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THE LAPLACIAN AND THE HEAT KERNEL
ACTING ON DIFFERENTIAL FORMS ON SPHERES
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Abstract. We show that the Laplacian acting on differential forms on a sphere can be
lifted to an operator on its rotation group which is intrinsically equivalent to the Laplacian
acting on functions on the Lie group. Further, using the result and the Urakawa summation
formula for the heat kernel of the latter Laplacian and the Weyl integration formula, we get a
summation formula for the kernel of the former.

1. Introduction. Let us view the n-sphere Sn as a coset manifold SO(n+ 1)/SO(n)

and assume that the Lie algebra g = so(n + 1) is endowed with an inner product (·, ·) =
−B(·, ·), where B is the Killing form, i.e., B(X, Y ) = tr(ad(X)ad(Y )), which is nondegener-
ate and negative definite. We will furnish Sn with a left SO(n+1)-invariant metric (·, ·) so that
the canonical isomorphism from the orthogonal complement m of the subalgebra k = so(n)

to T[e]Sn is isometric. The purpose of the paper is to study the horizontal lift of the Laplacian
�Sn = d∗d + dd∗ to SO(n + 1), where d∗ is the formal adjoint of the exterior derivative

d , and, by using it, to give a summation formula for the heat kernel e−t�Sn

at each diagonal
point in Sn × Sn.

On TeSO(n+1) = g = m+k, we will take canonically a positively oriented orthonormal
frame e•(e)= (em•(e), ek•(e))= (e1(e), . . . , en(n+1)/2(e))= (em1(e),. . . ,emn(e), ek1(e),. . .,

ek n(n−1)/2(e)) = (e1,n+1(e),. . ., en,n+1(e), e1,n(e), . . . , en−1,n(e), e1,n−1(e), . . . ). That is,
we set

ei,j (e) = (2(n− 1))−1/2(Ei,j − Ej,i) (i < j) ,(1.1)

where Ei,j is the (n+ 1)× (n+ 1)-matrix of which the (i, j)-entry is equal to 1 and all other
entries are 0. By its left translation, we obtain a frame eL• = (eL

m•, eL
k•) and its dual frame

e•L = (em•
L , ek•

L ).
First, let us state an assertion concerning the horizontal lift of �Sn

by the Riemannian
submersion

π : SO(n+ 1)→ SO(n+ 1)/SO(n) = Sn .(1.2)

Consider the Laplacian �
SO(n+1)
0 = −∑

eL
i eL

i acting on functions on SO(n+ 1) (see (2.5))
and take a differential form ω on Sn. We define a differential operator acting on the horizontal
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lift ω̄ =∑
emα
L ·Ωα (α = (α1, . . . , α|α|), emα

L = e
mα1
L ∧ · · · ∧ e

mα|α|
L ) by

DSO(n+1) ω̄ =
∑

emα
L ·�SO(n+1)

0 Ωα .(1.3)

Then we have the following theorem.

THEOREM 1.1. The equality �Sn
ω = DSO(n+1) ω̄ holds.

As is known ((2.20), [6, Chap. II, §4], [2, Lemma 2.1]), for a function f on Sn, we

have �Sn

0 f = �
SO(n+1)
0 f̄ . In the case of forms, one may naturally expect (refer to (2.17))

that �Sn
ω is equal to the horizontal component H∗(�SO(n+1) ω̄). However, it is the formula

in the theorem that really holds, which is rather desirable because the study of heat kernel

e−t�Sn

acting on differential forms can be reduced to that of e−t�
SO(n+1)
0 , which has been

closely investigated by many people. Second, we want to describe the former kernel by using
the latter. Let us consider the submersion m × SO(n) → SO(n + 1), (X, k) �→ (exp X)k,
and define the frames f h• = (f h

m•, f h
k•), f •h = (f m•

h , f k•
h ) (with marked point h = exp X) at

hk ∈ π−1([h]) by

f h
i (hk) = Rk∗(eL

i (h)) , f i
h(hk) = Rk∗(ei

L(h)) ,(1.4)

where Rk is the right translation by k ∈ SO(n). Remark that the matrix am(k) (see (2.6)) with
(i, j)-entries

am
ij (k) = emi(e)(Ad(k)emj (e))(1.5)

is the transition matrix between the frames, i.e.,

f h
m•(hk) · am(k) = em•(hk) , f m•

h (hk) · am(k) = em•(hk) ,(1.6)

and, in general, π∗emi
L is not equal to emi

L , while π∗f mi
h is equal to f mi

h .
Now, let us set

e−t�Sn

([h], [h′])=
(|I |=|I ′|)∑

I,I ′
(π∗f mI

h )([h]) � (π∗f mI ′
h′ )([h′]) · (e−t�Sn

)
h,h′
II ′ ([h], [h′]) ,(1.7)

where we assume that (e−t�Sn

)
h,h′
σ(I )τ (I ′) = sgn(σ )sgn(τ )(e−t�Sn

)
h,h′
II ′ (σ, τ ∈ S|I |), and de-

note by µSO(n) the Haar measure on SO(n) given by the frame ek•(e).

COROLLARY 1.2. We have

(e−t�Sn

)
h,h′
II ′ ([h], [h′]) =

∫
SO(n)

dµSO(n)(k) e−t�
SO(n+1)
0 (h′−1hk, e) Am

II ′(k)(1.8)

with

Am
II ′(k) = 1

|I |! det(am(k))II ′ = 1

|I |! det




am
i1i
′
1
(k) · · · am

i1i
′
|I ′ |

(k)

...
...

am
i|I |i′1

(k) · · · am
i|I |i′|I ′ |

(k)


 ,(1.9)

which is interpreted as 1 if |I | (= |I ′|) = 0.
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By applying the Poisson summation formula for heat kernel, proved by Urakawa ([15]),

to the kernel e−t�
SO(n+1)
0 (see also [4], [2]) and using the Weyl integration formula (see [10]

for example), we can describe the coefficients (1.8) for h = h′ explicitly in Corollary 1.3. For
that, let us assume n ≥ 2 and take Z[n/2] � l = (l1, . . . ) ≥ 0 (i.e., li ≥ 0 for all i). Then, for
t ∈ (0,∞) and θ = (θ1, . . . ) ∈ [−π, π][n/2], if n = 2m, we put

Fl(t, θ)=
∑

ε

e−2(n−1)
∑

(θi+2πεi li )
2/4t

∏
i<j

{(
t−1/2 sin

θi

2

)2

−
(

t−1/2 sin
θj

2

)2}

∏
i

t−1/2 sin
θi

2

× (−1)
∑

εi li
∏
i

θi + 2πεili

(4t)1/2

∏
i<j

{(
θi + 2πεili

(4t)1/2

)2

−
(

θj + 2πεj lj

(4t)1/2

)2}

(1.10)

and, if n = 2m− 1, we put

Fl(t, θ) =
∑

ε

e−2(n−1)
∑

(θi+2πεi li )
2/4t

∏
i<j

{(
t−1/2 sin

θi

2

)2

−
(

t−1/2 sin
θj

2

)2}

×
∏
i

(
θi + 2πεili

(4t)1/2

)2 ∏
i<j

{(
θi + 2πεili

(4t)1/2

)2

−
(

θj + 2πεj lj

(4t)1/2

)2}
,

(1.11)

where ε runs over the set of (ε1, . . . , ε[n/2]) satisfying

εi =
{±1 (li > 0) ,

0 (li = 0) ,

and we understand
∏

i<j {· · · } = 1 at (1.10) for n = 2 and at (1.11) for n = 3.

COROLLARY 1.3. Each function Fl(t, θ) is smooth on (0,∞) × [−π, π][n/2], and,
given t0 > 0, there exists C > 0 satisfying

|Fl(t, θ)| ≤ Ce−2(n−1)(|θ |2+∑
li )/5t ( for all l) ,

∑
l≥0

|Fl(t, θ)| ≤ Ce−2(n−1)|θ |2/5t(1.12)

provided (t, θ) ∈ (0, t0]×[−π, π][n/2]. Also, (1.8) with h = h′ has an expression of termwise
integration

(e−t�Sn

)
h,h
II ′ ([h], [h])=cn

etn(n+1)/48

(4πt)n/2

∑
l≥0

1

(4πt)[n/2]/2

∫
[−π,π][n/2]

dθFl(t, θ)Bm
II ′(θ)(1.13)

with

cn = (2(n− 1))[n/2](2[(n−1)/2]+1)/2 2[(n−1)/2][(n+1)/2]

2! 4! · · · (2[(n− 1)/2])! ·



1

m! (n = 2m) ,

1 (n = 2m− 1) ,

(1.14)
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Bm
II ′(θ) =

∫
SO(n)/T

dµSO(n)/T ([k]) Am
II ′(ku(θ)k−1)

= 1

|I |!
∫

SO(n)/T

dµSO(n)/T ([k]) det(am(k)D(θ) am(k−1))II ′ (n ≥ 3) ,

(1.15)

Bm
II ′(θ) = 1

|I |! det D(θ)II ′ (= D(θ)II ′) (n = 2) .(1.16)

Here we put

D(θ1) =
(

cos θ1 sin θ1
− sin θ1 cos θ1

)
, D(θ) =




D(θ1)

O

.. . O

D(θ[n/2])




and T = TSO(n) is a maximal torus of SO(n) consisting of u(θ) = D(θ) (if n = 2m),
u(θ) = (

D(θ) 0
0 1

)
(if n = 2m − 1). (Hence, Am

II ′(ku(θ)k−1) is independent of the choice
of representative k of [k].) Moreover, the canonical measure µSO(n)/T is normalized as∫
SO(n)/T dµSO(n)/T ([k]) = 1.

The standard metric on Sn = SO(n + 1)/SO(n) will be (2(n − 1))−1(·, ·), so that

the kernel for q-forms with respect to the standard one can be expressed as e−t�(Sn,st) =
(2(n − 1))n/2−qe−2(n−1)t�Sn

. Hence, if we express it using the orthonormal frame (2(n −
1))−1/2(π∗f m•

h )([h]) in the same way as at (1.13), the coefficients can be written at diagonal
points as

(e−t�(Sn,st)
)
h,h
II ′ ([h], [h])

= c̃n
etn(n2−1)/24

(4πt)n/2

∑
l≥0

1

(4πt)[n/2]/2

∫
[−π,π][n/2]

dθF̃l(t, θ)Bm
II ′(θ) ,

(1.17)

where c̃n is defined as cn divided by (2(n−1))[n/2](2[(n−1)/2]+1)/2 and F̃l(t, θ) means Fl(t, θ)

with e−2(n−1)
∑

(θi+2πεi li )
2/4t replaced by e−

∑
(θi+2πεi li )

2/4t . As for S1 = SO(2)/SO(1) =
SO(2) with standard metric, as is known ([3, p. 306]), we have the Poisson summation for-
mula

e−t�(S1,st)
([h], [h]) = 1

(4πt)1/2

∑
l∈Z

e−l2/4t .(1.18)

Thus (1.13) and (1.17) may be regarded as its generalizations.
The author has been studying heat kernel coefficients for a few years mainly by using

the general adiabatic expansion theory ([11], [12]), and, in particular in the sphere case, the
kernels acting on functions were closely investigated ([13]) by considering the duality rela-
tion between sphere and hyperbolic space. This paper comes from an attempt to generalize
the results ([13]) to the differential form case. We note that, in some different appearance,
on general compact symmetric spaces, another type of formula for the kernel acting on dif-
ferential forms has already been obtained by Urakawa ([16]), and, in the function case, the
formulas corresponding to (1.8) and (1.13) have already been obtained by Benabdallach ([2]).
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2. The Laplacian on compact two-point homogeneous Riemannian manifolds.
Let (G,K) be a symmetric pair with G compact, connected and semisimple, and assume
that the Lie algebra g of G possesses the inner product (·, ·) = −B(·, ·), where B is its
Killing form. We will furnish G/K with a left G-invariant metric (·, ·) so that the canonical
isomorphism from the orthogonal complement m of the subalgebra k of K to T[e](G/K) is
isometric. Notice that there is an orthogonal decomposition ([14, Lemma 30 (p. 316)])

g = m+ k with Ad(k)m ⊂ m (k ∈ K) , [k, k] ⊂ k , [k,m] ⊂ m , [m,m] ⊂ k ,(2.1)

and we have the Riemannian submersion

π : (G, (·, ·))→ (G/K, (·, ·)) .(2.2)

The purpose of the section is to prove Propositions 2.2 and 2.3 which describe two kinds of
differences H∗(�G ω̄) − �G/Kω and H∗(�G ω̄) − DG ω̄ minutely. The Riemannian con-
nections ∇G, ∇G/K , the horizontal lifts X̄, ω̄ (of vector fields, differential forms) and the
horizontal components H(∗)(·) have the simple relations ([14, Lemma 45 (p. 212)])

(X̄, Ȳ ) = (X, Y ) ◦π , H([X̄, Ȳ ]) = [X,Y ] , H(∇G

X̄
Ȳ ) = ∇G/K

X Y ,
(2.3)

(ω̄, η̄) = (ω, η) ◦π , H∗(∇G

X̄
ω̄) = ∇G/K

X ω ,

but they are complicated if the Laplacians are implicated in them.
We will begin our discussion with reviewing the Weitzenböck formula. Let us take a

positively oriented orthonormal local frame e• of (T G, (·, ·)) and its dual frame e•. We denote
the exterior, interior products of a differential 1-form ξ by ξ∧, ξ ∨ , respectively, and denote
the curvature 2-form of ∇G by F(∇G). Then we have the formula

�G= dGdG∗ + dG∗dG

= −
∑

(∇G
ej
∇G

ej
− ∇G

∇G
ej

ej
)−

∑
(F (∇G)(ei3, ei4)ei2 , ei1) ei1 ∧ ei2 ∨ ei3 ∧ ei4 ∨ .

(2.4)

For the left invariant orthonormal frame eL• = (eL
m•, eL

k•) given as in the introduction, we have
∇G

eL
i

eL
j = (1/2)[eL

i , eL
j ] ([14, Proposition 9 (p. 304)]). Hence, in the function case, (2.4) can

be simplified into

�G
0 = −

∑
eL
j eL

j (acting on C∞(G)) .(2.5)

Another frame we are interested in is a local frame f• = (fm•, fk•) at hk = (exp X)k ∈
π−1([h]) given as in the introduction but with X restricted to a neighborhood Vm of 0. Since
here the marked point h = exp X is given by a unique X, we omit the symbol h to simplify
the notation. Set V = π(exp Vm). Then the frames eL

m•, fm• on π−1(V ) have the relations
(1.6), the transition matrix am(k) of which has the properties

am(1) = id. , am(k−1) = am(k)−1 = t am(k) , am(k1)a
m(k2) = am(k1k2) .(2.6)
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Similarly, we denote by ak(k) the transition matrix between eL
k• and fk•, and let us consider

the Maurer-Cartan structure constants given by

[eL
i1
, eL

i2
] =

∑
eL
i3
· ci3

i1i2
, [eL

mi1
, eL

mi2
] =

∑
eL
ki3
· c(ki3)

(mi1)(mi2)
,(2.7)

etc. (see (2.1)). We will calculate the connection coefficients of ∇G with respect to the frame
f•. Henceforth in the proofs in the section, we adopt the Einstein convention on sums over
repeated indices.

LEMMA 2.1. At g = hk = (exp X)k ∈ π−1(V ), we have

∇G
fmi

fmj = −
∑

fmj ′ · emj ′
L (h)

([
tanh

ad X

2
eL
mi , e

L
mj

])
+

∑
fkj ′ · 1

2
c
(kj ′)
(mi)(mj) ,(2.8)

∇G
fmi

fkj =
∑

fmj ′ · 1

2
c
(mj ′)
(mi)(kj)

−
∑

fkj ′ · ekj ′
L (h)

([
tanh

ad X

2
eL
mi , e

L
kj

])
,(2.9)

∇G
fki

fmj = −
∑

fmj ′ · 1

2
c
(mj ′)
(ki)(mj) , ∇G

fki
fkj = −

∑
fkj ′ · 1

2
c
(kj ′)
(ki)(kj) ,(2.10)

∇G
fmi

f mj =
∑

f mj ′ · emj

L (h)
([

tanh
ad X

2
eL
mi , e

L
mj ′

])
−

∑
f kj ′ · 1

2
c
(mj)

(mi)(kj ′) ,(2.11)

∇G
fmi

f kj = −
∑

f mj ′ · 1

2
c
(kj)

(mi)(mj ′) +
∑

f kj ′ · ekj
L (h)

([
tanh

ad X

2
eL
mi , e

L
kj ′

])
,(2.12)

∇G
fki

f mj =
∑

f mj ′ · 1

2
c
(mj)

(ki)(mj ′) , ∇G
fki

f kj =
∑

f kj ′ · 1

2
c
(kj)

(ki)(kj ′) .(2.13)

PROOF. We put exp(X) exp(tei (e)) = h · k(exp(X) exp(tei (e))) ∈ exp m ·K . Then we
have the equalities

d

dt

∣∣∣∣
t=0

k(exp(X) exp(temi (e))) = tanh
ad X

2
emi(e) ∈ k ,

(2.14)
d

dt

∣∣∣∣
t=0

k(exp(X) exp(teki (e))) = eki (e) ∈ k .

The second equality is obvious. To show the first one, set exp(X) exp(temi(e)) = exp(X +
Y (t)) · k(t) ∈ exp m ·K . Then we have

emi(e) = d

dt

∣∣∣∣
t=0

exp(temi (e)) = d

dt

∣∣∣∣
t=0

exp(−X) exp(X + Y (t)) k(t)

= d

dt

∣∣∣∣
t=0

exp(−X) exp(X + Y (t))+ k̇(0) = L∗exp X

d

dt

∣∣∣∣
t=0

exp(X + t Ẏ (0))+ k̇(0)

and, by using [5, Theorem 1.7 (p. 105)], we have

L∗exp X

d

dt

∣∣∣∣
t=0

exp(X + t Ẏ (0)) = 1− e−ad X

ad X
(Ẏ (0))

= sinh ad X

ad X
(Ẏ (0))+

(
− tanh

ad X

2

)
sinh ad X

ad X
(Ẏ (0)) ∈ m+ k .
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They imply

emi(e) = sinh ad X

ad X
(Ẏ (0)) , tanh

ad X

2

sinh ad X

ad X
(Ẏ (0)) = k̇(0) ,

which yield the first equality at (2.14). Then by (2.14) we know

eL
mi′(g)(am

ij (k(g)))|g=h = −e
mj

L

([
tanh

ad X

2
eL
mi′ , e

L
mi

])
,

eL
mi′(g)(ak

ij (k(g)))|g=h = −e
kj
L

([
tanh

ad X

2
eL
mi′ , e

L
ki

])
,(2.15)

eL
ki′(g)(am

ij (k(g)))|g=h = −c
(mj)

(ki′)(mi)
, eL

ki′(g)(ak
ij (k(g)))|g=h = −c

(kj)

(ki′)(ki) .

Indeed, we have

eL
mi′(g)(am

ij (k(g)))|g=h = d

dt

∣∣∣∣
t=0

am
ij (k(exp(X) exp(temi′ (e))))

=
(
emi(e),

[
tanh

ad X

2
emi′(e), emj (e)

])
= −

([
tanh

ad X

2
emi′(e), emi(e)

]
, emj (e)

)

= −emj (e)
([

tanh
ad X

2
emi′(e), emi(e)

])
= −e

mj
L

([
tanh

ad X

2
eL
mi′ , e

L
mi

])
,

etc. Using (2.15), we can show the equalities of the lemma. For example, (2.8) is obtained as

(∇G
fmi

fmj )(h) = ∇G

eL
mi (h)

fmj (g) = ∇G

eL
mi (h)

am
jj ′(k(g))eL

mj ′(g)

= eL
mi(g)(am

jj ′(k(g)))|g=he
L
mj ′(h)+ am

jj ′(k(g))|g=h∇G

eL
mi (h)

eL
mj ′(g)

= −eL
mj ′(h) · emj ′

L

([
tanh

ad X

2
eL
mi , e

L
mj

])
+ 1

2
[eL

mi , e
L
mj ](h)

= −eL
mj ′(h) · emj ′

L

([
tanh

ad X

2
eL
mi , e

L
mj

])
+ eL

kj ′(h) · 1

2
c
(kj ′)
(mi)(mj) ,

(∇G
fmi

fmj )(hk) = Rk∗∇G

eL
mi (h)

fmj (g)

= −fmj ′ · emj ′
L (h)

([
tanh

ad X

2
eL
mi , e

L
mj

])
+ fkj ′ · 1

2
c
(kj ′)
(mi)(mj) .

The equalities (2.11) through (2.13) follow from (2.8) through (2.10) together with the for-
mula ∇G

fi
f j = −f j ′ ⊗ f j (∇G

fi
fj ′ ). �

Now, let us generalize the formula (2.4) for �G/K with replacing e• etc. by f• etc.
Namely, we have

�G/K = −
∑(∇G/K

π∗fmi
∇G/K

π∗fmi
−∇G/K

∇G/K
π∗fmi

fπ∗mi

)

−
∑

(F (∇G/K)(π∗fmi3 , π∗fmi4)π∗fmi2 , π∗fmi1)(2.16)

·π∗f mi1 ∧ π∗f mi2 ∨π∗f mi3 ∧ π∗f mi4 ∨ .
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We assume that the symmetric space G/K is two-point homogeneous. We have the
following proposition.

PROPOSITION 2.2. Let ω be a differential form. On π−1(V ), the difference between
the horizontal part H∗(�Gω̄) and the horizontal lift �G/Kω can be written as

H∗(�Gω̄)−�G/Kω = −3

4

∑
c
(mj2)

(mj)(ki)c
(ki)
(mj)(mj1)

f mj1 ∧ f mj2 ∨ ω̄

+
∑ 1

4
{3c

(mj1)

(mj2)(ki)
c
(ki)
(mj3)(mj4)

− c
(mj1)

(mj4)(ki)
c
(ki)
(mj2)(mj3)

}
× f mj1∧ f mj2 ∨ f mj3∧ f mj4 ∨ ω̄ .

(2.17)

PROOF. Set ω = π∗f mJ · ωJ . Then we have

H∗(�Gω̄)−�G/Kω = {H∗(�Gf mJ )−�G/Kπ∗f mJ } · π∗ωJ

+ f mJ ·{H∗(�Gπ∗ωJ )−�G/KωJ }
+ 2{−H∗(∇G

fmi
f mJ )+∇G/K

π∗fmi
π∗f mJ } · fmi (π

∗ωJ ) .

(2.18)

(2.3) and Lemma 2.1 imply

−H∗(∇G
fmi
∇G

fmi
f mJ )+∇G/K

π∗fmi
∇G/K

π∗fmi
π∗f mJ

= −H∗(∇G
fmi
∇G

fmi
f mJ )+H∗

(
∇G

fmi

{
∇G

fmi
f mJ + f kj ′ ∧ f mj ∨ f mJ · 1

2
c
(mj)

(mi)(kj ′)

})

= −f mj1 ∧ f mj2 ∨ f mJ · 1

4
c
(mj2)

(mi)(kj)c
(kj)

(mi)(mj1)
,

− H∗(∇G
fki
∇G

fki
f mJ ) = −H∗

(
∇G

fki
(f mj1 ∧ f mj ∨ f mJ ) · 1

2
c
(mj)

(ki)(mj1)

)

= −f mj2 ∧ f mj ∨ f mJ · 1

2
c
(mj)

(ki)(mj1)

1

2
c
(mj1)

(ki)(mj2)
[3pt]

− f mj1 ∧ f mj ′ ∧ f mj2 ∨ f mj ∨ f mJ · 1

2
c
(mj)

(ki)(mj1)

1

2
c
(mj2)

(ki)(mj ′)

= −f mj1∧f mj2 ∨ f mJ · 1

4
c
(mj2)

(ki)(mj)c
(mj)

(ki)(mj1)
−f mj1∧ f mj2 ∨ f mJ · 1

4
c
(mj2)

(ki)(mj1)
c
(mj)

(ki)(mj)

+ f mj1 ∧ f mj2 ∨f mj3 ∧ f mj4 ∨ f mJ · 1

4
c
(mj4)

(ki)(mj1)
c
(mj2)

(ki)(mj3)
,

H∗(∇G

∇G
fmi

fmi
f mJ

)− ∇G/K

∇G/K
π∗fmi

π∗fmi

π∗f mJ = 0 , H∗(∇G

∇G
fki

fki
f mJ

) = 0 ,
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−H∗((F (∇G)(fi3 , fi4 )fi2 , fi1) · (f i1 ∧ f i2 ∨ f i3 ∧ f i4 ∨ )f mJ )

= −(F (∇G)(fmi3 , fmi4 )fmi2 , fmi1) · f mi1 ∧ f mi2 ∨ f mi3 ∧ f mi4 ∨ f mJ

− (F (∇G)(fki2 , fmi4 )fki2 , fmi1 ) · f mi1 ∧ f mi4 ∨ f mJ ,

F (∇G/K)(π∗fmi3 , π∗fmi4)π∗fmi2 = H
(
∇G

fmi3

{
∇G

fmi4
fmi2 − fkj ′ · 1

2
c
(kj ′)
(mi4)(mi2)

})

− H
(
∇G

fmi4

{
∇G

fmi3
fmi2 − fkj ′ · 1

2
c
(kj ′)
(mi3)(mi2)

})
−H(∇G

[fmi3 ,fmi4 ]−fkj ′ ·c(kj ′)
(mi3)(mi4)

fmi2

)

= H(F (∇G)(fmi3 , fmi4 )fmi2)− fmi′ · 1

4
c
(mi′)
(mi3)(kj)

c
(kj)

(mi4)(mi2)

+ fmi′ · 1

4
c
(mi′)
(mi4)(kj)c

(kj)

(mi3)(mi2)
− fmi′ · 1

2
c
(mi′)
(kj)(mi2)

c
(kj)

(mi3)(mi4)
,

(F (∇G/K)(π∗fmi3 , π∗fmi4)π∗fmi2 , π∗fmi1)− (F (∇G)(fmi3 , fmi4 )fmi2 , fmi1)

= −1

4
c
(mi1)
(mi3)(kj)c

(kj)

(mi4)(mi2)
+ 1

4
c
(mi1)
(mi4)(kj)c

(kj)

(mi3)(mi2)
− 1

2
c
(mi1)
(kj)(mi2)

c
(kj)

(mi3)(mi4)

= 3

4
c
(mi1)
(mi2)(kj)

c
(kj)

(mi3)(mi4)
,

(F (∇G)(fki2 , fmi4)fki2 , fmi1) = (H(∇G
fki2
∇G

fmi4
fki2 ), fmi1) = −

1

4
c
(mi1)
(ki2)(mj)c

(mj)

(mi4)(ki2)
.

Therefore we have

H∗(�Gf mJ )−�G/Kπ∗f mJ

= −f mj1 ∧ f mj2 ∨ f mJ · 3

4
c
(mj2)

(mj)(ki)c
(ki)
(mj)(mj1)

+ f mj1∧ f mj2 ∨f mj3∧ f mj4 ∨f mJ

·
(

3

4
c
(mj1)

(mj2)(ki)
c
(ki)
(mj3)(mj4)

− 1

4
c
(mj1)

(mj4)(ki)
c
(ki)
(mj2)(mj3)

)
.

(2.19)

The two-point homogeneity ([6, Proposition 4.11 (p. 288)]) implies

H∗(�Gπ∗ωJ )−�G/KωJ = �G(ωJ ◦π)− (�G/KωJ ) ◦π = 0 .(2.20)

Then, by referring to (2.3), we have

−H∗(∇G
fmi

f mJ )+∇G/K

π∗fmi
π∗f mJ = −H∗(∇G

fmi
f mJ )+H∗(∇G

fmi
f mJ ) = 0 .(2.21)

Thus we obtain (2.17). �

Next, let us define the operator DG in the same way as at (1.3). Then we have the
following proposition.
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PROPOSITION 2.3. Take a differential form ω and set ω̄ =∑
emα
L ·Ωα with Ωσ(α) =

sgn(σ )Ωα (σ ∈ S|α|). Then we have

H∗(�Gω̄)−DG ω̄ =
∑

e
mi1
L ∧ e

mi2
L ∨ emα

L ·
{∑ c

(mi1)
(mj)(ki)c

(ki)
(mi2)(mj)

2
Ωα

−
∑

c
(mα′p)

(mαp)(ki)c
(ki)
(mi1)(mi2)

Ω
α(α′p

αp
)

}

−
∑

e
mi1
L ∧ e

mi2
L ∨ e

mi3
L ∧ e

mi4
L ∨ emα

L ·
c
(mi1)
(mi2)(ki)

c
(ki)
(mi3)(mi4)

2
Ωα ,

(2.22)

where the expression α
(
α′p
αp

)
means α with αp replaced by α′p ∈ {1, 2, . . . , dim m}.

PROOF. We will show it on V and π−1(V ). The formula (2.4) with e• etc. replaced by
eL• etc. can be written as

�G = −eL
i eL

i − c
i2
i1ie

L
i · ei1

L ∧ e
i2
L ∨ +

(c
i1
i2i
− c

i2
i1i

)c
i4
i3i

4
· ei1

L ∧ e
i2
L ∨ e

i3
L ∧ e

i4
L ∨ .(2.23)

Hence the left hand side of (2.22) is equal to

−emα
L ·�G

0 Ωα − emα
L · eL

i eL
i (Ωα)− e

mi1
L ∧ e

mi2
L ∨ emα

L · eL
i (Ωα)c

(mi2)
(mi1)i

+ e
mi1
L ∧ e

mi2
L ∨ emα

L ·Ωα

(c
(mi1)
(kj)i
− c

(kj)

(mi1)i
)c

(mi2)
(kj)i

4

+ e
mi1
L ∧ e

mi2
L ∨ e

mi3
L ∧ e

mi4
L ∨ emα

L ·Ωα

(c
(mi1)
(mi2)i

− c
(mi2)
(mi1)i

)c
(mi4)
(mi3)i

4

= −e
mi1
L ∧ e

mi2
L ∨ emα

L · eL
ki(Ωα)c

(mi2)
(mi1)(ki)

+ e
mi1
L ∧ e

mi2
L ∨ emα

L ·Ωα

c
(mi1)
(mj)(ki)c

(ki)
(mi2)(mj)

2

− e
mi1
L ∧ e

mi2
L ∨ e

mi3
L ∧ e

mi4
L ∨ emα

L ·Ωα

c
(mi1)
(mi2)(ki)

c
(ki)
(mi3)(mi4)

2
.

If we put ω = π∗f mI · ωI , then we have Ωα(g) = am
Iα(k(g)) ωI ([g]), and by observing the

proof of (2.15), we have

eL
ki(g)(am

ipαp
(k(g))) = d

dt

∣∣∣∣
t=0

am
ipαp

(gcki (t)) = (emip (e), Ad(k(g))[ċki(0), emαp(e)])

= (emip (e), Ad(k(g))emα′p (e)) c
(mα′p)

(ki)(mαp)
= am

ipα′p c
(mα′p)

(ki)(mαp)
.

Hence we know

eL
ki (Ωα) = eL

ki (a
m
Iα) ωI = am

I,α(α′p
αp

)
c
(mα′p)

(ki)(mαp) ωI = Ω
α(α′p

αp
)
c
(mα′p)

(ki)(mαp) .

Thus we obtain (2.22). �
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3. Proofs of Theorem 1.1, Corollary 1.2. In the rest of the paper, unless otherwise
specified, we set G = SO(n + 1) ⊃ K = SO(n) by the injection

(
A 0
0 1

) ←� A, and denote
their Lie algebras by g ⊃ k by

(
Xk 0
0 0

) ←� Xk. By applying the results in §2 to the sphere
Sn = G/K = SO(n + 1)/SO(n), which is certainly a two-point homogeneous compact
symmetric Riemannian space, we will prove Theorem 1.1 and Corollary 1.2.

PROOF OF THEOREM 1.1. It is enough to prove it on a neighborhood π−1(V ) of e ∈
G. On it, we have

[emi(e), emj (e)] = −ei,j (e)√
2(n− 1)

, [emi(e), ej1,j2(e)] =
δij1emj2(e)− δij2emj1(e)√

2(n− 1)
,

[emi2(e), [emi3(e), emi4(e)]] =
−δi2i3emi4(e)+ δi2i4emi3(e)

2(n− 1)
.

(3.1)

We assume that ω is a q-form. Let us investigate the right hand sides of (2.17) and (2.22). As
for (2.17), since we have

∑
c
(mj2)

(mj)(ki)c
(ki)
(mj)(mj1)

=
∑

e
mj2
L ([eL

mj , [eL
mj , e

L
mj1
]])

= −
∑ δjj δj2j1 − δjj1δj2j

2(n− 1)
= −nδj2j1 − δj2j1

2(n− 1)
= −1

2
δj2j1 ,

∑
{3c

(mj1)

(mj2)(ki)
c
(ki)
(mj3)(mj4)

− c
(mj1)

(mj4)(ki)
c
(ki)
(mj2)(mj3)

}
= 3e

mj1
L ([eL

mj2
, [eL

mj3
, eL

mj4
]])− emj1([eL

mj4
, [eL

mj2
, eL

mj3
]])

= − 1

2(n− 1)
(3δj2j3δj1j4 − 4δj2j4δj1j3 + δj4j3δj1j2) ,

we know

H∗(�Gω̄)−�G/Kω

= 3

8

∑
f mj1 ∧ f mj1 ∨ ω̄ − 1

8(n− 1)

∑
{3δj2j3δj1j4f

mj1∧f mj2 ∨f mj3∧f mj4 ∨
− 4δj2j4δj1j3f

mj1 ∧ f mj2 ∨f mj3 ∧ f mj4 ∨
+ δj4j3δj1j2f

mj1∧f mj2 ∨f mj3∧f mj4 ∨} ω̄

= 3q

8
ω̄ − 1

8(n− 1)

{
3

∑
j1∈I ��j2

f mj1∧f mj2 ∨f mj2∧f mj1 ∨f mI · ωI

+
j1 �=j2∑

j1,j2∈I
f mj1∧f mj1 ∨f mj2∧f mj2 ∨f mI · ωI

}

= 3q

8
ω̄ − 3q(n− q)+ q(q − 1)

8(n− 1)
ω̄ = q(q − 1)

4(n− 1)
ω̄ .

(3.2)
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As for (2.22), since we have

∑
e
mi1
L ∧ e

mi2
L ∨ emα

L ·Ωα

c
(mi1)
(mj)(ki)c

(ki)
(mi2)(mj)

2
= 1

4

∑
e
mi1
L ∧ e

mi1
L ∨ emα

L ·Ωα = q

4
ω̄ ,

−
∑

e
mi1
L ∧ e

mi2
L ∨ emα

L ·Ωα(α′p
αp

)
c
(mα′p)

(mαp)(ki)c
(ki)
(mi1)(mi2)

= −
∑

i1 �∈α�i2
e
mi1
L ∧ e

mi2
L ∨ emα

L ·Ωα(α′p
αp

)

δαpi2δα′pi1

2(n− 1)

= − 1

2(n− 1)

∑
i1 �∈α�i2

e
mi1
L ∧ e

mi2
L ∨ emα

L ·Ωα(
i1
i2
)
= −q(n− q)

2(n− 1)
ω̄ ,

−
∑

e
mi1
L ∧ e

mi2
L ∨ e

mi3
L ∧ e

mi4
L ∨ emα

L ·Ωα

c
(mi1)
(mi2)(ki)

c
(ki)
(mi3)(mi4)

2

= 1

4(n− 1)

i1 �=i2∑
i3 �=i4

e
mi1
L ∧ e

mi2
L ∨ e

mi3
L ∧ e

mi4
L ∨ emα

L ·Ωα(δi2i3δi1i4 − δi2i4δi1i3)

= 1

4(n− 1)

∑
i1∈α ��i2

e
mi1
L ∧ e

mi2
L ∨ e

mi2
L ∧ e

mi1
L ∨ emα

L ·Ωα = q(n− q)

4(n− 1)
ω̄ ,

we know

H∗(�Gω̄)−DG ω̄ = q

4
ω̄ − q(n− q)

2(n− 1)
ω̄ + q(n− q)

4(n− 1)
ω̄ = q(q − 1)

4(n− 1)
ω̄ .(3.3)

Then (3.2) and (3.3) imply the theorem. �

PROOF OF COROLLARY 1.2. Take a differential form ω on Sn = G/K . Theorem 1.1
yields that

(d/dt +DG)e−t�G/K
ω = (d/dt +�G/K)e−t�G/K

ω = 0 , lim
t→0

e−t�G/K
ω = ω̄ .

Hence, by the uniqueness of the solution for the initial value problem associated to the heat

equation (for DG), we have e−tDG
ω̄ = e−t�G/K

ω.
Suppose now that ω([h′]) =∑

π∗f mI ′
h′ ([h′]) ·ωh′

I ′ ([h′]) has a support near a given point
in G/K . Let µG, µK be the Haar measures on G, K given by the frames eL• , eL

k• and let µG/K

be the left-invariant measure on G/K which is associated to eL
m•. Then we have

e−t�G/K
ω =

∑
(π∗f mI

h ) · (e−t�G/K
)
h,h′
II ′ ωh′

I ′ =
∑

f mI
h · (e−t�G/K

)
h,h′
II ′ ωh′

I ′

=
∑

f mI
h (hk) ·

∫
G/K

dµG/K([h′])(e−t�G/K

)
h,h′
II ′ ([h], [h′]) ωh′

I ′ ([h′]) ,

(e−tDG

ω̄)(hk) =
∑

emJ
L (hk) ·

∫
G

dµG(h′k′)e−t�G
0 (hk, h′k′) am

I ′J (k′) ωh′
I ′ ([h′])

=
∑

f mI
h (hk) ·

∫
G/K

dµG/K([h′])
(∫

K

dµK(k′) e−t�G
0 (hk, h′k′)Am

II ′(kk′−1)

)
ωh′

I ′ ([h′]) .
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By the equalities e−t�G
0 (gg1, gg2) = e−t�G

0 (g1, g2) = e−t�G
0 (g1g, g2g), we have

(e−t�G/K

)
h,h′
II ′ ([h], [h′]) =

∫
K

dµK(k′)e−t�G
0(h, h′k′) Am

II ′(k
′−1)

=
∫

K

dµK(k′)e−t�G
0(h′−1hk′−1, e) Am

II ′(k
′−1) =

∫
K

dµK(k)e−t�G
0(h′−1hk, e) Am

II ′(k) .

Thus we obtain the formula (1.8). �

4. Proof of Corollary 1.3. Let G be a semisimple compact connected Lie group
and let TG be a maximal torus. The corresponding subalgebra tG of g gives the Cartan
subalgebra tCG =

√−1tG of the complexified Lie algebra gC = √−1g, which has the

(positive) root systems Φ
C(+)
G = √−1Φ

(+)
G contained in

√−1t∗G. Let us take the lattice
ΓG = {γ ∈ tG ; exp γ = e}. Then, if u = exp U ∈ TG = exp tG satisfies α(U) �∈ 2πZ for
all α ∈ Φ+G , that is, if u is a regular element of T

reg
G , the summation formula due to Urakawa

([15, Theorem 2], see also [4], [2]) implies that

e−t�G
0 (u, e) = etn0/24

(4πt)n0/2

∑
γ∈ΓG

e−|U+γ |2/4t
∏

α∈Φ+G

α(U + γ )/2

sin α(U + γ )/2
(4.1)

for n0 = dim G, which converges absolutely.
For our G = SO(n+1), let us take the maximal torus TG as in the introduction, and take

the frame (U1, . . . ) of tG defined by Ui = E2i−1,2i − E2i,2i−1 (see (1.1)) and denote its dual
frame by (λ1, . . . ), i.e., λi(Uj ) = δij . As is well-known ([10, pp. 684–685]), if G is equal to
SO(2m+ 1) (i.e., of type Bm), we have

tG = {Ui ; 1 ≤ i ≤ m}R ⊃ ΓG = {2πUi ; 1 ≤ i ≤ m}Z ,

Φ+G = {λi − λj , λi + λj ; 1 ≤ i < j ≤ m} ∪ {λi ; 1 ≤ i ≤ m}(4.2)

and, if G is equal to SO(2m) (i.e., of type Dm), we have

tG = {Ui ; 1 ≤ i ≤ m}R ⊃ ΓG = {2πUi ; 1 ≤ i ≤ m}Z ,

Φ+G = {λi − λj , λi + λj ; 1 ≤ i < j ≤ m} .(4.3)

Therefore, at (4.1) with G = SO(n + 1) = SO(2m + 1) or SO(2m), we can write U =∑m
i=1 θiUi (θi ∈ R) and γ = 2π

∑m
i=1 liUi (li ∈ Z) so that, for u ∈ T

reg
G , we have the

absolutely convergent summation formula

e−t�G
0 (u, e) = etn0/24

(4πt)n0/2

∏
α∈Φ+G

1

sin α(U)/2

×
∑

l

ε(l) e−2(n−1)
∑

(θi+2πli)
2/4t

∏
α∈Φ+G

α
(∑

(θi + 2πli)Ui

)/
2 .

(4.4)

Remark here that l = (l1, . . . ) runs over Zm and ε(l) means 1 if
∑

li is even and (−1)n+1

if
∑

li is odd. The Urakawa summation formula primarily deals with a simply connected
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group, that is, not G = SO(n + 1) but the universal covering group G̃ = Spin(n + 1).
We have ΓG ⊃ ΓG̃ = {2π

∑
liUi ; li ∈ Z,

∑
li ∈ 2Z}. Also, for the nonzero element

[c] of π1(G) = Z2, if we take such γ[c] ∈ ΓG that the deck transformation of G̃ given
by [c] sends e ∈ G̃ to exp γ[c] ∈ G̃ (for example we set γ[c] = 2πU1), then we have
exp((
√−1/2)

∑
α∈Φ+G α(γ[c])) = −1 if n is even and 1 if n is odd. It may be more faith-

ful to his theory than above to say (4.4) is then obtained by applying his formula for G̃ to the

right hand side of e−t�G
0 (u, e) = ∑

p(ũ)=u e−t�G̃
0 (ũ, e), where p : G̃ → G is the covering

map.
Here, let us apply the Weyl integration formula ([10, Theorem 8.60]) to the right hand

side of (1.8) (n ≥ 3). We take the maximal torus TK (as in the introduction) etc. of K =
SO(n). For u = exp U ∈ TK , we set

Ω(u) =
∏

√−1α∈ΦC
K

(e
√−1α(U)/2 − e−

√−1α(U)/2) = 2|ΦK |∏
α∈Φ+K

sin2 α(U)/2 ,(4.5)

and normalize the measures µTK , µK/TK on TK , K/TK as
∫
TK

dµTK(u) = 1,
∫
K/TK

dµK/TK([k])
=1. We denote by vol(K) the volume of K with respect to the metric of G = SO(n+1), and
by WK the Weyl group of K . Then the Weyl formula says

(e−t�G/K

)
h,h′
II ′ ([h], [h′]) =

vol(K)

|WK |
∫

K/TK

dµK/TK ([k])

×
∫

TK

dµTK (u) Ω(u)e−t�G
0 (h′−1hkuk−1, e)Am

II ′(kuk−1) ,

(4.6)

(e−t�G/K

)
h,h
II ′ ([h], [h])

= vol(K)

|WK |
∫

TK

dµTK(u) Ω(u)e−t�G
0 (u, e)

∫
K/TK

dµK/TK([k]) Am
II ′(kuk−1) .

(4.7)

We also have the following lemma.

LEMMA 4.1. Assume n ≥ 3. For u = exp U =∑
1≤i≤[n/2] θiUi ∈ TK ∩T

reg
G , we have

the absolutely convergent summation formula

Ω(u)e−t�G
0 (u, e) = 1

π [n/2][(n−1)/2]
etn(n+1)/48

(4πt)n/2+[n/2]/2

∑
l≥0

Fl(t, θ) .(4.8)
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PROOF. We have n0 = n(n + 1)/2. As for the case n = 2m, by referring to (4.2)
through (4.5), we have

Ω(u)e−t�G
0 (u, e) = etn0/24 22m(m−1)

(4πt)n0/2

∏
α∈Φ+K sin2 α(U)/2∏
α∈Φ+G sin α(U)/2

×
∑

l

(−1)
∑

li e−2(n−1)
∑

(θi+2πli)
2/4t

∏
α∈Φ+G

α
( ∑

(θi + 2πli)Ui

)/
2

= 1

πm[(n−1)/2]
etn(n+1)/48

(4πt)n/2+m/2

1

tm(m−1)

∏
i<j {sin2 θi/2− sin2 θj /2}∏

i sin θi/2

∑
l∈Zm

(−1)
∑

li

· e−2(n−1)
∑

(θi+2πli)
2/4t

∏
i

θi + 2πli

2

∏
i<j

(θi + 2πli)
2 − (θj + 2πlj )

2

4
.

(4.9)

Thus we obtain (4.8) with (1.10). Its absolute convergence is obvious because (4.4) converges
absolutely. As for the case n = 2m− 1, we have

Ω(u)e−t�G
0 (u, e) = etn0/24 22(m−1)2

(4πt)n0/2

∏
α∈Φ+K sin2 α(U)/2∏
α∈Φ+G sin α(U)/2

×
∑

l

e−2(n−1)
∑

(θi+2πli)
2/4t

∏
α∈Φ+G

α

( ∑
(θi + 2πli)Ui

)/
2

= 1

π(m−1)[(n−1)/2]
etn(n+1)/48

(4πt)n/2+(m−1)/2

1

t(m−1)2

∏
i<j<m

{sin2 θi/2− sin2 θj /2}

×
∑

l∈Zm−1

e−2(n−1)
∑

(θi+2πli)
2/4t

∏
i<m

(
θi + 2πli

2

)2

×
∏

i<j<m

(θi + 2πli)
2 − (θj + 2πlj )

2

4
.

(4.10)

Thus we obtain (4.8) with (1.11). Its absolute convergence is obvious. �

Now let us prove Corollary 1.3.

PROOF OF COROLLARY 1.3. As for the smoothness of Fl(t, θ), we have only to show
it at θ = 0. In the case n = 2m− 1, it will be obvious. We will show it in the case n = 2m.
Referring to (4.9), for a fixed l ≥ 0, it suffices to show that

∑
ε

e−2(n−1)
∑

(θi+2πεi li )
2/4t

∏
i

θi + 2πεili

2

∏
i<j

(θi + 2πεili)
2 − (θj + 2πεj lj )

2

4
(4.11)
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is an odd function with respect to each θi . By using multi-indices p = (p1, . . . ) ∈ Zm with
p ≥ 0 and certain constants ap, (4.11) can be written as

(finite sum)∑
ε,p

ape−2(n−1)
∑

(θi+2πεi li )
2/4t (θ + 2πεl)2p+1

=
∑
p

ape−2(n−1)
∑

(θ2
i +(2πli)

2)/4t
∏
li=0

θ
2pi+1
i

×
∏
li>0

{e−2π(n−1)θili/t (θi + 2πli)
2pi+1 + e2π(n−1)θi li/t (θi − 2πli)

2pi+1} ,

(4.12)

which is certainly such an odd function.
Next, let us show the estimates (1.12). Assume n = 2m and |θi | ≤ π/4. Referring to

(4.12) and (1.10), there exist constants C1, C2, . . . > 0, independent of l ≥ 0, such that
∣∣∣∣e−2π(n−1)θi li/t

(
θi + 2πli

t1/2

)2pi+1

+ e2π(n−1)θi li/t

(
θi − 2πli

t1/2

)2pi+1∣∣∣∣
≤ C1{1+ (θi/t1/2)2pi+1}{1+ (2πli/t1/2)2pi+2}|θi/t1/2|eπ2(n−1)li/2t ,

|Fl(t, θ)| ≤ C2e
−2(n−1)

∑{θ2
i /4t+(2πli)

2/4t−π2li/2t}

×
∏
i

∣∣∣∣ t−1/2θi

t−1/2 sin θi/2

∣∣∣∣ · {1+ (θi/t1/2)2p+1}{1+ (2πli/t1/2)2p+2}

≤ C3e
−2(n−1)

∑{θ2
i /5t+li/5t} ,∑

l≥0

|Fl(t, θ)| ≤ C3 e−2(n−1)
∑

θ2
i /5t

∑
l≥0

e−2(n−1)
∑

li/5t ≤ C4e
−2(n−1)

∑
θ2
i /5t .

If π/4 ≤ |θ | ≤ π , then the estimate holds obviously. Next assume n = 2m − 1. Then we
have

|Fl(t, θ)| ≤ C1|θ/t1/2|(m−1
2 )

∑
e−2(n−1)

∑
(θi+2πεi li )

2/(9/2)t

≤ C2 |θ/t1/2|(m−1
2 )e2(n−1){−∑

θ2
i −(2π)2 ∑

li}/(9/2)t ≤ C3e
2(n−1){−∑

θ2
i −

∑
li}/5t ,∑

l≥0

|Fl(t, θ)| ≤ C4e
−2(n−1)

∑
θ2
i /5t .

Thus (1.12) were shown.
We will prove (1.13) through (1.15). The Haar measure µTK is given by the volume

element (2π)−[n/2]dθ[n/2] ∧ · · · ∧ dθ1. This, together with (1.12), (4.7) and (4.8) (hence,
n ≥ 3), yields the expression (1.13) of termwise integration with

cn = vol(K)

|WK |
1

(2π [(n−1)/2]+1)[n/2] =
vol(K)

|WK |
1

(2π [(n+1)/2])[n/2] ,(4.13)
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Bm
II ′(θ) =

∫
K/TK

dµK/TK ([k])Am
II ′(ku(θ)k−1) .(4.14)

The second equality at (1.15) certainly holds because

am
jj ′(u(θ)) = (emj (e), (Ad(u(θ))emj ′(e)) = tej ·D(θ)ej ′ = D(θ)jj ′ ,

|I |!Am
II ′(ku(θ)k−1) = det(am

ii′(ku(θ)k−1)) = det(am(k)D(θ)am(k−1))II ′ .

We need to show that (4.13) is equal to the right hand side of (1.14). Denote by vol(K, k) and
vol(K, g) the volumes of K = SO(n) with respect to the metrics −Bk and −Bg|k, respec-
tively. It follows from [1] that

vol(K, g) =
(

n− 1

n− 2

)n(n−1)/4

vol(K, k)

=




2m2−1(4m− 2)m(2m−1)/2

2! 4! · · · (2m− 2)! (2πm)m (n = 2m) ,

2m2−1(4m− 4)(m−1)(2m−1)/2(m− 1)!
2! 4! · · · (2m− 2)! (2πm)m−1 (n = 2m− 1) .

Since we have vol(K) = vol(K, g), |WSO(2m)| = m! 2m−1 and |WSO(2m−1)| = (m− 1)! 2m−1

([10, pp. 684–685]), (4.13) is certainly equal to (1.14). Thus the proof of the corollary with
n ≥ 3 is complete. As for the case n = 2, that is, S2 = G/K = SO(3)/SO(2), since
K = SO(2) = TK � u = u(θ1), (4.4) says

e−t�G
0 (u, e) = et/8

(4πt)2/2+1/2

∑
l1

e−2(θ1+2πl1)
2/4t (−1)l1

(θ1 + 2πl1)/2

sin θ1/2
,

which coincides with (1.10) for n = 2. Hence (1.8) with n = 2 implies (1.13) with n = 2. �
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