then for any α ∈ Rl we get α∗ ∈ Rl (see [19, Chapters 13 and 17]) where α∗ is the image of α
via the Rosati involution. Hence for any v,w ∈ Tl(A), we have κl(αv,w) = κl(v, α

∗w) (see
loc. cit.). Let Vl(A) = Tl(A)⊗Zl Ql , and let κ0

l : Vl(A)×Vl(A) → Ql be the bilinear form
κl⊗Zl Ql . For any l that is unramified inE, by [2, Lemma 3.1], there is a unique OEl -bilinear
form

φl : Tl(A)× Tl(A) → OEl(3.3)

such that TrEl/Ql
(φl(v1, v2)) = κl(v1, v2) for all v1, v2 ∈ Tl(A). Put

φ0
l = φl ⊗Zl Ql : Vl(A)× Vl(A) → El .(3.4)

By uniqueness of the form φl, for each α ∈ Rl and for all v1, v2 ∈ Tl(A), we have

φl(αv1, v2) = φl(v1, α
∗v2) ,(3.5)

hence φ0
l (αv1, v2) = φ0

l (v1, α
∗v2) for each α ∈ Dl and for all v1, v2 ∈ Vl(A).

Let S be the set of primes which contains all the primes described in the hypotheses of
Lemma 2.11. We can enlarge S so that it also contains all primes that ramify in E and all
primes that divide the polarisation degree of A. Now, for such an S and for any l /∈ S, we
apply Lemma 2.11 to construct the appropriate field L.

Define Tw(A) = Tl(A)⊗O0
E
Ow, Vw(A) = Vl(A)⊗E Lw and

φw = φl ⊗O0
E
Ow : Tw(A)× Tw(A) → Ow .(3.6)

Hence φ0
w := φw ⊗Ow

Lw is the Lw-bilinear form:

φ0
w : Vw(A)× Vw(A) → Lw .(3.7)

The form φw is non-degenerate if φl is non-degenerate.
Let eλ be the idempotent corresponding to the decomposition OEl

∼= ∏
λ|l Oλ. Put

Tλ(A) = eλTl(A) ∼= Tl(A) ⊗OEl
Oλ and Vλ(A) = Tλ(A) ⊗Oλ

Eλ. Define Oλ-bilinear
form φλ by φλ = φl ⊗O0

E
Oλ.

For l /∈ S we have Oλ = Ow. Hence φλ = φw.

DEFINITION 3.8. Define a new bilinear form ψλ as follows.

ψλ : Tλ(A)× Tλ(A) → Oλ ,(3.9)

ψλ(v1, v2) = φλ(Jv1, v2)

for all v1, v2 ∈ Tλ(A).
This gives us the corresponding kλ-bilinear form

ψλ = ψλ ⊗Oλ
kλ : A[λ] × A[λ] → kλ(3.10)

and the Eλ-bilinear form

ψ0
λ = ψλ ⊗Oλ

Eλ : Vλ(A)× Vλ(A) → Eλ .(3.11)
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By (2.4) and Lemma 2.11, we get the following isomorphisms

Dλ := D ⊗E Eλ ∼= M2,2(Eλ) ,(3.12)

which obviously induces isomorphisms

Rλ
∼= R ⊗O0

E
Oλ

∼= M2,2(Oλ) .(3.13)

REMARK 3.14. We should note that an isomorphism between both sides of (3.13) can
be obtained by [24, Corollary 11.6 and Theorem 17.3] for l � 0. However these results give
an isomorphism which comes from a conjugation by an element of D ⊗E Ll ∼= M2,2(Ll)

(see [24, loc. cit.]). To keep track of the action of the involution ∗ , we prefer to use the
isomorphism (3.13).

PROPOSITION 3.15. The involution ∗ induced on Rλ
∼= M2,2(Oλ) (resp. on Dλ ∼=

M2,2(Eλ) ) from D has the form B∗ = J tBJ−1 for any B ∈ Rλ (resp. for any B ∈ Dλ).
PROOF. By (2.4) and (2.5), for any B ∈ M2,2(L), we get B∗ = J tBJ−1. Hence the

claim follows by (3.12) and (3.13) �

Observe that, by (2.5) for each B ∈ Rλ and for all v1, v2 ∈ Tλ(A), we have

φλ(Bv1, v2) = φλ(v1, B
∗v2) = φλ(v1, J

tBJ−1v2) .

Therefore, for each B ∈ M2,2(Eλ) and for all v1, v2 ∈ Vλ(A), we have

φλ(Bv1, v2) = φλ(v1, B
∗v2) = φλ(v1, J

tBJ−1v2) .

PROPOSITION 3.16. For any v1, v2 ∈ Tλ(A) and B ∈ Rλ, we have

ψλ(Bv1, v2) = ψλ(v1,
tBv2) .

Hence for any v1, v2 ∈ A[λ] and any B ∈ Rλ ⊗Oλ
kλ ∼= M2,2(kλ) (resp. for any v1, v2 ∈

Vλ(A) and any B ∈ M2,2(Eλ)), we have

ψλ(Bv1, v2) = ψλ(v1,
tBv2)

(resp. ψ0
λ(Bv1, v2) = ψλ(v1,

tBv2)) .

Moreover ψλ (resp. ψ0
λ) is symmetric (resp. antisymmetric) if and only if φλ (resp. φλ0) is

antisymmetric (resp. symmetric).

PROOF. We get the first equality as

ψλ(Bv1, v2) = φλ(JBv1, v2) = φλ(v1, J
tB tJ J−1v2) = φλ(v1, −J tBv2)

= φλ(v1, J
tJJ−1 tBv2) = φλ(Jv1,

tBv2) = ψλ(v1,
tBv2) .

The remaining claim follows by Definition 3.8 and by the observation that tJ = J−1 = −J
and J tJ J−1 = −J. �

REMARK 3.17. All bilinear forms ψλ,ψλ and ψ0
λ are symmetric and non-degenerate.

This follows by results of this section, [2, Lemmas 3.1 and 3.2] and by the non-degeneracy of
the pairing (3.1) which is independent of l.



172 G. BANASZAK, W. GAJDA AND P. KRASOŃ

We proceed to investigate some natural Galois actions. From now on, we assume that
R = EndF̄ (A) = EndF (A). Consider the representations

ρl : GF → GL(Tl(A)) ,

ρ0
l : GF → GL(Vl(A)) ,

ρl : GF → GL(A[l]) .
Let G alg

l be the Zariski closure of ρl(GF ) in GLTl(A), and let G alg
l be the Zariski closure of

ρ0
l (GF ) in GLVl(A). Let G(l) alg be the special fiber of G alg

l /Zl . Note that G alg
l is the general

fiber of G alg
l /Zl . This gives natural representations

ρλ : GF → GL(Tλ(A)) ,

ρ0
λ : GF → GL(Vλ(A)) ,

ρλ : GF → GL(A[λ]) .
We define G alg

λ to be the Zariski closure of ρλ(GF ) in GLTλ(A), and G alg
λ the Zariski closure

of ρ0
λ(GF ) in GLVλ(A). Let G(λ) alg be the special fiber of G alg

λ /Oλ. Then, G alg
λ is the general

fiber of G alg
λ /Oλ.

LEMMA 3.18. Let χλ : GF → Zl ⊂ Oλ be the composition of the cyclotomic char-
acter with the natural imbedding Zl ⊂ Oλ. Let l � 0 be such that λ|l be a prime of E which
splits in L.

(i) For any σ ∈ GF and all v1, v2 ∈ Tλ(A), we have

ψλ(σv1, σv2) = χλ(σ)ψλ(v1, v2) .

(ii) For any B ∈ R ⊗O0
E
Oλ and all v1, v2 ∈ Tλ(A), we have

ψλ(Bv1, v2) = ψλ(v1,
tBv2) .

PROOF. (i) follows by [6, Lemma 2.3] or [2, Lemma 4.7] which concern the pairing
φλ and by (3.9) and definition 3.8, because the GF -action commutes with the action of R
on Tl(A). Indeed, since ψλ(v,w) = φλ(Jv,w) and J commutes with the GF -action by
assumption, we get immediately statement (i) for ψλ. Part (ii) follows by Proposition 3.16. �

By [10, Theorem 3] and [2, Lemma 4.17] GF acts on both Vλ(A) and A[λ] semi-simply
andG alg

λ andG(λ) alg are reductive algebraic groups. Hence G alg
λ is a reductive group scheme

over Oλ for l � 0 by [18, Prop. 1.3] (cf. [36, Theorem 1]).
Let

t =
(

1 0
0 −1

)
, u =

(
0 1
1 0

)
.

Let f = (1 + u)/2, X = f Tλ(A) and Y = (1 − f ) Tλ(A). Put X = X⊗Oλ
Eλ,

Y = Y⊗Oλ
Eλ, X = X⊗Oλ

kλ and Y = Y⊗Oλ
kλ. Because tf t = 1 − f, the matrix t

gives an Oλ[GF ]-isomorphism between X and Y, hence it gives an Eλ[GF ]-isomorphism
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between X and Y and a kλ[GF ]-isomorphism between X and Y . Using the computations of
endomorphism algebras by [10, Satz 4] and [37, Corollary 5.4.5], we get:

EndOλ[GF ] (X ) = Oλ ,(3.19)

EndEλ[GF ] (X) = Eλ ,(3.20)

Endkλ[GF ] (X ) = kλ .(3.21)

So the representations ofGF on the spacesX and Y (resp.X andY ) are absolutely irreducible
over Eλ (resp. over kλ). Hence, the bilinear form ψ0

λ (resp. ψλ) when restricted to either of
the spaces X,Y (resp. spaces X and Y) is non-degenerate or isotropic.

LEMMA 3.22. The modules X and Y are orthogonal with respect toψλ.Consequently,
the modules X and Y (resp. X and Y) are orthogonal with respect to ψ0

λ (resp. ψλ).

PROOF. Note that uf = f and u(1 − f ) = −(1 − f ). Hence for every v ∈ X and for
every w ∈ Y, we get uv = v and uw = −w. Hence

ψλ(v,w) = ψλ(uv,w) = ψλ(v, u
tw) = ψλ(v, uw) = ψλ(v,−w) = −ψλ(v,w) .

Hence ψλ(v,w) = 0 for every v ∈ X and for every w ∈ Y. �

THEOREM 3.23. Let A be of type III and l � 0. Then there is a free Oλ-module
Wλ(A) of rank 2h with the following properties.

(i) Tλ(A) ∼= Wλ(A)⊕ Wλ(A) as Oλ[GF ]-modules.
(ii) There exists a symmetric, non-degenerate pairing ψλ : Wλ(A)× Wλ(A) → Oλ.

(ii′) ForWλ(A) = Wλ(A)⊗Oλ
Eλ, the induced symmetric pairing

ψ0
λ : Wλ(A)×Wλ(A) → Eλ

is non-degenerate. The GF moduleWλ(A) is absolutely irreducible.
(ii′′) For Wλ(A) = Wλ(A)⊗Oλ

kλ, the induced symmetric pairing

ψλ : Wλ(A)× Wλ(A) → kλ

is non-degenerate. The GF module Wλ(A) is absolutely irreducible.
Pairings (ii), (ii′) and (ii′′) are compatible with the GF -action in the same way as the pairing
in Lemma 3.18 (i).

PROOF. (i) follows by taking Wλ(A) = X .We get (ii) by restrictingψλ to X . To finish
the proof, observe that the form (3.2) is non-degenerate, so ψl = ψl ⊗ F l is non-degenerate
for any abelian variety with polarization degree prime to l. By [2, Lemma 3.2], the form ψλ
is non-degenerate for all λ, hence the forms ψ0

λ and ψλ are simultaneously non-degenerate.
Hence (ii′) and (ii′′) follow by (ii), (3.20) and (3.21) and also by Remark 3.17 and Lemma
3.22. �
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4. Representations associated with Abelian varieties of type III. Let A/F be an
abelian variety of type III. The field of definition F is such that G alg

l is a connected algebraic
group. Let us put Tλ = Wλ(A), Vλ = Tλ ⊗Oλ

Eλ and Aλ = Vλ/Tλ. With this notation, by
Theorem 3.23 we have Vl(A) = ⊕

λ|l
(
Vλ ⊕ Vλ

)
. We put

Vl =
⊕
λ|l
Vλ .(4.1)

Let VΦλ be the space Vλ considered over Ql . Then there is the following equality of Ql-vector
spaces:

Vl =
⊕
λ|l
VΦλ .(4.2)

The l-adic representation

ρ0
l : GF → GL(Vl(A))(4.3)

induces the following representations (note that we use the notation ρ0
l for both representa-

tions (4.3) and (4.4)) (cf. [2, Remark 5.13]):

ρ0
l : GF → GL(Vl) ,(4.4)

ρ0
λ : GF → GL(Vλ) .(4.5)

Consider the representation ρΦλ defined in [2, p. 54]:

ρΦλ : GF → GL(VΦλ) .(4.6)

By Theorem 3.23 (cf. [2, Remark 5.13]), the group scheme G alg
l (resp. G alg

λ ) is naturally
isomorphic to the Zariski closure in GLVl (resp. GLVλ ) of the image of the representation ρl
of (4.4) (resp. ρλ of (4.5)). Let G alg

Φλ
denote the Zariski closure in GLVΦλ of the image of the

representation ρΦλ of (4.6). Let gl = Lie(G alg
l ), gλ = Lie(G alg

λ ) and gΦλ = Lie(G alg
Φλ
). By

definitionG alg
l ⊂ ∏

λ|lG
alg
Φλ

so gl ⊂ ⊕
λ|lgΦλ. This implies:

(G
alg
l )′ ⊂

∏
λ|l
(G

alg
Φλ
)′,(4.7)

gssl ⊂
⊕
λ|l

gssΦλ .(4.8)

In the remainder of this section, we compute the Lie algebras corresponding to represen-
tations we consider. Some results that we proved in [2] for abelian varieties of type I and II
work as well for abelian varieties of type III. Since the detailed proofs of these results were
given in [2], we will merely reformulate corresponding results for abelian varieties of type III.
For example the proof of Lemma 4.9 (resp. Lemma 4.10) below is essentially the same as the
proof of [2, Lemma 5.20] (resp. [2, Lemma 5.22]).
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LEMMA 4.9. The natural map of Lie algebras

gssl → gssΦλ

is surjective.

LEMMA 4.10. LetA/F be an abelian variety over F of type III such that EndF (A) =
EndF (A). Then

Endgλ (Vλ)
∼= EndEλ[GF ] (Vλ) ∼= Eλ ,

EndgΦλ
(VΦλ)

∼= EndQl[GF ] (VΦλ) ∼= Eλ .

We define the subgroups of GLVλ by

GO(Vλ,ψλ) = {A ∈ GLVλ; ψλ(Av1, Av2) = cλ(A)ψλ(v1, v2) for all v1, v2 ∈ Vλ} ,
O(Vλ,ψλ) = {A ∈ GLVλ; ψλ(Av1, Av2) = ψλ(v1, v2) for all v1, v2 ∈ Vλ} .

Denote by SO(Vλ,ψλ) the connected component of the identity in O(Vλ,ψλ). By Lemma 3.18,

we see that ρλ(GF ) ⊂ GO(Vλ,ψλ) and thereforeG alg
λ ⊂ GO(Vλ,ψλ). This of course implies that

(G
alg
λ )′ ⊂ O(Vλ,ψλ). Extending the base field F , if necessary, one can assume that G alg

λ and

hence (G alg
λ )′ are connected (cf. [5, Proposition 3.6]). This gives the inclusions

(G
alg
λ )′ ⊂ SO(Vλ,ψλ)(4.11)

and

gssλ ⊂ so(Vλ,ψλ) .(4.12)

From now on, in this section we assume that A is an abelian variety of class B.
LEMMA 4.13. The equality gssλ = so(Vλ,ψλ) holds.

PROOF. The proof is similar to the proofs of [1, Lemma 3.2] and [2, Lemma 5.33].
Since type III is more exotic than types I and II, we will give here a complete proof. Observe
that the minuscule conjecture for the λ-adic representations ρF : GF → GL(Vλ) holds.
Namely by [P, Corollary 5.11], we know that gssl ⊗ Q̄l may only have simple factors of types
A,B,C or D with minuscule weights. By Lemma 4.9, the natural map of Lie algebras

gssl → gssΦλ(4.14)

is surjective. Hence by the semisimplicity of gssl the simple factors of gssΦλ ⊗ Ql are also of
types A, B, C or D with minuscule weights. By [2, Proposition 2.12] and [2, Lemmas 2.21,
2.22, 2.23], there is an isomorphism of Ql-Lie algebras

gssΦλ
∼= REλ/Ql

gssλ .(4.15)

The isomorphisms gssΦλ ⊗Ql
Ql

∼= gssλ ⊗EλEλ⊗Ql
Ql

∼= ⊕
Eλ↪→Ql

gssλ ⊗EλQl imply that

simple factors of gssλ ⊗EλQl are of types A,B,C or D with minuscule weights. Put V̄λ =
Vλ ⊗ Ql . We have the decomposition

V̄λ = E(ω1)⊗Ql
· · · ⊗Ql

E(ωr) ,
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where E(ωi), for all 1 ≤ i ≤ r, are the irreducible Lie algebra modules of the highest weight
ωi. The modules E(ωi) correspond to simple Lie algebras gi , which are summands of the
image

Im(gssλ ⊗ Ql → so2h(V λ)) = g1 ⊕ · · · ⊕ gr .

By [4, Chap. VIII Proposition 12], E(ωi) are symplectic or orthogonal. By [23, Corollary
5.11], all simple factors of gssλ ⊗ Ql are of classical types A, B, C and D, and the weights
ω1, . . . , ωr are minuscule. All minuscule weights and dimensions of representations are listed
in [4, Chap. VIII, Tables 1 and 2] and in [14, p. 72]. Since h is odd, the investigation of the
tables of minuscule weights and the dimensions of associated representations shows that the
tensor product can contain only one factor which is orthogonal and is either of typeDn, weight
w1 and dimension 2n or of type A4k+3, weight w2k+2 and dimension

(4k+4
2k+2

)
. Hence Vλ is an

irreducible gssλ -module and we get

gssλ = so(Vλ,ψλ) . �

The following lemma has the proof analogous to that of [2, Lemma 5.35].

LEMMA 4.16. There are natural isomorphisms of Ql-algebras.

EndgssΦλ
(VΦλ)

∼= Endgssλ
(Vλ) ∼= Eλ

PROPOSITION 4.17. There is an equality of Lie algebras:
gssl =

⊕
λ|l

gssΦλ .(4.18)

PROOF. By use of (4.8) and Lemma 4.16, the proof is the same as that of [2, Proposition
5.39]. �

THEOREM 4.19. There is an equality of group schemes over Ql :

(G
alg
l )

′ =
∏
λ|l
REλ/Ql

SO(Vλ,ψλ) .(4.20)

PROOF. By [2, Proposition 2.12], we get:

G
alg
Φλ

∼= REλ/Ql
G

alg
λ ⊂ REλ/Ql

GO(Vλ,ψλ) .(4.21)

Hence it follows from [2, Lemma 2.23], that

(G
alg
Φλ
)′ ⊂ REλ/Ql

SO(Vλ,ψλ) .(4.22)

By (4.7) and (4.22), we have a closed immersion of two connected group schemes over Ql :

(G
alg
l )

′ ⊂
∏
λ|l

REλ/Ql
SO(Vλ,ψλ) .

But this imbedding induces the Lie algebra isomorphism of Proposition 4.17, hence
the theorem follows by Proposition 4.17 and [13, Theorem on p. 87 and Proposition on
p. 110]. �
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5. Mumford-Tate conjecture for abelian varieties of type III. Choose an imbed-
ding of F into the field of complex numbers C. Define V := H 1(A(C),Q) to be the singular
cohomology group with rational coefficients. Consider the Hodge decomposition

V ⊗Q C = H 1,0 ⊕H 0,1 ,

where Hp,q = Hp(A; Ωq

A/C) and Hp,q = Hq,p. Observe that Hp,q are invariant subspaces
with respect to D = EndF (A) ⊗ Q action on V ⊗Q C. Hence, in particular, Hp,q are E-
vector spaces. Tensoring (3.1) with Q, we get the Q-bilinear nondegenerate alternating form
κ0 := κ ⊗Z Q : V × V → Q. Abusing notation sligthly, we will denote by κ the form κ0

i.e., we have the form:

κ : V × V → Q .

Define the cocharacter

µ∞ : Gm(C) → GL(V ⊗Q C) = GL2g(C)

such that, for any z ∈ C×, the automorphism µ∞(z) is the multiplication by z on H 1,0 and
the identity on H 0,1.

DEFINITION 5.1. The Mumford-Tate group of the abelian variety A/F is the smallest
algebraic subgroup MT(A) ⊂ GL2g , defined over Q, such that MT(A)(C) contains the image
of µ∞. The Hodge group H(A) is by definition the connected component of the identity in
MT(A)∩ SLV .

MT(A) is a reductive group (see [8], [11]). Since by definition

µ∞(C×) ⊂ GSp(V , κ)(C) ,

it follows that the group MT(A) is a subgroup of the group of symplectic similitudes GSp(V , κ)
and that

H(A) ⊂ Sp(V , κ) .(5.2)

DEFINITION 5.3. The algebraic group L(A) = C◦
D(Sp(V , κ)), which is the connected

component of the identity of the centralizer of D in Sp(V , κ) (cf. Remark 5.4), is called the
Lefschetz group of an abelian variety A. Note that the group L(A) does not depend on the
form κ (cf. [26]).

Before investigating Mumford-Tate group further, let us make two general remarks con-
cerning centralizers of group schemes which we will often use.

REMARK 5.4. Let B1 ⊂ B2 be two commutative rings with identity. Let Λ be a free,
finitely generated B1-module such that it is also an R-module for a B1-algebra R. Let G be a
B1-group subscheme of GLΛ. Then CR(G) will denote the centralizer of R inG. The symbol
C◦
R(G)will denote the connected component of identity in CR(G). Let β : Λ×Λ → B1 be a

bilinear form and let G(Λ,β) ⊂ GLΛ be the subscheme of GLΛ of the isometries with respect
to the form β. Then we check that CR(G(Λ,β))⊗B1 B2 ∼= CR⊗B1B2(G(Λ⊗B1B2, β⊗B1B2)).
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REMARK 5.5. Let L/K be a finite separable field extension. Let V be a finite dimen-
sional vector space and let φ : V × V → L be a nondegenerate bilinear form. Assume that
G(V,φ) is a connected algebraic group. Then there is a natural isomorphism RL/KG(V,φ) ∼=
C◦
L(G(V,TrL/Kφ)). Let B ⊂ K be a subring of K, integrally closed in K, and let C ⊂ L be

the integral closure of B in L. Assume that C is a free B-module which has a basis over
B, such that the dual basis with respect to TrL/K is also in C. Let T be a finitely gener-
ated free C-module. Let φ : T × T → C be a nondegenerate bilinear form. Assume that
G(T,φ) is a connected algebraic group scheme over C. Then there is a natural isomorphism
RC/BG(T ,φ) ∼= C◦

C(G(T ,TrC/Bφ)) of group schemes over B.

By [8, Sublemma 4.7], there is a unique E-bilinear, nondegenerate, alternating pairing

φ : V × V → E

such that TrE/Q(φ) = κ. Since the actions of H(A) and L(A) on V commute with the D-
structure, and since RE/Q(Sp(V , φ)) = CE(Sp(V , κ)), by Remark 5.5, we get

H(A) ⊂ L(A) = C◦
D(RE/Q(Sp(V , φ))) ⊂ CD(RE/Q(Sp(V , φ))) .(5.6)

If L/Q is a field extension of Q, we put

MT(A)L := MT(A)⊗Q L , H(A)L := H(A)⊗Q L , L(A)L := L(A)⊗Q L .

CONJECTURE 5.7 (Mumford-Tate, cf. [28, C.3.1]). If A/F is an abelian variety over
a number field F , then for any prime number l

(G
alg
l )◦ = MT(A)Ql

,(5.8)

where (G alg
l )◦ denotes the connected component of the identity.

THEOREM 5.8 (Deligne [8, I, Proposition 6.2]). If A/F is an abelian variety over a
number field F and l is a prime number, then

(G
alg
l )◦ ⊂ MT(A)Ql

.(5.10)

THEOREM 5.11. The Mumford-Tate conjecture is true for abelian varieties of class B.
PROOF. It is enough to verify (5.8) for a single prime l by [18, Theorem 4.3]. Hence

we can use the equality (4.20) by taking l big enough. The proof goes similarly to that of [2,
Theorem 7.12]. The important step is the transition (see 5.15 below) from symplectic forms
to the symmetric forms to which we can apply the results of previous sections of this paper.
It is known that H(A) is semisimple (cf. [11, Proposition B.63]) and the center of MT(A) is
Gm (cf. [11, Corollary B.59]). In addition MT(A) = GmH(A), and hence

(MT(A)Ql
)′ = (H(A)Ql

)′ = H(A)Ql
.(5.12)

By (4.20), (5.9) and (5.12), we have∏
λ|l
REλ/Ql

(SO(Vλ,ψ0
λ )
) ⊂ H(A)Ql

.(5.13)
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By (5.6) and Remark 5.5, we have

H(A)Ql
⊂ L(A)Ql

⊂ CD(RE/Q(Sp(V , φ)))⊗Q Ql

∼=
∏
λ|l
CDλ(REλ/Ql

(Sp(Vλ(A), φ0
λ)
)) ,(5.14)

where κl = κ ⊗Q Ql , and κl is essentially the Weil pairing (cf. [19, diagram on p. 133]). By
definitions of the forms φλ and ψλ, we have

CDλ(Sp(Vλ(A),TrEλ/Ql φ
0
λ)
) ∼= CDλ(SO(Vλ(A),TrEλ/Ql ψ

0
λ )
) .(5.15)

So by (5.13), (5.14) and (5.15), we have∏
λ|l
REλ/Ql

(SO(Vλ,ψ0
λ )
) ⊂ H(A)Ql ⊂ L(A)Ql ⊂

∏
λ|l
CDλ(REλ/Ql

(SO(Vλ(A), ψ0
λ)
)) .(5.16)

Observe that Vλ(A) ∼= Vλ ⊕ Vλ by Theorem 3.23. Moreover Dλ = M2,2(Eλ) by assumption
on λ. Hence evaluating left and right ends of the inclusions (5.16) on the Ql-points, we get
equalities of the both ends with ∏

λ|l

∏
Eλ↪→Ql

(SO(Vλ,ψλ))(Ql)

which is an irreducible algebraic variety over Ql . Then we use [12, Propositions II, 2.6 and
II, 4.10] in order to conclude that the groups H(A)Ql

and L(A)Ql
as well as the groups over

Ql ∏
λ|l
CDλ(REλ/Ql

(SO(Vλ(A), ψ0
λ)
)) =

∏
λ|l
CDλ(SO(Vλ(A),TrEλ/Ql ψ

0
λ )
)

are connected. Then (5.16) gives the following equalities by use of Remark 5.5:∏
λ|l
REλ/Ql

(SO(Vλ,ψ0
λ )
) = H(A)Ql

= L(A)Ql
=

∏
λ|l
CDλ(SO(Vλ(A),TrEλ/Ql ψ

0
λ )
) .(5.17)

The equalities (4.20), (5.17) and [3, p. 702, Corollary 1] give

MT(A)Ql
= GmH(A)Ql

= Gm(G
alg
l )′ ⊂ G

alg
l .(5.18)

The theorem follows by (5.10) and (5.18). �

COROLLARY 5.19. If A is an abelian variety of class B, then

H(A) = L(A) = C◦
D(RE/Q(Sp(V , φ))) = CD(RE/Q(Sp(V , φ))) .(5.20)

PROOF. By (5.6) and (5.17) we get equality of Lie algebras

Lie H(A) = Lie L(A) = Lie C◦
D(RE/Q(Sp(V , φ))) = Lie CD(RE/Q(Sp(V , φ)))

of connected group schemes. Hence (5.20) follows by (5.6) and [13, Theorem p. 87]. �

CONJECTURE 5.21 (Lang). Let A be an abelian variety over a number field F. Then
for l � 0 the group ρl(GF ) contains the group of all homotheties in GLTl(A)(Zl ).
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THEOREM 5.22 (Wintenberger [36, p. 5, Corollary 1]). Let A be an abelian variety
over a number field F . The Lang conjecture holds for A if the Mumford-Tate conjecture
holds for A or if dimA < 5.

THEOREM 5.23. The Lang’s conjecture is true for abelian varieties of class B.
PROOF. It follows by Theorems 5.11 and 5.22. �

Consider again the bilinear form φ : V × V → E.

We have:

H 1(A(C); C) ∼= V ⊗Q C ∼=
⊕

σ :E↪→C

V ⊗E,σ C .

Put Vσ (A) = V ⊗E,σ C and let φσ be the form

φ ⊗E,σ C : Vσ (A)⊗C Vσ (A) → C .

Since A is of type III, there are isomorphisms D ⊗E C ∼= D ⊗E R ⊗R C ∼= H ⊗R C ∼=
M2,2(C). Define the bilinear form

ψσ : Vσ (A)× Vσ (A) → C by ψσ (v1, v2) := φσ (J v1, v2) .(5.24)

LEMMA 5.25. If A is simple abelian variety of type III, then for each σ : E ↪→ C

there is a C-vector space Wσ(A) of dimension g/e = 4 dimA/[D : Q] such that
(i) Vσ (A) ∼= Wσ (A)⊕Wσ (A),

(ii) the restriction of ψσ to Wσ (A) gives a nondegenerate, symmetric pairing

ψσ : Wσ (A)×Wσ (A) → C .

PROOF. The idea of the proof is the same as that of Theorem 3.23. Namely, using some
arguments that we used in the proof of Proposition 3.18, we can prove as follows.

ψσ (Bv1, v2) = ψσ (v1, B
tv2) for every B ∈ M2,2(C) .

Let t, u, f, e ∈ M2,2(C) be the matrices defined in Section 3. DefineWσ (A) := f Vσ (A).We
get the proof by repeating the argument of Lemma 3.22. �

COROLLARY 5.26. If A is an abelian variety of class B, then

H(A)C = L(A)C =
∏

σ :E↪→C

SO(Wσ (A), ψσ ) .(5.27)

PROOF. With use of Lemma 5.25 and the argument similar to the proof of formula
(5.17), we obtain

C◦
D(RE/Q(Sp(V , φ)))⊗Q C ∼=

∏
σE↪→C

SO(Wσ (A), ψσ ) .

Hence (5.27) follows by (5.20). �
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6. Images of the Galois representations ρl and ρl . In this section we explicitly
compute the images of the l-adic representations induced by the action of the absolute Galois
group on the Tate module of abelian varieties of type III .

By Theorem 3.23 (i) the representation ρλ induces naturally the representation (denoted
in the same way)

ρλ : GF → GL(Tλ) .

Moreover, by Theorem 3.23 (ii), we have

ρl(GF ) ⊂
∏
λ|l

GO(Tλ,ψλ)(Oλ) =
∏
λ|l
ROλ/Zl (GO(Tλ,ψλ))(Zl ) .(6.1)

By (6.1) there is a closed immersion

G alg
l ⊂

∏
λ|l
ROλ/Zl (GO(Tλ,ψλ)) ,(6.2)

which implies

ρl(GF ) ⊂ G alg
l (Zl ) ⊂

∏
λ|l
ROλ/Zl (GO(Tλ,ψλ))(Zl ) .(6.3)

Since l is unramified in E, there is a natural isomorphism ROλ/Zl (.)⊗Zl F l
∼= Rkλ/F l (.). To

see this isomorphism in an elementary way, we can use [2, Remark 2.8] and a modification
of [2, Lemma 2.1] to the case of ROλ/Zl . Changing base in (6.2), we get a natural closed
immersion of group schemes

G(l)alg ⊂
∏
λ|l
Rkλ/F l (GO(Aλ[λ], ψλ)) ,(6.4)

where Aλ[λ] = Wλ(A) and A[λ] ∼= Aλ[λ] ⊕ Aλ[λ] (cf. Theorem 3.23 (i), (ii′′)). Hence, by
reducing mod l in (6.3), we get

ρl(GF ) ⊂ G(l)alg(F l ) ⊂
∏
λ|l
Rkλ/F l (GO(Aλ[λ], ψλ))(F l ) .(6.5)

Because extracting derived subgroup commutes with base change (see [2, Remark 6.8]), and
because (G alg

l )′ (resp. (G(l) alg)′ are connected, by (6.2) (resp. by (6.4)) we get

(Galg
l )

′ ⊂
∏
λ|l
ROλ/Zl (SO(Tλ,ψλ)) ,(6.6)

(G(l)alg)′ ⊂
∏
λ|l
Rkλ/F l (SO(Aλ[λ], ψλ)) .(6.7)

PROPOSITION 6.8. Let A/F be an abelian variety of class B. Then for all l � 0, we
have the equalitiy of ranks of group schemes over F l

rank(G(l)alg)′ = rank
∏
λ|l
Rkλ/F l (SO(Aλ[λ],ψλ)) .(6.9)
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PROOF. Using (6.7) and Theorem 4.19 we apply [2, Lemma 6.1] to finish the proof in
the same way as that of [2, Theorem 6.6]. �

THEOREM 6.10. Let A/F be an abelian variety of class B. Then for all l � 0, we
have the equality of group schemes

(G(l)alg)′ =
∏
λ|l
Rkλ/F l (SO(Aλ[λ], ψλ)) .(6.11)

PROOF. Projecting onto the λ-component in (6.7), we obtain the representation

ρ
Φλ

: (G(l) alg)′ → Rkλ/F l (SO(Aλ[λ], ψλ)) .(6.12)

This gives the representation

(G(l) alg)′ ⊗F l kλ → SO(Aλ[λ], ψλ) .(6.13)

By (3.21) we have the natural isomorphism

(Endkλ[GF ] Aλ[λ])⊗kλ L
∼= L(6.14)

for any field extension L/kλ. Hence, by (6.13), (6.14) and the Schur’s Lemma, it follows that

ρ
Φλ
(Z((G(l) alg)′ ⊗F l kλ)) ⊂ k×

λ IdAλ[λ] .

Hence by (6.13)

ρ
Φλ
(Z((G(l) alg)′ ⊗F l kλ)) ⊂ µ2 ,

which implies that
ρ
Φλ
(Z((G(l) alg)′)) ⊂ Rkλ/F l (µ2) .

Hence

Z((G(l) alg)′) ⊂
∏
λ|l
Rkλ/F l (µ2) ⊂ Z

( ∏
λ|l
Rkλ/F l (SO(Aλ[λ], ψλ))

)
.

Since both groups (G(l) alg)′ and
∏
λ|l Rkλ/F l (SO(Aλ[λ], ψλ)) are reductive, the proof is finished

in the same way as that of [1, Lemma 3.4]. �

REMARK 6.15. Let G̃ denote the universal cover for a semisimple group scheme G.
The existence of the universal cover for a semisimple group scheme over a field was proven
by Chevalley [7] (cf. [31]). In general, the existance of the universal cover for a semisimple
group scheme over a base scheme S follows from [9, Exposé XXV]. The universal cover is
compatible with the base change.

Let Spin(Tλ, ψλ) (resp. Spin(Vλ, ψλ),Spin(Aλ[λ], ψλ)) denote the universal cover of the group
scheme SO(Tλ, ψλ) (resp. SO(Vλ, ψλ),SO(Aλ[λ], ψλ)). Consider the following, short exact se-
quences of group schemes:

1 −−→ µ2 −−→ Spin(Tλ, ψλ)
πλ−−→ SO(Tλ, ψλ) −−→ 1 ,(6.16)
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1 −−→ µ2 −−→ Spin(Vλ, ψλ)
πλ−−→ SO(Vλ, ψλ) −−→ 1 ,(6.17)

1 −−→ µ2 −−→ Spin(Aλ[λ], ψλ)
πλ−−→ SO(Aλ[λ], ψλ) −−→ 1 .(6.18)

The sequences (6.17) and (6.18) are obtained by base change from the sequence (6.16). Eval-
uating the exact sequence (6.16) on Oλ-points (resp. (6.18) on kλ-points), we get

SO(Tλ, ψλ)(Oλ) / πλ(Spin(Tλ, ψλ)(Oλ)) ∼= Z/2(6.19)

(resp. SO(Aλ[λ], ψλ)(kλ) / πλ(Spin(Aλ[λ], ψλ)(kλ))
∼= Z/2) .(6.20)

Evaluating the exact sequence (6.17) on Eλ-points we get

SO(Vλ, ψλ)(Eλ) / πλ(Spin(Vλ, ψλ)(Eλ))
∼= Z/2 ⊕ Z/2 .(6.21)

Indeed, the theorem of Steinberg (cf. [16, Theorem 2.1]) gives H 1(kλ, Spin(Aλ[λ], ψλ)) = 0

and the theorem of Kneser (cf. [16, Theorem 2.2]) gives H 1(Eλ, Spin(Vλ, ψλ)) = 0. In
addition, by a theorem of Tits (cf. [22, Theorem 4.1] ), the natural map

H 1(Oλ, Spin(Tλ, ψλ)) → H 1(Eλ, Spin(Vλ, ψλ))

is an imbedding. Hence H 1(Oλ, Spin(Tλ, ψλ)) = 0.

LEMMA 6.22 (Integral Gram-Schmidt). Let (R,mR) be a local integral domain with
charR �= 2. Let k := R/mR be the residue field. Let T be a free finitely generated R-module
and let T := T ⊗R k. Consider a symmetric bilinear form

β : T × T → R

such that the form

β := β ⊗R k : T × T → k

is nondegenerate. Assume that 1 +mR = (1 +mR)
2. Then the map

SO(T , β)(R) → SO(T , β)(k)

is surjective.

PROOF. The proof is an analogue of Gram-Schmidt algorithm. �

LetG′ := [G, G] denote the closure of the commutator subgroup for any profinite group
G.

PROPOSITION 6.23. Let A/F be an abelian variety of class B. Then for l � 0, the
equalities ∏

λ|l
πλ(Spin(Tλ, ψλ)(Oλ)) =

∏
λ|l

SO(Tλ, ψλ)(Oλ)
′ ,(6.24)

∏
λ|l

πλ(Spin(Aλ[λ], ψλ)(kλ)) =
∏
λ|l

SO(Aλ[λ], ψλ)(kλ)
′(6.25)

hold.
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PROOF. Observe that∏
λ|l

SO(Aλ[λ], ψλ)(kλ)
′ ⊂

∏
λ|l

πλ(Spin(Aλ[λ], ψλ)(kλ))

by (6.20). On the other hand Spin(Aλ[λ], ψλ) (kλ) is a perfect group for all λ | l. So∏
λ|l

πλ(Spin(Aλ[λ], ψλ)(kλ)) ⊂
∏
λ|l

SO(Aλ[λ], ψλ)(kλ)
′

by (6.18). Hence it proves (6.25). Consider the group scheme G := CR(Sp(Λ, κ)) over Spec Z.

Take a natural number N big enough so that, for l ≥ N, the condition l � 0 holds. Let
GN := G ⊗Z Z[1/N]. The scheme GN is semisimple. By [9, Exposé XXII, Proposition
4.3.4], the scheme G̃N is semisimple. Remark 5.4 and the universality of the fiber product
give

CR(Sp(Λ, κ))⊗Z Zl = CR⊗ZZl (Sp(Tl(A), κl)) .(6.26)

By definition of the forms ψλ, φλ, we have

CRλ
(Sp(Tλ(A),TrOλ/Zl φλ)

) ∼= CRλ
(SO(Tλ(A),TrOλ/Zl ψλ)) .

For l � 0, we have OE ⊗Z Zl ⊂ R⊗Z Zl , OE ⊗Z Zl = ∏
λ|l Oλ and R⊗Z Zl = ∏

λ|lRλ.

Moreover, by (2.13) we have natural isomorphism of Rλ ∼= M2,2(Oλ) of Oλ-algebras, and
by Theorem 3.23 (i) we have a natural isomorphism Tλ(A) ∼= Tλ ⊕ Tλ of Oλ[GF ]-modules.
Hence by Remark 5.5, we get

CR⊗ZZl (Sp(Tl(A), κl))
∼= CR⊗ZZl (COE⊗ZZl (Sp(Tl(A), κl)))

∼= CR⊗ZZl

( ∏
λ|l
COλ

(Sp(Tλ(A),TrOλ/Zl φλ)
)

)

∼=
∏
λ|l
CRλ

(Sp(Tλ(A),TrOλ/Zl φλ)
)

∼=
∏
λ|l
CRλ

(SO(Tλ(A),TrOλ/Zl ψλ))

∼=
∏
λ|l
COλ

(SO(Tλ,TrOλ/Zl ψλ))

∼=
∏
λ|l
ROλ/Zl (SO(Tλ, ψλ)) .

(6.27)

Isomorphisms (6.26) and (6.27) give GN ⊗Z[1/N] Zl ∼= ∏
λ|l ROλ/ZlSO(Tλ, ψλ). Because the

universal cover is unique and commutes with base change, we get

G̃N ⊗Z[1/N] Zl ∼=
∏
λ|l
ROλ/ZlSpin(Tλ, ψλ) .
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Consider the commutative diagram∏
λ|l Spin(Tλ,ψλ)(Oλ)

rl−−→ ∏
λ|l Spin(Aλ[λ], ψλ)(kλ)

πl

� πl

�∏
λ|l SO(Tλ,ψλ)(Oλ)

rl−−→ ∏
λ|l SO(Aλ[λ], ψλ)(kλ) ,

(6.28)

where πl := ∏
λ|l πλ, πl := ∏

λ|l πλ and rl := ∏
λ|l rλ for the natural reduction maps rλ.

Note that

rl

(
π−1
l

( ∏
λ|l

SO(Tλ, ψλ)(Oλ)
′
))

=
∏
λ|l

Spin(Aλ[λ], ψλ)(kλ) .

Indeed, using Lemma 6.22 and (6.25), it follows from the diagram (6.28), because the group∏
λ|l Spin(Aλ[λ], ψλ)(kλ) is perfect for l � 0 (cf. [31, Chapter 7, Corollary 2 (b)]) and, by the

theory of Chevalley’s groups [7] (cf. [31]), the kernel of the map πl is contained in the center
of

∏
λ|l Spin(Aλ[λ], ψλ)(kλ). Hence, by [17, Proposition 2.6], we get

∏
λ|l

Spin(Tλ, ψλ)(Oλ) = π−1
l

( ∏
λ|l

SO(Tλ, ψλ)(Oλ)
′
)
. �

THEOREM 6.29. Let A/F be an abelian variety of class B. Then for l � 0, there are
inclusions ∏

λ|l
SO(Tλ, ψλ)(Oλ)

′ ⊂ ρl(G
′
F ) ⊂

∏
λ|l

SO(Tλ, ψλ)(Oλ) ,(6.30)

∏
λ|l

SO(Aλ[λ],ψλ)(kλ)
′ ⊂ ρl(G

′
F ) ⊂

∏
λ|l

SO(Aλ[λ], ψλ)(kλ) ,(6.31)

where ρl is the representation ρl mod l.

PROOF. By (6.5) and (6.11), we have

ρl(G
′
F ) = (ρl(GF ))

′ ⊂
∏
λ|l

SO(Aλ[λ], ψλ)(kλ) .

By a theorem of Serre (cf. [36, Theorem 4]), [36, Lemma 5] and Remark 6.15, we get∏
λ|l
πλ(Spin(Aλ[λ], ψλ)(kλ)) ⊂ ρl(GF ) .

Since Spin(Aλ[λ], ψλ)(kλ) is a perfect group [31, Chapter 7, Corollary 2 (b)], we have∏
λ|l
πλ(Spin(Aλ[λ], ψλ)(kλ)) ⊂ ρl(G

′
F ) .

This proves (6.31). From (6.6) we know that the group ρl(G′
F ) = (ρl(GF ))

′ is a closed
subgroup of

∏
λ|l SO(Tλ,ψλ)(Oλ). Consider the diagram (6.28). Since the finite group
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∏
λ|l Spin(Aλ[λ], ψλ)(kλ) is perfect, it follows by (6.25) and (6.31) that

πl

( ∏
λ|l

(Spin(Aλ[λ], ψλ)(kλ))
)

⊂ rl((ρl(G
′
F ))

′) .

On the other hand, it follows from (6.16) and (6.19) that

(ρl(G
′
F ))

′ ⊂ πl

( ∏
λ|l
(Spin(Tλ, ψλ)(Oλ))

)
.

So we get the equality

rl(π
−1
l ((ρl(G

′
F ))

′)) =
∏
λ|l

Spin(Aλ[λ], ψλ)(kλ)

since
∏
λ|l Spin(Aλ[λ], ψλ)(kλ) is perfect and the kernel of the map πl is contained in the center

of the group
∏
λ|l Spin(Aλ[λ], ψλ)(kλ). So

π−1
l ((ρl(G

′
F ))

′) = π−1
l (ρl(G

′
F )) =

∏
λ|l

Spin(Tλ, ψλ)(Oλ)

by [17, Proposition 2.6]. It proves (6.30) in view of (6.24). �

REMARK 6.30. Since
∏
λ|l SO(Aλ[λ], ψλ)(kλ)

′ is a perfect group, the proof of 6.23
shows that

∏
λ|l SO(Tλ, ψλ)(Oλ)

′ is a perfect group with respect to the operation of taking
commutator and then closure in a profinite group.

THEOREM 6.31. If A is an abelian variety of class B, then the equalities

ρl(G
′′
F ) =

∏
λ|l

SO(Tλ, ψλ)(Oλ)
′ ,(6.32)

ρl(G
′′
F ) =

∏
λ|l

SO(Aλ[λ], ψλ)(kλ)
′(6.33)

hold for l � 0.

PROOF. It follows by (6.19), (6.20), Theorem 6.29 and Remark 6.30. �

7. Open image property of ρl . Consider the group scheme CR(Sp(Λ, κ)) over
Spec Z. Since CR(Sp(Λ, κ))⊗Z Q = CD(Sp(V , κ0)) (see Remark 5.4), there is an open imbed-
ding in the l-adic topology

CR(Sp(Λ, κ))(Zl ) ⊂ CD(Sp(V , κ0))(Ql ) .(7.1)

THEOREM 7.2. Let A be an abelian variety of class B and let r(l) be the number of
primes over l in OE. Then

(i) ρl(GF ) is open in CR(GSp(Λ, κ))(Zl ) for every prime number l,

(ii) ρl(G
′
F ) has the index dividing 2r(l) in CR(Sp(Λ, κ))(Zl ) for l � 0,

(iii) ρl(G
′′
F ) = CR(Sp(Λ, κ))(Zl )

′ for l � 0.
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PROOF. The group GSp(Λ, κ)(Zl ) is generated by Sp(Λ, κ)(Zl ) and a subgroup which,
in the Frobenius basis ofΛ, has the form{(

aIg 0
0 Ig

)
; a ∈ Zl

×
}
.

The group Z×
l Sp(Λ, κ)(Zl ) has index 2 (resp. index 4) in GSp(Λ, κ)(Zl ), for l > 2 (resp. for

l = 2). By [3, Corollary 1], there is an open subgroupU ⊂ Z×
l such thatU ⊂ ρl(GF ). Hence

U CR(Sp(Λ, κ))(Zl ) = CR(U Sp(Λ, κ)(Zl )) is an open subgroup of CR(GSp(Λ, κ))(Zl ) =
CR(GSp(Λ, κ)(Zl )). By [3, Theorem 1], the group ρl(GF ) is open in G alg

l (Ql ). By Theorem
5.11 and Corollary 5.19

U CR(Sp(Λ, κ))(Zl ) ⊂ Q×
l CD(Sp(V , κ))(Ql )

= Gm(Ql )H (A)(Ql )

⊂ MT(A)(Ql ) = G
alg
l (Ql ) .

(7.3)

Hence, U CR(Sp(Λ, κ))(Zl )∩ ρl(GF ) is open in U CR(Sp(Λ, κ))(Zl) and we get that ρl(GF )
is open inCR(GSp(Λ, κ))(Zl).Moreover, by (6.26) and (6.27), we have a natural isomorphism

CR(Sp(Λ, κ))(Zl) ∼=
∏
λ|l

SO(Tλ, ψλ)(Oλ)(7.4)

for l � 0. Hence from (6.19), (6.24) and (6.30), it follows that the subgroup ρl(G′
F ) is of

index dividing 2r(l) in the group CR(Sp(Λ, κ))(Zl ). �

THEOREM 7.5. If A is an abelian variety of class B, then for every prime number l,
the group ρl(GF ) is open in the group Galg

l (Zl ) in the l-adic topology.

PROOF. By Theorem 7.2, the group ρl(GF ) is open in CR⊗ZZl (GSp(Tl(A), κl))(Zl ) in
the l-adic topology, so ρl(GF ) has a finite index in the group CR⊗ZZl (GSp(Tl (A), κl))(Zl ). By

the definition of G alg
l , we have:

ρl(GF ) ⊂ G alg
l (Zl ) ⊂ CR⊗ZZl (GSp(Tl(A), κl))(Zl ) .

Hence, ρl(GF ) is open in Galg
l (Zl). Note that CR⊗ZZl (GSp(Tl(A),κl))(Zl ) is a profinite

group. �
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