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THE LAPLACIAN AND THE HEAT KERNEL
ACTING ON DIFFERENTIAL FORMS ON SPHERES

MASAYOSHI NAGASE
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Abstract. We show that the Laplacian acting on differential forms on a sphere can be
lifted to an operator on its rotation group which is intrinsically equivalent to the Laplacian
acting on functions on the Lie group. Further, using the result and the Urakawa summation
formula for the heat kernel of the latter Laplacian and the Weyl integration formula, we get a
summation formula for the kernel of the former.

1. Introduction. Let us view the n-sphere S” as a coset manifold SO (n 4+ 1)/SO (n)
and assume that the Lie algebra g = so(n + 1) is endowed with an inner product (-, -) =
—B(-, -), where B is the Killing form, i.e., B(X, Y) = tr(ad(X)ad(Y)), which is nondegener-
ate and negative definite. We will furnish S” with a left SO (n+ 1)-invariant metric (-, -) so that
the canonical isomorphism from the orthogonal complement m of the subalgebra € = so(n)
to Ti¢)S" is isometric. The purpose of the paper is to study the horizontal lift of the Laplacian
AS" = d*d + dd* to SO(n + 1), where d* is the formal adjoint of the exterior derivative
d, and, by using it, to give a summation formula for the heat kernel e~ A%
pointin $” x S".

On 7,50 (n+1) = g = m+¢£, we will take canonically a positively oriented orthonormal

at each diagonal

frame eq4(e) = (eme(e), €re(€)) = (e1(e), - . ., ennr1)/2(e)) = (emi(e),....emn(e), ee1(e),. . .,
eenn—1,20€) = (e1n+1(€),. .., ennti(e), e n(e), ..., en—1n(e), e n-1(e),...). That is,
we set

(1.1) eijle)=Qn—1D)"VXE; —E;j») (i<j),

where E; ; is the (n + 1) x (n + 1)-matrix of which the (i, j)-entry is equal to 1 and all other
entries are 0. By its left translation, we obtain a frame el = (eL,, eEL.) and its dual frame
ey = (e, et*). )

First, let us state an assertion concerning the horizontal lift of AS" by the Riemannian
submersion

(1.2) 7:80n+1)—> SO(n+1)/SO1n)=S".

Consider the Laplacian A(S)O(nH) == eiLeiL acting on functions on SO (n + 1) (see (2.5))

and take a differential form w on S”. We define a differential operator acting on the horizontal
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lifto =Y el 24 (@ = (@1, ..., %), M = el A Aep ) by
(1.3) D0MHD G = $ e A g,
Then we have the following theorem.

THEOREM 1.1. The equality AS"» = DSO+D & holds.

As is known ((2.20), [6, Chap. II, §4], [2, Lemma 2.1]), for a function f on S”, we
have Ag" f= Ago("H) f. In the case of forms, one may naturally expect (refer to (2.17))

that AS" o is equal to the horizontal component H*(AS?"+D &), However, it is the formula
in the theorem that really holds, which is rather desirable because the study of heat kernel
e”Asn acting on differential forms can be reduced to that of e*’AgO(HI), which has been
closely investigated by many people. Second, we want to describe the former kernel by using
the latter. Let us consider the submersion m x SO(n) — SO(n + 1), (X, k) — (exp X)k,
and define the frames f,' = h—( fm., fE-) fr=re, fhE') (with marked point 7 = exp X) at

hk € =~ ([h]) by

(14) f (k) = Ris(ef (h)) . fi(hk) = Riu(el, () ,
where Ry is the right translation by k € SO (n). Remark that the matrix a™ (k) (see (2.6)) with
(i, j)-entries

(1.5) a;; (k) = e™ (e)(Ad(k)em; ()
is the transition matrix between the frames, i.e.,

(1.6) fn};. (hk) - a™ (k) = eme(hk),  f"*(hk) -a™(k) = e™*(hk),

and, in general, e} ! is not equal to eZ‘i, while 7, fhmi is equal to f,f‘i.
Now, let us set

1=
A L ID= Y @A) B RO ARD - @ @ ',

Lr

where we assume that (¢4 )U(I)r(l,) = sgn(o)sgn(t)(e’m )”, (0,7 € &)1)), and de-
note by wso(,) the Haar measure on SO (n) given by the frame eg, (e).

COROLLARY 1.2. We have
O (n+

(1.8) (e*’ASn)}I'*[,'/([h],[h’]) :/50( )d/VLSO(n)(k)e”Ag (W hk, o) App (k)

with
1 1 l” a0 a’T’u’ ®)
(1.9) ATy (k) = T det(a™ k) = T det : : ,
m ... m
i} aimil’,/‘

which is interpreted as 1 if |I| (= |I'|) = 0.
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By applying the Poisson summation formula for heat kernel, proved by Urakawa ([15]),
to the kernel e~*20 "y (see also [4], [2]) and using the Weyl integration formula (see [10]
for example), we can describe the coefficients (1.8) for 2 = k' explicitly in Corollary 1.3. For
that, let us assume n > 2 and take Z"/21 51 = (14,...) > 0 (i.e., [; > O for all ). Then, for

te(0,00)and 0 = (y,...) € [—m, w2, if n = 2m, we put

2 2
0; 6;
l_[ tV26in=) — (¢ "2sin L
2 2

(1.10) Fi(r, 9)=Zg—Z(n—1>Z(9i+2mili)2/4t r=J 2 G
— . 1

€ t sin —

[Trn

2 2
g 0; + 2meil; 0; + 2meil; 0; +2meil;
—pZeh [T AT T () - (AR
x (=1 |l| @12 L e @n)1/2

and, if n = 2m — 1, we put
2 2
0; 6;
l—[ tV26in2) — (¢ "2sin L
2 2

(1) Fi(,0) = Y ¢ 20D R +2meil?/dr
&

i<j
y l—[ 0; + 2me;il; 21—[ 0; + 2me;il; 2_ 0; +2mejl; 2
. (401/2 oy (401/2 (401/2 ’
where ¢ runs over the set of (g1, ..., &[y/2]) satisfying

£l >0,
8’_{0 U =0),

and we understand ]_[i<j{- --}=1Tlat(1.10) forn =2 and at (1.11) for n = 3.

COROLLARY 1.3. Each function Fi(t,0) is smooth on (0,00) x [—m, n]["/zl, and,
given ty > 0, there exists C > 0 satisfying

(112) |Fi(t,0)] < Ce 2= DWELIS (forallly, 3" |, 0)] < Ce 2D/
>0

provided (t,0) € (0, tp] x [—, a3, Also, (1.8) with h = k' has an expression of termwise
integration

(13 (@D YR (h] ) = en ! f 6 Fi(1. 6)B™ (9)
. 4 / . =, . /
11 " (42 l>0 )22 [ ) l 11
with
(1 14) . (2(l’l _ 1))[n/2](2[(n71)/2]+1)/2 2[(n71)/2][(n+1)/2] ' (I’l _ 2m) ’
. = -y m!
" 2141+ 2[(n — 1)/2])! 1 =2m_1).



574 M. NAGASE

(L.15)  Bj1(9) =/ dpsom, (k1) ATy (ku@)k~")
S0(nm)/T

1
= /50( )/TdMSO(n)/T([k]) det@™(k)D@) a™ (k"N (n=3),
(116) Bln}/(e) |I|' detD(9)11/ ( D(@)II/) (n — 2) X
Here we put ; - DED
[ costy sinf; . .
b = (— sin 6 00391> . D)= - 0

(0] D(0n/2))

and T = Tso) is a maximal torus of SO (n) consisting of u(9) = D) (if n = 2m),
u@) = (D(G) 0) (ff n = 2m — 1). (Hence, A}, (ku(0)k~ 1Y is independent of the choice
of representative k of [k].) Moreover, the canomcal measure |Lsom),T is normalized as
fSO(n)/T dMSO(iz)/T([k]) =1L

The standard metric on S = SO(n + 1)/SOn) will be 2(n — 1))~!(-, ), so that
the kernel for g-forms with respect to the standard one can be expressed as e~ A
2n — 1))”/2_‘1e_2("_1)msn. Hence, if we express it using the orthonormal frame (2(n —
D)~ V2, f,f“)([h]) in the same way as at (1.13), the coefficients can be written at diagonal

points as

A st
(L.17) CRE (VAN T)
etn(nz—l)/24 1
=¢ dOFi(1,0)B™,(0),
" amn? g (4m)[n/21/2/[m][n/2] 1(t, 0)Bf}(0)

where &, is defined as ¢, divided by (2(n — 1))["/21@L=D/21+D/2 and Fy (1, 6) means F;(z, 6)
with e=2(1=D X0i+2meil)* /4t replaced by e~ L@i+2weil)* /4t As for S' = SO (2)/SO(1) =
SO (2) with standard metric, as is known ([3, p. 306]), we have the Poisson summation for-
mula

7IA(S St ~1/41
(1.18) ([, (0D = t)uz Z /
Thus (1.13) and (1.17) may be regarded as its generahzatlons.

The author has been studying heat kernel coefficients for a few years mainly by using
the general adiabatic expansion theory ([11], [12]), and, in particular in the sphere case, the
kernels acting on functions were closely investigated ([13]) by considering the duality rela-
tion between sphere and hyperbolic space. This paper comes from an attempt to generalize
the results ([13]) to the differential form case. We note that, in some different appearance,
on general compact symmetric spaces, another type of formula for the kernel acting on dif-
ferential forms has already been obtained by Urakawa ([16]), and, in the function case, the
formulas corresponding to (1.8) and (1.13) have already been obtained by Benabdallach ([2]).
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2. The Laplacian on compact two-point homogeneous Riemannian manifolds.
Let (G, K) be a symmetric pair with G compact, connected and semisimple, and assume
that the Lie algebra g of G possesses the inner product (-,-) = —B(:,-), where B is its
Killing form. We will furnish G/K with a left G-invariant metric (-, -) so that the canonical
isomorphism from the orthogonal complement m of the subalgebra £ of K to Tj.)(G/K) is
isometric. Notice that there is an orthogonal decomposition ([14, Lemma 30 (p. 316)])

2.1) g=m+t with AdkmCm (ke K), [LE]cCt, [E,m]Cm, [m,m]Cét,
and we have the Riemannian submersion
(2.2) 7 : (G, ()~ (G/K, ().

The purpose of the section is to prove Propositions 2.2 and 2.3 which describe two kinds of
differences H*(AC @) — AG/Kw and H*(A® @) — ©Y & minutely. The Riemannian con-
nections VO, VG/K  the horizontal lifts X, @ (of vector fields, differential forms) and the
horizontal components H™)(-) have the simple relations ([14, Lemma 45 (p. 212)])

(X.¥V)=(X.V)or, HAX.YD)=1X.7]. HVIP) =V y,

5 7 G- G/K
@. 1) =@ men. WD) =y o0,

(2.3)

but they are complicated if the Laplacians are implicated in them.

We will begin our discussion with reviewing the Weitzenbock formula. Let us take a
positively oriented orthonormal local frame e, of (T'G, (-, -)) and its dual frame ¢°®. We denote
the exterior, interior products of a differential 1-form & by £A, £ v, respectively, and denote
the curvature 2-form of V¢ by F (V9). Then we have the formula

24) A9=da%d% +q9*q°

= _Z(vf_vg — Vgge,‘)—Z(F(VG)(eB, ei,)ei,, ei,) PNV LAV NP RV
e

J

For the left invariant orthonormal frame ef‘ = (e,l;w eé‘.) given as in the introduction, we have
Vg ef = (1/2)[el.L, eJL] ([14, Proposition 9 (p. 304)]). Hence, in the function case, (2.4) can

belsimpliﬁed into
(2.5) A§ == ekel (actingon C*(G)).

Another frame we are interested in is a local frame fo = (fme, fte) at hk = (exp X)k €
7~ Y[h]D given as in the introduction but with X restricted to a neighborhood Vi, of 0. Since
here the marked point 7 = exp X is given by a unique X, we omit the symbol 4 to simplify
the notation. Set V = mw(exp Vim). Then the frames etl;", fme ON 7~ 1(V) have the relations
(1.6), the transition matrix a™ (k) of which has the properties

(2.6) a™(1)=id., a™kH=a""k) ' =a"k), a™k)a™ks) =a"(kika).
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Similarly, we denote by a®(k) the transition matrix between eEL. and f¢,, and let us consider
the Maurer-Cartan structure constants given by

— oL . o3 _ L (&i3)
(27) [ ll ’ 12] l3 Ciliz ’ [ mll’ mlz] Zeélj : C(mil)(miz) ’

etc. (see (2.1)). We will calculate the connection coefficients of VO with respect to the frame
fo. Henceforth in the proofs in the section, we adopt the Einstein convention on sums over
repeated indices.

LEMMA 2.1. Atrg = hk = (exp X)k € 7~1(V), we have
(2.8) V](f;mifmj me] ey (h)([tanh X e e ]) +ZfEJ D) EE{:))(mJ)’
@9 Vi fi =Y fuy 3 E:L’)ze,) 3 fejr el (h)([tanh ad X m,,eg/])
210) Y, finj == fuy - 5 EE)’(\L”, fej— D feir g <§f>3e/>’
@11 v§ i =Zf“”'/-em’(h)([ O € ]) > ; (e
@12) VE == s Eﬁ{))(m],)JrZ FY el (h)([tanhd—e;i,egj,]),

. 1 . |
G rmj _ m;’ (mJ) G rtj _ ej (EJ)
2.13) kaif - Z f 2 C(eiy(mjn) kaif - Z f 2 Cleiye) -
PROOF. We put exp(X) exp(te;(e)) = h - k(exp(X) exp(te;j(e))) € expm - K. Then we
have the equalities

k(exp(X) exp(temi(e))) = tanh d2X emi(e) €8,

(2.14) 1=0

dt

k(exp(X) exp(tegi(e))) = eei(e) € E.
t=0

The second equality is obvious. To show the first one, set exp(X) exp(temi(e)) = exp(X +
Y(t)) - k(t) € expm - K. Then we have

emi@ = L] expliemi(@) = L] exp(—X) exp(X + Y (1)) k(1)
dt =0 dt =0
=—| exp(=X)exp(X + Y (1) +k(©0) =L, x—| exp(X +1Y(0)) + k(0)
dri,_, dri,_,

and, by using [5, Theorem 1.7 (p. 105)], we have

. X 1_efadX .
— X+tY0)=———X(@O
eXdel‘ ;=()exp( + ( )) ad X ( ( ))
_ sinhadX(Y(O)) n tanh ad X sinhadX(Y(O)) cm 4t
T adX 2 ad X '
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They imply
sinhad X ad X sinhad X

emi(e) = ———(¥(0)), tanh TW‘M” =k(0),

which yield the first equahty at (2.14). Then by (2.14) we know

j ad X
enir (9@ k(@)lg—n = e} (| tanh = el ef ).

ad X
2.15) el (9)@f (k(g)lg—n = —e}/ ([ tanh 5= ef ef ])
et (D)@ K@) g=h = —C{gitami) - eE,-,(gxaf, kODlg=n = =g e, -

Indeed, we have

d
e (D@ k(@)lg=n = -

a;; (k(exp(X) exp(tem; (€))))
=0

= (em,-(e), [tanh dXem,/(e) em](e)]) ([tanh dXem,/(e) em,(e)] emj(e))

= —e™ () ([ ranh % emir (@), emi(@)]) =~ ([anh “S5 ek ek ]).

etc. Using (2.15), we can show the equalities of the lemma. For example (2.8) is obtained as

=eLi(9)a jj,<k(g>)>|g:hem ,-,<h> +afk@)lg=h VG em(9)

i ad X 1
= k() - e}V ([tanh egi,e,ﬁj]) + 5 leh m]](h)

2
i’ X
L L 8
= _emj’(h) : em] ([ ) €mi> € :I) + eE]’(h) 2 (n"{t)(mj) ’

, adX | ()
= — fujr ~€2n] (h)([tanh > emir € ]) + fejr - ) (mjt)(m/)

The equalities (2.11) through (2.13) follow from (2.8) through (2.10) together with the for-
mula V7 i = —fi'® f1(v9 f;). O

Now, let us generalize the formula (2.4) for A%/K with replacing e, etc. by f, etc.
Namely, we have

G/K G/K «G/K G/K
A / - - Z (V:r[*fm, Vﬂ*fml o VVG/;( fr[*ml)
2.16) = 3 (FVE) (o iy T fini) T i T foniy)

T SN T M2 g, A T, fE Y



578 M. NAGASE

We assume that the symmetric space G/K is two-point homogeneous. We have the
following proposition.

PROPOSITION 2.2. Let w be a differential form. On 7w~ (V), the difference between
the horizontal part H*(A® &) and the horizontal lift AG/K w can be written as

G~ G/K,, — (mj2) (Et) j 7 —
H (A D) — AGRw = — Z iy enCmpamjnd NSV @
(2.17) Loqomin e Smin ()
+ D 2 Bl Cim s min ~ CamgnenCammin}

X fm]l/\fm]2vfm]3/\fm]4\/ .

PROOF. Setw =, f™’ - w;. Then we have

H*(AYD) — AC/Kw = (H¥(AC f™) — AG/Ky, f™I} . ¥y
2.18) + ™A H (AT w)) — AG/K )

K ﬂ*fmj} Smi (77*0)1) .

+2{-H (VG f‘““’)+VG

(2.3) and Lemma 2.1 imply

_ H*(mal V?mi fmJ) + V;i/]{i” Vi/]{:” JT*fmJ

. . 1
_ _apkwvG vG mJ * G G ymlJ 3 m mJ (mj)
- H (meivfmif )+H (mei{vfmif +‘f / /\‘f / V‘f 2 (mz)(?/)})

4 . 1
_ _ fmj mj, mJ (mj2) (E/)
SN TNV T Ly Cminmn -

x* oG oG rmJy _ * G /rm m mJ (mj)
- H (erl'vfel'f )=-H (erl'(f A avi g VI 2 (Ez)(m/1)>
) ) 1 1
_ _emj mj mJ (m/) (mu)
= STV S im 5 C e m ) 3P

. y . . 1 1
J (mj) (mjz)
— fmjl A fmj A fmjz me/ \/fm 2 (e,)(m“)z (Ez)(mj’)

) . 1 . . 1
__ emji mjp mJ (mjz) (mj) mjj mjp mJ (mjz) (m])
=—fINfEENV 4 Ceiy(mpHCei)(myy) —STIANSTENVS 4 i) (mjp € (ei)(m )

4 4 . . 1
mjj mjs mj3 mjy mJ | (mj4) (m/z)
H ARV IR A LTIV T L i m i € e ms)

T .
T i ST
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— H*((F(VO)(fiy, fi) fios i) - (VA f20 f3 A fl4v) ™)
= —(F(VO)(fimis» fumis) fnins funiy) - [T fR2y f3 A fmiay fm)
— (F(V9)(feiys fmia) frins frniy) - [ A fR4y o7

1 ey
F(VG/K)(n*fmiS’ n*fmill)n*fmiZ = H<V.?mi3 {V.?mu fmiz B féj, : Ecgn{i:)(miz) })

1 @y
G G (" G
— H(Vf;m-4 {Vﬂm3 Jmiz = fejr Ec(mig)(miz)}) - H(V (&) fmiz)

[fmi3qfﬁ\i4]_fej"c(mi3)(mi4)
1 i i
G (mi”) (&)
=HE V) fmis» fmig) fmiy) — fair - Zc(rrrr:;g)(kj)c(n{iza)(miz)

L iy @)) L min @)
+ fmir - Zc(mi4)(ej)c(mi3)(mi2) — fmi - EC(Bj)(miz)c(mg)(mu) ’

(F(VO/K) (s funiy s Tx fonia)T0x fonins T frniy) — (F(VO) frmiss fmis) finis fniy)

L iy e L min e L min &)
= 4 Cmia) () Cmig) (min) T 7 Cmia)€)) Cmi) (miz) T 5 (&) (mig) Cmis) (mig)

_ 3 min )
= 7 mix) () (miz)(miy)

1 . .
G G G ( ) (mj)
(F(V )(fkizy fmi4)féi21 fmil) = (H(Vféizvfmi4 féiz)v fmil) = _ZC(E;;(mj)C(rmnl'j4)(Ei2) .
Therefore we have
. . 3 . .

__ rmj mj mJ 2 (mj) (&)

=SSRV f e e Sy mi)
(219) + fmjl/\ fmjz mej3/\ fm]4 vfmJ

(3 min e Ly e
4 (mp)(E)~(mjz)mj) 4~ (mja) ()~ (mjp)(mjs) | -

The two-point homogeneity ([6, Proposition 4.11 (p. 288)]) implies
(2.20) H*(ASn*w;) — AG/Kw; = AS(wyom) — (A% Kw))omr = 0.

Then, by referring to (2.3), we have

G/K n*fmf — _H*(V?mt fmJ) + H*(ngml fmJ) — 0 .

* oG mJ
ean g VI
Thus we obtain (2.17). O

Next, let us define the operator D¢ in the same way as at (1.3). Then we have the
following proposition.
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PROPOSITION 2.3. Take a differential form w and set & =) e['™ - 2y with 24() =
sgn(0)2y (0 € Sy). Then we have

cmin ()
H*(AGCT)) _ DG p= Zeerl Ael mip Vezna . { Z (mj)(El)z(mlz)(m/) 2,
(2.22) _NT M) ) ,
(motp)(Fl) € (miy) (miy) a(gg)
cmin) (kD)
_ Z i) A emlz Vel mi3 A emt4 v ezna . (mlz)(el)z(mlz)(mu) 2,
where the expression (x(a/ ) means o with ap replaced by (x ef{l,2,...,dimm}.

PROOF. We will show it on V and 7z~ (V). The formula (2.4) with e, etc. replaced by
ek etc. can be written as

. (cl:l.— 3 cl:4. . . . .
G _ _ L L _ L 1 IR A &Y U 153 13 14
(2.23) A7 = —eje; — ;e eL/\eLv +74 e, Nejf Ve Nep V.

-t

Hence the left hand side of (2.22) is equal to

—e - A(C);.Q — e elel(2,) - e?” Aep miz Vel . el(2,)c Exfil
(C(“l.l.l.) (P/) )e (miz)
_I_ez‘lll A eL mip Ve L X Qa (€))i i“mll)l (E/)l
(i) (mid) ) (mia)
+eLz| Ael mip Veng Ael miy Ve -2, (mip)i Zmzl)z Clmiz)i
C(mil)E C(Ei)
mi L (mip) mi mi (m ) (&)~ (miz)(mj)
=—e] i Nep P Vel eu(.Qa)c(milz)(m +e, ' Nep Ve - 2, 5
(miy) - (E)
miy mi3 (mip) (8i) ™ (mi3)(mig)

mip mig mo
—e; ' Nep “Vep o Nep ‘Vey - 24

2

If we put @ = 7, f™ - w7, then we have 24 (g) = ap, (k(g)) wr([g]), and by observing the
proof of (2.15), we have

d
€qi ()@, (@) = 2| afl, (900 (0) = (emiy (). AdRG) 0 0). em (e))

(maj,)

o))
(emtp (e), Ad(k(g))ema’ (e)) C(e,)(l\)nap) = a,n;ap (8i)(map) ©

Hence we know

L L, m (moz) (ma)
ey (24) = eyi(agy) w1 = 1 (1,) (e,)(map) =2 (p) (Et)(motp)

Thus we obtain (2.22). O
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3. Proofs of Theorem 1.1, Corollary 1.2.  In the rest of the paper, unless otherwise
specified, we set G = SO(n + 1) D K = SO(n) by the injection (‘3 (1)) < A, and denote
their Lie algebras by g D ¢ by ()(()E 8) <+ X¢. By applying the results in §2 to the sphere
§" = G/K = SO(n 4+ 1)/SO(n), which is certainly a two-point homogeneous compact
symmetric Riemannian space, we will prove Theorem 1.1 and Corollary 1.2.

PROOF OF THEOREM 1.1. It is enough to prove it on a neighborhood 7 ~!(V) of ¢ €
G. On it, we have

oo O @~ e ()
. [emi(e), emj(e)] = Nk [emi(e), e, j,(e)] = A1) )
: —0iyizmiy (€) + 8iniy€mis (€)
[emiz(e)f [emiz (e), emi4(e)]] = = 42(en - 1)2 —

We assume that w is a g-form. Let us investigate the right hand sides of (2.17) and (2.22). As
for (2.17), since we have

(mj2) (Et) mjy r L L
Dt Cmpemin = 2o er [eny e en; 1D

_ Z 8jjSjnji —8jji0)nj _ _”5j2j1 —8jji _ —18~ )
2n—1) 2n—1) 2
(mj1) (Et) (mj1) (Et)
D BeimimenCommmis ~ S Cimmmis)
=3¢ ([eh ). [eh iy eh i 0D — €™ (leh i, ek el 1D
1

_m(35/‘2/’35/1/’4 —48)5jubjijs +0jui30jii) »
we know
H*(AY@) — AG/Kw
3 . . . . . .
—-3 Z RN Y & — 8n—1) Z{3sjzj38j1j4fm“ NFTRNV B Y
—48,18)1 s FIIUA 2y fT A Ty
8BS ™A ST I
3 1 . . . .
(3.2) :—qC?)— 8(n_1){3 Z fmjl/\fmjz\/fmjz/\fmjl mel~a)1

8 ) )
e

J1#)2
+ Z AN ARV ANV AL AV AL 'CUI}
Jt.pel
_3q_ 3qn—q)+q@-1) _ qlg—-1 _
— - .

w =
8 8n—1) 4n—-1)
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As for (2.22), since we have
(miy) (&)

) ) Cpr N Cpo . 1 . .
mi mi (mj) (&)~ (mix)(mj) mi mi q _
Yoer Aert Vel 2 5 =123L1/\3L1V62w"9a=zw,
mi mi (map)  (ei)
_ ZeL LA er 2 \/el‘j‘a . 'Qa(g'g)c(maj,)(éi)c(mil)(miz)
_ Z ez‘lil /\e?iz\/ezux e, v 8(){pi280{/pil
i1 ¢asip O‘(aﬁ,) 20— 1)
- Z ™A M2y M Q ——761(”_@5)
- _— ll - 9
2n—1) s L L L (i) 2n—1)
) . ) ) cmin) () )
. Zezml A ezuz Vezm A 62114 Vezw Q24 (mlz)(El)z(mB)(mm)
1 n#n ) ) )
- m Z 62"1 A 32“2 Vezw A 62”4 Vezw * 824 (8ii38iyiy — Biisiyiz)
i34
1 ) ) ) ) _
— g L e A v g, = 10D,
ilea iy
we know
33) Q%) 0= 10D g 107D, @D,
' 4 2(n—1) 4(n—1) 4n—1)
Then (3.2) and (3.3) imply the theorem. O

PROOF OF COROLLARY 1.2. Take a differential form w on §” = G/K. Theorem 1.1
yields that

(d/dt + D%)e12 o = (d/dt + AG/K)e=10K = 0, linz)e*’AG/Ka) -@.
r—

Hence, by the uniqueness of the solution for the initial value problem associated to the heat
equation (for D), we have e 1% = 10K,

Suppose now that w([2']) = n*frf‘l/([h’]) . a)i',/ ([7']) has a support near a given point
in G/K. Let ug, nk be the Haar measures on G, K given by the frames e.L, e’g. and let ug,x

be the left-invariant measure on G/K which is associated to X ,. Then we have
_+AG/K I _+AG/K\h,h'  p I _+AG/K\h,h' p
e A w = G M) - @A ol = Y M e AT o)

=" (k) - /G p dpec x (WD 27 M (1, 1D o (1)

@™ @) (k) =Y e (k) - f dp (h'K)e™ ™0 (hk, WKy al, (k') o' (I7'])
G

=Y S (k) - /G | duarm D ( /K dpx Ky e (hk, h’k/)A}‘}(kk’*))wi'l (D).
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NG —tAg —tAg

By the equalities e

0(g91, 992) = e "0 (g1, g2) = e 20 (g19, g29), we have

(e (h, ') = / dp (e 20, WK ATy (K™

/duK(k Ye AT i’ ! ,e) AT (k'™ 1)—/duK(k)e G (' ik, e) ATy (k).
Thus we obtain the formula (1.8). O

4. Proof of Corollary 1.3. Let G be a semisimple compact connected Lie group
and let Tg be a maximal torus. The corresponding subalgebra tg of g gives the Cartan
subalgebra tC V—1tg of the complexified Lie algebra g¢ = +/—1g, which has the
(positive) root systems ¢C(+) V-1 dﬁgr) contained in +/—1t§;. Let us take the lattice
I'c ={y etg; expy = e} Then, if u = expU € Tg = exp tg satisfies «(U) & 2n Z for
alla € dﬁg, that is, if # is a regular element of T E , the summation formula due to Urakawa
([15, Theorem 2], see also [4], [2]) implies that

oino/24 ~ a(U +y)/2
BN et U+ /41 Sk B 7
@.1) 0(u,e) = (4m)n0/z Z € H+ sina(U + y)/2

ae G
for np = dim G, which converges absolutely.

For our G = SO (n+ 1), let us take the maximal torus 7 as in the introduction, and take
the frame (Uj, . ..) of tg defined by U; = E2; 1,2 — E2i2i—1 (see (1.1)) and denote its dual
frame by (A1, ...), 1.e., A;(U;j) = §;;. Asis well-known ([10, pp. 684-685]), if G is equal to
SO(2m + 1) (i.e., of type B,), we have
te={Ui; 1<i<mlpDIc={2nU;; 1<i=<mlz,

== i+ l<i<j<mlU{d:1<i<m)
and, if G is equal to SO (2m) (i.e., of type D,,), we have
te={Ui; 1<i<mlpDIc={2nU;; 1<i <mjz,

4.2)

“4.3) n . . .
@Gz{)\i—)\j,)xi—l-)»j ;1 <i < j<m}.

Therefore, at (4.1) with G = SO(n + 1) = SO(2m + 1) or SO(2m), we can write U =
YL 6iUi (6; € Ryand y = 21> " ;Ui (I; € Z) so that, for u € TXE. we have the
absolutely convergent summation formula

o!10/24 1

(47”)"0/2 l_[ -, sina(U)/2
% Ze(l)e”(" 1) Y6 +2i;)? /4:1—[ (Z(9i+2ﬂli)Ui)/2-

a€¢+

G
e 10 (u,e) =

(4.4)

Remark here that! = (I, ...) runs over Z" and (/) means 1if Y _ /; is even and (— 1rt!
if Y I; is odd. The Urakawa summation formula primarily deals with a simply connected
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group, that is, not G = SO(n + 1) but the universal covering group G = Spin(n + 1).
We have I'c D I'z = 2n)_LiU;; i € Z, ) I; € 2Z}. Also, for the nonzero element
[c] of m1(G) = Z,, if we take such y[] € [ that the deck transformation of G given
by [c] sends e € G to exp Yy € G (for example we set y] = 2w U;), then we have
exp((v/—1/2) Zaeq)g a(ye))) = —1 if n is even and 1 if n is odd. It may be more faith-
ful to his theory than above to say (4.4) is then obtained by applying his formula for G to the
right hand side of eI (u, ) = > pliy=u ¢85 (i, ¢), where p : G — G is the covering
map.

Here, let us apply the Weyl integration formula ([10, Theorem 8.60]) to the right hand
side of (1.8) (n > 3). We take the maximal torus Tk (as in the introduction) etc. of K =
SO(n). Foru =expU € Tk, we set

@5  Qw= [] (/102 VTeO2) okl TTsin a(U))2,
ﬂaedﬁ‘é ae@;

and normalize the measures ur, , i/, on Tk, K/Tk as fTKdMTK(”) =1, fK/TKdMK/TK([k])
=1. We denote by vol(K) the volume of K with respect to the metric of G = SO (n + 1), and
by Wk the Weyl group of K. Then the Weyl formula says

vol(K)

—tACG/K hn ’
o (h), (W] = duk e ([k
o (e )iy (h] [R]) Wil J . i /Ty (LKD)
x / dur, () 2(wye 20 (W~ hkuk ™", e)A™, (kuk™"y,
Tk
(e A ([, (h])
4.7 _ vol(K)

—_tAG _
= dpereu) 2u)e ™ (u, ) / dpeg/ (LKD) ATy (k™).
Wkl Jry K/Tx
We also have the following lemma.

LEMMA 4.1. Assumen > 3. Foru = expU = leisln/Zl 0;U; € Tk NT~2, we have
the absolutely convergent summation formula

1 etn(n+l)/48
72— /2] (dgg 1y 2400212

(4.8) Qu)e 0 (u, e) = > F.6).

>0
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PROOF. We have no = n(n + 1)/2. As for the case n = 2m, by referring to (4.2)
through (4.5), we have

£!10/24 22m(m—1) Haep,t sin? a(U) /2
@rtyo”  Tlyeqp sina(U)/2

x Y (—DXlig 20D 62l 4 T a(Z(e,- +2n1,~)U,-)/2
I

+
aEPs

Qe (u, ¢) =

(4.9) = 5
1 efn(n+1)/48 1 [[i<;{sin®6;/2 —sin6;/2}

= Zml=D721 (dgg)n/24m/2 gm(m=1) [T, sin6;/2

> (=DEh
leZm
2 4 '

i i<j

Thus we obtain (4.8) with (1.10). Its absolute convergence is obvious because (4.4) converges
absolutely. As for the case n = 2m — 1, we have

o110/24 92(m—1)? naep,t sin® a(U) /2
(4mt)no/2 ]_[ae(pg sina(U)/2

X 2672("71)2(91'””[")2/“ l—[ 05(2(9[ +27Tli)Ui)/2
]

+
aed;

1 etn(n—Fl)/48 1

Qu)e 0 (u, ¢) =

[ ] tsin®6:/2 — sin”6;/2)

i<j<m

2
x 3 2= el T <9i +227Tli)

lezm—1 i<m

(4.10) = L m—DI-1/2] (47 1)/ 2+ =2 [(n—1)?

0; +271)? — (0; + 27l;)?
X ]"[ 7 )

i<j<m

Thus we obtain (4.8) with (1.11). Its absolute convergence is obvious. a
Now let us prove Corollary 1.3.

PROOF OF COROLLARY 1.3. As for the smoothness of Fi(z, 0), we have only to show
it at & = 0. In the case n = 2m — 1, it will be obvious. We will show it in the case n = 2m.
Referring to (4.9), for a fixed [ > 0, it suffices to show that

4 — — . .. 0; 2me:l; (9l+2n8lll)2_(0+ ) 8'1')2
11 2(n—1) 2(91 2718111)2/‘” ! 1 J Jb)
( ) E e || |l T

£ i i<j
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is an odd function with respect to each 6;. By using multi-indices p = (p1,...) € Z™ with
p > 0 and certain constants ap, (4.11) can be written as

(finite sum)

Z ap672(n71)Z(9i+2ne,~l,~)2/4t(9 +2n8[)2p+1

€’p
(4.12) _ Zapefﬂnfl)2(91.2+(2nli)2)/4t l—[ 9i2p,-+1
p 1i=0
x 1_[{8727T(n71)0ili/t(0i + 27.[11_)2pi+1 4 e27‘r(n71)9ili/l‘(0i _ 27Tl[)2pi+1} ;
l,‘>0

which is certainly such an odd function.
Next, let us show the estimates (1.12). Assume n = 2m and |6;| < m/4. Referring to
(4.12) and (1.10), there exist constants Cy, C2, ... > 0, independent of / > 0, such that

2pi+1 2pi+1
e 2m(n=10il;/1 b +2mli ! 4 2T (n=D6ili/1 6; —2mli \*"
t1/2 1172

< Ci{1+ 6 /12PN + @l /11/2)2PiF2)16, /112 =D/
|Fi(t,0)] < Cre 20"—D Y02 /412l 4t 72l [21)

x ﬂ

< C3e*2("*1) S0 /5t+Hi/51)

Z \Fi(1,0)] < Cs e—2(n—1)20i2/5t Ze—z(n—l)Zl,-/Sz < C4e—2(n—1)20i2/5t.
>0 >0

—l 29[
+—1/25in6, /2

‘ {1+ 0;/t"H2PN 1L + Qrli /11222

If 7/4 < || < m, then the estimate holds obviously. Next assume n = 2m — 1. Then we
have

|Fi(2,0)] < C110/1"/2|("2) 37 720D Rli2mel*/ 0/
< G |0/11/2|("2) 2 =DI= S0 =@n Th)/ O/ < 03 2n=DI= 0~ h)/5t

S IFi@,0)] < Cae 20D TS

>0
Thus (1.12) were shown.

We will prove (1.13) through (1.15). The Haar measure w7, is given by the volume
element (277)~"/21d6}, /) A --- A dBy. This, together with (1.12), (4.7) and (4.8) (hence,
n > 3), yields the expression (1.13) of termwise integration with

413 _vol(K) 1 _vol(K) 1
(4.13) Cn = [Wg| Qrle=D/2+0[n/21 = Wi | (2rl+D/21[n/2]°
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(4.14) B™,(0) = / diek re (DA™, (ku@)k ™) .
K/Tkx

The second equality at (1.15) certainly holds because
a}‘}/(u(G)) = (emj(e), (Ad(u(8))emj (e)) ="e; - D(O)ej = D(B),j
LA™, (ku(@)k™") = det(a™ (ku(@)k 1)) = det(@™ (k) D@)a™ (k")) 1p .

We need to show that (4.13) is equal to the right hand side of (1.14). Denote by vol(K, ¥) and
vol(K, g) the volumes of K = SO (n) with respect to the metrics —Bg and — By|¥, respec-
tively. It follows from [1] that

n—1 n(n—1)/4
vol(K, g) = < ) vol(K, £)

n—2
2
om —1(4m _ 2)m(2m—l)/2
2'4'...(2m _2)' (an)m (”l =2m),
2
om —1(4m _ 4)(m—1)(2m—1)/2(m _ 1)| -
2141 .. 2m — 2)! Q™" (n=2m—1).

Since we have vol(K) = vol(K, g), |Wso@m)| = m!2"~! and |Wsoom—_1)| = (m — 1)!12m~!
([10, pp. 684—685]), (4.13) is certainly equal to (1.14). Thus the proof of the corollary with
n > 3 is complete. As for the case n = 2, that is, S§? = G/K = SO(3)/S0(2), since
K =SO0Q2) =Tk > u =u(), (4.4)says

/8

e_tAg(u, €)= —>—7>
(4701)2/2+1/2

s

S e2osam gy G+ 27002
i sin#1/2
1

which coincides with (1.10) for n = 2. Hence (1.8) with n = 2 implies (1.13) withn = 2. O
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