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Abstract. We consider the real rank one unitary group G and its subgroup H obtained
as the stabilizer of an anisotropic vector in the skew-hermitian space defining G. We compute
the inner-product of an Eisenstein series on A and a non-holomorphic cuspidal Hecke eigen-
form on G restricted to H to obtain an integral representation of the standard L-function of the
eigenform. We also discuss some consequences of the integral representation.

1. Introduction. The Poincaré dual forms of special cycles on a Shimura variety
yield an interesting class of non-holomorphic automorphic forms of many variables, and had
been investigated by several people in different ways ([4], [5], [17], [18], [11]). In order to
deepen our understanding of the arithmetic nature of such forms, the study of the associated
L-series is indispensable. However, for application to arithmetic, many of the existing works
on L-functions seem to lack the local theory for the ramified factors and the gamma factors;
one may need a heavy and sophisticated apparatus of the representation theory to handle them
thoroughly. The aim of this paper is to deduce basic properties of the L-functions for a nar-
row but important class of automorphic forms on a unitary group by taking advantage from
the special feature of our targeting automorphic forms.

As a generalization of the work of Andrianov on the L-functions of Siegel modular forms
of genus two, Sugano studied the Dirichlet series and the Rankin-Selberg integrals associated
with holomorphic cusp forms on the type IV tube domain in connection with the standard
L-functions of orthogonal groups ([14]). In this paper, we carry out a unitary analogue of the
study. Let R be a non-degenerate skew-hermitian form on a vector space V of finite dimension
m over an imaginary quadratic field E£(C C) and R= RGB[ 1 -1 ] its extension by a hyperbolic
plane with a Witt basis {e, ¢’}. If we assume that «/— IR is positive definite, then the unitary
group G = U(R), regarded as a Q-algebraic group, is of R-rank one and the symmetric space
D associated with the real points of G is realized as a complex hyperball in C"*!. Let O be
the maximal order of E and fix a maximal O-integral lattice M in (R, V). Then, K¢, the
stabilizer of the extended O-lattice M = M @ (e, ¢') 0, yields a maximal compact subgroup
of Gy, the group of finite adeles of G. Let Y be a reduced vector for (R, M) (see 3.4), and
Y = (Y;0,0) its image in the space of R. Since G(}; x GL; is regarded as a Levi subgroup
of the parabolic subgroup PY of GY stabilizing the isotropic line Ee, a Hecke eigenfunction
f on the finite space G Q\G(})/,A/G(I)/,oo(G(l)/,f N Ky) yields an Eisenstein series E(f; s; g) on

Gg. Let F be a K¢-invariant Hecke eigen cusp form on G g\G 4. Then we consider the inner
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product Z Jlf y (8) of F restricted to GZ\G}Z and the Eisenstein series E(f; s). We investigate
the integral Z Jlf y () for two types of non-holomorphic cusp forms F; one is the wave cusp
forms corresponding to Laplace eigenfunctions on the symmetric space ®, and the other the
cohomological cusp forms corresponding to harmonic differential forms of type (1, 1) on ®.
We calculate the integral Z Jlf y(s) and obtain an identity which equates Z ? y(s) with a ratio
of standard L-functions of f and F up to a certain proportionality constant cyy (F') called
the Whittaker coefficient (Theorem 58 and 61). We should mention that the same integral is
studied by Gelbart and Piatetski-Shapiro ([1]) for generic cusp forms on the quasi-split unitary
group of degree 3.

For the proof, we closely follow the method of [14] and [15] to calculate the non-archi-
medean zeta-integrals, and use the explicit formula of Whittaker functions to calculate the
archimedean zeta-integrals. For the latter, we examine the differential equations satisfied by
Whittaker functions which have already been discussed by Taniguchi [16] for the discrete se-
ries Whittaker functions. We prove a multiplicity one theorem of Whittaker functions (Propo-
sition 51), which enables us to define the Whittaker coefficients c sy (F) for a cusp form F. As
an application of the main identity, we show the functional equation of the standard L-function
L(s, F) attached to F with a non-zero Whittaker coefficient, and also have a criterion for the
right-most possible pole of L(s, F) to occur actually (Theorem 59 and 62).

We are going to use the results obtained in this paper to study a fine structure of the
Hecke module generated by the Poincaré dual forms of special divisors on a unitary Shimura
variety with full level.

NOTATIONS. The number O is included in the set of natural numbers N: N =
{0,1,2,...,}. We use the usual notations Z, @, R and C to denote the ring of integers,
the field of rational numbers, the field of real numbers and the field of complex numbers,
respectively.

The ring of finite adeles of @ is denoted by Ag; the adele ring A of Q is then the direct
product of Afand R, i.e., A = R x As. Foranidelea € A*, |a|4 denotes its idele norm. For
an algebraic group H defined over a field k and a k-algebra A, the group of A-valued points
of H is denoted by Hy4.

For r matrices Aj,..., A, with coefficients in a commutative ring, diag(Aq,...,
A,) denotes the block-diagonal matrix A1 @ --- @ A,. Form € N and a commutative ring A
with the identity 1, we denote by 1,, = diag(1, ..., 1) the unit matrix of size m. We denote
by A™ the set of column vectors with entries in A of size m, and by 0, the zero vector in A™.

For n,m € N, we denote by U(n, m) the real Lie group {g € GL,+,(C)|"g diag(1,,
—1,,)g = diag(1,, —1,,)}. In particular, U(n, 0), the compact unitary group of matrix size n,
is denoted by U(n).

For a condition P, we use the ‘Kronecker symbol’ §(P) in an extended sense that § (P) €
{0, 1} equals 1 if and only if the condition P is true.
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2. Preliminaries. In this section, k denotes the rational number field Q or one of its
localizations @, at prime numbers p; F'/k denotes a quadratic field extension of Q ifk = Q,
and a quadratic algebra over @, if k = Q, with a prime p. We denote by a — a the unique
non-trivial k-automorphism of F. Set N(a) = aa and tr(a) = a + a fora € F. Let Of and
Ok be the maximal orders of F and k, respectively.

2.0.1. A skew-hermitian space over F is a pair (R, V) of a free F-module V of finite
rank and a bi k-linear form R : V x V — F such that R(Av, pw) = AaR(v, w) for all
A, € Fandallv,w € V, R(v,w) = —R(w, v) for all v, w € V; we always assume R is
non-degenerate, i.e., R(V, v) # {0} if v # 0. The unitary group of (R, V) is defined to be a
k-algebraic group U(R) whose set of k-points is given by

UR)x ={g € GLF(V) | R(gv, gw) = R(v, w) forallv,w € V}.

If k = @ and (R, V) is a skew-hermitian space over F, then the natural extension R :
Vp x V, — F) yields a skew-hermitian space (R, V),) over F), for each prime p. Here
Fp=F®g Q,,Vp =V QF F) for a prime p.

Given an OF-lattice £ in V, we say L is an Op-integral lattice in (R, V) if R(L, L) C
Or and R[L] C {a —a|a € Of}. An Op-integral lattice M in (R, V) is said to be maximal
if there exists no Of-integral lattice in (R, V') which contains M properly.

An Op-lattice £ in a skew-hermitian space (R, V) over a quadratic extension F' of Q
is maximal OF-integral if and only if £), is maximal Op,-integral in (R, V),) for all prime
numbers p. Here £, = L ®z Z, for a prime p.

Given an Op-lattice £ and a vector & € L, we say & is Op-primitive in Lif & € L—mL
for any maximal ideal m of OF. The set of Op-primitive vectors in £ is denoted by Lprim.

Given an Op-lattice £ in V, we define the Of-ideal dg (L) following way. When F is
a quadratic Qp-algebra, 0g(L) is defined to be det(R(v;, v;))OF with {v;} an Op-basis of
L; the Op-ideal is independent of the choice of {v;}. When F is a quadratic extension of
Q, 0r(M) is defined to be the OF-ideal such that 9g(M)OF, = g, (M) for all prime
numbers p.

LEMMA 1. Let L and Ly be Op-lattices in V such that L1 C Ly. Then there exists
an Op-ideal I such that Or(L1) = NI)0g(Ly). Here N(I) denotes the norm of I, i.e.,
N(1) = 8(Or/D).

PROOF. It suffices to show the claim when F is a quadratic Q ,-algebra with
a prime p. By the elementary divisor theory, there exists an Op-basis {e;} of L
and integers A; € Op such that {A;e;} is an Op-basis of L. Set a = ]_[l- Ai. Then the
relation 0r(L£1) = N(a)dr(L2) follows from the obvious equation det(R(A;e;, Aje;)) =
N([T; i) det(R(e;, €;)). O

The dual of an OF-lattice £ is denoted by L£*, i.e.,

L={weV|RW L) COF}.
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LEMMA 2. Let L be an Op-integral lattice in (R, V). Then L C L* and N(Or(L)) =
8(L*/L).

PROOF. The inclusion £ C L* results from the assumption that £ is O-integral. To
prove the second assertion, it suffices to show the claim when F' is a quadratic Q ,-algebra
with a prime p. Let {e;} be an Of-basis of £ and set S = (R(e;, ¢;)). Then by the elementary
divisor theory, there exist unimodular matrices A, B € GL, (OF) such that ASB is a diagonal
matrix : ASB = diag(A1, ..., A,). The basis {e;} affords the identifications £ = O} and
LY=S ’1(’)’}, which induce the first map in the sequence of O p-isomorphisms:

n
L)L =570} )0) = 04 /S0 = [ Or/4,0F .
j=1
This gives us §(L*/L) = ]_[j:1 N ;OF) = N(det(S)OFr) = N(@r(L)). O
For matrices X, Y, Z with coefficients in F, we denote by X (Y, Z) (resp. X[Y]) the
matrix  ZXY (resp. 'Y XY) whenever the product is defined.
A matrix S € GL, (F) is called a skew-hermitian matrix if 'S = —S. We always use the
same notation S to denote the function (X, X’) — S(X, X’) on F" x F".
- -1
2.0.2. For a skew-hermitian matrix R € GL,,(F) of sizem > 1, set R = [1 R ]

PutV = F" and V = [g] Then we have skew-hermitian spaces (R, V) and (R, V) over

F. Let G and G denote the unitary groups U(R) and U(R), respectively.
2.0.3. Consider the k-subgroups M and N of G such that

Ma = {m(t; go) = diag(t, go. 7~ ") |1 € (F ® A)*, g0 € Go.al,
1 —'XR ¢—2"'R[X]
NA:{n(X;g)::[o I X :HXeV@icA,{eA}
0 0 1
for an k-algebra A. Then P = M N is a parabolic k-subgroup of G and M (resp. N) is a Levi
subgroup (resp. the unipotent radical) of P.

~ 0 ~
2.0.4. For a non-isotropic vector Y € V,setY = [16] € V and A = R[Y]. The form

R induces a non- degenerate skew-hermitian form R|Y~ on the orthogonal complement ¥+
of ¥ in V, whose unitary group U(R|YL) is identified with GY the stabilizer of ¥ in G.

2.0.5. The intersection PY = PN GY isa parabolic k-subgroup of G with the unipo-
tent radical N¥ = NN GY and MY = M NG is a Levi part of PY. We also note that

MY = (M5 g0) |1 € (F @ A, go € GY 4}, NiL={nX:0)|X eYi¢eA)

for A as above. Here Gg is the stabilizer of ¥ in G and Y is the orthogonal complement of
Y in V. We usually regard G as a closed k-subgroup of G by the inclusion gy — m(1; go).

3. Local fine structure of Hermitian lattices and reduced vectors. All materials
in this section are adapted from the similar results for orthogonal group obtained by Sugano
[14], [15].
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In this section, we fix a prime p and denote by E, = 0 p(\/ﬁ) a quadratic field ex-

tension of Q,, with discriminant D. Set t(a) = \/5_1(a —a) fora € E,. Let O, be the
maximal order of E,, 7 a prime element of O), e the ramification index of E,/ @, and g the
order of the residue field O, /7 O,,.

3.1. Classification of skew-hermitian spaces.

LEMMA 3. t(0p) =Z,andt(n~'0)) = p~'Z,.

PROOF. There exists § € Op such that 7(#) = 1 and O, = Z, + Z,6; from this fact
the relation 7(0)) = Z, is obvious. When e = 1, we obtain r(n_l(’),,) = p_IZ,, from
7(0p) = Z, taking m = p. Suppose e = 2. Then, to prove r(n_l(’),,) = p_ll,,, it suffices
to show 7(wO0p) = Z,. We may take m = VD/2—1if p=2,D/4 = —1 (mod 4), and
may take m = «/5/2 otherwise. Then 7 () = 1. Since 1(O)p) = Z, the set (7 D)) is an
ideal of Z,. Therefore, T (7 0)) = Z,. O

We record two fundamental lemmas on the classification of maximal integral lattices in
a skew-hermitian space over E),.

LEMMA 4. Let (Rg, Vo) be an anisotropic skew-hermitian space of dimension ny.
Then ng € {0,1,2). Foranl € Z, the set Mo(l) = {z € Vo|Rolzl/~/D € p'Z,} is
an Op-lattice in Vo. The Op-lattice Mo = Mo(0) yields the unique maximal O p-integral
lattice in (Rg, Vp).

In the remaining part of this subsection, we denote by (R, V') a skew-hermitian space

over £, and by M a maximal O-integral lattice in (R, V). The Witt index of (R, V) is
denoted by v(R); the dimension of a maximal anisotropic subspace of V is denoted by n¢(R).

LEMMA 5. Let (R, V) and M be as above and set v = v(R) and ng = no(R). Then
there exists a system of isotropic vectors {ej, e;}lgjgu in M such that R(e;, e}) = 8;j which
satisfies the condition: Vo = {v € V|R(v,e;) = R(v,e;.) = 0 forall j} is a maximal
anisotropic subspace, Mo = Vo N M is the maximal O ,-integral lattice in (R | Vo, Vo) and

G.1) M =Pej. o, & Mo.

j=1

Moreover, when an isotropic vector e € Mpim is given, we can choose the decomposition
(3.1) so that ey = e.

PROOF. cf. [7, Lemma 3.2 (p. 37)]. O

The decomposition (3.1) is called a Witt decomposition of M. If the form is isotropic, a
special form of Witt decompositions is available. Indeed,

LEMMA 6. LetY € M;rim' If v(R) > 1, then there exists a Witt decomposition (3.1)

of M such that R(e1,Y) =1, R(e;,Y) = R(e}, Y)=02 < j<v(R)).
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PROOF. Take a Witt decomposition M = @;:1 (vj, v})@p @ M and choose an O,,-
basis { f} of the Op-lattige/\/ll. Setfk = fk—akvl—v’l withay € O, such that R[ f;1/v/D =
—t1(ag). Then {vj, v}, fi} yields an O,-basis of M consisting of isotropic vectors. Since
Y is O)-primitive in M*, the O)-ideal R(Y, M) = (R(Y, v;), R(Y, v}), R(Y, f)lJ. ko,
coincides with O,,. From this, we conclude the existence of an isotropic vector é; € M such
that R(Y,é;) = 1. Since Y € M?¥, it is forced that & € Mim; hence we can take a Witt
decomposition M = Z'/’.:l(éj, é})ope)./\/lo extending e;. For2 < j < v,seta; = R(Y, ¢)),
Bj = R(Y, E}) and consider the vectors e; = ¢; —&jél,e} =e;—pjer 2 < j <,
e = &1, € =&+ Y[ (el + e — aiBié1). Then ej, e} (1 < j < v) are isotropic
vectors in M which yields a desired Witt decomposition. a

We recall here the basic notations and facts on O p-lattices. For M as above, we set

—1
M = (X e M*|VD RIX]€t(x'0,).
LEMMA 7. The set M is an O ,-lattice in V. We have the inclusions of O ,-lattices:
McMcM, McM)Y cM*,
aM c M, aM* C (MH*.

PROOF. By Lemma 4 and the Witt decomposition (3.1), M’ = @;Zl(ej, e;)op o)
Mo(—1) is an O,-lattice. We prove 1M’ C M first. Let X € M. Then 7 X € M* on one
hand. On the other hand, by Lemma 3, we have the relation R[w X]/«/E = N(n)R[X]/\/B €
N(n)p‘ll,,, which yields R[7 X]/~/D € Z,. Since M is a maximal O ,-integral lattice in
(R, V), we obtain X € M. This shows 7 M’ C M. The remaining inclusions are obvious
or are deduced easily from the proved ones by taking duals. a

Let dg (M) be the dimension of the O, /7 O ,-vector space M’/ M. It is easy to see that
Or (M) = 9| v,(Myp) for the decomposition (3.1).

LEMMA 8. Let (Ry, Vo) be an anisotropic skew-hermitian space of dimension ny and
Mo the maximal O ,-integral lattice in (Ro, Vo).

o Assume ng = 1. Then there exists an Op-basis of Mo such that Ry is given by the
matrix So = a~/D with some a € Z,N ((9; U 71(9;). We have

_JO (=D,
aa\/ﬁ(op)_{l (e=2 oraGpZ;).

o Assume ng = 2. Then there exists an O,-basis of Mo with respect to which Ry is
given by the matrix So = s/'D [}3 };] with some (b, c,s) € \/571(’),, x Z, x Z; such that
bb—c e pD~'Z%,bb—c g N(E)). We have

o _[1 =1,
asﬁ[;’;}(op)_{z (e=2).

PROOF. cf. [13], [12]. We follow the formulation in [8]. O
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3.2. Maximal lattices. Let (S, E;’f) be a skew-hermitian space; by the standard basis
of E;’f, S is identified with the representing matrix. From the relation § = —'S, we obtain
det(S) = (—1)"det(S), which implies det(S) € @, if m is even and det(S)/v/D € Q, if m
is odd. Note Ds((’);") = det(S)O,. Here is a criterion for the O ,-lattice (’)21 to be maximal
Op-integral in (S, E;”).

PROPOSITION 9. Suppose OY is Op-integral in (S, E7)). Suppose the extension
Ep/Q, is tame, ie., ordy(D) € {0, 1}. Then the Oy-lattice O} is maximal O ,-integral
in (S, E;’f) if and only if one of the following two conditions is satisfied.

(1) m is even and det(S) € Z; U (pZ;)< - N(E[f)).

(2) m is odd and det(S)/v/D € Z, N (O U O}).

PROOF. First we prove the direct part. Assume m is even and O} is maximal O -
integral. Then, by Lemma 5, we take a Witt decomposition O;,” = @‘]’-zl (e, e;.)op @®Ly. The
rank ng of Lo equals 0 or 2. If ng = 0, then det(S) =1 € Z;. If np = 2, then by Lemma 8,
S|Lo is represented by a matrix of the form Sy = sv/D [11; f] with (b, ¢) € «/571(91, X Zp
such thatbb —c € pD~'Z,s € Z, bb — ¢ ¢ N(E ). We have det(S) ' det(Sp) € N(O%)
and det(Sp) = —s2D(bb — ¢) € pZ[X, — N(E;j). Hence det(S) € pZ[X, — N(E;). The odd
case is similar.

We prove the converse part. Let A be the set of O-integral lattices £ in (R, V) such
that (’)[’Z‘ C L. By assumption, Ogi eA,and L C L* C ((’)Zi)* for all £ € A. Since ((’)[’f)* is
Noetherian, A has a maximal element M, which is a maximal O ,-integral lattice in (S, E}’f)
containing (’)Zﬁ To complete the proof, it suffices to show M = O?.

From O} C M, noting M is O -integral and by taking duals, we obtain

(3.2) O CMcC M CO)*.

Suppose m is even. If det(S) € Z;, then by Lemma 1, Lemma 2 and (3.2), the equality M =
Og follows. Assume det(S) € pZ; - N(E;); then N(DS(Og)) = [((’)21)* : Og] = p%. By
Lemma 1, Lemma 2 and (3.2), we have the two cases: N(d5(M)) = 1 or p?. If the first case
occurs, then M* = M by Lemma 2. Since M is a maximal O ,-integral lattice with even
rank, the equality M* = M is possible only when n¢(S) = 0 by Lemma 8 and Lemma 5.
Hence det(S) € N(E ;), contradictory to the assumption. Thus N(0g(M)) = N(DS(Og)) =
p?, or equivalently [((’)21)* : (’)’1’}] = [M* : M] = p?, which, combined with (3.2), yields
M=0y.

Suppose m is odd. If det(S)/«/E € Z;, then, by Lemma 2, the index [((’)[’f)* : (’)[’Z‘]
equals |D|;1, which is 1 or p by the assumption ord, (D) € {0, 1}. Since [(Og)* T M¥]
and (M : Og] divide [(Og)* : (’);’}], we must have [(Og)* M*l=1lor[M: O?’}] =1,
which in turn give us the equality M = OY}. Assume det(S)//D € pZy, e = 1; then
N(det(S)/+/D) = p?, which implies [(O7)* : O] = p*. Combined with (3.2), this yields
that the order of any subquotient of (3.2) is 1 or p?. (Note the order of the Op-module
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O,/pO,, which is simple since e = 1, is p2) If M # O}, then M = M* = (O})*
and a contradictory equality M = O} follows. Hence M = O] O

3.3.  Witt towers of skew-hermitian spaces. Let So be a matrix given in Lemma 8. For
v € N, consider the matrix

-7,
(3.3) Sy = So » Sy = Giv—jr1)ij
Jy
of size m = 2v + nop; it defines a skew-hermitian form with the Witt index v on the m-
E) o]v]
dimensional E ,-vector space V, = |:E;0 :| The standard O ,-lattice L, = |:(9;° :| affords a
E) o]v]

maximal O ,-integral lattice in (S,, V).

We call the family {(S,, V))}ven the Witt tower associated with Sp.

3.4. Reduced vectors. Recall that a vector Y € V is said to be reduced for (R, M) if
Y is O-primitive in M* and Y N M is a maximal O -integral lattice in the skew-hermitian
space (R|Y+, Y 1).

A skew-hermitian matrix § € GL, (E ) is said to be Op-integral if O} is an O -integral
lattice in (S, EZ).

LEMMA 10. Let {(Sy, Vy)}ven be a Witt tower. Let v € N and Y a vector in Lt_H

of the formY = [%] (a € Op,a € L)) Set S, = [7,‘2& ;{‘E’:] Then the following
conditions on Y are mutually equivalent.

(1) Y is reduced for (Sy+1, Ly+1).

(2) The skew-hermitian matrix va+l is Op-integral, and SVNH [[(1) nfl ]] is not O,-

integral for all x € V.

(3) The Op-lattice L, | = [é;] is a maximal O -integral lattice in (S, V7 )
with V" =L | ® E).
PROOF. cf. [15, Lemma 2.5 (p. 8)]. O

LEMMA 11. Let {(S), Vi)}ven be a Witt tower. Let Y € Ll’fH be a reduced vec-
tor for (Sy1, Lut1) and set ny = no(Sy41|Y1), 8" = 8, jyr(Lop1 N Y1) and dy =
ord, (SUH[Y]/\/B). Then the possible values of (no, ), (ny, 3') and (e, dy) are given in the

Table 1.

PROOF. By Lemma 6, we may assume v =0 and Y = [%] (ae0p,ac Lg) without
loss of generality. By Lemma 10, in order for Y to be reduced in (S7, L1), it is necessary
and sufficient for the O -lattice L|” to be maximal O -integral in (S7, V7). We examine the
latter condition for each anisotropic form Sy classified in Lemma 8.

For example, consider the case whene = 2, Lo = O, and Sy = sv/D (s € Z;).

In this case (ng,d) = (1,1) and L§ = \/571(9,,. By a direct computation, det(S;") =
sD(Sl[Y]/«/B). Since the size of §|” is 2, by Lemma 9, L] is maximal O ,-integral in
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TABLE 1.
(ng, d) | (ng,d") (e, dy) By oY
(0, 0) (1,0) (1,0) -1 0
(0,0) 1, 1, 1), (2,0 0 0
1, 0) (0, 0) (1,0) ql/? 0

(1,0) 2,1 (1, 1) 0 0
W, | ©0 | a,-1,@ -odyD) | ¢/ —q | g~/
an | @n (1,0) —q 0

an 2.,2) 2,1 —ordy(D)) 0 0
@n | 1,0 (1,-1) ??—q | q'?
@0 a,n 1,0) g3 0
2,2) (1,1) @2, -1 0 q

(877, V) if and only if det(S]") € Z; in which case ny, = 3’ = 0, dy = —ord, (D), or
det(S}") € pZ, — N(E}) in which case ng =9 =2,dy =1 — ord,(D). This affords the
5-th line and the 7-th line of the Table 1 when e = 2. The remaining parts of the Table 1 are
proved similarly. a

3.5. Iwasawa decomposition of fundamental double cosets. Fix a Witt tower
{(Sv, V) hen and set G, = U(S)), Ky, = Gy, N GLn0+2u(Op)-

LEMMA 12. Letv € N. The set & = {g € G, |ranko, /0, (g (mod 70,)) =

r} is non-empty if and only if 0 < r < v, in which case El(f) = K,,cl(,r)K,, with c,(f) =
diag(m 1, Ingr2v—2r, 7 '1,).
PROOF. This follows from the elementary divisor theory. a
For0 <r < v, let R,(,r) be a complete set of representatives for K, /K, N c,(,r)Kuc,(f)_l,
s (r)
ie., ¢y’ = Uu€R5r> ucy’K,.
Foreachv € N, set

-1
U ={X en 'L,/L, VD S,[X]et(x 0],
—1
L,={XeL VD S[X]et@m'0,).
Moreover, we need the notation:

M, (1; go) := diag(t, go. 7). (1€ E}, g €G),
1 —'Xs, ¢-2715,[x]
N(X;8) = |0 1ppp20 X , XeWw, e Qp)
0 0 1
The following lemma, which describes explicit Iwasawa decompositions of the double
K, 41 cosets 5521 , plays a fundamental role in the paragraph 4.1.1 and Subsection 6.2.
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LEMMA 13. Letv € N. The double coset 51(}21 is a disjoint union of the following left

K, 1-cosets:
o M, (rm; ucl()rfl))nu(Xl; LKy withu € Rl()rfl), (X1,01) € X" where Xf)r)l is the

v, 1’
set of pairs ([ %’ ], {1) satisfying
X € (ﬂ_zop/op)r_l , X'e 7T_1Lv7r+1/Lv7r+1 )
01 e(Q,N @20, +27'S,  n[X'D)/Z,.
o my(L;ucy )Ny (Xa; 22)Kvs1 withu € RY ™2, (X2, &) € XU}, where XU is the
set of pairs ([ %’ ], {2) satisfying
xe@0p/0)) 2, X' €Uy 12— L), 5/Lori2.
0He(Q,N@ 0y +27'8,X'D)/Z, .
o my(1;uct )Ny (X3; &) Koy with u € RSV, (X3, 3) € XYY, where XU is the
set of pairs ([ %’ :I, {3) satisfying

xe@'0,/0,)" . X' €W, ,y1— Lori1)/Lori1.
53e(@,N@ 0, +27'8 1 [X'D)/Z, .
e m,(1; uc,(f_l))nu(X4; L) K41 withu € R,(f_l), (X4,24) € Xl(:i, where Xl()ri is the
set of pairs ([é:l, §4) satisfying
xe@0,/0,) 1,
Ge(Q,N (0~ 0))/Z,.
e m,(1; ucﬁr))n,,(Xs; 0)Ky41 withu € Rl(,r), X5 € ng, where ng is the set of all
vectors of the form [é] (x e (71_1(917/(91,)’).
e m,(nL; ucl(,r_l))KH_l withu € Rl(,r_l).
PROOF. cf. [14, Lemma 2 (p. 342)]. O

3.6. Cardinalities of some basic sets. Fix a Witt tower {(S,, V},)},en and set ng =

no(80), 9 = s, (Lo).
First we show an auxiliary lemma.

LEMMA 14. Assume Ep/Q , is unramified. For u € (9; anda € Zp,

HE € Op/mOp|T(E) =a (mod pZ,)}=p.

PROOF. We may assume u = 1. There exists 6 € O such that 7(9) = 1 and O, =
Z,DOZL, Leté € O, If we write § = x + 6y with x,y € Z,, then 7(§) = y. Hence
{6 € Oplt(ué) = a (mod pZ,)} = Z, ® 6(a + pZ)). Since e = 1, we may assume
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m = p. Therefore,
{(£€0,/mn0,|t(u€) =a (mod pZ,)}
= {Zp @ 0(a+ PZp)}/{PZp @szp} = Zp/I’Zp-
This proves the assertion. O
PROPOSITION 15. Letv,r € N and 0 < r < v. We have
ﬁuu — qv+n0—l+e/2(qv _ 1) +qv+6
and

ﬁx(r) 2v+n0+1 ﬁx(r)z — qr72+176/2(ﬁu
v,

3

v—r+42 — 618)
X =@ -1, X[y=q""¢""-1, Xi=¢

PROOF. For a vector X = [%] e n~1L, with x, y € E”, z € Vp, the condition
X (mod L,) € U, is equivalent to

(3.4) D Solrz) + TGy o (rx)) € N p~' Z,

Let (&, n, ¢) be the reduction of (Jyx, wy, wz) € (92 10 modulo 7Op.

Assume e = 1 and w = p. The condition (3.4) is written as a congruence equation:

(3.5) D Solel +('iE) =0 (mod 7O,) .
If n = (n;) # 0, then n; # 0 for some j. Suppose 11 # 0. Then for given ¢ € (O, /mO,)"
and for &§; € O,/mO, (2 < j < v), the condition (3.5) is regarded as a condition on &;.
From Lemma 14, the number of &; satisfying (3.5) is exactly p. Hence the number of the
solutions (£, 17, ¢) of (3.5) suchthat n # 0is p - "~ (g" — 1) - ¢g"0 = g™t =1/2(4V —1).
If n = 0, then the condition (3.5) is equivalent to So[¢]/ VD e pZ p- In terms of z, this
means So[z]/v/D € p lZ = r(n_lOp), or equivalently z € L{. Thus the number of
the solutlons (&,7n,¢) of (3.5) such that n = 0is ¢" - g% = ¢"*?. Summing up, we obtain
fU, = q" 1012V — 1) 4+ ¢ 19, which settles the case e = 1.
Assume ¢ = 2. Then N(ir) € pZ; and the condition (3.4) becomes So[;“]/\/ﬁ +
t('7j€) € Z 5, which holds for arbitrary (£, 7, ¢) € (O,/m0,)* 0. Hence £ U, = g’ +"0.
The formulas of ttXl()fi. are obtained by a straightforward consideration by Lemma 13. O

LEMMA 16. Forv,r € N such that 0 < r < v, we have j:IR( ) 1_[/ 1 fu.j with
q] l(qv ]+1_1)(qv j+n0+1+qd+l e/2)
g/ —1

v.j =
PROOF. From Lemma 13 and Proposition 15, we obtain a recurrence formula among
the numbers £R'":

ﬁRl():)_l — {q2v+n0+1 +q771(q8+17€/2 _ 1)}ﬁRl()}’71)
+qr—2(qv—r+2 _ 1)(qv+l—r+(n0+1) +q8+1—e/2)ﬁR(r—2) —I—q’ﬁR(’)
v v
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By this, the formula is proved by induction on v. a

REMARK. Itis observed that the formula in Lemma 16 is obtained from the orthogonal
group counterpart [15, (7.11) p. 44] by substitutions no — no + 1,0 +— 9 + 1 —e/2.

LEMMA 17. Letv € N. Fora € L}, the cardinality of the set
Fra={Xe€Lj/Ly I«/Bil{Su[a] —S[X —al} € 1(Op)}
is §$Fv.a = 1 + pa with
(3.6) pa=q""* (@agL,".
PROOF. First we prove
3.7 Fra=1{XelL,/L,| \/BilSv[X] =15,(X,a) (mod Z,)}.

Since 7(0p) = Z,, the condition Sy[al/~/D = S,[X —al/~/D (mod 7(0)p)) is equiva-
lent to SV[X]/\/E = t85,(X,a) (mod Z,). Hence to show (3.7), it suffices to have X €
L,/L, for X € F,a. Let X € Fya. Since L, is an Op-lattice there exists I € N such
that p'X € L,; choose the smallest one among such /’s. Then P'S,[X1/VD € Z p since
P'Su[X1/¥D = tS,(p'X,a) (mod Z)) and S,(p'X,a) € Z,. Suppose I > 2. Then
Sulp'~'X1/v'D = p'S,[X1/v/D - p'~% € Z,. By the maximality of L,, we then obtain
p'~'X e L,, a contradiction to the minimality of /. Thus / = 1 and pX € L,. Hence
pSu[X1/+/D = ©S,(pX,a) = 0 (mod Z,), which in turn yields S,[X]/~D € p~'Z, =
t(m~10,), or equivalently X € L!,.

Assume a € L)*. Then 7(S,(X,a)) € Z, forall X € L;. Hence for X € L}, the condi-
tion X € F, 5 is equivalent to S,[X]/ VDeZ p» which implies X € L, by the maximality of
L,. Thus F, g = {0} and §F, 4 = 1.

Assume a ¢ L *. In this case we can easily show that the map X (S,[X1/vV/D)~'X
is a bijection

(3.8) Fv,a— {0} 3 {Z epL,/pL,|tS,(Z,a) =1 (mod p)}.

Since a ¢ L,*, we have Z € L/, such that S,(Z(,a) ¢ Z, on one hand. On the other
hand, the inclusion pL, C L, (cf. Lemma 7) and the assumption a € L} yield t5,(Z, a) €
p_IZ;. Hence tS,(Z),a) = p~'u for some u € Z,. The element Zg = pu~'Z} satisfies
Zop € pL), and tS,(Zo, @) = 1. The map Z=27- Zy defines a bijection from the set on the
right-hand side of (3.8) onto the set

R={ZepL, /pL,|tS,(Z,8) =0 (mod p)}.

Since the condition a ¢ L/,* means the map ¢ — 15, (¢, @) mod p is a non-zero linear form
on the Z,/pZ ,-vector space pL| /pL, = L, /L,, we get {8 = paim(Ly/Lo)=1 — 40 p=1,
Thus we obtain §(F, a4 — {0}) = g%7¢/?, and hence gFra=1+ q0—e/?. O

REMARK. IfY € L§+1 is a reduced vector for (S,+1, Ly+1), the possible values of py
are assembled in Table 1 (for notations see Lemma 11).
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. a’ .
For a pair of natural numbers n > n’ and a vector a = [a’i| e V, witha', b €
b/
EZ_"/, a' eV,,wesetIl,(a) =a’.

LEMMA 18. Letv € N. ForavectorY € L’SH and ann € N such that n < v, the
cardinality of the set

(39)  Vy =X € Lo/7Ly VD {Syi1[¥] = Su[X — Ty ()]} € 1(xO,)}
is given by
g 2(g" — 1)+ q" Doy (e=1),

"oy (e=2).
PROOF. This can be proved by an argument similar to the proof of Proposition 15. O

(3.10) fVny = {

LEMMA 19. Let v € N. Assume Y = [%] € L}, is a reduced vector for

(Svt1s Lut1). Setnfy = no(Sy1|Y™) and ' = 0, jyr (YN Lyy1). Then Vo y = q° + By
with

qn0+1/2 _ q(n0+n6)/2 +q3'+1+(n07n678)/2 0+(3—e)/2

—4q

By = p—

For everyn € N such that 0 < n < v, we have

ﬁvn,Y = ﬁun + q"ﬂY .

PROOF. We follow the argument of [15, Lemma 2.11 (p. 10)] and use the notation in
Lemma 10. Since S, [[§]] = Su[§ —a] — Sy41[Y1],

G.11) Voy = (& € Lo/xLy |VD S7 [[§]] € 1O} .

By Lemma 10, L7 | is maximal Op-integral for S7" ;. Hence we can find an anisotropic
oy

:| and L) = | o |. By
oy

g

skew-hermitian matrix S, of size nj, such that S | = |: YA
J

v

Proposition 15, noting nj, = 9’, we have

fze LT /nL,, |ND S5zl € 1(xO,))

(3.12) _ qv’+n6—1/2(qu’ -1 +qv’+8’ (e=1)),
qZV,-i-nE) (e=2).
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On the other hand,

Hee Ly, /nLy IND Syl € tr0,))
= 8{(€.x) € Ly/7Ly x 0p/70, |x ¢ 10, VD S[[* €] € 1x0,))
(3.13) +8{E € Ly/nLy |ND S,[E] € T(1O,))
= (g - Vgt € Ly/nL, |ND 87, [[5]] € 1O}
N {qv+n01/2(qv ) +qv+8 (e=1)),

g> =+ (e=2).

From (3.11), (3.12) and (3.13), we have the formula of #)), y. By comparing this with (3.10),
we obtain the formula of ) y. Then the formula of ), y for n < v follows from #) y and
Proposition 15. a

REMARK. We assemble the explicit values of By in Table 1. Note By = 0 if e = 2.

3.7.  Evaluations of some exponential sums. Let ¥, be an additive character of @,
such that v, is trivial on Z, and non-trivial on p‘lZ p- Fix a Witt tower {(S,, V,)}ven. For
X e L} withn € N, set

0(X)= > Up(tSi(X,2)).

ZeL, /Ly

When n > 1, we also consider the sum

0, (X) = Z Yp(tS(X,2)), Xe€ LY.
ZeU,

For the orthogonal case, the evaluation of similar sums is stated in [15, p. 49] without proof.
LEMMA 20. Letn e N.
(1) 6,(X) =¢°8(X € L"),
) Ifn>1,then

00 (X) = 8(X € mLH) U, + 8(X ¢ wL¥)(—g" 0712 L gV x) .

PROOF. We give a proof for completeness.

(1) follows from the orthogonal relation of characters of the finite abelian group L/, /L,
whose order is ¢°.

(2) IfX enlL},then S,(X,U,) C Op; hence 6,(X) = #Uy,. Assume X € L} — L},
If we write X = [Eé], (x1,x2 € O?’,,xo € Ly and Z = [gé], (z1,22 € (71_1(9,,)”,10 €

771 L), then the condition Z € U, is equivalent to So[ZO]/«/5~|— t('ZaJuz1) € t(rr_lO,,) =
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p_ll,,. Hence

On(X) = > Y (T(='Z1Jux2 + " Z2Jux1 + So(x0, 20)))

21,2260, /0"
zoen Lo/ Ly
Solz0]/v/D+1(22Juz1)ep™ ' Z)

= > Vp (e (@ {21 Jux2 + ' Z2x1 + So(x0, 20)}))
21,226(0, /T Op)"
zo€Lo/m Ly
—Solz01/~vD=t('Z2z1) mod p~'N(x)
> U@ So(xo. 200))9(—Solzol /D)

z0€Lo/mLo

with

g(d) = > Yt (@ =" 21 a2 + ' 22x1})
21,22€(0p /7 Op)"
1("Z2z1)=d mod p~IN(x)

First we assume e = 1 and take m = p. A straightforward calculation of the Fourier
transform g(g) = Zdezp/pzp g(d)¥p(de/ p) of g(d) yields its evaluation:

q"Vp(=(pe) 't (Radux1)), (e #0),

9e) = {qZ"a([g] e TO), (e =0).

By the Fourier inversion formula g(d) = p~! Zsezp/pzp G(e)yp(—de/p) we have

en(X)=p‘1{q2"8([§;]enOf,") Y U So(xo, 20))

zo€Lo/m Lo
—e /Dt %1 Jux2) + &5
€ T("x1Jnx2) + €Solz0]
(3.14) tg Y ) v,p( e
e€(Zy/pZp)* z0€Lo/mLo p
7 (So(x0,
n (So(xo Zo)))}

p

The first summation on the right-hand side of (3.14) gives us §(xo € 7w L{)g"° by the orthog-
onal relation of characters. Since X ¢ w L} by assumption, we have §(x1, xp € 71(97,)8(x0 S
JTLS) = 8(X € wL}) = 0. Hence the first term on the right-hand side of (3.14) vanishes.

In the second term, since £So[z0] + v/ D7 So(x0, 20) = &' Solezo + x0] — &1 So[xo], we
have
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- VDt (%1 Jyx2)+ Solxo] Solezo+x0]
u(X)=q"""% 3 Wy (_ nﬁ ) > Wp(T)
ee(Zp/pZp)* pe 20eLo/7Lo pe

_ —Su[ X1+ Solzo+ .
—q" 1/2{ Y 3 %;(8( [l]m/ﬁo[zo m]))_qo}

e€Zy/pZpz0€Llo/mLg

making the change of variables ez = z, e~! = & to prove the second equality. Since the

orthogonal relation of characters, combined with the definition (3.9) of the set V) x, yields
e(—=Sp[ X1+ Solzo + x0])
(3.15) P 1/;,,( . 75 ): PVo.x .
20€Lo/mLos€Zy/pZ, pvD

we have the desired formula. This settles the case ¢ = 1. The other case e = 2 is similar. O

3.8. A double coset decomposition. Let {(S,, V,)},en be a Witt tower. Let ¥ =

[%] € Lt+1 be a reduced vector for (S,+1, Ly+1) and G§+1

Set Kj_H =1{k € Ky4+1|kX — X € Ly (forall X € Lt_H)}; KS‘H is an open normal
subgroup of K, 41.

the stabilizer of ¥ in G 4.

LEMMA 21. We have

Y Y
Gy =6, 1 Kv1 U l JGu+1MlK:+1 ’
=1

where M; = diag(w ™!, 1204y, 7).

PROOF. Similar to [15, Lemma 7.2 (p. 45)], [7, Proposition 3.9 (p. 41)]. O

4. Local L-factors. In this section, we shall recall the definition of the local L-factor
attached to a character of the local Hecke algebra ([8]).

4.1. The non-split case. In this subsection, we retain the notation introduced at the
beginning of Section 3. Let {(S,, V))},en be a Witt tower (see 3.3) and set ng = no(So),
0 = 0s,(Lo). The unitary group G, := U(S)) has the torus A, formed by all the points of
the form a = diag(ay, ..., ay, 1y, Ezu_l, R 511_1) (a; € E;), whose Qp-rational character
group X*(A,) is generated by aj ca(€ Ay) = aja;, 1 < j < v. Setm = 2v+ng. The
subgroup A} = A, N GL,(Q p) 18 a maximal @ ,-split torus of G,, and the root system
X, = X(G,, A,‘f) is of type BC, if ngp > 0 and of type C, if ngp = 0. By restriction,
X*(A,) = X*(A]") and the image of «; can be written as 27; with a unique n; € X*(A").
Let N, be the unipotent algebraic subgroup of G, such that the roots of A" in the Lie algebra
of Nparen; —n; (I<i<j<v),n+nA<i<j<v)andn; (I <j<).

Let {(x]Y}lg j<v be the dual of {a;}. Then the Weyl group W, of X, acts naturally on the

.V
coordinate functions X; = ¢ “oti-j (1 < Jj < v) on the dual torus

Ay(C) = X*(A,)c/2mi(logg) ™ X*(A)) = (C)”.
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We have the Iwasawa decomposition G, = N, A, K, and the Cartan decomposition G, =
K,A,K, with respect to the maximal compact subgroup K, := G, N GL;;(O,). For each
r= (rj)lgjgv € ZV, set

r.__ : r r r ——r
mi=diag(z", ..., 7", 1y, w7, o, ) €A,

For a double K,-coset K,gK, in G, take a complete set of representatives {n;7w"};c; of
K,gK, /K, in the set anzv. Let H be the Hecke algebra of the pair (G,, K,) with respect
to the Haar measure of G, such that vol(K,) = 1. Then the main result of [12] tells that there

exists the unique C-algebra isomorphism @, : H — CIXE,..., Xf]W“ such that
v .
@1 D, (Pk,gx,; X) = ) [ [ (@027 xpyrmii
iel j=1

for all K, gK, = Uie] n;w% K, withr; = (rj,i)1<j<v> Where ¢k, gk, denotes the charac-
teristic function of K, gK, (We follow the formulation of [14] and [3].). Let A : H — C
be a C-algebra homomorphism. The Satake parameter of A is defined to be the unique ele-
ment s € AU(C) / W, such that @, (¢; s) = A(¢) for any ¢ € H. Let T be an indeterminate
and consider the polynomial P, (T; X) = ]_[;zl(l - X;T)(1 - Xj_lT) with coefficients in
C[Xi, ey XﬂE]W". Then the local L-factor of A is defined by

L(s, A) = Py(q—*; 8) " A(s)

where A(s) is given as follows ([8]).
e Suppose e = 1. Then

1 (no, 3) = (0,0,
_Ja—=g7! (no, 3) = (1,0,
A= (1—gH ' A +¢ 672y (g, 0)=(1,1),
(1 — g~ 6T/~ (no, 8) = (2, 1).

e Suppose e = 2. Then

1 no=20,
A) =10 —¢g ! no=1,
(1 — g~ G+1/D)=1(] 4 g=(=1/2)) no=2.

REMARK. When G, is unramified, the L-factor given above is the usual one corre-
sponding to the 2m-dimensional complex representation of the L-group “G,, which is a
semi-direct product of GL,,(C) with the Weil group of Q,. When G, is not unramified,
the modified factor A(s) is introduced by Murase and Sugano ([8], cf. [9] for orthogonal
case).

4.1.1. Recurrence relations of Hecke polynomials. The image of the double coset E,(f)

(see Lemma 12) by the Satake isomorphism @, satisfies the following recurrence relation.
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LEMMA 22. Forn > 0,0 <r <n,
Bt @0) ) = g" DX+ X DB ETD) + C TP, )
+ D"V, @) + ¢ 2, @) .
Here
(4.2) C’(lr) = g 2 (g2 LBy D) = gr (P 1e2
PROOF. This follows from Lemma 13. a
We have an additive expression of the polynomial P, (T; X):

LEMMA 23. Foreachn € N, there exists a family of complex numbers {a, x(r) | 0 <
k < 2n,0 < r < n}such that

2n n
Py(T; X) = ZH)"(Z an,k(r)@n@,&”)) T*.
k=0 r=0

Moreover {a, i (r)} satisfies the following recurrence formulas.
() G Fornz0,k>1,r>1,

—(nt(o+1)/2) —1(r —=1).

an+1,k(r) =g
(ii)) Forn >0,k >1,
an+1,k(0) = an 1 (0) + an k—2(0)
—q "D g, (HCP + ap k10D .
2) Forn>0,0<k<2n+2,1<r<n,
ank(r) + an x—2(r)
=q "D G, 1+ DED + ap k-1 (DY + a1 (r = g .

Here we understand a, j(r') = 0 unless 0 < k' < 2n or unless 0 < r’ < n.

PROOF. cf. [14, Lemma 4 (p. 345)]. O
LEMMA 24. Let0 <k < 2n,0 < r < n. Then we have the following relations.
4.3) an,k(r) = an,2n7k(r) s
“4.4) ank(r)=0, ({forallke[0,r —1]U[2n —r +1,2n]),
4.5) an,2n(0) =1,
(4.6) apan-1(1) = g~ "7 IHO0TD)
B B ( n__ 1)( 0+1—e/2 _ 1)
apan_1(0) = —g~n+mo=1/2 4 qq_ 1 ’
o ( n—1 _ 1)( 0+1—e/2 _ 1)
@7 anon2(1) = —q~ @20 4 -~ .

PROOF. This results from Lemma 23. O
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4.2. The split case. In this subsection, weset E, = @, ® Q,and Op = Z, ® Z).
Let (R, V) be a skew-hermitian space over E, and M a maximal O,-integral lattice in
(R,V). Setm = rkEp(V). Then by choosing an O)-basis of M, we may assume M =
Op =2y ®Z),V=E)= Q)& 0} and R(V,W) = "W(T,-"T)v for any v,w € V
foraT € GL,(Q,). By the maximality of M, the matrix T has to belong to GL(Z)).
Since U(R) = {(g1. 92) € GLn(Q,)*|'"92Tg1 = T}, the first projection GL,(Q,)* —
GLx(Q,) yields an isomorphism U(R) = GL. (@) which maps U(R) N GL (M) onto
Ky = GLu(Z)p). Let Ay, = {diag(ay, ..., am) | a; € Q;}, and N,, the unipotent subgroup
formed by all the upper triangular unipotent matrices in GL,, (Q ,). We have the Iwasawa de-
composition GL,;, ( Qp) = Nj A Ky, and the Cartan decomposition GL,;, ( Qp) = KnAnKpy.
Forr = (rj)igjgm € Z™, set p* = diag(p", ..., p™). For a double coset K,,gK,, we
fix a representative {n;p"i}ie; of KungKu/Kn in the set N, pZ". The symmetric group
S acts on the algebra C[X f, X njj] by the permutations of the indeterminates X ;. Let
H be the Hecke algebra of the pair (GLx(Q,), Kin) with respect to the Haar measure of
GL,,(Q p) such that vol(K,,) = 1. By [12], there exists the unique C-algebra isomorphism
v, :H— C[Xf, e, X,ﬂn:]s’” such that

m
(4.8) W (PKgkn: X) = Y [ [T X jyrmeii
iel j=1

forall K;,gKp = Uie] n; p"i K, withr; = (rji)igjgm- Let A : ' H — C be a C-algebra ho-
momorphism. The Satake parameter of A is defined to be the unique element s € (C*)™/S,,
such that ¥, (¢; s) = A(¢) for any ¢ € H. Let T be an indeterminate and consider the poly-
nomials Py (T X) = [T/—, (1= X,;T) and P (T: X) = [T} (1 —X;'T) with coefficients
in C[Xi, R X,jn:]sm. Then the L-factor of A is defined by

L(s,A) == PP (p~:s) ' PP (p~ 97

5. Automorphic forms and Rankin-Selberg integrals. For an algebraic Q-group
H and a prime number p, we use a simpler notation H, for H 0, The group of real points
Hpg and the group of finite adele points Hy4; are denoted by Ho and Hfy, respectively. Then
the adele group Hy4 is identified with the direct product of Hy, and Hy, i.e., H4 = Hoo X Hj.

Let E = Q(+/D) (C C) be an imaginary quadratic field with discriminant D and O the
integer ring of E. Fora € E, set t(a) = \/B_l(a — a). Then 7(O) = Z. Let I(E) (resp.
S(E), R(E)) be the set of primes which are inert (resp. split, ramify) for the extension E/ Q.
Let w be the quadratic character of A*/ Q™ corresponding to the extension E/ Q. We set
Exw =E®g Rand E4 = E ®¢ A. Note that Ec = C.

We use the notations introduced in Section 2 with F = FE and k = Q.

5.1. Let(R, V)and (R, V) beasin 2.0.2 and consider their unitary groups Go = U(R),
G = U(Ié). We fix a non-isotropic vector ¥ € V and consider the stabilizer Gf/ of the
corresponding vector Y e Vas explained in 2.0.4. We assume the matrix i R is positive
definite and set dim¢ V = m.
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5.1.1. The group of real points G is a real reductive Lie group whose associated
symmetric space is

D= {o = [31] € Vo |iR[0] = i R[a] — 2Im(by) < 0} .

The transform of a point ¢ € ® by an element g € G is denoted by g{o) € D, which is

defined to be the point of ®© such that go = ¢4 5 g(o) with a scalar ¢y, € C*.

(14++v/D)/2
0[,1 '

is a maximal compact subgroup of G. Since the signature of i R is ((m + 1)+, 1—-), G is

a realization of the real-rank-one unitary group U(m + 1, 1), and Koo = U(m + 1) x U(1).

Since i R is positive definite, G o0 is compact.

5.1.2. The group Gyt acts on the set of all the O-lattices in V. Fix a maximal O-
integral lattice M in (R, V) and let Ko be the stabilizer of M in Gy r; then K r is a maximal
compact subgroup of Gy r. Similarly Kr denotes the maximal compact subgroup of G, which
stabilizes the maximal O-integral lattice M=0dMeOin (R ,}7).

5.1.3.  The symmetric space associated with the Lie group G go is

Fix a base point op = [ :| € ®. Then K, the stabilizer in G » of the point oy,

z)?:{oez)ué(?,a):m:{[Slit]e@‘R(Y,aa)zo},

which is a~divisor~of the (m + 1)-dimensional complex manifold 3? Since o9 € oY , the inter-
section K go = Ggo N K« is a maximal compact subgroup of Ggo. We have isomorphisms:

GY =Um, 1), KL =U@m) xuq).

5.2. Assumptions. In the remaining part of this paper, we hold the following two
assumptions on R and Y.
. -1
(Al) . Y S M;rim’ R[Y] Y S Mprim,

(A2): for each prime p, the localization R, of R at p is isotropic.

From (A1), we have

LEMMA 25. (1) The direct sum decomposition of O-lattice M = R[Y]"'YO @
(Y1 N M) holds. The lattice Y- N\ M is maximal O-integral in (R | Y+, Y1),
(2) For any prime p, we have R[Y]™! € 0, Un0;.

PROOF. The assertion (1) is proved directly. Since Yo = R[Y 1"y belongs to M,
we obtain R[Yy] € O, which yields R[Y]™! € O. Let p be a prime. Suppose R[Y]™! €
70, with a > 2. Since Y € M* and R[z*"'Y] € 79720, C O,, the lattice M, +
7 'R[Y]! YO, is an O,-integral lattice containing M ,. By the maximality of M ,, M, +
n_lR[Y]_lY(’),, has to coincide with M, or equivalently x IR[Y] Y € M. This con-
tradicts the primitivity of R[Y]~'Y in M. Hence R[Y] 'e Op — 712(’),,. O
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Let Kf? (resp. K({f) be the stabilizer of M N Y+ (resp. M N Y1) in Gf (resp. G({f).
Then Kf? and K({ ¢ yield maximal compact subgroups of Gf and Gg’f, respectively, and
K{;=GY;nKor kK =Gl Nkt

Set KZ =K ZO th . Then KZ is a maximal compact subgroup of Gi and the decompo-
sition G4 = PY K} holds.

REMARK. The first assumption (A1) forces that the prime 2 is unramified in E/ Q if m
is odd. To confirm this, suppose m is odd and 2| D. Then Lemma 11 yields ordy(R[Y]/+/D)

= —ordy(D). Combining this with Lemma 25 (2), we obtain ordy(D) € {0, 1}. which is
absurd since ord, (D) should be 2 or 3.

The second assumption (A2) necessarily implies m > 1.

5.3. Normalizations of Haar measures. Let d¢ be the standard Lebesgue measure of
R. For each prime p, let d¢;, be the Haar measure of @, such that vol(Z,) = 1. Then the
product of d¢,’s affords A a unique Haar measure d¢ such that vol(Q\A) = 1; d¢ is self dual
with respect to the basic character ¥ : Q\A — C* such that Yo (Xo0) = eXp(27v/— 1 xo0)
for all xoo € R. Here, for any place p < oo of @, v, denotes the p-component of .

For a finite dimensional E-vector space U, we put the adele space U4 the Haar mea-
sure such that vol(U4/U) =L Then we normalize the Haar measure dn (resp. dn’) of the
unipotent group N4 (resp. NX) so that dn = dXdé& (resp. dn’ = dZd¢) if n = n(X; &) (resp.
n’ = n(Z; ¢)). Let dl be the Haar measure of the compact group K}; such that vol(KX) = 1.
Let d*r = ®'d*1, be the Haar measure of the multiplicative group E; which is a product of
Haar measures d*¢,, on E; such that VO](O;) = 1if p < oo and d*t, = 2m)~"'r~'drde

with (r, 0) the polar coordinates of EX = C*. Fix a Haar measure dgg of G())/ 4 such that
vol(Gg Q\G(’)/A) = 1. By the Iwasawa decomposition G = PX KX, we take the Haar mea-

sure dh of G| so that the formula

/~ ~f(h)df'z=/ |N(t)|;mdxt/ ng/~ di
PG, EX\E} Gi.o\Gia  ING\WNY

(5.1) -
x /K S fe'm@ go)hdl, (f € L'(PG\G )
A

holds.

5.4. Eisenstein series. Since Gg is R-isotropic, the space Gg Q\G())/A/Knggoo isa
finite set. For a function f on Gg Q\GgA/Knggoo, define a C-valued function f(s; ) in
(s, h) € C x G by the formula

Fs;m@; gonl) = INOIT™ f(g0), (1 € E,go€ Gl 4oneNL 1eKFKL).
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The Eisenstein series relevant to our purpose is a right K tY K go -invariant and left Gg-invariant

smooth function on G}; which is originally given by the absolutely convergent series

(5.2) E(fisip= Y., flsivg), geGy
yePH\GY
for Re(s) > m/2; it has a meromorphic continuation to the whole s-plane ([10, IV], [6]).
5.5. Rankin-Selberg integrals. For the notion of automorphic forms and cusp forms
on an adele group, we refer to [10, 1.2.17, 1.2.18].

Let (r, W) be an irreducible unitary representation of K., containing a non-zero K ZO-
fixed vector vo. Let F' : Gg\G4 — W be a cusp form such that

(5.3) F(gktkoo) = T(koo) ' F(g), kikoo € KiKoo -

Consider the integral

5.4) Z?Y(s) = / ~ _E(f;s—=1/2;h){w|F(h))dh, seC,
’ Gp\G}
where (x | y) is the inner-product of W, which is a~ntilinear with respect to the first variable x.
Since E(f; s —1/2) is an automorphic form on Gﬁ and F is a cusp form on G 4, the integrand
is a rapidly decreasing function on G/); ([10, 1.2.12]), which guarantees the convergence of
the integral (5.4) for all s € C where E(f;s — 1/2) is regular. Moreover, Z f y(s) yields a
meromorphic function on C, which is holomorphic outside the poles of the Eisenstein series
E(f;s—1/2;h).
5.6. Whittaker integrals. For X € V, let Yx be the character of N4 defined by

(5.5) Yx(N(Z;0) =y (TR(X, Z)), n(Z;5) € Ny.

Note v is trivial on the subgroup Ng.
Our aim in this section is to show that the integral Z f y(s) is expressed as a Mellin
transform of the integral

ofxi= [ fandio [ Fem g,

(5.6) Go.0\Go.a Ng\N4
XeV, geGy,

which we call the Whittaker integral of F along (f, X). The function <p§ y 1 Ga — Wis
bounded, since F is bounded on G 4 and G, 9\Go,4 X Ng\N4 is compact.
When X € EY — {0}, it is easy to see that (p? x has the equivariance:

f x (nM(L; ko,£90.00) gktkoo) = Yx (MT (koo)'@ f x (9) .

(5.7) vy
(n € Na, ko.t90,00 € Ko G oo ktkoo € KtKoo)

5.7. A basic identity. Here is the main theorem of this section.
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THEOREM 26. The integral

Lphyis) = /E (wolefy (M@t L)) @ "2

A

converges absolutely in Re(s) > (m + 1)/2 and

ZEy(s) =C(pfy;s), Rels) > (m+1)/2.

PROOF. LetRe(s) > (m+1)/2. From (5.2) and (5.4), by using the integration formula
(5.1), we obtain

zE (s) = d*t dgo
f,Y X Y Y
EX\E} Gy, Q\GO,A

x / AN T (go) (ol F (' mz; o))
NE\N};

(5.8)

after a standard argument. Note the integral over the compact group K Z yields the factor 1

since F has the K };’ -equivariance (5.3) and vy is fixed by K Zo

LEMMA 27. Forany g € Gy, we have

J

f(go)dgof {vol F(n'm(1; go)g))dn’

= Y (wolefy(M; 1n)g)) .
a€eE*

PROOF. Fix g € G 4. Since the smooth function on E 4
Dy(a) :=/ dZ/ (vl F(N(eY +Z;8)9))d¢, a € Ey
Yj{/YJQ- A/Q

is E-periodic, the Fourier inversion formula yields the identity
(5.10) Z @y (ap) = Py(0)
apeE
with @, () = Je,/E @)Y ((R[Y1/v/D)trg) g (@)~ da for ag € E. By the normal-

ization of the Haar measure of N4 and that of N};/ (see 5.3), we have

@4 (a0) =/N w (vol F(nm(ato; 1) @)Wy ()~ 'dn,  (ag #0),
0\Na

D4(0) = / - (vo| F(n' g))dn' .
Np\Ny
Hence the identity (5.10) takes the form

b0+ ) (vl F(1m(eo: L))y (n)~'dn = / Ll F'g)dn’.

b4
apeEx " Ne\Na Np\Ny
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By the cuspidality of F, the first term ng (0) of the left-hand side equals zero. To obtain (5.9),
we first replace g with m(1; go)g, multiply the both sides of the identity by f(gp) and then
integrate with respect to gy € Gg Q\Gg e O

By (5.8) and (5.9), we obtain

ZF () = /E - |N(r>|i,<m“’/2( > (woleh y (M 1m)>>)er =t(pfyis).
A

aeE>

This completes the proof. O

6. Computation of non-Archimedean zeta-integrals. We retain the notations and
the assumptions made in Section 5. In this section, we fix a prime number p and let E,
denote the quadratic @ ,-algebra E ® 9 @, with the maximal order O = O ®z Z),. The
p-components of K¢, Ko f, Kty and Kg ¢ are denoted by K, Ko, p, K 1}; and Kg i respectively.

6.1. Local zeta-integrals. Let W},’ be the space of all the locally constant functions
¢ : Gp — C such that

(6.1) @(nm(1; ko)gk) = Yy, ,(Mp(9), neN,, ko€ Ky, kek,

(cf. (5.7)). Here vy, is the p-component of the character ¢y : Ny — CD defined by (5.5).
Let M,y (resp. H})) be the Hecke algebra for (G, K ) (resp. (G ,, Ky ,)). The space
W[{ becomes a double ng x 'H p-module by the action

(@0 %@ % $)(x) = /G . /G P0(g0)¢(95 ' *9)B(9)dgudg. (b0, $) € HY x Hy.
0,p P

where dg (resp. dgo) is the Haar measure of G, (resp. Gg’ p) such that vol(K,) = 1 (resp.
vol(Kg p) = 1). Our aim in this section is to evaluate the local zeta-integral

6.2) Ep(p39) 1= / oM L) IN@L, "2

Ep
for an H},’ x H p-eigenfunction ¢ € W}; . Here is the result.

THEOREM 28. Letg € W}; be an HZ x H p-eigenfunction corresponding to the char-

acter (Ao, A), i.e., ¢ % ¢ % ¢ = Ao(do) A@)p for all (do. §) € HY x H,. Suppose ¢ is
bounded on G . Then the integral (6.2) converges on Re(s) > (m + 1)/2, and
L(s, A) 1

Splps) = LG+ 172, Ag) Cm,p(zs)w(l)’ Re(s) > (m+1)/2

with
(1—p=~! (m=1 (mod 2)),
tnp) =10 —wy(p)p™)~'  (m=0 (mod2), p ¢R(E)),
1 (m =0 (mod 2), p € R(E)).
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6.2. Computation at non-split primes. We assume E, = Q p(\/ﬁ) is a field and use
the notations in Section 3 and Subsection 4.1. By the assumption (A2) in 5.2, we may set
(R, Mp) = (Sv41,Lyy1) and (R, M,,) = (Sy42, Ly42) for a v € N with a Witt tower
{(Sy, Vi) }ven. Let ng denote the size of Sg. Then m = 2v+ng+2 and we have identifications
(GO,[J’ KO,[J) = (Gy+1, Ky41) and (Gpa Kp) = (Gyy2, Ky42). Putd = aR(Mp) = ds,(Lo).
Fix g € W},’ and let A and A be as in Theorem 28.

Note that the vector Y is reduced for (R, M) by Lemma 25.

LEMMA 29. (1) Ifl € Z andl < 0, then p(m(x; 1,,)) = 0.

(2) If go € Go,p is such that g, “ly o4 Lv+1’ then o(M(1; go)) = 0.

PROOF. Let!/ € Z and gy € Gy, p. Suppose 7' 9% Y¢LUJrl Then ¥, (TR(Y, 7l gZ)) #
1 for some Z € L,41. Since R[Z] € \/_'C(Op), we can write R[Z] = a —a withana € O,
Then ¢ = a + 2-1R[Z] e Qp and n(Z; ¢) € Np N K. The equivariance (6.1) of ¢ yields
the formula

pM('; go)) = oM goIN(Z; 0)) = ¥ (TR, 7' o Z)p(M('; g0))

which in turn gives (m(’; go)) = 0. This proves (1) and (2). Note 7'Y ¢ Ly, for all
I <0, since Y is Op-primitive in L* bl = M; O
LEMMA 30. Let Fy(T) € C[[T]] be the formal power series

Fy(T) =) oM@’ 1ua)T'.

=0

If ¢ is bounded on G, then ¢, (¢; s) = F,(q "+ D/2) for Re(s) > (m +1)/2.

PROOF. This follows from the definition (6.2) by E ;; = Ujez JTZO; and Lemma 29
(1). Note the assumption that ¢ is bounded, combined with Lemma 29 (1), yields a majora-
tion of the integral ¢ (|¢|; Re(s)) by the geometric series Z[’ioq(_Re(SH(m“)/w, which is
convergent on Re(s) > (m + 1)/2. O

LEMMA 31. Foreachl e N,0<r <v+2,

(@ + &0 )M’ 1))
= g? 0B — LI+ D)+ ot — 11— 1) +q 0@, 1)
Vﬂ¢u—2n+MfU@—1n (>0,
+ 19/ (r—2,0)—q" 2" (r —2,0) +q" 19" (r —1,0) — g"2p(r — 1,0)
(=0,
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with
=Y emah),
hedl) /Ky

¢'(r,0) = > Yp(TSys1 (Y. hX))p(m(1; b)),
heel) | /Kyi1. Xex \Lyg1/Lys1.

VD' SupilXler (T Op) X e Loy
€@ 'S, [X1H+7 10N 0 )/ Z,,

¢'(r0) = > Z <TSu+1 (Y, h [2 ‘ D) p(m(L: 1)),

A v+1
hec, [ /Kvi,
zeLy/Lo,
Ze(zilSOIZH“nilOp)m Qp)/zp

and ¢(r,1) = 0ifr < 0orl < 0. Here Cl(;_lz) and DU~V are the numbers defined by (4.2),
Vp:Q,— CY s the p-component of the basic character .
PROOF. This follows from Lemma 13. O

PROPOSITION 32. Lets € (C*)"*2/ W, be the Satake parameter of A. Then

2v+4 v+1
(63)  Fy(T)Pyya(q~HTIDDT g) = N (kg HHHeot DTN B 4 (1)
k=0 r=0
with
By i (r) = (avs1k(r) — g~ CHHOFDD (DO 4 gMyay g1 (r)
64 — g~ OO k1 (4 D) (r, 0)
g OO0t + 19 (r, 0)
+ g~ CHHOEDIDA Gy 1 () — avgr a1 (4 1)” (1, 0)
PROOF. Similar to the proof of [14, Proposition 1 (p. 349)]. O
PROPOSITION 33. Set &) = (h € Gl |Iranko /0, (Th (mod wO))) = r} =
GI.,n 5§21. Then ¢(r,0) = ¢'(r,0) = ¢"(r,0) = 0ifr > v = v(S,11|Y D). IfO<r <V,
then
_ (=N ’ o 1 A
(p(rvo)_(cY *(p)(l)s (p(rfo)_cr(p(rvo)v (p(rvo)_cr(p(rso)s
where

Cl=q"7 Y Y,aSa, X)),
Xeu\Hrl
& xex—1L
Y v+1

=0 S o5 (1)

ZEZ/{()
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PROOF. Ifr > V', then c(r) = () by Lemma 12. Hence the first assertion follows. In or-

der to show the second statement, first note that for each X the number of ¢ € (2_1Su+1 [X]+

_1(9,,) NQ,/Zpis q'~¢/?. By this remark, combined with Lemma 29, we write ¢’(r, 0) as

asum of ¢!~ e/ZI/IP(TSv+1 (¥, hX)e(m(1; h)) over all (h, X) € (&), /Kys1) X (x ™ Lys1/
Ly41) such that

(6.5) h™ X € Lv+1 ’
(6.6) hX e n 'Ly, SupilX1/VD e t(n™l0,).

Since Y is reduced for (Sy+1, Ly+1), the condition (6 5) implies & € Gp+1KU+1 by

Lemma 21. Hence we can write the set of cosets i € cv+1/Kv+1 satisfying (6.5) as (cl()rJi1 N
GUHKUH)/KUH = ;”/KVJrl Thus, in the summation defining ¢’(r, 0), changing the
1)JFI/KUH to c(r)/KvJrl does not affect ¢’ (r, 0). Let c(r) Gl
sentative of c(r) JKY »4+1- Then for those h € c(r) /KY »41» the first condition in (6.6) is equivalent
to c;r )X em 1Lu+1, independent of individual 4. Hence ¢'(r, 0) is factored into the prod-
uct of C/ and Zhe”(r)/KY e(M(1; h)) = (~(r) * ¢)(1). This proves the formula for ¢’(r, 0).

range of i from ¢ be a repre-

Similar arguments yield fomlulas of ¢(r, 0) and ¢” (r, 0). O
The numbers C. and C}’ are evaluated in terms of By (Lemma 20) and py (Lemma 18).

LEMMA 34. For0<r <V,

C; — qr+17e/2(_qv+n07r+e/2 _i_qurlfr(qB + By)),
C’/,/ — qa+17€/2(1 _ 8(Y ¢ L;+1*)) — qa+17€/2 —qpy,

and
By i (r) = {avs1,4(r) — g~ OOV oy ()
6.7) +q—(v+1+(n0+1)/2)+r+l(_q2v+n0—2r+1 _I_qv—r-i-l—e/ZIBY + py)
Xy 1 k-1 + 1D} Ao @ (1) .
PROOF. Let us compute C,. By Lemma 6, choosing a Witt basis of M, properly, we

0
may assume that the identification (R, V) = (Sy+1, Ly+1) is made so that ¥ = [%’i| with

Ov r

a

Y = |: ell ], (@ € Op,ac LZ;). Then the element 6521 fixes the vector Y if 0 < r < v,
Ov r

namely Cu+1 € Gf_H (0 < r < v). The condition cg,r)X S TL’_ILV_H, X € U4 for a vector

X1
X = [ ], (x1,y1 € E", X' € V,,_,41) is equivalent to
yi

x1€ (@ '0,/0,), yi=0, X €lUy_ryi1.
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Hence C| = ¢" +1=¢/2g, .. 1(Y’) with 6, the exponential sum studied in 3.7. Using Lemma
20 (2), Lemma 18 and Lemma 19, we have

C; — qr+1—e/2(_qv+n0—r+e/2 +qv—r+1(q8 +,3Y’)) )

Note By’ = By, since Vo.y = Vo y’.

The evaluation of C, is simpler. Since Uy = L{,/Lo, we have C// = ¢'~¢/29)(a). Use
Lemma 20 (1) to obtain C} = ¢°*!7¢/25(a € Ly*). By (Y € L, |*) = §(a € Ly*), the
conclusion follows.

Using Proposition 33 and the values of C;, C//, from (6.4), we obtain the formula (6.7)
by a computation. a

Set v = v(Sy41|Yh), ny = no(Sy411YH) and 8" = 95, yL (L1 N YE). Since ¥ is
reduced for (S,+1, Ly+1), by Lemma 5, there exists an anisotropic skew-hermitian matrix S(’)
(among the ones listed in Lemma 8) such that (S, {|Y+, Y1) = (S;,, O?,V +n°). Then the
Witt tower {(S,’l, Vi)lnen determines the coefficients {b, (r)} of Hecke polynomials in the
same way as the Witt tower {(S,, V,)}sen determines the coefficients {a, «(r)}. Lemma 25

(2), combined with Lemma 11, implies that possible values of (nf), 9') are (ng — 1,0 — 1),
(ng —1,0) and (ng + 1, 9).

LEMMA 35. (1) Suppose (n),d") = (no — 1,8 — 1). Set byi(r) = byi(r) +
Aby j—1(r) with A = —q?="0/2H1=¢/2 Tpep

Cln,k(r) _ q7(n+(l’l0+1)/2)+3+V+176/2an’k71 (V)

_ q—(n+(no+1)/2)+r+l—e/Z(qn—r _ 1)(qn+n0—r+e/2—l +q8)an,k—1(" + 1)
=q by k()

for0<k<2n+1,0<r <n
(2)  Suppose (n;,,d") = (no — 1, ). Then

A1 x(r) 4 (@O~ V/2 — gn=r ot D2y 1) = g b k()

for0<k<2n+1),0<r<n+ 1
(3) Suppose (ny,d") = (no + 1,9). Set by i(r) = bpi(r) — (A + B)bpi—1(r) +
ABby y_o(r) with A = g7/, B = —q?"0+1/2 Then

(6.8)  anp(r) — (¢" " ITO0TDZ g2y (e 4+ 1) = g by k(1)
for0<k<2n,0<r<n—1.

PROOF. Consider the case (nj,, ") = (no + 1, 3); we then have v' = v. The formula
(6.8) for (n,k,r) such that k € {2n,2n — 1} and 0 < r < n — 1 is proved by a direct
calculation with the aid of Lemma 24. Note this in particular cares the case of n = 1. Let
us prove (6.8) by induction on n. Suppose n > 1,0 < k < 2nand 0 < r < n. Let
us consider the case r = 0 first. Use Lemma 23 (1) to write ay,y14(0) — (g"T0+D/2 4
qa’"0/2)an+1,k,1(1) — q’k/zl;n,k(O) in terms of a, x (i), En,l,kr(i); then by induction as-
sumption we can write l;n_l, x (i) in terms of a, x~(j). After a straightforward but tedious
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computation, we obtain

an11.k(0) — (g" OV 4 g2 a1 (1) — g7y 1 (0)
= gm0/ (@ amo=1/2 4 g0y, (1) + ank—3(1)
— g~ 0D (ga, 4 5(0) + CPayk—2(2) + DVay (1)} .
The formula inside the curly bracket on the right-hand side is zero by Lemma 23 (2).
Consider the case r > 0. Since the formula is obvious when k = 0, we assume k£ > 0.
Then using Lemma 23 (1) (i), we have

an1 g (r) = (g HOOEDZ 4 G002y A1) — g by k()

_(n+(n()+1)/2){ n—r+(n0+l)/2+q8—n0/2

=q ank—1(r —1) —(q Yan k—2(r)

—q *VPh, 1 g1 (r = D)

after a computation. By the induction assumption, the right-hand side is zero. This proves
(6.8) completely. O

PROPOSITION 36. Lets € (C*)"T2/W, 2 and sy € (CX)”'/WV/ be the Satake pa-
rameters of A and Ao, respectively. Then we have

Py (qf(v+1+(n0+1)/2)*1/2T; $0)

Foll) = Pyia(g— I+t D/D T ) Brig D e)
with
L+ gommo2Hi=eT (n, 3 = (no — 1,8 = 1),
By(T) =11, (g, 8") = (no — 1,9) ,

(1 =g ™2T)(1 +¢?~"0=D2T) | (ny, ") = (no +1,9).

PROOF. Consider the case (n(,, ") = (no+1, d). In this case, v’ = v. From the Table 1
in Lemma 11, we have py = 0,e¢ = 1 and By = —qa. The formula (6.7) is simplified as

By (r) = (avs14(r) — g0 D2(q" " 4 g0 a1 (r 4+ 1) A0 @ )e(1)

and this equals q_k/zl;,,_l,k(r)Ao(Eg))q)(l) by Lemma 35. By definition (see Lemma 23),
Py(q™" 2 To; 50) = Y00 (= DXg 2T 30 bua(r) (@) with Ty=g = H1+ 0ot/ T,
By (6.3) and (6.8), we have

Fy(T) Py12(To; )

2(v+1) v
= Y EDTEY g7 b r(r) = (A+ B)byk—1 () + ABby k—2(r) Ao (@3 ) (1)
k=0 r=0

= Py(q " ?To; s0)(1 + (A + B)g YTy + AB(g~*To)H (1)
= Py(q Ty s0)(1 — g~ " D210y (1 + g? 702 To)e(1).

This proves the desired formula. The remaining cases are similar. a



144 M. TSUZUKI

Now Theorem 28 follows from Proposition 36 combined with the following lemma
which is a direct consequence of the definition of local L-factors recalled in 4.1.

LEMMA 37. IfT =g stm+tD/2 then

Pv/(q*(V+1+(n0+1)/2)*1/2T; So) By (q,(v+1+(n0+1)/2),1/2T) _ L(s, Ap) 1
Pu+2(617(”+1+("0+1)/2)T; S) L(s+1/2, AO,p) fm,p(zs) .

6.3. Computation at split primes. In this subsection, we use the settings and the nota-
tions in 4.2. Recall that R = (T, —'T) with some T € GL,,(Z,) and hence R = (T, —'T)

with = 77 '] € GLuia(Z)). Then G,y = {91, 92) € GLwi2(Q, | 'pT g1 = T} is
identified w1th GLu+2(Q ) by the first projection. Similarly Go,, = GL, (@ ). Put

1 X1 z
1

Then for X = (X1, Xp) € E}’j and ¢ € Qp, we have n(X;¢) = y(-'TX2, X1;¢ —
271’X2TX1) by the identification G, = GLm+2(Qp) made above.

Letus write Y = (Y', Y”), and Dy € ZX a solution of the equation 1> = D, i.e..v/D =
(Do, — D).

LEMMA 38. Letg € W).
D Iftn,n € Q;, X1, X7 € Q"; and h € GLm(Qp) satisfy nnlx, e ZZ‘ and
thX, € Z™, then
o(diag(ty, h, 1y )y (X1, X2; 0)) = p(diag(ti, h, 15 1) .
(2) Lett;, 1 € Q; and h € GLy,(Q ). Then ¢(11, h, t;l) = 0 unless
nh='y' ez, n'n'ry" e Z7.
PROOF. By (6.1), we have
p(diag(ti, h, 1y )y (X1, X2; 0))
= ¥, ((—12/Do)'Y"ThX2) ¥, ((11/ Do)'Y "h ™ X ) (diag(tr, . 1;1) .
Noting Dy € Z%, T € GL,, (Zp) and 1//,,|Z; = 1, we have the first part of the lemma. To
obtain the second part, it suffices to note that ¢(diag(#, A, tz_l)y(Xl, X7;0) =
o(diag(t, h, 15 ")) for (X1, X2) € Z" @ Z"". O
LEMMA 39. Let Fy(T1, Tz) € C[[Th, T2]] be the formal power series
Fo(Ti.T) = Y ¢(diag(p", L, p™2)T)' T2
11,120
If ¢ is bounded on G p, then ,(¢; s) = F,(p~sHn+D/2 p=s+m+D/2y for Re(s) > (m +
1)/2.
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PROOF. This follows from the definition (6.2) by the decomposition
U @"z; x "z
ll ,leZ

and Lemma 38 (2). Note that p"'Y" ¢ Z7 if I; < 0 and p2Y” ¢ Z7 if I < 0, since
Y = (Y',Y") is assumed to be O,-primitive in M = Z; ® Z}). Since g is bounded, by
Lemma 38 (2), the integral ¢ (|¢|; Re(s)) is majorized by the geometric series

Z q(fRe(s)+(m+l)/2)llq(fRe(s)+(m+1)/2)[2 ’

11,120
which is convergent in Re(s) > (m + 1)/2. |
For i, j > Osuch thati 4+ j < m, put c( = p(bs 1,00 =1 =D (1 appears i times

and —1 appears Jj times in the exponent of p) and set c( - ) ch,(,',’] )Km. We use the same
notation c,(n ) o denote its characteristic function. Fix a complete set of representatives R,(,’l’/ )

of Ky /Km N o) Ky (e =1,

LEMMA 40. (1) For0<i <m+2,thedouble coset 5,(:!_8)2 is a disjoint union of the
following left K, 42 cosets.
o diag(1, ac?, 1)y(0, Y1; 0) Koo with

ae RGOy = [of_,-] eplzn/zm.

¢ 10),17)[( +2 witha €
(i—1,0

o diag(p, aci ™Y 1)y (X2, Ya; 22) Kpnsn with

e diag(l, acy, R(FIO)

ae RO pHeplz,z,,

_ Oi—l —1m m _ 1 —1gm ;pm
Xz_l:x2:|6p 7y, va=|g " | erT 22y

-2,

o diag(p, aci ™Y p)y (X3, 0; 0)Kyin with

i—2,0 _ o]
a e RIT20 X3_|:;2 ep'zn )z}
(2) For0 < j < m+ 2, the double coset c( ]2) is a disjoint union of the following left
K42 cosets.
o diag(1, ac™, Dy (X1, 0; 0) K2 with

©,5) _ Om—j —1gm ;ym
o€ Ry, Xl_l:x2:|€p z,/Z,.

1 ,j—

o diag(p~", eV ) Kppao witha € RO,
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3 ©,j-D 1 / reo ! .
e diag(l, acy, , Py (X5, Y35 25) Ko with
ae RV, dbeplz,z,,
/o 0m—j+1 —1gm jzm r_ | N —1gm jgm
X2_[ % ep Z,/Z,, Y,= 01 €p Z,/Z,.
: -1 0.j-2) -1 . :
e diag(p™", acy, , P~ )v(0,Y3; 0)K,y40 with
0,j—2 1 -
aeRYITY, Y3=[ij_2}ep ‘zn)zn
PROOF. This is proved by the elementary divisor theory. a
LEMMA 41. ForO0<i<m+211,lpb €N,

(¢ * &) (diag(p" L. p~™2)
=plol;lh) + el — 111, —1)
+ 0" ol — L+ L)+ p" Pl -2+ 1, — 1)
with
el = ) o(diag(p", ach®, p™), (0<i<m)
aeRr0
and p(i;11,1) =0ifi <Qori > m.

PROOF. By the Iwasawa decomposition of the double coset E,(r';;(:)z

the integral

(¢ x &, ) (iag(p L. p™™) = D7 pdiag(p. 1. p)g)

~(i.0
gec;+)2/Km+2

given in Lemma 40,

is a sum of the following four terms.

L= > g(diag(p", ack®, p™)y(0,[o)",]:0)).
ozeR,(,i’O)
yie(p~lZ,/Z,)

h= ) eiagp" aci™0 pH),
aeR,(,i*l‘O)
I = > o(diag(ph*!, acti=10), pi2)
aeR,(,ifl’O),zzeplep/Zp
X2€(p Zp/ 2y yie(pT 2,/ Z) !
<y (%] Lo, T 22)) -
Iy = Z (p(diag(pllJrl’ OlCr(,iiz’O), p712+1)y([0;;2 ]; 0)) )

ozeR,(,ifz'O)

xe(p™VZ,/Z,)mi+2
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Now apply Lemma 38 to see that /; equals

Yo eWdiag(ph, ach®, pT)=0(p7"2,/Z,)" Y e(diag(p", ac®, p))
aeRr( aeR(
nepZy/Zp)

= ploGiilh).
Similarly we have I, = @(i—1;11,l,—1), I3 = p"tlo@(—1;114+1,l) and Iy = p" " 2p(i—
20 +1,1p—1). O
LEMMA 42. Lets € (C*)"*2/S,, 12 be the Satake parameter of A. We have
Fo(T1, T) P, (p~ " TD2 Ty 5)

m+1 [e'e)

= Y (=) p DR N (i (030, 1) + (i — 150, ) T)T{ T2
i=0 1Hh=0

PROOF. Since

m+2
1 i —i —i ~(i,0) \ i
6.9) Py (Tiis) =y (=) p= /202, @) T
i=0
([12, p. 269]), we have
Fo(T1, T) P, (p~ " TD2 Ty 5)
m—+2
— Z (/)(dlag(pll 1 pflz))TllszlZ Z(_1)ipfi(m+27i)/27i(m+l)/2Ap(5(i£)2)T{
9 9 m
l1,1,20 i=0

m+2

I P i(i— ~(i,0 . - i+1

= D T Y D () p DR s g0 (diag(p! 1 p )T
>0 ;30 i=0
m+2

=Y T Y D (=N p DN Pl by ) + g — 1511, = 1)

=20 120 i=0
+ "o = Ll L)+ p" Pl = 2+ 1 = DY
=y T S (1) p DR i ki 1) gl — Tk — il — 1)

=20 0<ism+2

k=i

+ "ol = ik =i+ 1,0) + p" e = 2k —i+ 1, = D}T}
=YD Y (1 RO gk — i k)

1>0k>0 0<i <m+2
k>i
+ Z (_1)i+1p—i(m+l)+i(i—l)/2 . [7[(/)(1, k _ i, 12)
0<i<m+1

k>i
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+ Y (DR G —1k —ih — 1)
0<i<m+2
k>i
+ Z (_1)["1‘1p—i(m+l)+i(i—l)/2(p(i _ 1’ k _ i, 12 _ 1)}

0<i<m+2
k>i

= 3 ()i p T EDHED2 NN (g0, 1) + gl — 150, — D)T{ Ty
0<i<m+1 1, >0

LEMMA 43. Fori >0, > 0, we have

(5 0,1) P
m+2
=Y (=) p/IOHUDR(pI GG, jib) + ¢, j— 15 D)
Jj=0

+ "G = 4+ 1) + p" G, — 2 + 1)TY

2 (p~ "Iy )

with
(6.10) @i, jil) = > Y e(diag(l, hihy, p7)),
mee” /Km,  hyein? K
h;lY',plﬂhltTY”eZ;'}
(6.11) @, jil) = > Y ediagp™" hiha, p7?)).
meiy® /Km,  haeily? K

hrl Y/,plzthltTY”EZZl

PROOF. By Lemma 38 (2), we can write ¢(i; 0, [) as a sum of p(diag(l, #, p~2)) over
all h € &," /K,y such that h='Y" € Z™ and p2'h'TY" € Z™. Since

m+2

) o
(6.12) P (Tyis) = Y (=) p I 2D AG DTS
=0

we can calculate ¢(i; 0, lg)Pn(ﬁz(p’(mH)/sz; s) using Lemma 41 by a similar way to
Lemma 42. O

LEMMA 44. We have §'(i, j;0) =0for0<i, j < m.

PROOF. By Lemma 38, we have ¢(diag(p~', /1, 1)) = 0 unless p~ '~ 'Y" € 7y,
WTY" € Zﬂ, a fortiori 'Y"TY" € pZ,. The assumption that ¥ should be reduced for
(R, M) means R[Y] € O, or equivalently Y'TY' € Z[X,. Hence ¢(diag(p~!, h, 1)) =0
forany h € GLm(Qp). a
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LEMMA 45. For0< i, j < m,put

y B o )
Su P = {(h1, h2) € @O /Km) x @57 1K) [AT'Y,
M'TY", (hih)”'Y () TY" € 27} .

Then

oG, ;0= Y odiag(l, hiha, ).
(hihyesy”

In particular, we have ¢(i, j; 0) =0 ifi =m or j = m.

PROOF. The first assertion is a consequence of Lemma 38 and the definition (6.10).
Assume i = m. Then the condition i € 5,(,';’0) yields i1 = pk; with some k1 € K.
Combining this with the condition hle’ IS Zﬂ, we obtain Y’ € pZ™, contradictory to
Y' € ZI! — pZ. Hence Sy = ¢ and §(i, j; 0) = 0if i = m.

Suppose (11, ha) € SY™ Then the condition hp € &™) yields hy = p~'ky with some
ky € K,,; this, together with ‘(h1hy)'TY” € Z’), implies h'TY” e pZ. Since hle’ €z,
we obtain Y"TY' € pZ,, contradictory to R[Y] € O;. Hence S,g’j) =@and ¢, j;0) =0
if j =m. O

LEMMA 46.

Fyo(T1, T) P, (p~ " 0211 9) P (p~ D21y )
m—1m—1 )
=(1-— p_(’”“)Tsz) Z Z(—1)i+jp_(i+j)m+i(i_1)/2+j(j_l)/zé(i, j; O)Tlisz )
i=0 j=0
PROOF. From Lemmas 42 and 43,

1 — 2 _
(6.13)  Fo(T1, 1) P, (p~ ™21y 5) P2 (p~ 4 1/227y;5)
m+1
— Z(_1)ip—i(m+l)+i(i—l)/2Tli
i=0
i . . 2 _
X D P e 0.1) + @i — 1;0, )T} P, (p~ "D Ty 9) Ty
>0
m+1 m+2 ]
— Z(_1)zp—z(m+l)+t(l—l)/2Tlt Z Z(_1)/p—/(m+l)+J(J—l)/2T2]+lz
i=0 >0 j=0
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<A™ g6, ji )+ p'E'G, j — 1)
+p GG = b+ D+ p TG =2 b+ 1)
+ (Pl —1,ji) +¢' (=1, j—1;1)
+ "G — 1, j— L+ D)+ p" TG~ 1, j — 25 + 1) T2}
m+1
— Z(_l)ip—i(m+l)+i(i—l)/2T1i
i=0
X (PO D) + Pl = 5 )T+ p' @i 7o) + @' — 1, TT),
where, for each i, we set
m+1
. T i(i— j+1
D(i: Th) = Z Z(_l)/p Jm+D+j(j 1)/2T21+2
1,>0 j=0
x (1@, jib) + p" MGG, j — L+ 1),
Q)/(l'; T) = Z Z(_l)jpfj(m+1)+](]71)/2T2j+2
>0 j=0
X (@G j— L)+ p" GG -2 b+ ).
By making a change of variables j + [, = k in the summation with respect to />, we easily
obtain
m+1 )
B@i; o) =y (=) p I HDHU=DRpIGG, j; )T
Jj=0
m+1 ]
D' (i;T) = Y (=) p/HDHU=DRG G, j— 1,007
j=0
By these expressions of @ (i; T») and @' (i; T»), from the last formula of (6.13), we have

1 — 2 —
Fo(T1, T Py, (p~ " 0P T ) P2 (0~ 02T 9)

m+1 m+1 .
— Z(_1)tp—t(m+1)+l(l—1)/2T1l Z(_1)jp—j(m+1)+/(/—1)/2T2]
i=0 j=0

x P @G, j;0)+ p'@ G, j — 1;0)
+pgi—1, ;0L +¢( —1,j— 1,007}
=(1- p*(erl)Tsz) Z(_l)lpfln%f'l(l*l)/lel
i=0
m—1 )
x (=D prImHUTORTIGG, ) 0)
j=0
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using Lemmas 44 and 45 to prove the last equality. O

6.3.1. SinceY = (Y’, Y”) is primitive in M, (= M), Y’ and Y” belong to zy-pZy.
Since Y is reduced for (R, M), we have Y 'TY" € Z;. Hence we may assume

’r_ 1 t 2 Rt m—1
Y _I:Oml:|’ TY" = Uy (u1€Z , U2€Zp ).

By the identification Go,, = GLn(Q,), the subgroup Gg’p = {(h1,h2) € Go,plhY' =
Y/, hoY" =Y"} (resp. K} ,) is identified with

°GLy-1(@) = [, ! T ] |0 e GLamice )

m—1,1

(resp.*Kn—1 = "GLy—1(Q,) NGLy(Z))) .

(@i /) @, /)

For0 <i,j <m—1,let c(’ /) and 0¢ (’ /) be the image of ¢, /| and ¢,

isomorphism °GL,,_1(Q ,) = GLm—l(Qp)~

| by the obvious

LEMMA 47. Let 0 < i,j < m — 1. The natural inclusion from OGmel(Qp) into
GLn(Q ) induces bijections

0~ (l 0)/ Kmf {hl e E(i,O)/Km |h1_1Y/s thll‘Ty// c Z’;}} ,
0~ (0 ])/OKm— {hl e C(O ])/Km |hrly/’th1tTy// c Zr;l} )

PROOF. By the Iwasawa decomposition of GL., (Q ), we may assume that a coset iy €

53’0) /K, is represented by a matrix of the form
a X «
0 h k) (Cle vaXEMl,Vﬂfl(Qp)fhEGLWL71(QP))'

From the condition /'Y’ € Z" we have a~! € Z,. Another condition hi'TY" € Z" is
equivalent to au; € Z,, 'Xuy + 'huy € Z’;}’l. Since u; € Z, we have a € Z,. Thus
ae Z;. This means we may assume a = 1. Then the formula

[l e =] 1 i nn =)
0 1m—1 0 h

with ¢ = Xuy +'huy € ZZ"I shows that /1 lies in the image of the map OGLm,l(Qp) —
GLm(Qp) modulo K,,. O

PROPOSITION 48. Letsy € (Cx)m_l/Sm_l be the Satake parameter of Ag. Then
1 — 2 _
Fo(T1, T P, (p~ DTy ) PR (p= D21y )
— 1 — 2 —
= (1= p ") P (p~ "R s0) P (pm DT s0)
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PROOF. By Lemmas 45 and 47, we have

.. . ~(i,0 ~(0,j

9. 0= > g(diag(l, hiha, 1) = A0CeL%) AgCE (1) .
%85 /0K
€087 0K o

By Lemma 46, (6.9) and (6.12), we have the conclusion. |

7. Archimedean Whittaker functions. We retain the notations in Section 5.

Let Wgo be the space of right K-finite C*°-functions ¢ : Goc — C which satisfies the
two conditions:

(@) @(mm(l; kp)g) = Yy,co(n)p(g) for any n € No and any ko € G({oo. (ctf. (5.7).)
Here ¥y.00 : Noo = C (M is the archimedean component of the character ¥y defined by (5.5).

(b) ¢ is uniformly of moderate growth, i.e., there exists a constant » € R such that for
each D € U (g) the estimation

(7.1 IRpp(goo)| < C|Tr(t§oogoo)|r v 9o € Goo

holds with a constant C > 0. Here g is the Lie algebra of G, U (g) the universal enveloping
algebra of g and Rp the right-action by D.

By the right translation, Wgo becomes a (g, Koo )-module. For an irreducible (g, K )-module
(7, Hy), the -isotypic part of WY, which we denote by WY (), is defined to be the image
of the natural map H, ® Hom(g k.)(Hx, WY) = WE.

We study the functions ¢ € Wgo (7r) for two special cases:

e (Case 1). m isaclass one principal series representation.

e (Case 2). m is a unitarizable non-trivial representation such that Hl’l(g, Koo; ) #
0.

In practice, we take an irreducible unitary representation (t, W) of K and consider the
space Wf (m) = (V\/g/Q (1) ® W)X~ consisting of W-valued functions.

Let £2 be the Casimir element of U(m + 1, 1) corresponding to the U(m + 1, 1)-invariant
R-bilinear form (X1, X2) — 2~ 1tr(X1X2) on u(m + 1, 1).

7.1. Casel. Forv € C, let 7 (v) be the representation 7 (v) of Goo = U(m + 1, 1)
induced from the one dimensional representation (Pso ) M(¢; go)n +— |N(t)|(”+’”+l)/ 2 of
Ps. Take 19 to be the one dimensional trivial representation of K, and consider a function
Qe Wg} (r (v)). Since the Casimir operator §2 acts on m(v) by the scalar vZ — (m + 1)? (see
[19, Proposition 6.2.2 (1)]), the function ¢ () = ¢ (M(¢; 1,,)) (¢ > 0) satisfies

3%¢ — 2(m + 1)3¢ — 1672 |R[Y1/VD|*¢p = (v> — (m + 1)?}¢,

with 0 = #(9/0¢) the Euler operator. By examining the differential equation, it is easy to see
that there exists, up to a constant multiple, a unique function gz)g W e Wg} (r (v)) such that

1/2
), t>0.

R[Y]

(1.2) o (m(t; 1)) = "K,, <4m iz

Here K (z) is the modified Bessel function.
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7.2. Case 2.
7.2.1. Invariant tensors. Let op be the base point of © defined in the paragraph 5.1.1.
Set

i (1++/D)/2 o i 0
Vg = IRlool|™?00 = |D|7!/* O Vi =IRIVNTPY = a7 Y
1 0

The orthogonal complement a(f- of 0p in Voo = C" 2 isa positive definite K «-irreducible
subspace with the induced inner product (v, V') = iR(v,V'). For f € End¢ (aol), let f* €
End¢ (o(f-) be its adjoint, i.e., {f(v), V') = (v, f*(V")) forv, V' € ad-. Then {f||f;) = tr%L (f13)

yields a K o-invariant Hermitian inner product on the C-vector space End¢ (od-). Set
E=Endc(o;), E°={fcE [{fl1,4) = 0}

Then E = E° @ (1(70L>C is a Ko-irreducible decomposition. We denote the action of K

on E by 71,1, ie., t11(k)f = kfk~! for k € K, and f € E. The subrepresentation on E° is
denoted by 77 ;.

The Kgo-module aol has two irreducible components; the one dimensional space

()7 )¢ and its orthogonal complement Y+ n o(f-. For two vectors Vi,V € o(f-, let us define
X(V1|V2) ek by

XViV2)(V) = (v, va)vi (V€ 05).
The formula X(vi|v2)* = X(v2|v1) is easily proved. For any f € E let f° be its orthogonal
projection to E°, or explicitly f© = f — (1/(m + 1))(f| 10&) 100L.
LEMMA 49. The KZO -fixed part of E is two dimensional space generated by X(v‘}i}’ |V;)

and I%L’ and the vector X(V;?r |V;f)° spans the Kfo-ﬁxed part of E®:

EF% = (X(EIVD), Lo, (ED)F% = (X(vEIvh))e.

PROOF. First note Koo = U(m + 1) x U(1) and KZO = diag(U(@m), 1) x U(1). Since
any irreducible representation of U(m + 1) contains the trivial representation of U(m) at most
once, we have dim((E°)K%) < 1 and dim(EX%) < 2. It is obvious that X(v;flv;{) and 1,

are K Zo-ﬁxed and are linearly independent. a

The group G, coincides with the stabilizer in P, of the vector oy. The group P, acts
on the unitary character group of N, naturally. The compact group Gg oo Coincided with the
group of elements of G o, which fix the character ¥/~ y. Consider the unit vector

(1-+D)/2

v =|D|7'/* Om
1
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Then (o) %0 = (vi)¢ and (o3) %0 = (v, vi)c. Set

m+1 1/2 o] o o
(7.3) y°°=(7) Xy, ¥ ==X v, vy =XwEIvee,

1

1/2
+1yHye + 1o
m(m_1)> (mX(vi|vi) + X(vj Ivg)°)

(74) y'=— (

LEMMA 50. The 4 vectors Y (i, j = 0, 1) form an orthonormal basis of the space of
Ggoo-ﬁxedpart of E°. Set X,,, = X(V;|Vg). Then the operators t1,1(Xp) and t1,1(X})) keep

Y ..
the space (E°)G0~°O = (yY |i, j = 0, 1)¢ invariant, their action is explicitly given by

) e o]
Yl _ (A 0 0 Apf|y

Tl,l(Xm) yl() - 0 0 0 0 yl() 9

(7 5) _yll_ i 0 0 Al 0 ] _yll_
| MR
e | Y 10 0 0 O y

71,1(X,,,) voOl= 4y 0 0 4|y

Ly |0 A 0 0] |y

where Ag = ((m + 1)/m)"/? and A; = ((m — 1)/m)'/2.

PROOF. For simplicity set W = (v, V(')")é. Since V(J)r is Go,c0-fixed, the Go, oo-ir-

reducible decomposition o(f- =W (V(‘)Ir )c yields the decomposition
E=End(W)® W & W* & (X(v§ IV{))e

of Go,co-modules. Noting that W = (v, V(T , v;f)é ® (V;)C is an irreducible decomposi-
tion of Gg’oo-module, the subspaces CX(V;flv(J)“), CX(V(J)“|V;f) and (X(v;fleYf), pry)c of E

correspond to WG({OO, (W*)G(l)/voo and End(W)G(l)/voo on the right-hand side, respectively. Here
pry € E is the orthogonal projector to W. Thus

Y
E%0e = (X (v IV, XOV§ VD), XOE V), X(vEIVE), pryv)e -

Taking projection to E°, we obtain (E")G(l)/»OQ = (y/|i,j = 0,1)¢ because X(V(‘)"|V(J)“)° =
—pr},. By direct computation, we can check that {y'/} is an orthonormal system in E°. The
table (7.5) can also be checked by a direct computation. Note the action of Lie(Kx)c = E
on E is given by the bracket: 7 1(X)Z = [X, Z] = XZ — ZX. O

m

j=1
of aol such thatv,, = v;f and set V41 = V() . Then we have an isomorphism ¢ : Goo—>U(m+
1, 1) such that dec (X(v;|v{)) = E;; (1 < i, j <m+ 1), wheredcc : g¢ = glny1(C) is the
complexification of the tangent map dc and E;; are the matrix units of gl;;,+1(C). Let T be the
compact Cartan subgroup of U(m + 1, 1) formed by all the diagonal matrices in U(m + 1, 1).

Let {¢;}1<j<m+1 be the basis of t’(‘j dual to the basis E;; (1 < j < m + 1) of t¢. Here t¢

7.2.2.  Certain cohomological representations. Choose an orthonormal basis {V;}
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is the complexified Lie algebra of T'. For a t¢-root 8, let g¢(B) denote the B-root space in
gc. Let q be the sum of those t¢-root spaces g¢(8) such that B(E11 — Epnm) = 0. Then q is
a f-stable parabolic subalgebra of g in the sense of [22]. Here 6 is the Cartan involution of g
corresponding to K.

The construction in [22] yields an irreducible unitarizable (g, K~ )-module A such that
Hl’l(g, K03 Ag) # 0, which we denote by m11. By [22, Proposition 6.1], the representation
my1 is characterized by the two properties: (1) 711 contains the Koo-type 77, and (2) the
Casimir element §2 acts on 11 by 0.

7.2.3.  An explicit formula of Whittaker functions.

PROPOSITION 51. Let ¢ € Wfo (w11). There exists a constant Cy, such that ¢ =
1,1

Cwé’”, where (ﬂg“ € Wryfl (711) is given by

. R[Y] 1/2\ —(m+1) RIY] 1/2 .
(7.6) %ll(m(t; 1m) = (471 ﬁ ) i’;’ldyj (47rt ﬁ )y/ , t>0
with
m \1/2
1.7 ama)==(;;;7) " K1 (1),
120a 2 1
mmﬁwmm=(j%ﬁ (E——@;J)mwx

m—1 1/2 2m1/2(m_1)1/2
(7.3) $11(1) = (—) Poo(t) — ——————¢10(1) .

m+1 t

PROOF. Note the highest tc-weight of 77’ is &1 — &. It is known that the highest
tc-weight of a Koo-type of 711 is contained in the cone {(a + 1)e; — (b + ey + (b —
a)ém+1]a,b € N}. In particular, the tc-weights —e,,, + €41 and &1 — &,,41 are not the
highest weights of Ks-types of 1. Hence, V™l¢ = 0, V("+tDy = 0 holds, where V'
is the Schmid operator ([19], [16]). Since the function ¢ +— @(m(z; 1,,)) takes its values in
(E")G({oo , it can be written as Zi’j:m bij (t)yi/ with some functions ¢;; (¢). By the same way
as [16], using Lemma 50, one can deduce the equations among ¢;;’s.

Here is the result. Let 0 = #(d/dt), the Euler operator.

e The equation 2w = O:

oo

(7.9) 0% —2m+1)dp + A =0, ¢ = g?

11
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with
0 Ay Ap O 0 0 0 0
o N2.27 Ap 0 0 A 0 2m+1 0 0
A(t) = —N“t"14 — 2Nt Ay 0 0 A + 0 0 il 0
0 Ay A O 0 0 0 4m

and Ag = ((m + 1)/m)V/2, Ay = ((m — 1)/m)"/%, N = 4=R[Y1/~/D | /2.
o The equation V~'w = 0:

(7.10) 000 — 2(m + 1)poo — NtAog10 =0,
A
(7.11) o1 — 2m + Dot — Nt —— oo — NtA1¢iy = 0.
m+1
e The equation V" +Dy = 0:
(7.12) oo — 2(m + L)oo — NtAogo1 =0,
Ag
(7.13) 910 — 2m + )10 — Nt $o0o — NtA1¢11 =0.

m+1
From (7.9), (7.10) and (7.12), we obtain

3%¢00(t) — 2(m + 3)ddoo (1) + (—N?1> 4+ 8(m + 1))doo(1) = 0,

which, by putting ¢o(t) = M52y (1), is transformed to the classical Whittaker’s differential

equation

d*u -1 1/4—(m—1)?

— ([ ——+L——"Ju=0

dz? + ( 4 + z2 !
with respect to the new variable z = 2Nt. Hence u(¢) has to be proportional to Wy ,,—1(2Nt)
since ¢(M(¢; 1,,)) should be of polynomial growth as t — +o0. O

8. Computation of Archimedean local-zeta integrals. We retain the notations in
Sections 5 and 7.
The aim in this section is to evaluate the local-zeta integral

@.1) Soo (@3 9) = fc (olema; LNl ™ e e Wl o).

Here (t, W) is an irreducible unitary representation of Ko, with a K Zo-ﬁxed unit vector vy €
W and (|) is the inner-product of W. (Note |t|¢ = tf fort € C.)

LEMMA 52. We have
o0
(8.2) ool 8) = /0 (vol@(M(t; 1,)))t> " 2ds .

PROOF. Write the integral (8.1) by the polar coordinates on C*. Then use the Kgo-
invariance of the vector vy to compute the integral on the unit circle. a
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We compute the zeta-integral (8.1) more concretely for (Case 1) and (Case 2) discussed
in 7.1 and 7.2.

Let ¢ € {0, 1} be the parity of m. Set I'g(s) = n*/?I'(s/2), I'c(s) = 2Q2n)~*I'(s)
with I"(s) the gamma function.

8.1. Case 1. We consider the case when 7 is the spherical principal series representa-
tion 7 (v) and (tp, Wp) the trivial representation with vg =1 € Wy = C.

T

PROPOSITION 53. Let ¢, W e Wg) (m(v)) be the function whose restriction to the

split torus m(t; 1,,) (t > 0) is given by (7.2). Then {so ((pg(v); s) is convergent on Re(s) >
|Re(v)|/2, and

Loolpg ™ 5) = 272 p|mte=D/A N R (M) 4RIV
(8.3) 1 Lo (s, m(v)) 1
/2\s ool\S,
X G T A MY D T 00 (25)

with
Loo(s, 7)) = INQg(M) /2D D/28 e (s + v/2) e (s — v/2)
(8.4) /2]
x [] Fe s+ m+1)/2 = j)*rees)”
j=1
Loo(s, MNYH) = [N@gyo (M N YH)/2 D|ln=D/2)s
85 [(m—1)/2]
®-) x [] Te@6+m/2—j?res' .
j=1

We also set
(8.6) Emoo(s) = DI 2 p(s —e + 1)

PROOF. Set N = 4mt|R[Y]/~/D|/2. By the formula (7.2) and the definition (8.2),
o0
Lol i) = f " K (N D dr
0

o0
— N / Ky()t> ar
0
=25 2N (s 4+v/2) (s — v/2)

for Re(s) > |Re(v)|/2. Here we use [2, 6.561, 16 (p. 668)] to prove the third equality.
The remaining part of the proof is a direct computation. We use the relation N(0g(M)) =
N(DR‘YJ_ MnN YJ-))|R[Y]|_2, which is a consequence of Lemma 25. O

8.2. Case 2. Letm and (7, W) = (77, E°) be as in the paragraph 7.2.2. Then
vy = X(v;/ﬂv;;)o is a KX -fixed unit vector of E°.
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PROPOSITION 54. Let ¢7'' € WY, (m11) be the function whose restriction to the split
%o T P
11

Ty,

torus m(t; 1) (¢ > 0) is given by (7.6). Then & (¢, ; s) is convergent on Re(s) > (m—1)/2,
and

—ma™t!
Coo(pp'ts ) = —————2m~EFD/2 pmte=D/A N @ g (M) V4 R[Y 1|12
m+1
x D[V ——Locl&: 1) ﬁ s+ (m+ 12—~
Loo(s +1/2. M0 YD) Grioe(29) 14
with
Loo(s, m11) = INQ@(M))*2 DI/ e (5 4 (m + 1) /2)?
(8.7) /2]
< [] e+ m+1/2— ) Te@s) .
j=1

PROOF. By (7.3), we have

V)= ——
m@m + 1)
Substitute this and the formula (7.6) to the integral (8.2); then {oo((pg”,s) equals
(—1//m(m + 1))N~2 times

/ (Goo(t) + (m* — 1)y (1)> " 2dt
0

00 2 B
(8.8) = /0 {(m - 4m(ni—21))¢00(t) - —zm("i 1)¢60(t)}t23—'"—2dt

(yOO + (m2 _ 1)1/2y11) .

=2m(m — 1DQ2s +m —1) /oo oot "4t + m /oo doo (> "2 ds
0 0

if Re(s) > (m — 1)/2. Here, to prove the second equality we apply the integration-by-part
and eliminate d)(’)o, noting that ¢oo(¢) is of exponential decay as t — oo and K,,—1(t) =
O(t~=Dyast — 40. By (7.7) and the formula [2, 6.561, 16 (p. 668)], we have

/ ) Goo()t> "2t = (m/(m + 1) /2 250 (s + (m + 1)/2) (s — (m — 3)/2) .
0

Use this formula to compute the integrals in the last form of (8.8); then we obtain

il 1N—2S22s{(m_ D2s+m—1)

oo (9 ,S)=m+1 > I'(s+(m—1/2)I (s — (m —1)/2)

+ (s + (m+ 1)/2)I (s — (m — 3)/2)}

_ m_—flzv—hzzfr(s +m+ D/ [+ m+ 12—t
j=2
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by using the equation I"(x + 1) = xI"(x) several times. The remaining part of the proof is a
direct computation. O

9. Global results. We retain the notations and the assumptions made in Section 5.
Let (z, W) be an irreducible unitary representation of K with a non-zero KX -fixed vector
vo € W. Let F : Gg\G4 — W be a cusp form with the KK -equivariance (5.3). Suppose
F is a Hecke eigenfunction, i.e., there exists a C-algebra homomorphism A, : H, — C for
each prime p such that

Fxp=A,(p)F, ¢pcH,.

Then the L-function of F is defined to be the Euler product

L(s, F) = l_[L(s, Ap),
P

over all the prime numbers p, where L(s, A)) is the local L-factor attached to the character
Ajp of H ), for each p (see Section 4). It is known that the infinite product L(s, F') converges
absolutely for Re(s) > ¢ with a sufficiently large ¢ > 0.

Our aim in this section is to study the automorphic L-function L(s, F)) of F by the
integral (5.4), relying on the results of Murase and Sugano which we shall recall below.

9.1. Murase-Sugano’s results on global L-functions. Let us assume that the function
f: Gg’ Q\Gg’ A/ K({ ng’ o — C used to form the Eisenstein series (see 5.4) is also a Hecke

eigenfunction, i.e., there exists a C-algebra homomorphism Ag , : H}; — C for each prime
p such that ¢o * f = Ao, (o) f forall ¢ € H}.

THEOREM 55 (Murase and Sugano [8]). Suppose the class number of E is one. De-
fine the completed L-function i(s, f) := L(s, f)Loo(s, M N YY) with the gamma factor
Loo(s, M N Y1) given by (8.5). Then,

(1) The holomorphic function I:(s, f) originally defined on some right-half plane is
meromorphically continued to the whole complex plane with the functional equation f,(s, fH=
La=s, f).

(2) The meromorphic function f,(s, f) on C is holomorphic except possible simple
polesats =m/2 —j(O0O< j<m—1).

(3) The function i(s, f) has a pole at s = m/2 if and only if f is a constant function.

The normalized Eisenstein series associated to f is defined by
E*(f;s:.9) = @IDITY) Qs + DLGs + 1, NE(S5 55 9) -
Here ¢, (s) is the completed Riemann zeta function E(s) for an odd m, and is the completed
Dirichlet L-function L(s, w) for an even m. We need the following result.

THEOREM 56 (Murase and Sugano [8]). Suppose the class number of E is one. Then
the function E*(f; s; g) is meromorphic on the whole s-plane C and invariant by the sub-
stitution of the variable s — —s. It is holomorphic except possible simple poles at s =
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m/2 —k (0 < k < m). The residue at its right most possible pole s = m /2 is the constant

Ress—m2E* (51 f1 9) = f (Dom(m)Rese—mp L (s, ).
9.2. An estimation of Whittaker integrals. Recall the Whittaker integral of F' defined
by (5.6).
LEMMA 57. The function (p?Y |G oo belongs to the space Wgo QW.

PROOF. By the definition of the automorphic forms [10, 1.2.17], there exists a constant
r € R such that for each D € U(g) the estimation |Rp F(g)| < Co||g||;;A holds for all
g € G4 with a constant Cy > 0. Here || - ||g, is a height function of G4 ([10, 1.2.2]).
Since G({ Q\G({ 4 X Ng\Nj is compact, by the properties of the height function [10, (ii),(iii)
(p- 20)], we obtain the estimation

IRD F(nm(1; g0)goo) Il < C1lTr(Googoc)l ", 90 € Gg 4o 1 € Na, goo € G

with a constant C; > 0. From this, the estimation for (pJIf y|G o follows by integration (see
(5.6)). |

9.3.  Automorphic L-functions for wave-forms. Let (zr, W) = (19, Wp) be the trivial
representation of K. A cusp form F is called a wave-form if it is an eigenfunction of the
Casimir operator £2. Let v2 — (m + 1) with v € C be the eigenvalue, i.e., 2F = v —
(m + 1)2}F. Let (p; y be the Whittaker integral of F' along (f, Y) defined by (5.6). Since

the restriction (pf y1G o belongs to WT); (r(v)), the result of 7.1 yields the unique constant
cry(F) € C such that

of y (M3 1)) = cry (Fgg Mt 1), 1> 0.
We call the number ¢y (F) the (f, Y)-Whittaker coefficient of F.

THEOREM 58. Let i(s, F) = L(s, F)Lxo (s, m(v)) be the completed L-function of F
with the gamma factor defined by (8.4). Then for s € C such that Re(s) > (m + 1)/2,

/ o _E*(f;s—1/2; W) F(h)dh = Boc,gy(F)I:(s, F)
GE\GZ
with By = 2~ E+8)/2| p|m+e=3)/4 N0 g (M) |V#|R[Y]|'/2. Here ¢ € {0, 1} is the parity of
m.

PROOF. By the property of Z J‘f y () noted in 4.1, this follows from Theorem 26, Theo-
rem 28 and Proposition 53. Note |Re(v)| < m + 1, since F € L2(GQ\GA) implies 7 (v) is
unitarizable. a

THEOREM 59. Assume the class number of E is one. Suppose cy,y (F) # 0 for some
Y and f as above.

(1) The completed L-function i(s, F) is continued to a meromorphic function on the
whole complex plane with the functional equation i(l -5, F)= i,(s, F).
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(2) The meromorphic function i(s, F) is holomorphic on C except at possible simple
poless =(m+1)/2—j 0 <j<m).

(3) If f is not constant, then i,(s, F) is holomorphic at s = (m + 1)/2. If f is the
constant function 1, then

Resy—gn+1)/2L (s, F) = By ' e1y (F) ™' G (m) (Ress—mp L(s. 1) / L Fandn,
GY\G
0

A
PROOF. This follows from Theorems 56 and 58. O

COROLLARY 60. The following two conditions on F are equivalent.
(1) The integral f 7. .y F(h)dh is not zero.
GH\GY

(2) c1,y(F) # 0and the L-function L(s, F) has a pole at s = (m + 1)/2.

9.4. Automorphic L-functions for certain harmonic forms. Let (r, W) = (rfﬁ 1 E°)
and 711 be as in 8.2. Assume F belongs to the space {LZ(GQ\GA)Oo ® W}KiKeo and sat-
isfies 2 F = 0. Here LZ(GQ\GA)oo denotes the space of smooth vectors in LZ(GQ\GA).
By the characterizing property of mq; recalled in the paragraph 8.2.2, the functions g +—
(w|F(g)) (w € E°) generate a 7r11-isotypic (g, Koo)-submodule of finite length in LZ(GQ\
G4)®°. Let (pj}i y be the Whittaker integral of F along (f, Y). Since the restriction <p£ y1Goo
belongs to the space WIYO (711), Proposition 51 yields the unique constant ¢ sy () € C such

1.1

that
©fy(M(t; 1)) = cry(F)gp ' (Mt 1)), 1> 0

where (pg 1" is the function constructed in Proposition 51. We call the number ¢ £y (F) the

(f, Y)-Whittaker coefficient of F.

THEOREM 61. Let i,(s, F) = L(s, F)Lso(s, m11) be the completed L-function with
the gamma factor defined by (8.7). Let v11 = X(v;f|vJYf)°. Then for s € C such that Re(s) >
(m+1)/2,

/GN CE*(f1s — 1/2: ) oyt | F (b)) dh

o}
m
=Bicsy(F) [ [s+m+1)/2— ) 'Lis, F),
=2
where By = —2"37m 1 Bo(m/(m + 1)) with By the same constant as in Theorem 58.

PROOF. By the same reasoning as Theorem 58, this follows from Theorems 26 and 28
and Proposition 54. a

THEOREM 62. Assume the class number of E is one. Suppose cy,y (F) # 0 for some
(f, Y) as above.

(1) The completed L-function i(s, F) is continued to a meromorphic function on the
whole complex plane with the functional equation i(l —s,F)= (—l)m_li(s, F).
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(2) The meromorphic function i(s, F) is holomorphic on C except at possible simple
poless = (m+1)/2, (—m + 1)/2.

(3) If f is not constant, then i,(s, F) is holomorphic at s = (m + 1)/2. If f is the
constant function 1, then

ResS:(m+1)/2I:(S, F)

= By (m — Dlery(F)™ &n(m){Ress=m/2L(s. 1) /G g g I F@Ah
14

A
PROOF. This follows from Theorems 56 and 61. O

COROLLARY 63. The following two conditions on F are equivalent.
(1) The integral fGZ\Gg (v11|F (h))dh is not zero.

(2) c1,y(F) # 0 and the L-function L(s, F) has a pole ats = (m + 1) /2.

10. Examples. Let us give examples of (R, M, Y) which satisfies the assumptions
in 5.2.

LEMMA 64. Let R = —/DT with T a positive definite symmetric matrix belonging
to GL,,,(Z). Suppose m #£ 2 (mod 4). Then there exists a maximal O-integral lattice M in
(R, E™) containing O™ such that 0g (M) = VD O with e € {0, 1} the parity of m.

PROOF. Let A be the set of all the O-integral lattices in (R, E™) containing O™; the
set A is not empty since O™ € A. Since £ € A is O-integral, the inclusion O C L yields
L c R~'O™. Any maximal element M of A, whose existence is ensured by the fact that
R™'O™ is Noetherian, is a maximal O-integral lattice in (R, E™). Since O™ ¢ M C M* C
RIO™, g(M*/M) divides 8(R~1O™/O™) = |D|™, which means 0g(M ) = O, for all
p € I(E) US(E). Let p € R(E). If m is odd, then, by Lemma 8, we have necessarily
Or(M)p) = \/5(91,. This proves the assertion. Let us consider the case when m is a multiple
of 4. Then det R = D"/?2 = N(vD)"/? ¢ N(E;j). By Lemma 8 and Lemma 5, this implies
that M is split, i.e., Mo = {0} in the decomposition (3.1). Thus 0g (M) = O,. This proves
the assertion. a

EXAMPLE 1. Letm = 4k + 1 and T = 'T € GL4(Z) be positive definite. Sup-
pose D = 1 (mod 4). Choose a maximal O-integral lattice £ in (—\/BT, E4k) such that
0_/pr(£) = ObyLemma64. Set V = E @ E*, R = diag(—v/D, —V/DT), M= 0 & L.
Then since 9g (M) = /DO, M is a maximal O-integral lattice in (R, V) by Proposition 9.

EXAMPLE 2. Letm = 4k +2and T = T € GLg+1(Z) be positive definite.
Choose a maximal O-integral lattice £ in (—/DT, E*+1) such that d VDT (L) = VDO
by Lemma 64. Set V = E @ E**! and define R, M by the same formula in Example 1.
Then 0g (M) = DQO. Suppose | D] is a product of primes of the form 4/ + 3 (I € N). Since
—det(R) = N(D™ M) € N(E®), det(R) ¢ N(EZ) for any p € R(E). Hence M is a
maximal O-integral lattice in (R, V) by Proposition 9.
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In both of these examples, the vector Y = (1/+/D,0) € V satisfies the assumption in
the paragraph 5.2.1.

REMARK. Let (R, M,Y) be as in Examples 1 and 2 above. In [21], we show that
there exist infinitely many linearly independent Hecke eigen wave-cusp-forms F : G g\G 4/
K¢K~ — C such that ¢; y(F) # 0 and fG}? \G7 F(h)dh # 0.

0\Ya
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