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Abstract. We consider the real rank one unitary groupG and its subgroup H obtained
as the stabilizer of an anisotropic vector in the skew-hermitian space defining G. We compute
the inner-product of an Eisenstein series on H and a non-holomorphic cuspidal Hecke eigen-
form onG restricted toH to obtain an integral representation of the standard L-function of the
eigenform. We also discuss some consequences of the integral representation.

1. Introduction. The Poincaré dual forms of special cycles on a Shimura variety
yield an interesting class of non-holomorphic automorphic forms of many variables, and had
been investigated by several people in different ways ([4], [5], [17], [18], [11]). In order to
deepen our understanding of the arithmetic nature of such forms, the study of the associated
L-series is indispensable. However, for application to arithmetic, many of the existing works
on L-functions seem to lack the local theory for the ramified factors and the gamma factors;
one may need a heavy and sophisticated apparatus of the representation theory to handle them
thoroughly. The aim of this paper is to deduce basic properties of the L-functions for a nar-
row but important class of automorphic forms on a unitary group by taking advantage from
the special feature of our targeting automorphic forms.

As a generalization of the work of Andrianov on theL-functions of Siegel modular forms
of genus two, Sugano studied the Dirichlet series and the Rankin-Selberg integrals associated
with holomorphic cusp forms on the type IV tube domain in connection with the standard
L-functions of orthogonal groups ([14]). In this paper, we carry out a unitary analogue of the
study. LetR be a non-degenerate skew-hermitian form on a vector space V of finite dimension
m over an imaginary quadratic fieldE(⊂ C) and R̃ = R⊕[ −1

1

]
its extension by a hyperbolic

plane with a Witt basis {e, e′}. If we assume that
√−1R is positive definite, then the unitary

groupG = U(R̃), regarded as a Q-algebraic group, is of R-rank one and the symmetric space
D associated with the real points of G is realized as a complex hyperball in Cm+1. Let O be
the maximal order of E and fix a maximal O-integral lattice M in (R, V ). Then, Kf, the
stabilizer of the extended O-lattice M̃ = M⊕ 〈e, e′〉O, yields a maximal compact subgroup
of Gf, the group of finite adeles of G. Let Y be a reduced vector for (R,M) (see 3.4), and
Ỹ = (Y ; 0, 0) its image in the space of R̃. Since GY0 × GL1 is regarded as a Levi subgroup

of the parabolic subgroup P Ỹ of GỸ stabilizing the isotropic line Ee, a Hecke eigenfunction
f on the finite space GY0,Q\GY0,A/GY0,∞(GY0,f ∩Kf) yields an Eisenstein series E(f ; s; g) on

GỸA. Let F be a Kf-invariant Hecke eigen cusp form onGQ\GA. Then we consider the inner
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product ZFf,Y (s) of F restricted to GỸQ\GỸA and the Eisenstein series E(f ; s). We investigate

the integral ZFf,Y (s) for two types of non-holomorphic cusp forms F ; one is the wave cusp
forms corresponding to Laplace eigenfunctions on the symmetric space D, and the other the
cohomological cusp forms corresponding to harmonic differential forms of type (1, 1) on D.
We calculate the integral ZFf,Y (s) and obtain an identity which equates ZFf,Y (s) with a ratio
of standard L-functions of f and F up to a certain proportionality constant cf,Y (F ) called
the Whittaker coefficient (Theorem 58 and 61). We should mention that the same integral is
studied by Gelbart and Piatetski-Shapiro ([1]) for generic cusp forms on the quasi-split unitary
group of degree 3.

For the proof, we closely follow the method of [14] and [15] to calculate the non-archi-
medean zeta-integrals, and use the explicit formula of Whittaker functions to calculate the
archimedean zeta-integrals. For the latter, we examine the differential equations satisfied by
Whittaker functions which have already been discussed by Taniguchi [16] for the discrete se-
ries Whittaker functions. We prove a multiplicity one theorem of Whittaker functions (Propo-
sition 51), which enables us to define the Whittaker coefficients cf,Y (F ) for a cusp formF . As
an application of the main identity, we show the functional equation of the standardL-function
L(s, F ) attached to F with a non-zero Whittaker coefficient, and also have a criterion for the
right-most possible pole of L(s, F ) to occur actually (Theorem 59 and 62).

We are going to use the results obtained in this paper to study a fine structure of the
Hecke module generated by the Poincaré dual forms of special divisors on a unitary Shimura
variety with full level.

NOTATIONS. The number 0 is included in the set of natural numbers N : N =
{0, 1, 2, . . . , }. We use the usual notations Z,Q,R and C to denote the ring of integers,
the field of rational numbers, the field of real numbers and the field of complex numbers,
respectively.

The ring of finite adeles of Q is denoted by Af; the adele ring A of Q is then the direct
product of Af and R, i.e., A = R ×Af. For an idele a ∈ A×, |a|A denotes its idele norm. For
an algebraic group H defined over a field k and a k-algebra A, the group of A-valued points
of H is denoted by HA.

For r matrices A1, . . . , Ar with coefficients in a commutative ring, diag(A1, . . . ,

Ar) denotes the block-diagonal matrix A1 ⊕ · · · ⊕Ar . For m ∈ N and a commutative ring A
with the identity 1, we denote by 1m = diag(1, . . . , 1) the unit matrix of size m. We denote
by Am the set of column vectors with entries in A of size m, and by 0m the zero vector in Am.

For n,m ∈ N , we denote by U(n,m) the real Lie group {g ∈ GLn+m(C) | t ḡ diag(1n,
−1m)g = diag(1n,−1m)}. In particular, U(n, 0), the compact unitary group of matrix size n,
is denoted by U(n).

For a condition P, we use the ‘Kronecker symbol’ δ(P) in an extended sense that δ(P) ∈
{0, 1} equals 1 if and only if the condition P is true.
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2. Preliminaries. In this section, k denotes the rational number field Q or one of its
localizations Qp at prime numbers p; F/k denotes a quadratic field extension of Q if k = Q,
and a quadratic algebra over Qp if k = Qp with a prime p. We denote by a 
→ ā the unique
non-trivial k-automorphism of F . Set N(a) = aā and tr(a) = a + ā for a ∈ F . Let OF and
Ok be the maximal orders of F and k, respectively.

2.0.1. A skew-hermitian space over F is a pair (R, V ) of a free F -module V of finite
rank and a bi k-linear form R : V × V → F such that R(λv,µw) = λµ̄R(v,w) for all
λ,µ ∈ F and all v,w ∈ V , R(v,w) = −R(w, v) for all v,w ∈ V ; we always assume R is
non-degenerate, i.e., R(V, v) �= {0} if v �= 0. The unitary group of (R, V ) is defined to be a
k-algebraic group U(R) whose set of k-points is given by

U(R)k = {g ∈ GLF (V ) |R(gv, gw) = R(v,w) for all v,w ∈ V } .

If k = Q and (R, V ) is a skew-hermitian space over F , then the natural extension Rp :
Vp × Vp → Fp yields a skew-hermitian space (Rp, Vp) over Fp for each prime p. Here
Fp = F ⊗Q Qp, Vp = V ⊗F Fp for a prime p.

Given an OF -lattice L in V , we say L is an OF -integral lattice in (R, V ) if R(L,L) ⊂
OF and R[L] ⊂ {a − ā | a ∈ OF }. An OF -integral lattice M in (R, V ) is said to be maximal
if there exists no OF -integral lattice in (R, V ) which contains M properly.

An OF -lattice L in a skew-hermitian space (R, V ) over a quadratic extension F of Q

is maximal OF -integral if and only if Lp is maximal OFp -integral in (Rp, Vp) for all prime
numbers p. Here Lp = L ⊗Z Zp for a prime p.

Given an OF -lattice L and a vector ξ ∈ L, we say ξ is OF -primitive in L if ξ ∈ L− mL
for any maximal ideal m of OF . The set of OF -primitive vectors in L is denoted by Lprim.

Given an OF -lattice L in V , we define the OF -ideal dR(L) following way. When F is
a quadratic Qp-algebra, dR(L) is defined to be det(R(vi , vj ))OF with {vi} an OF -basis of
L; the OF -ideal is independent of the choice of {vi}. When F is a quadratic extension of
Q, dR(M) is defined to be the OF -ideal such that dR(M)OFp = dRp (Mp) for all prime
numbers p.

LEMMA 1. Let L1 and L2 be OF -lattices in V such that L1 ⊂ L2. Then there exists
an OF -ideal I such that dR(L1) = N(I)dR(L2). Here N(I) denotes the norm of I , i.e.,
N(I) = �(OF /I).

PROOF. It suffices to show the claim when F is a quadratic Qp-algebra with
a prime p. By the elementary divisor theory, there exists an OF -basis {ej } of L2

and integers λj ∈ OF such that {λjej } is an OF -basis of L1. Set a = ∏
i λi . Then the

relation dR(L1) = N(a)dR(L2) follows from the obvious equation det(R(λiei, λj ej )) =
N(
∏
i λi) det(R(ei, ej )). �

The dual of an OF -lattice L is denoted by L∗, i.e.,

L∗ = {v ∈ V |R(v,L) ⊂ OF } .
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LEMMA 2. Let L be an OF -integral lattice in (R, V ). Then L ⊂ L∗ and N(dR(L)) =
�(L∗/L).

PROOF. The inclusion L ⊂ L∗ results from the assumption that L is O-integral. To
prove the second assertion, it suffices to show the claim when F is a quadratic Qp-algebra
with a prime p. Let {ej } be an OF -basis of L and set S = (R(ei, ej )). Then by the elementary
divisor theory, there exist unimodular matricesA,B ∈ GLn(OF ) such thatASB is a diagonal
matrix : ASB = diag(λ1, . . . , λn). The basis {ej } affords the identifications L ∼= On

F and
L∗ ∼= S−1On

F , which induce the first map in the sequence of OF -isomorphisms:

L∗/L ∼= S−1On
F /On

F
∼= On

F /SOn
F

∼=
n∏
j=1

OF /λjOF .

This gives us �(L∗/L) =∏j=1 N(λjOF ) = N(det(S)OF ) = N(dR(L)). �

For matrices X,Y,Z with coefficients in F , we denote by X(Y,Z) (resp. X[Y ]) the
matrix t Z̄XY (resp. t ȲXY ) whenever the product is defined.

A matrix S ∈ GLn(F ) is called a skew-hermitian matrix if t S̄ = −S. We always use the
same notation S to denote the function (X,X′) 
→ S(X,X′) on Fn × Fn.

2.0.2. For a skew-hermitian matrix R ∈ GLm(F) of size m � 1, set R̃ =
[ −1

R
1

]
.

Put V = Fm and Ṽ =
[
F
V
F

]
. Then we have skew-hermitian spaces (R, V ) and (R̃, Ṽ ) over

F . Let G and G0 denote the unitary groups U(R̃) and U(R), respectively.
2.0.3. Consider the k-subgroups M and N of G such that

MA = {m(t; g0) := diag(t, g0, t̄
−1) | t ∈ (F ⊗k A)

×, g0 ∈ G0,A},

NA =
{

n(X; ζ ) :=
[

1 −t X̄R ζ−2−1R[X]
0 1m X
0 0 1

] ∣∣∣∣ X ∈ V ⊗k A, ζ ∈ A
}

for an k-algebra A. Then P = MN is a parabolic k-subgroup ofG andM (resp. N) is a Levi
subgroup (resp. the unipotent radical) of P .

2.0.4. For a non-isotropic vector Y ∈ V , set Ỹ =
[

0
Y
0

]
∈ Ṽ and ∆ = R[Y ]. The form

R̃ induces a non-degenerate skew-hermitian form R̃|Ỹ⊥ on the orthogonal complement Ỹ⊥
of Ỹ in Ṽ , whose unitary group U(R̃|Ỹ⊥) is identified with GỸ , the stabilizer of Ỹ in G.

2.0.5. The intersection P Ỹ = P ∩GỸ is a parabolic k-subgroup of GỸ with the unipo-
tent radical NỸ = N ∩GỸ andMỸ = M ∩GỸ is a Levi part of P Ỹ . We also note that

MỸ
A = {m(t; g0) | t ∈ (F ⊗k A)

×, g0 ∈ GY0,A} , NỸA = {n(X; ζ ) |X ∈ Y⊥
A , ζ ∈ A}

for A as above. HereGY0 is the stabilizer of Y in G0 and Y⊥ is the orthogonal complement of
Y in V . We usually regard G0 as a closed k-subgroup of G by the inclusion g0 
→ m(1; g0).

3. Local fine structure of Hermitian lattices and reduced vectors. All materials
in this section are adapted from the similar results for orthogonal group obtained by Sugano
[14], [15].
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In this section, we fix a prime p and denote by Ep = Qp(
√
D) a quadratic field ex-

tension of Qp with discriminant D. Set τ (a) = √
D

−1
(a − ā) for a ∈ Ep. Let Op be the

maximal order of Ep, π a prime element of Op, e the ramification index of Ep/Qp and q the
order of the residue field Op/πOp.

3.1. Classification of skew-hermitian spaces.

LEMMA 3. τ (Op) = Zp and τ (π−1Op) = p−1Zp.

PROOF. There exists θ ∈ Op such that τ (θ) = 1 and Op = Zp + Zpθ ; from this fact
the relation τ (Op) = Zp is obvious. When e = 1, we obtain τ (π−1Op) = p−1Zp from
τ (Op) = Zp taking π = p. Suppose e = 2. Then, to prove τ (π−1Op) = p−1Zp, it suffices
to show τ (πOp) = Zp. We may take π = √

D/2 − 1 if p = 2, D/4 ≡ −1 (mod 4), and
may take π = √

D/2 otherwise. Then τ (π) = 1. Since τ (Op) = Zp, the set τ (πOp) is an
ideal of Zp. Therefore, τ (πOp) = Zp. �

We record two fundamental lemmas on the classification of maximal integral lattices in
a skew-hermitian space over Ep.

LEMMA 4. Let (R0, V0) be an anisotropic skew-hermitian space of dimension n0.
Then n0 ∈ {0, 1, 2}. For an l ∈ Z, the set M0(l) = {z ∈ V0 |R0[z]/

√
D ∈ plZp} is

an Op-lattice in V0. The Op-lattice M0 = M0(0) yields the unique maximal Op-integral
lattice in (R0, V0).

In the remaining part of this subsection, we denote by (R, V ) a skew-hermitian space
over Ep and by M a maximal Op-integral lattice in (R, V ). The Witt index of (R, V ) is
denoted by ν(R); the dimension of a maximal anisotropic subspace of V is denoted by n0(R).

LEMMA 5. Let (R, V ) and M be as above and set ν = ν(R) and n0 = n0(R). Then
there exists a system of isotropic vectors {ej , e′j }1�j�ν in M such that R(ej , e′i ) = δij which
satisfies the condition: V0 = {v ∈ V |R(v, ej ) = R(v, e′j ) = 0 for all j } is a maximal
anisotropic subspace, M0 = V0 ∩ M is the maximal Op-integral lattice in (R |V0, V0) and

M =
ν⊕
j=1

〈ej , e′j 〉Op
⊕ M0 .(3.1)

Moreover, when an isotropic vector e ∈ Mprim is given, we can choose the decomposition
(3.1) so that e1 = e.

PROOF. cf. [7, Lemma 3.2 (p. 37)]. �

The decomposition (3.1) is called a Witt decomposition of M. If the form is isotropic, a
special form of Witt decompositions is available. Indeed,

LEMMA 6. Let Y ∈ M∗
prim. If ν(R) � 1, then there exists a Witt decomposition (3.1)

of M such that R(e1, Y ) = 1, R(ej , Y ) = R(e′j , Y ) = 0 (2 � j � ν(R)).
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PROOF. Take a Witt decomposition M = ⊕ν
j=1〈vj , v′

j 〉Op
⊕ M1 and choose an Op-

basis {fk} of theOp-latticeM1. Set f̃k = fk−akv1−v′
1 with ak ∈ Op such thatR[fk]/

√
D =

−τ (ak). Then {vj , v′
j , f̃k} yields an Op-basis of M consisting of isotropic vectors. Since

Y is Op-primitive in M∗, the Op-ideal R(Y,M) = 〈R(Y, vj ), R(Y, v′
j ), R(Y, f̃k) | j, k〉Op

coincides with Op. From this, we conclude the existence of an isotropic vector ẽ1 ∈ M such
that R(Y, ẽ1) = 1. Since Y ∈ M∗, it is forced that ẽ1 ∈ Mprim; hence we can take a Witt
decomposition M =∑ν

j=1〈ẽj , ẽ′j 〉Op
⊕M0 extending ẽ1. For 2 � j � ν, set αj = R(Y, ẽj ),

βj = R(Y, ẽ′j ) and consider the vectors ej = ẽj − ᾱj ẽ1, e
′
j = ẽj − β̄j ẽ1 (2 � j � ν),

e1 = ẽ1, e
′
1 = ẽ′1 + ∑ν

i=2(αi ẽ
′
i + βiẽi − αi β̄i ẽ1). Then ej , e′j (1 � j � ν) are isotropic

vectors in M which yields a desired Witt decomposition. �

We recall here the basic notations and facts on Op-lattices. For M as above, we set

M′ = {X ∈ M∗ | √D−1
R[X] ∈ τ (π−1Op)} .

LEMMA 7. The set M′ is an Op-lattice in V . We have the inclusions of Op-lattices:
M ⊂ M′ ⊂ M∗ , M ⊂ (M′)∗ ⊂ M∗ ,
πM′ ⊂ M , πM∗ ⊂ (M′)∗ .

PROOF. By Lemma 4 and the Witt decomposition (3.1), M′ = ⊕ν
j=1〈ej , e′j 〉Op

⊕
M0(−1) is an Op-lattice. We prove πM′ ⊂ M first. Let X ∈ M′. Then πX ∈ M∗ on one
hand. On the other hand, by Lemma 3, we have the relationR[πX]/√D = N(π)R[X]/√D ∈
N(π)p−1Zp, which yields R[πX]/√D ∈ Zp. Since M is a maximal Op-integral lattice in
(R, V ), we obtain πX ∈ M. This shows πM′ ⊂ M. The remaining inclusions are obvious
or are deduced easily from the proved ones by taking duals. �

Let ∂R(M) be the dimension of the Op/πOp-vector space M′/M. It is easy to see that
∂R(M) = ∂R |V0(M0) for the decomposition (3.1).

LEMMA 8. Let (R0, V0) be an anisotropic skew-hermitian space of dimension n0 and
M0 the maximal Op-integral lattice in (R0, V0).

• Assume n0 = 1. Then there exists an Op-basis of M0 such that R0 is given by the
matrix S0 = a

√
D with some a ∈ Zp ∩ (O×

p ∪ πO×
p ). We have

∂a
√
D(Op) =

{
0 (e = 1) ,
1 (e = 2 or a ∈ pZ×

p ) .

• Assume n0 = 2. Then there exists an Op-basis of M0 with respect to which R0 is

given by the matrix S0 = s
√
D
[

1 b
b̄ c

]
with some (b, c, s) ∈ √

D
−1Op × Zp × Z×

p such that

bb̄ − c ∈ pD−1Z×
p , bb̄− c �∈ N(E×

p ). We have

∂
s
√
D
[

1 b
b̄ c

](O2
p) =

{
1 (e = 1) ,
2 (e = 2) .

PROOF. cf. [13], [12]. We follow the formulation in [8]. �
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3.2. Maximal lattices. Let (S,Emp ) be a skew-hermitian space; by the standard basis

of Emp , S is identified with the representing matrix. From the relation S = −tS̄, we obtain

det(S) = (−1)mdet(S), which implies det(S) ∈ Qp if m is even and det(S)/
√
D ∈ Qp if m

is odd. Note dS(Om
p ) = det(S)Op. Here is a criterion for the Op-lattice Om

p to be maximal
Op-integral in (S,Emp ).

PROPOSITION 9. Suppose Om
p is Op-integral in (S,Emp ). Suppose the extension

Ep/Qp is tame, i.e., ordp(D) ∈ {0, 1}. Then the Op-lattice Om
p is maximal Op-integral

in (S,Emp ) if and only if one of the following two conditions is satisfied.
(1) m is even and det(S) ∈ Z×

p ∪ (pZ×
p − N(E×

p )).

(2) m is odd and det(S)/
√
D ∈ Zp ∩ (O×

p ∪ πO×
p ).

PROOF. First we prove the direct part. Assume m is even and Om
p is maximal Op-

integral. Then, by Lemma 5, we take a Witt decomposition Om
p =⊕ν

j=1〈ej , e′j 〉Op
⊕L0. The

rank n0 of L0 equals 0 or 2. If n0 = 0, then det(S) = 1 ∈ Z×
p . If n0 = 2, then by Lemma 8,

S|L0 is represented by a matrix of the form S0 = s
√
D
[

1 b
b̄ c

]
with (b, c) ∈ √

D
−1Op × Zp

such that bb̄− c ∈ pD−1Z×
p , s ∈ Z×

p , bb̄− c �∈ N(E×
p ). We have det(S)−1det(S0) ∈ N(O×

p )

and det(S0) = −s2D(bb̄ − c) ∈ pZ×
p − N(E×

p ). Hence det(S) ∈ pZ×
p − N(E×

p ). The odd
case is similar.

We prove the converse part. Let Λ be the set of Op-integral lattices L in (R, V ) such
that Om

p ⊂ L. By assumption, Om
p ∈ Λ, and L ⊂ L∗ ⊂ (Om

p )
∗ for all L ∈ Λ. Since (Om

p )
∗ is

Noetherian, Λ has a maximal element M, which is a maximal Op-integral lattice in (S,Emp )
containing Om

p . To complete the proof, it suffices to show M = Om
p .

From Om
p ⊂ M, noting M is Op-integral and by taking duals, we obtain

Om
p ⊂ M ⊂ M∗ ⊂ (Om

p )
∗ .(3.2)

Supposem is even. If det(S) ∈ Z×
p , then by Lemma 1, Lemma 2 and (3.2), the equality M =

Om
p follows. Assume det(S) ∈ pZ×

p − N(E×
p ); then N(dS(Om

p )) = [(Om
p )

∗ : Om
p ] = p2. By

Lemma 1, Lemma 2 and (3.2), we have the two cases: N(dS(M)) = 1 or p2. If the first case
occurs, then M∗ = M by Lemma 2. Since M is a maximal Op-integral lattice with even
rank, the equality M∗ = M is possible only when n0(S) = 0 by Lemma 8 and Lemma 5.
Hence det(S) ∈ N(E×

p ), contradictory to the assumption. Thus N(dS(M)) = N(dS(Om
p )) =

p2, or equivalently [(Om
p )

∗ : Om
p ] = [M∗ : M] = p2, which, combined with (3.2), yields

M = Om
p .

Suppose m is odd. If det(S)/
√
D ∈ Z×

p , then, by Lemma 2, the index [(Om
p )

∗ : Om
p ]

equals |D|−1
p , which is 1 or p by the assumption ordp(D) ∈ {0, 1}. Since [(Om

p )
∗ : M∗]

and [M : Om
p ] divide [(Om

p )
∗ : Om

p ], we must have [(Om
p )

∗ : M∗] = 1 or [M : Om
p ] = 1,

which in turn give us the equality M = Om
p . Assume det(S)/

√
D ∈ pZp, e = 1; then

N(det(S)/
√
D) = p2, which implies [(Om

p )
∗ : Om

p ] = p2. Combined with (3.2), this yields

that the order of any subquotient of (3.2) is 1 or p2. (Note the order of the Op-module
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Op/pOp , which is simple since e = 1, is p2.) If M �= Om
p , then M = M∗ = (Om

p )
∗

and a contradictory equality M = Om
p follows. Hence M = Om

p . �

3.3. Witt towers of skew-hermitian spaces. Let S0 be a matrix given in Lemma 8. For
ν ∈ N , consider the matrix

Sν =

 −Jν

S0
Jν


 , Jν = (δi,ν−j+1)ij(3.3)

of size m = 2ν + n0; it defines a skew-hermitian form with the Witt index ν on the m-

dimensional Ep-vector space Vν =
[
Eνp

E
n0
p

Eνp

]
. The standard Op-lattice Lν =

[ Oν
p

On0
p

Oν
p

]
affords a

maximal Op-integral lattice in (Sν, Vν).
We call the family {(Sν, Vν)}ν∈N the Witt tower associated with S0.
3.4. Reduced vectors. Recall that a vector Y ∈ V is said to be reduced for (R,M) if

Y is Op-primitive in M∗ and Y⊥ ∩M is a maximal Op-integral lattice in the skew-hermitian
space (R|Y⊥, Y⊥).

A skew-hermitian matrix S ∈ GLn(Ep) is said to be Op-integral if On
p is an Op-integral

lattice in (S,Enp).

LEMMA 10. Let {(Sν, Vν)}ν∈N be a Witt tower. Let ν ∈ N and Y a vector in L∗
ν+1

of the form Y =
[
a
a
1

]
(a ∈ Op,a ∈ L∗

ν). Set S∼
ν+1 =

[
Sν −Sνa

−t āSν ā−a
]
. Then the following

conditions on Y are mutually equivalent.
(1) Y is reduced for (Sν+1, Lν+1).

(2) The skew-hermitian matrix S∼
ν+1 is Op-integral, and S∼

ν+1

[[
1 x
0 π−1

]]
is not Op-

integral for all x ∈ Vν .

(3) The Op-lattice L∼
ν+1 =

[
Lν
Op

]
is a maximal Op-integral lattice in (S∼

ν+1, V
∼
ν+1)

with V ∼
ν+1 = L∼

ν+1 ⊗Ep.

PROOF. cf. [15, Lemma 2.5 (p. 8)]. �

LEMMA 11. Let {(Sν, Vν)}ν∈N be a Witt tower. Let Y ∈ L∗
ν+1 be a reduced vec-

tor for (Sν+1, Lν+1) and set n′
0 = n0(Sν+1|Y⊥), ∂ ′ = ∂Sν+1|Y⊥(Lν+1 ∩ Y⊥) and dY =

ordp(Sν+1[Y ]/√D). Then the possible values of (n0, ∂), (n′
0, ∂

′) and (e, dY ) are given in the
Table 1.

PROOF. By Lemma 6, we may assume ν = 0 and Y =
[
a
a
1

]
(a ∈ Op,a ∈ L∗

0) without

loss of generality. By Lemma 10, in order for Y to be reduced in (S1, L1), it is necessary
and sufficient for the Op-lattice L∼

1 to be maximal Op-integral in (S∼
1 , V

∼
1 ). We examine the

latter condition for each anisotropic form S0 classified in Lemma 8.
For example, consider the case when e = 2, L0 = Op and S0 = s

√
D (s ∈ Z×

p ).

In this case (n0, ∂) = (1, 1) and L∗
0 = √

D
−1Op. By a direct computation, det(S∼

1 ) =
sD(S1[Y ]/√D). Since the size of S∼

1 is 2, by Lemma 9, L∼
1 is maximal Op-integral in
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TABLE 1.

(n0, ∂) (n′
0, ∂

′) (e, dY ) βY ρY

(0, 0) (1, 0) (1, 0) −1 0

(0, 0) (1, 1) (1, 1), (2, 0) 0 0

(1, 0) (0, 0) (1, 0) q1/2 0

(1, 0) (2, 1) (1, 1) 0 0

(1, 1) (0, 0) (1,−1), (2,−ordp(D)) qe/2 − q q1−e/2
(1, 1) (2, 1) (1, 0) −q 0

(1, 1) (2, 2) (2, 1 − ordp(D)) 0 0

(2, 1) (1, 0) (1,−1) q3/2 − q q1/2

(2, 1) (1, 1) (1, 0) q3/2 0

(2, 2) (1, 1) (2,−1) 0 q

(S∼
1 , V

∼
1 ) if and only if det(S∼

1 ) ∈ Z×
p in which case n′

0 = ∂ ′ = 0, dY = −ordp(D), or
det(S∼

1 ) ∈ pZ×
p − N(E×

p ) in which case n′
0 = ∂ ′ = 2, dY = 1 − ordp(D). This affords the

5-th line and the 7-th line of the Table 1 when e = 2. The remaining parts of the Table 1 are
proved similarly. �

3.5. Iwasawa decomposition of fundamental double cosets. Fix a Witt tower
{(Sν, Vν)}ν∈N and set Gν = U(Sν), Kν = Gν ∩ GLn0+2ν(Op).

LEMMA 12. Let ν ∈ N . The set c̃(r)ν = {g ∈ Gν | rankOp/πOp
(πg (mod πOp)) =

r} is non-empty if and only if 0 � r � ν, in which case c̃(r)ν = Kνc
(r)
ν Kν with c(r)ν =

diag(π1r , 1n0+2ν−2r , π̄
−11r ).

PROOF. This follows from the elementary divisor theory. �

For 0 � r � ν, let R(r)ν be a complete set of representatives for Kν/Kν ∩ c(r)ν Kνc(r)ν −1,
i.e., c̃(r)ν =⋃

u∈R(r)ν uc
(r)
ν Kν .

For each ν ∈ N , set

Uν = {X ∈ π−1Lν/Lν | √D−1
Sν[X] ∈ τ (π−1Op)} ,

L′
ν = {X ∈ L∗

ν | √D−1
Sν[X] ∈ τ (π−1Op)} .

Moreover, we need the notation:

mν(t; g0) := diag(t, g0, t̄
−1) , (t ∈ E×

p , g0 ∈ Gν) ,

nν(X; ζ ) :=

1 −t X̄Sν ζ − 2−1Sν[X]

0 1n0+2ν X

0 0 1


 , (X ∈ Vν, ζ ∈ Qp) .

The following lemma, which describes explicit Iwasawa decompositions of the double
Kν+1 cosets c̃(r)ν+1, plays a fundamental role in the paragraph 4.1.1 and Subsection 6.2.
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LEMMA 13. Let ν ∈ N . The double coset c̃(r)ν+1 is a disjoint union of the following left
Kν+1-cosets:

• mν(π; uc(r−1)
ν )nν(X1; ζ1)Kν+1 with u ∈ R

(r−1)
ν , (X1, ζ1) ∈ X(r)ν,1, where X(r)ν,1 is the

set of pairs
([ x

X′
0

]
, ζ1

)
satisfying

x ∈ (π−2Op/Op)
r−1 , X′ ∈ π−1Lν−r+1/Lν−r+1 ,

ζ1 ∈ (Qp ∩ (π−2Op + 2−1Sν−r+1[X′]))/Zp .
• mν(1; uc(r−2)

ν )nν(X2; ζ2)Kν+1 with u ∈ R
(r−2)
ν , (X2, ζ2) ∈ X(r)ν,2, where X(r)ν,2 is the

set of pairs
([ x

X′
0

]
, ζ2

)
satisfying

x ∈ (π−1Op/Op)
r−2 , X′ ∈ Uν−r+2 − L′

ν−r+2/Lν−r+2 ,

ζ2 ∈ (Qp ∩ (π−1Op + 2−1Sν−r+2[X′]))/Zp .
• mν(1; uc(r−1)

ν )nν(X3; ζ3)Kν+1 with u ∈ R
(r−1)
ν , (X3, ζ3) ∈ X(r)ν,3, where X(r)ν,3 is the

set of pairs
([ x

X′
0

]
, ζ3

)
satisfying

x ∈ (π−1Op/Op)
r−1 , X′ ∈ (L′

ν−r+1 − Lν−r+1)/Lν−r+1 ,

ζ3 ∈ (Qp ∩ (π−1Op + 2−1Sν−r+1[X′]))/Zp .
• mν(1; uc(r−1)

ν )nν(X4; ζ4)Kν+1 with u ∈ R
(r−1)
ν , (X4, ζ4) ∈ X(r)ν,4, where X(r)ν,4 is the

set of pairs
([

x
0
0

]
, ζ4

)
satisfying

x ∈ (π−1Op/Op)
r−1 ,

ζ4 ∈ (Qp ∩ (π−1Op − Op))/Zp .

• mν(1; uc(r)ν )nν(X5; 0)Kν+1 with u ∈ R
(r)
ν ,X5 ∈ X(r)ν,5, where X(r)ν,5 is the set of all

vectors of the form
[
x
0
0

]
(x ∈ (π−1Op/Op)

r).

• mν(π
−1; uc(r−1)

ν )Kν+1 with u ∈ R(r−1)
ν .

PROOF. cf. [14, Lemma 2 (p. 342)]. �

3.6. Cardinalities of some basic sets. Fix a Witt tower {(Sν, Vν)}ν∈N and set n0 =
n0(S0), ∂ = ∂S0(L0).

First we show an auxiliary lemma.

LEMMA 14. Assume Ep/Qp is unramified. For u ∈ O×
p and a ∈ Zp,

�{ξ ∈ Op/πOp | τ (uξ) ≡ a (mod pZp)} = p .

PROOF. We may assume u = 1. There exists θ ∈ Op such that τ (θ) = 1 and Op =
Zp ⊕ θZp. Let ξ ∈ Op. If we write ξ = x + θy with x, y ∈ Zp, then τ (ξ) = y. Hence
{ξ ∈ Op | τ (uξ) ≡ a (mod pZp)} = Zp ⊕ θ(a + pZp). Since e = 1, we may assume
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π = p. Therefore,

{ξ ∈ Op/πOp | τ (uξ) ≡ a (mod pZp)}
= {Zp ⊕ θ(a + pZp)}/{pZp ⊕ θpZp} ∼= Zp/pZp .

This proves the assertion. �

PROPOSITION 15. Let ν, r ∈ N and 0 � r � ν. We have

�Uν = qν+n0−1+e/2(qν − 1)+ qν+∂ ,

and

�X(r)ν,1 = q2ν+n0+1 , �X(r)ν,2 = qr−2+1−e/2(�Uν−r+2 − q∂) ,

�X(r)ν,3 = qr−e/2(q∂ − 1) , �X(r)ν,4 = qr−1(q1−e/2 − 1) , �X(r)ν,5 = qr .

PROOF. For a vector X =
[
x
z
y

]
∈ π−1Lν with x, y ∈ Eνp, z ∈ V0, the condition

X (mod Lν) ∈ Uν is equivalent to
√
D

−1
S0[πz] + τ (t (πy)Jν(πx)) ∈ N(π)p−1Zp .(3.4)

Let (ξ, η, ζ ) be the reduction of (Jνπx, πy, πz) ∈ O2ν+n0
p modulo πOp.

Assume e = 1 and π = p. The condition (3.4) is written as a congruence equation:
√
D

−1
S0[ζ ] + τ (t η̄ξ) ≡ 0 (mod πOp) .(3.5)

If η = (ηj ) �= 0, then ηj �= 0 for some j . Suppose η1 �= 0. Then for given ζ ∈ (Op/πOp)
n0

and for ξj ∈ Op/πOp (2 � j � ν), the condition (3.5) is regarded as a condition on ξ1.
From Lemma 14, the number of ξ1 satisfying (3.5) is exactly p. Hence the number of the
solutions (ξ, η, ζ ) of (3.5) such that η �= 0 is p · qν−1 · (qν − 1) · qn0 = qn0+ν−1/2(qν − 1).
If η = 0, then the condition (3.5) is equivalent to S0[ζ ]/

√
D ∈ pZp. In terms of z, this

means S0[z]/
√
D ∈ p−1Zp = τ (π−1Op), or equivalently z ∈ L′

0. Thus the number of
the solutions (ξ, η, ζ ) of (3.5) such that η = 0 is qν · q∂ = qν+∂ . Summing up, we obtain
�Uν = qν+n0−1/2(qν − 1)+ qν+∂ , which settles the case e = 1.

Assume e = 2. Then N(π) ∈ pZ×
p and the condition (3.4) becomes S0[ζ ]/

√
D +

τ (t η̄ξ) ∈ Zp, which holds for arbitrary (ξ, η, ζ ) ∈ (Op/πOp)
2ν+n0 . Hence �Uν = q2ν+n0 .

The formulas of �X(r)ν,j are obtained by a straightforward consideration by Lemma 13. �

LEMMA 16. For ν, r ∈ N such that 0 � r � ν, we have �R(r)ν =∏r
j=1 fν,j with

fν,j = qj−1(qν−j+1 − 1)(qν−j+n0+1 + q∂+1−e/2)
qj − 1

.

PROOF. From Lemma 13 and Proposition 15, we obtain a recurrence formula among
the numbers �R(r)ν :

�R
(r)
ν+1 = {q2ν+n0+1 + qr−1(q∂+1−e/2 − 1)}�R(r−1)

ν

+ qr−2(qν−r+2 − 1)(qν+1−r+(n0+1) + q∂+1−e/2)�R(r−2)
ν + qr�R(r)ν .
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By this, the formula is proved by induction on ν. �

REMARK. It is observed that the formula in Lemma 16 is obtained from the orthogonal
group counterpart [15, (7.11) p. 44] by substitutions n0 
→ n0 + 1, ∂ 
→ ∂ + 1 − e/2.

LEMMA 17. Let ν ∈ N . For a ∈ L∗
ν , the cardinality of the set

Fν,a = {X ∈ L∗
ν/Lν | √D−1{Sν[a] − Sν[X − a]} ∈ τ (Op)}

is �Fν,a = 1 + ρa with

ρa = q∂−e/2δ (a �∈ L′
ν
∗) .(3.6)

PROOF. First we prove

Fν,a = {X ∈ L′
ν/Lν | √D−1

Sν[X] ≡ τSν(X,a) (mod Zp)} .(3.7)

Since τ (Op) = Zp, the condition Sν[a]/√D ≡ Sν[X − a]/√D (mod τ (Op)) is equiva-
lent to Sν [X]/√D ≡ τSν(X,a) (mod Zp). Hence to show (3.7), it suffices to have X ∈
L′
ν/Lν for X ∈ Fν,a. Let X ∈ Fν,a. Since Lν is an Op-lattice there exists l ∈ N such

that plX ∈ Lν ; choose the smallest one among such l’s. Then plSν [X]/√D ∈ Zp since
plSν[X]/√D ≡ τSν(p

lX,a) (mod Zp) and Sν(plX,a) ∈ Zp. Suppose l � 2. Then
Sν [pl−1X]/√D = plSν[X]/√D · pl−2 ∈ Zp. By the maximality of Lν , we then obtain
pl−1X ∈ Lν , a contradiction to the minimality of l. Thus l = 1 and pX ∈ Lν . Hence
pSν [X]/√D ≡ τSν(pX,a) ≡ 0 (mod Zp), which in turn yields Sν [X]/√D ∈ p−1Zp =
τ (π−1Op), or equivalently X ∈ L′

ν .
Assume a ∈ L′

ν
∗. Then τ (Sν(X,a)) ∈ Zp for all X ∈ L′

ν . Hence for X ∈ L′
ν the condi-

tion X ∈ Fν,a is equivalent to Sν[X]/√D ∈ Zp, which impliesX ∈ Lν by the maximality of
Lν . Thus Fν,a = {0} and �Fν,a = 1.

Assume a �∈ L′
ν
∗. In this case we can easily show that the map X 
→ (Sν[X]/√D)−1X

is a bijection

Fν,a − {0} ∼=→ {Z ∈ pL′
ν/pLν | τSν(Z,a) ≡ 1 (mod p)} .(3.8)

Since a �∈ L′
ν
∗, we have Z′

0 ∈ L′
ν such that τSν(Z′

0,a) �∈ Zp on one hand. On the other
hand, the inclusion pL′

ν ⊂ Lν (cf. Lemma 7) and the assumption a ∈ L∗
ν yield τSν(Z′

0,a) ∈
p−1Z×

p . Hence τSν(Z′
0,a) = p−1u for some u ∈ Z×

p . The element Z0 = pu−1Z′
0 satisfies

Z0 ∈ pL′
ν and τSν(Z0,a) = 1. The map Z̃ = Z − Z0 defines a bijection from the set on the

right-hand side of (3.8) onto the set

K = {Z̃ ∈ pL′
ν/pLν | τSν(Z̃,a) ≡ 0 (mod p)} .

Since the condition a �∈ L′
ν
∗ means the map ζ 
→ τSν(ζ,a)mod p is a non-zero linear form

on the Zp/pZp-vector space pL′
ν/pLν

∼= L′
ν/Lν , we get �K = pdim(L′

ν/Lν)−1 = q∂p−1.
Thus we obtain �(Fν,a − {0}) = q∂−e/2, and hence �Fν,a = 1 + q∂−e/2. �

REMARK. If Y ∈ L∗
ν+1 is a reduced vector for (Sν+1, Lν+1), the possible values of ρY

are assembled in Table 1 (for notations see Lemma 11).



CERTAIN RANKIN-SELBERG INTEGRALS FOR UNITARY GROUPS 127

For a pair of natural numbers n � n′ and a vector a =
[
a′
a′
b′

]
∈ Vn with a′, b′ ∈

En−n′
p ,a′ ∈ Vn′ , we set Πn′(a) = a′.

LEMMA 18. Let ν ∈ N . For a vector Y ∈ L∗
ν+1 and an n ∈ N such that n � ν, the

cardinality of the set

Vn,Y = {X ∈ Ln/πLn | √D−1{Sν+1[Y ] − Sn[X −Πn(Y )]} ∈ τ (πOp)}(3.9)

is given by

�Vn,Y =
{
qn+n0−1/2(qn − 1)+ qn�V0,Y (e = 1) ,
q2n�V0,Y (e = 2) .

(3.10)

PROOF. This can be proved by an argument similar to the proof of Proposition 15. �

LEMMA 19. Let ν ∈ N . Assume Y =
[
a
a
1

]
∈ L∗

ν+1 is a reduced vector for

(Sν+1, Lν+1). Set n′
0 = n0(Sν+1|Y⊥) and ∂ ′ = ∂Sν+1|Y⊥(Y⊥ ∩Lν+1). Then �V0,Y = q∂ +βY

with

βY = qn0+1/2 − q(n0+n′
0)/2 + q∂

′+1+(n0−n′
0−e)/2 − q∂+(3−e)/2

q − 1
.

For every n ∈ N such that 0 � n � ν, we have

�Vn,Y = �Un + qnβY .

PROOF. We follow the argument of [15, Lemma 2.11 (p. 10)] and use the notation in
Lemma 10. Since S∼

ν+1

[[
ξ
1

]] = Sν[ξ − a] − Sν+1[Y ],

Vν,Y = {ξ ∈ Lν/πLν | √D−1
S∼
ν+1

[[
ξ
1

]] ∈ τ (πOp)
}
.(3.11)

By Lemma 10, L∼
ν+1 is maximal Op-integral for S∼

ν+1. Hence we can find an anisotropic

skew-hermitian matrix S′
0 of size n′

0 such that S∼
ν+1

∼=
[ −Jν′

S ′
0

Jν′

]
and L∼

ν+1
∼=

 Oν′

p

On′0
p

Oν′
p


. By

Proposition 15, noting n′
0 = ∂ ′, we have

�{z ∈ L∼
ν+1/πL

∼
ν+1 | √D−1

S∼
ν+1[z] ∈ τ (πOp)}

=
{
qν

′+n′
0−1/2(qν

′ − 1)+ qν
′+∂ ′

(e = 1) ,
q2ν ′+n′

0 (e = 2) .

(3.12)
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On the other hand,

�{z ∈ L∼
ν+1/πL

∼
ν+1 | √D−1

S∼
ν+1[z] ∈ τ (πOp)}

= �
{
(ξ, x) ∈ Lν/πLν × Op/πOp | x �∈ πOp,

√
D

−1
Sν
[[
x−1ξ

1

]] ∈ τ (πOp)
}

+ �{ξ ∈ Lν/πLν | √D−1
Sν[ξ ] ∈ τ (πOp)}

= (q − 1)�
{
ξ ∈ Lν/πLν | √D−1

S∼
ν+1

[[
ξ
1

]] ∈ τ (πOp)
}

+
{
qν+n0−1/2(qν − 1)+ qν+∂ (e = 1) ,
q2ν ′+∂ ′

(e = 2) .

(3.13)

From (3.11), (3.12) and (3.13), we have the formula of �Vν,Y . By comparing this with (3.10),
we obtain the formula of �V0,Y . Then the formula of �Vn,Y for n � ν follows from �V0,Y and
Proposition 15. �

REMARK. We assemble the explicit values of βY in Table 1. Note βY = 0 if e = 2.

3.7. Evaluations of some exponential sums. Let ψp be an additive character of Qp

such that ψp is trivial on Zp and non-trivial on p−1Zp. Fix a Witt tower {(Sν, Vν)}ν∈N . For
X ∈ L∗

n with n ∈ N , set

θ ′
n(X) =

∑
Z∈L′

n/Ln

ψp(τSn(X,Z)) .

When n � 1, we also consider the sum

θn(X) =
∑
Z∈Un

ψp(τSn(X,Z)) , X ∈ L∗
n .

For the orthogonal case, the evaluation of similar sums is stated in [15, p. 49] without proof.

LEMMA 20. Let n ∈ N .
(1) θ ′

n(X) = q∂δ(X ∈ L′
n
∗).

(2) If n � 1, then

θn(X) = δ(X ∈ πL∗
n)�Un + δ(X �∈ πL∗

n)(−qn+n0−1+e/2 + qn�V0,X) .

PROOF. We give a proof for completeness.
(1) follows from the orthogonal relation of characters of the finite abelian groupL′

n/Ln,
whose order is q∂ .

(2) If X ∈ πL∗
n, then Sn(X,Un) ⊂ Op; hence θn(X) = �Un. Assume X ∈ L∗

n − πL∗
n.

If we write X =
[ x1
x0
x2

]
, (x1, x2 ∈ On

p, x0 ∈ L∗
0) and Z =

[ z1
z0
z2

]
, (z1, z2 ∈ (π−1Op)

n, z0 ∈
π−1L0), then the condition Z ∈ Un is equivalent to S0[z0]/

√
D+τ (t z̄2Jnz1) ∈ τ (π−1Op) =
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p−1Zp. Hence

θn(X) =
∑

z1,z2∈(π−1Op/Op)
n

z0∈π−1L0/L0

S0[z0]/
√
D+τ (t z̄2Jnz1)∈p−1Zp

ψp(τ(−t z̄1Jnx2 + t z̄2Jnx1 + S0(x0, z0)))

=
∑

z1,z2∈(Op/πOp)
n

z0∈L0/πL0

−S0[z0]/
√
D≡τ (t z̄2z1) modp−1N(π)

ψp(τ (π̄
−1{−t z̄1Jnx2 + t z̄2x1 + S0(x0, z0)}))

=
∑

z0∈L0/πL0

ψp(τ(π̄
−1S0(x0, z0)))g(−S0[z0]/

√
D)

with

g(d) =
∑

z1,z2∈(Op/πOp)
n

τ (t z̄2z1)≡d modp−1N(π)

ψp(τ (π̄
−1{−t z̄1Jnx2 + t z̄2x1})) .

First we assume e = 1 and take π = p. A straightforward calculation of the Fourier
transform ĝ(ε) =∑d∈Zp/pZp

g(d)ψp(dε/p) of g(d) yields its evaluation:

ĝ(ε) =
{
qnψp(−(pε)−1τ (t x̄2Jnx1)) , (ε �= 0) ,

q2nδ
([
x1
x2

] ∈ πO2n
p

)
, (ε = 0) .

By the Fourier inversion formula g(d) = p−1∑
ε∈Zp/pZp

ĝ(ε)ψp(−dε/p) we have

θn(X) = p−1
{
q2nδ

([
x1
x2

] ∈ πO2n
p

) ∑
z0∈L0/πL0

ψp(τ(p
−1S0(x0, z0)))

+ qn
∑

ε∈(Zp/pZp)×

∑
z0∈L0/πL0

ψp

(−ε−1
√
Dτ(t x̄1Jnx2)+ εS0[z0]

p
√
D

+ τ (S0(x0, z0))

p

)}
(3.14)

The first summation on the right-hand side of (3.14) gives us δ(x0 ∈ πL∗
0)q

n0 by the orthog-
onal relation of characters. Since X �∈ πL∗

n by assumption, we have δ(x1, x2 ∈ πOn
p)δ(x0 ∈

πL∗
0) = δ(X ∈ πL∗

n) = 0. Hence the first term on the right-hand side of (3.14) vanishes.
In the second term, since εS0[z0] + √

DτS0(x0, z0) = ε−1S0[εz0 + x0] − ε−1S0[x0], we
have
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θn(X) = qn−1/2
∑

ε∈(Zp/pZp)×
ψp

(
−

√
Dτ(t x̄1Jnx2)+ S0[x0]

pε
√
D

) ∑
z0∈L0/πL0

ψp

(
S0[εz0+x0]
pε

√
D

)

= qn−1/2
{ ∑
ε∈Zp/pZp

∑
z0∈L0/πL0

ψp

(
ε(−Sn[X]+S0[z0+x0])

p
√
D

)
− qn0

}

making the change of variables εz0 = z′0, ε−1 = ε′ to prove the second equality. Since the
orthogonal relation of characters, combined with the definition (3.9) of the set V0,X, yields

∑
z0∈L0/πL0

∑
ε∈Zp/pZp

ψp

(
ε(−Sn[X] + S0[z0 + x0])

p
√
D

)
= p�V0,X ,(3.15)

we have the desired formula. This settles the case e = 1. The other case e = 2 is similar. �

3.8. A double coset decomposition. Let {(Sν, Vν)}ν∈N be a Witt tower. Let Y =[
a
a
1

]
∈ L∗

ν+1 be a reduced vector for (Sν+1, Lν+1) and GYν+1 the stabilizer of Y in Gν+1.

Set K∗
ν+1 = {k ∈ Kν+1 | kX − X ∈ Lν+1 (for all X ∈ L∗

ν+1)}; K∗
ν+1 is an open normal

subgroup of Kν+1.

LEMMA 21. We have

Gν+1 = GYν+1Kν+1 ∪
⋃
l�1

GYν+1MlK
∗
ν+1 ,

where Ml = diag(π̄−l , 12ν+n0, π
l).

PROOF. Similar to [15, Lemma 7.2 (p. 45)], [7, Proposition 3.9 (p. 41)]. �

4. Local L-factors. In this section, we shall recall the definition of the local L-factor
attached to a character of the local Hecke algebra ([8]).

4.1. The non-split case. In this subsection, we retain the notation introduced at the
beginning of Section 3. Let {(Sν, Vν)}ν∈N be a Witt tower (see 3.3) and set n0 = n0(S0),
∂ = ∂S0(L0). The unitary group Gν := U(Sν) has the torus Aν formed by all the points of
the form a = diag(a1, . . . , aν, 1n0, ā

−1
ν , . . . , ā−1

1 ) (ai ∈ E×
p ), whose Qp-rational character

group X∗(Aν) is generated by αj : a(∈ Aν) 
→ aj āj , 1 � j � ν. Set m = 2ν + n0. The
subgroup A+

ν = Aν ∩ GLm(Qp) is a maximal Qp-split torus of Gν , and the root system
Σν = Σ(Gν,A

+
ν ) is of type BCν if n0 > 0 and of type Cν if n0 = 0. By restriction,

X∗(Aν) ↪→ X∗(A+
ν ) and the image of αj can be written as 2ηj with a unique ηj ∈ X∗(A+

ν ).
Let Nν be the unipotent algebraic subgroup ofGν such that the roots of A+

ν in the Lie algebra
of Nν are ηi − ηj (1 � i < j � ν), ηi + ηj (1 � i � j � ν) and ηj (1 � j � ν).

Let {α∨
j }1�j�ν be the dual of {αj }. Then the Weyl groupWν ofΣν acts naturally on the

coordinate functions Xj = q
−α∨

ν+1−j (1 � j � ν) on the dual torus

Ǎν(C) = X∗(Aν)C/2πi(log q)−1X∗(Aν) ∼= (C×)ν .
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We have the Iwasawa decomposition Gν = NνAνKν and the Cartan decomposition Gν =
KνAνKν with respect to the maximal compact subgroup Kν := Gν ∩ GLm(Op). For each
r = (rj )1�j�ν ∈ Zν , set

πr := diag(πr1, . . . , πrν , 1n0 , π̄
−rν , . . . , π̄−r1) ∈ Aν .

For a double Kν-coset KνgKν in Gν , take a complete set of representatives {niπri }i∈I of
KνgKν/Kν in the set NνπZν . Let H be the Hecke algebra of the pair (Gν,Kν) with respect
to the Haar measure ofGν such that vol(Kν) = 1. Then the main result of [12] tells that there
exists the unique C-algebra isomorphism Φν : H → C[X±

1 , . . . , X
±
ν ]Wν such that

Φν(φKνgKν ;X) =
∑
i∈I

ν∏
j=1

(q(1−n0)/2−jXj )rν+1−j,i ,(4.1)

for all KνgKν = ⋃
i∈I niπriKν with ri = (rj,i )1�j�ν , where φKνgKν denotes the charac-

teristic function of KνgKν (We follow the formulation of [14] and [3].). Let Λ : H → C

be a C-algebra homomorphism. The Satake parameter of Λ is defined to be the unique ele-
ment s ∈ Ǎν(C)/Wν such that Φν(φ; s) = Λ(φ) for any φ ∈ H. Let T be an indeterminate
and consider the polynomial Pν(T ;X) = ∏ν

j=1(1 − XjT )(1 − X−1
j T ) with coefficients in

C[X±
1 , . . . , X

±
ν ]Wν . Then the local L-factor of Λ is defined by

L(s,Λ) = Pν(q
−s; s)−1A(s)

where A(s) is given as follows ([8]).
• Suppose e = 1. Then

A(s) =




1 (n0, ∂) = (0, 0) ,

(1 − q−s)−1 (n0, ∂) = (1, 0) ,

(1 − q−s)−1(1 + q−(s−1/2)) (n0, ∂) = (1, 1) ,

(1 − q−(s+1/2))−1 (n0, ∂) = (2, 1) .

• Suppose e = 2. Then

A(s) =




1 n0 = 0 ,

(1 − q−s)−1 n0 = 1 ,

(1 − q−(s+1/2))−1(1 + q−(s−1/2)) n0 = 2 .

REMARK. When Gν is unramified, the L-factor given above is the usual one corre-
sponding to the 2m-dimensional complex representation of the L-group LGν , which is a
semi-direct product of GLm(C) with the Weil group of Qp. When Gν is not unramified,
the modified factor A(s) is introduced by Murase and Sugano ([8], cf. [9] for orthogonal
case).

4.1.1. Recurrence relations of Hecke polynomials. The image of the double coset c̃(r)n
(see Lemma 12) by the Satake isomorphism Φn satisfies the following recurrence relation.
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LEMMA 22. For n � 0, 0 � r � n,

Φn+1(c̃
(r)
n+1) = qn+(n0+1)/2(Xn+1 +X−1

n+1)Φn(c̃
(r−1)
n )+ C(r−2)

n Φn(c̃
(r−2)
n )

+D(r−1)Φn(c̃
(r−1)
n )+ qrΦn(c̃

(r)
n ) .

Here

C(r)n = qr+1−e/2(qn−r − 1)(qn+n0−r−1+e/2 + q∂) , D(r) = qr(q∂+1−e/2 − 1) .(4.2)

PROOF. This follows from Lemma 13. �

We have an additive expression of the polynomial Pn(T ;X):
LEMMA 23. For each n ∈ N , there exists a family of complex numbers {an,k(r) | 0 �

k � 2n, 0 � r � n} such that

Pn(T ;X) =
2n∑
k=0

(−1)k
( n∑
r=0

an,k(r)Φn(c̃
(r)
n )

)
T k .

Moreover {an,k(r)} satisfies the following recurrence formulas.
(1) (i) For n � 0, k � 1, r � 1,

an+1,k(r) = q−(n+(n0+1)/2)an,k−1(r − 1) .

(ii) For n � 0, k � 1,

an+1,k(0) = an,k(0)+ an,k−2(0)

− q−(n+(n0+1)/2)(an,k−1(1)C(0)n + an,k−1(0)D(0)) .

(2) For n � 0, 0 � k � 2n+ 2, 1 � r � n,

an,k(r)+ an,k−2(r)

= q−(n+(n0+1)2)(an,k−1(r + 1)C(r)n + an,k−1(r)D
(r) + an,k−1(r − 1)qr) .

Here we understand an,k′(r ′) = 0 unless 0 � k′ � 2n or unless 0 � r ′ � n.

PROOF. cf. [14, Lemma 4 (p. 345)]. �

LEMMA 24. Let 0 � k � 2n, 0 � r � n. Then we have the following relations.

an,k(r) = an,2n−k(r) ,(4.3)

an,k(r) = 0 , (for all k ∈ [0, r − 1] ∪ [2n− r + 1, 2n]) ,(4.4)

an,2n(0) = 1 ,(4.5)

an,2n−1(1) = q−(n−1+(n0+1)/2) ,(4.6)

an,2n−1(0) = −q−(n+(n0−1)/2) (q
n − 1)(q∂+1−e/2 − 1)

q − 1
,

an,2n−2(1) = −q−(2n−2+n0)
(qn−1 − 1)(q∂+1−e/2 − 1)

q − 1
.(4.7)

PROOF. This results from Lemma 23. �
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4.2. The split case. In this subsection, we set Ep = Qp ⊕ Qp and Op = Zp ⊕ Zp.
Let (R, V ) be a skew-hermitian space over Ep and M a maximal Op-integral lattice in
(R, V ). Set m = rkEp(V ). Then by choosing an Op-basis of M, we may assume M =
Om
p = Zmp ⊕ Zmp , V = Emp = Qm

p ⊕ Qm
p and R(v,w) = t w̄(T ,−t T )v for any v,w ∈ V

for a T ∈ GLm(Qp). By the maximality of M, the matrix T has to belong to GLm(Zp).
Since U(R) = {(g1, g2) ∈ GLm(Qp)

2 | tg2T g1 = T }, the first projection GLm(Qp)
2 →

GLm(Qp) yields an isomorphism U(R) ∼= GLm(Qp) which maps U(R) ∩ GL(M) onto
Km := GLm(Zp). Let Am = {diag(a1, . . . , am) | ai ∈ Q×

p }, and Nm the unipotent subgroup
formed by all the upper triangular unipotent matrices in GLm(Qp). We have the Iwasawa de-
composition GLm(Qp) = NmAmKm and the Cartan decomposition GLm(Qp) = KmAmKm.
For r = (rj )1�j�m ∈ Zm, set pr := diag(pr1, . . . , prm). For a double coset KmgKm we
fix a representative {nipri }i∈I of KmgKm/Km in the set NmpZm . The symmetric group
Sm acts on the algebra C[X±

1 , . . . , X
±
m] by the permutations of the indeterminates Xj . Let

H be the Hecke algebra of the pair (GLm(Qp),Km) with respect to the Haar measure of
GLm(Qp) such that vol(Km) = 1. By [12], there exists the unique C-algebra isomorphism
Ψm : H → C[X±

1 , . . . , X
±
m]Sm such that

Ψm(φKmgKm;X) =
∑
i∈I

m∏
j=1

(p(1+m)/2−jXj )rm+1−j,i(4.8)

for allKmgKm =⋃i∈I nipriKm with ri = (rj,i )1�j�m. LetΛ : H → C be a C-algebra ho-
momorphism. The Satake parameter of Λ is defined to be the unique element s ∈ (C×)m/Sm
such that Ψm(φ; s) = Λ(φ) for any φ ∈ H. Let T be an indeterminate and consider the poly-
nomials P (1)m (T ;X) =∏m

j=1(1−XjT ) and P (2)m (T ;X) =∏m
j=1(1−X−1

j T )with coefficients

in C[X±
1 , . . . , X

±
m]Sm . Then the L-factor of Λ is defined by

L(s,Λ) := P (1)m (p−s ; s)−1P (2)m (p−s; s)−1.

5. Automorphic forms and Rankin-Selberg integrals. For an algebraic Q-group
H and a prime number p, we use a simpler notation Hp for HQp

. The group of real points
HR and the group of finite adele points HAf are denoted by H∞ and Hf, respectively. Then
the adele group HA is identified with the direct product of H∞ and Hf, i.e., HA

∼= H∞ ×Hf.
Let E = Q(

√
D) (⊂ C) be an imaginary quadratic field with discriminant D and O the

integer ring of E. For a ∈ E, set τ (a) = √
D

−1
(a − ā). Then τ (O) = Z. Let I(E) (resp.

S(E), R(E)) be the set of primes which are inert (resp. split, ramify) for the extension E/Q.
Let ω be the quadratic character of A×/Q× corresponding to the extension E/Q. We set
E∞ = E ⊗Q R and EA = E ⊗Q A. Note that E∞ ∼= C.

We use the notations introduced in Section 2 with F = E and k = Q.
5.1. Let (R, V ) and (R̃, Ṽ ) be as in 2.0.2 and consider their unitary groupsG0 = U(R),

G = U(R̃). We fix a non-isotropic vector Y ∈ V and consider the stabilizer GỸ of the
corresponding vector Ỹ ∈ Ṽ as explained in 2.0.4. We assume the matrix iR is positive
definite and set dimC V = m.
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5.1.1. The group of real points G∞ is a real reductive Lie group whose associated
symmetric space is

D =
{
σ =

[
bσ
aσ
1

]
∈ Ṽ∞ | iR̃[σ ] = iR[aσ ] − 2Im(bσ ) < 0

}
.

The transform of a point σ ∈ D by an element g ∈ G∞ is denoted by g〈σ 〉 ∈ D, which is
defined to be the point of D such that gσ = cg,σ g〈σ 〉 with a scalar cg,σ ∈ C×.

Fix a base point σ0 =
[
(1+√

D)/2
0m
1

]
∈ D. ThenK∞, the stabilizer in G∞ of the point σ0,

is a maximal compact subgroup of G∞. Since the signature of iR̃ is ((m+ 1)+, 1−), G∞ is
a realization of the real-rank-one unitary group U(m + 1, 1), and K∞ ∼= U(m + 1) × U(1).
Since iR is positive definite, G0,∞ is compact.

5.1.2. The group G0,f acts on the set of all the O-lattices in V . Fix a maximal O-
integral lattice M in (R, V ) and letK0,f be the stabilizer of M inG0,f; thenK0,f is a maximal
compact subgroup ofG0,f. SimilarlyKf denotes the maximal compact subgroup ofGf, which
stabilizes the maximal O-integral lattice M̃ = O ⊕ M ⊕ O in (R̃, Ṽ ).

5.1.3. The symmetric space associated with the Lie group GỸ∞ is

DỸ = {σ ∈ D | R̃(Ỹ , σ ) = 0} =
{[

bσ
aσ
1

]
∈ D

∣∣∣R(Y,aσ ) = 0
}
,

which is a divisor of the (m+1)-dimensional complex manifold D. Since σ0 ∈ DỸ , the inter-
section KỸ∞ = GỸ∞ ∩ K∞ is a maximal compact subgroup of GỸ∞. We have isomorphisms:

GỸ∞ ∼= U(m, 1) , KỸ∞ ∼= U(m)× U(1) .

5.2. Assumptions. In the remaining part of this paper, we hold the following two
assumptions on R and Y .

(A1) : Y ∈ M∗
prim, R[Y ]−1Y ∈ Mprim,

(A2) : for each prime p, the localization Rp of R at p is isotropic.

From (A1), we have

LEMMA 25. (1) The direct sum decomposition of O-lattice M = R[Y ]−1YO ⊕
(Y⊥ ∩ M) holds. The lattice Y⊥ ∩ M is maximal O-integral in (R | Y⊥, Y⊥).

(2) For any prime p, we have R[Y ]−1 ∈ O×
p ∪ πO×

p .

PROOF. The assertion (1) is proved directly. Since Y0 = R[Y ]−1Y belongs to M,
we obtain R[Y0] ∈ O, which yields R[Y ]−1 ∈ O. Let p be a prime. Suppose R[Y ]−1 ∈
πaOp with a � 2. Since Y ∈ M∗ and R[πa−1Y ] ∈ πa−2Op ⊂ Op, the lattice Mp +
π−1R[Y ]−1YOp is an Op-integral lattice containing Mp. By the maximality of Mp, Mp +
π−1R[Y ]−1YOp has to coincide with Mp, or equivalently π−1R[Y ]−1Y ∈ Mp. This con-
tradicts the primitivity of R[Y ]−1Y in Mp. Hence R[Y ]−1 ∈ Op − π2Op. �
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Let KỸ
f (resp. KY

0,f) be the stabilizer of M̃ ∩ Ỹ⊥ (resp. M ∩ Y⊥) in GỸf (resp. GY0,f).

Then KỸ
f and KY

0,f yield maximal compact subgroups of GỸf and GY0,f, respectively, and

KY
0,f = GY0,f ∩K0,f, KỸ

f = GỸf ∩Kf.

Set KỸ
A = KỸ∞KỸ

f . Then KỸ
A is a maximal compact subgroup of GỸA and the decompo-

sition GỸA = P ỸAK
Ỹ
A holds.

REMARK. The first assumption (A1) forces that the prime 2 is unramified in E/Q ifm
is odd. To confirm this, suppose m is odd and 2|D. Then Lemma 11 yields ord2(R[Y ]/√D)
= −ord2(D). Combining this with Lemma 25 (2), we obtain ord2(D) ∈ {0, 1}. which is
absurd since ord2(D) should be 2 or 3.

The second assumption (A2) necessarily implies m > 1.
5.3. Normalizations of Haar measures. Let dζ∞ be the standard Lebesgue measure of

R. For each prime p, let dζp be the Haar measure of Qp such that vol(Zp) = 1. Then the
product of dζv’s affords A a unique Haar measure dζ such that vol(Q\A) = 1; dζ is self dual
with respect to the basic character ψ : Q\A → C× such that ψ∞(x∞) = exp(2π

√−1x∞)
for all x∞ ∈ R. Here, for any place p � ∞ of Q, ψp denotes the p-component of ψ .

For a finite dimensional E-vector space U , we put the adele space UA the Haar mea-
sure such that vol(UA/U) = 1. Then we normalize the Haar measure dn (resp. dn′) of the
unipotent group NA (resp. NỸA) so that dn = dXdξ (resp. dn′ = dZdζ ) if n = n(X; ξ) (resp.

n′ = n(Z; ζ )). Let dl be the Haar measure of the compact group KỸ
A such that vol(KỸ

A) = 1.
Let d×t = ⊗′d×tp be the Haar measure of the multiplicative group E×

A which is a product of
Haar measures d×tp on E×

p such that vol(O×
p ) = 1 if p < ∞ and d×t∞ = (2π)−1r−1drdθ

with (r, θ) the polar coordinates of E×∞ ∼= C×. Fix a Haar measure dg0 of GY0,A such that

vol(GY0,Q\GY0,A) = 1. By the Iwasawa decomposition GỸA = P ỸAK
Ỹ
A, we take the Haar mea-

sure dh of GỸA so that the formula

∫
P Ỹ

Q
\GỸ

A

f (h)dḣ =
∫
E×\E×

A

|N(t)|−mA d×t
∫
GY0,Q\GY0,A

dġ0

∫
NỸ

Q
\NỸ

A

dṅ′

×
∫
KỸ

A

f (n′m(t; g0)l)dl , (f ∈ L1(P ỸQ\GỸA))
(5.1)

holds.
5.4. Eisenstein series. Since GY0 is R-isotropic, the space GY0,Q\GY0,A/KY

0,fG
Y
0,∞ is a

finite set. For a function f on GY0,Q\GY0,A/KY
0,fG

Y
0,∞, define a C-valued function f (s; h) in

(s, h) ∈ C ×GỸA by the formula

f (s; m(t; g0)nl) = |N(t)|s+m/2A f (g0) , (t ∈ E×
A , g0 ∈ GY0,A, n ∈ NỸA, l ∈ KỸ

f K
Ỹ∞) .
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The Eisenstein series relevant to our purpose is a rightKỸ
f K

Ỹ∞-invariant and leftGQ-invariant

smooth function on GỸA which is originally given by the absolutely convergent series

E(f ; s; g) =
∑

γ∈P ỸQ\GỸQ

f (s; γ g) , g ∈ GỸA(5.2)

for Re(s) > m/2; it has a meromorphic continuation to the whole s-plane ([10, IV], [6]).
5.5. Rankin-Selberg integrals. For the notion of automorphic forms and cusp forms

on an adele group, we refer to [10, I.2.17, I.2.18].
Let (τ,W) be an irreducible unitary representation of K∞ containing a non-zero KỸ∞-

fixed vector v0. Let F : GQ\GA → W be a cusp form such that

F(gkfk∞) = τ (k∞)−1F(g) , kfk∞ ∈ KfK∞ .(5.3)

Consider the integral

ZFf,Y (s) :=
∫
GỸQ\GỸA

E(f ; s − 1/2; h)〈v0|F(h)〉dḣ , s ∈ C ,(5.4)

where 〈x | y〉 is the inner-product ofW , which is antilinear with respect to the first variable x.

SinceE(f ; s−1/2) is an automorphic form onGỸA and F is a cusp form onGA, the integrand

is a rapidly decreasing function on GỸA ([10, I.2.12]), which guarantees the convergence of
the integral (5.4) for all s ∈ C where E(f ; s − 1/2) is regular. Moreover, ZFf,Y (s) yields a
meromorphic function on C, which is holomorphic outside the poles of the Eisenstein series
E(f ; s − 1/2; h).

5.6. Whittaker integrals. For X ∈ V , let ψX be the character of NA defined by

ψX(n(Z; ζ )) = ψ(τR(X,Z)) , n(Z; ζ ) ∈ NA .(5.5)

Note ψX is trivial on the subgroup NQ.
Our aim in this section is to show that the integral ZFf,Y (s) is expressed as a Mellin

transform of the integral

ϕFf,X(g) :=
∫
GX0,Q\GX0,A

f (g0)dġ0

∫
NQ\NA

F(nm(1; g0)g)ψX(n)−1dṅ ,

X ∈ V , g ∈ GA ,

(5.6)

which we call the Whittaker integral of F along (f,X). The function ϕFf,Y : GA → W is
bounded, since F is bounded on GA and G0,Q\G0,A × NQ\NA is compact.

When X ∈ EY − {0}, it is easy to see that ϕFf,X has the equivariance:

ϕFf,X(nm(1; k0,fg0,∞)gkfk∞) = ψX(n)τ(k∞)−1ϕFf,X(g) ,

(n ∈ NA, k0,fg0,∞ ∈ KY
0,fG

Y
0,∞, kfk∞ ∈ KfK∞) .

(5.7)

5.7. A basic identity. Here is the main theorem of this section.
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THEOREM 26. The integral

ζ(ϕFf,Y ; s) :=
∫
E×

A

〈v0|ϕFf,Y (m(t; 1m))〉|N(t)|s−(m+1)/2
A d×t

converges absolutely in Re(s) > (m+ 1)/2 and

ZFf,Y (s) = ζ(ϕFf,Y ; s) , Re(s) > (m+ 1)/2 .

PROOF. Let Re(s) > (m+1)/2. From (5.2) and (5.4), by using the integration formula
(5.1), we obtain

ZFf,Y (s) =
∫
E×\E×

A

d×t
∫
GY0,Q\GY0,A

dġ0

×
∫
NỸQ\NỸA

dṅ′|N(t)|s−(m+1)/2
A f (g0)〈v0|F(n′m(t; g0))〉

(5.8)

after a standard argument. Note the integral over the compact group KỸ
A yields the factor 1

since F has the KỸ
A-equivariance (5.3) and v0 is fixed byKỸ∞.

LEMMA 27. For any g ∈ GA, we have∫
GY0,Q\GY0,A

f (g0)dg0

∫
NỸQ\NỸA

〈v0|F(n′m(1; g0)g)〉dṅ′

=
∑
α∈E×

〈v0|ϕFf,Y (m(α; 1m)g)〉 .
(5.9)

PROOF. Fix g ∈ GA. Since the smooth function on EA

Φg (α) :=
∫
Y⊥

A /Y
⊥
Q

dZ
∫

A/Q

〈v0|F(n(αY + Z; ζ )g)〉dζ , α ∈ EA

is E-periodic, the Fourier inversion formula yields the identity∑
α0∈E

Φ̂g (α0) = Φg (0)(5.10)

with Φ̂g (α0) = ∫
EA/E

Φg (α)ψ((R[Y ]/√D)trE/Q(ᾱ0α))
−1dα for α0 ∈ E. By the normal-

ization of the Haar measure of NA and that of NỸA (see 5.3), we have

Φ̂g (α0) =
∫
NQ\NA

〈v0|F(nm(α0; 1m)g)〉ψY (n)−1dn , (α0 �= 0) ,

Φg (0) =
∫
NỸQ\NỸA

〈v0|F(n′g)〉dn′ .

Hence the identity (5.10) takes the form

Φ̂g (0)+
∑
α0∈E×

∫
NQ\NA

〈v0|F(nm(α0; 1m)g)〉ψY (n)−1dn =
∫
NỸQ\NỸA

〈v0|F(n′g)〉dn′ .
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By the cuspidality of F , the first term Φ̂g (0) of the left-hand side equals zero. To obtain (5.9),
we first replace g with m(1; g0)g , multiply the both sides of the identity by f (g0) and then
integrate with respect to g0 ∈ GY0,Q\GY0,A. �

By (5.8) and (5.9), we obtain

ZFf,Y (s) =
∫
E×\E×

A

|N(t)|s−(m+1)/2
A

(∑
α∈E×

〈v0|ϕFf,Y (m(αt; 1m))〉
)

d×t = ζ(ϕFf,Y ; s) .

This completes the proof. �

6. Computation of non-Archimedean zeta-integrals. We retain the notations and
the assumptions made in Section 5. In this section, we fix a prime number p and let Ep
denote the quadratic Qp-algebra E ⊗Q Qp with the maximal order Op = O ⊗Z Zp. The

p-components ofKf,K0,f,KỸ
f andKY

0,f are denoted byKp,K0,p,KỸ
p andKY

0,p, respectively.

6.1. Local zeta-integrals. Let WY
p be the space of all the locally constant functions

ϕ : Gp → C such that

ϕ(nm(1; k0)gk) = ψY,p(n)ϕ(g) , n ∈ Np , k0 ∈ KY
0,p , k ∈ Kp(6.1)

(cf. (5.7)). Here ψY,p is the p-component of the character ψY : NA → C(1) defined by (5.5).
Let Hp (resp. HY

p ) be the Hecke algebra for (Gp,Kp) (resp. (GY0,p,K
Y
0,p)). The space

WY
p becomes a double HY

p × Hp-module by the action

(φ0 ∗ ϕ ∗ φ)(x) =
∫
GY0,p

∫
Gp

φ0(g0)ϕ(g−1
0 xg)φ(g)dg0dg , (φ0, φ) ∈ HY

p × Hp ,

where dg (resp. dg0) is the Haar measure of Gp (resp. GY0,p) such that vol(Kp) = 1 (resp.

vol(KY
0,p) = 1). Our aim in this section is to evaluate the local zeta-integral

ζp(ϕ; s) :=
∫
E×
p

ϕ(m(t; 1m))|N(t)|s−(m+1)/2
p d×t(6.2)

for an HY
p × Hp-eigenfunction ϕ ∈ WY

p . Here is the result.

THEOREM 28. Let ϕ ∈ WY
p be an HY

p ×Hp-eigenfunction corresponding to the char-

acter (Λ0,Λ), i.e., φ0 ∗ ϕ ∗ φ = Λ0(φ0)Λ(φ)ϕ for all (φ0, φ) ∈ HY
p × Hp. Suppose ϕ is

bounded on Gp. Then the integral (6.2) converges on Re(s) > (m+ 1)/2, and

ζp(ϕ; s) = L(s,Λ)

L(s + 1/2,Λ0)

1

ζm,p(2s)
ϕ(1) , Re(s) > (m+ 1)/2

with

ζm,p(s) =



(1 − p−s )−1 (m ≡ 1 (mod 2)) ,

(1 − ωp(p)p
−s )−1 (m ≡ 0 (mod 2), p �∈ R(E)) ,

1 (m ≡ 0 (mod 2), p ∈ R(E)) .
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6.2. Computation at non-split primes. We assume Ep = Qp(
√
D) is a field and use

the notations in Section 3 and Subsection 4.1. By the assumption (A2) in 5.2, we may set
(R,Mp) = (Sν+1, Lν+1) and (R̃,M̃p) = (Sν+2, Lν+2) for a ν ∈ N with a Witt tower
{(Sν, Vν)}ν∈N . Let n0 denote the size of S0. Thenm = 2ν+n0+2 and we have identifications
(G0,p,K0,p) = (Gν+1,Kν+1) and (Gp,Kp) = (Gν+2,Kν+2). Put ∂ = ∂R(Mp) = ∂S0(L0).
Fix ϕ ∈ WY

p and let Λ0 andΛ be as in Theorem 28.
Note that the vector Y is reduced for (R,Mp) by Lemma 25.

LEMMA 29. (1) If l ∈ Z and l < 0, then ϕ(m(πl; 1m)) = 0.
(2) If g0 ∈ G0,p is such that g−1

0 Y �∈ L∗
ν+1, then ϕ(m(1; g0)) = 0.

PROOF. Let l ∈ Z and g0 ∈G0,p. Suppose π̄ lg−1
0 Y �∈L∗

ν+1. Thenψp(τR(Y, πlg0Z)) �=
1 for some Z ∈ Lν+1. Since R[Z] ∈ √

Dτ(Op), we can write R[Z] = a− ā with an a ∈ Op.
Then ζ = ā + 2−1R[Z] ∈ Qp and n(Z; ζ ) ∈ Np ∩ Kp. The equivariance (6.1) of ϕ yields
the formula

ϕ(m(πl; g0)) = ϕ(m(πl; g0)n(Z; ζ )) = ψp(τR(Y, π
lg0Z))ϕ(m(πl; g0)) ,

which in turn gives ϕ(m(πl; g0)) = 0. This proves (1) and (2). Note π̄ lY �∈ L∗
ν+1 for all

l < 0, since Y is Op-primitive in L∗
ν+1 = M∗

p. �

LEMMA 30. Let Fϕ(T ) ∈ C[[T ]] be the formal power series

Fϕ(T ) :=
∞∑
l=0

ϕ(m(πl; 1m))T l .

If ϕ is bounded on Gp, then ζp(ϕ; s) = Fϕ(q
−s+(m+1)/2) for Re(s) > (m+ 1)/2.

PROOF. This follows from the definition (6.2) by E×
p = ⋃

l∈Z π
lO×

p and Lemma 29
(1). Note the assumption that ϕ is bounded, combined with Lemma 29 (1), yields a majora-
tion of the integral ζ(|ϕ|; Re(s)) by the geometric series

∑∞
l=0 q

(−Re(s)+(m+1)/2)l, which is
convergent on Re(s) > (m+ 1)/2. �

LEMMA 31. For each l ∈ N , 0 � r � ν + 2,

(ϕ ∗ c̃(r)ν+2)(m(π
l; 1m))

= q2ν+n0+3ϕ(r − 1, l + 1)+ ϕ(r − 1, l − 1)+ qrϕ(r, l)

+



C
(r−2)
ν+1 ϕ(r − 2, l)+D(r−1)ϕ(r − 1, l) (l > 0) ,

ϕ′(r − 2, 0)− qr−2ϕ′′(r − 2, 0)+ qr−1ϕ′′(r − 1, 0)− qr−e/2ϕ(r − 1, 0)

(l = 0) ,
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with

ϕ(r, l) =
∑

h∈c̃(r)ν+1/Kν+1

ϕ(m(πl; h)) ,

ϕ′(r, 0) =
∑

h∈c̃(r)ν+1/Kν+1,X∈π−1Lν+1/Lν+1,√
D

−1
Sν+1[X]∈τ (π−1Op),hX∈π−1Lν+1 ,

ζ∈(2−1Sν+1[X]+π−1Op)∩Qp)/Zp

ψp(τSν+1(Y, hX))ϕ(m(1; h)) ,

ϕ′′(r, 0) =
∑

h∈c̃(r)ν+1/Kν+1,

z∈L′
0/L0,

ζ∈(2−1S0[z]+π−1Op)∩Qp)/Zp

ψp

(
τSν+1

(
Y, h

[
0ν+1
z

0ν+1

]))
ϕ(m(1; h)) ,

and ϕ(r, l) = 0 if r < 0 or l < 0. Here C(r−2)
ν+1 and D(r−1) are the numbers defined by (4.2),

ψp : Qp → C(1) is the p-component of the basic character ψ .

PROOF. This follows from Lemma 13. �

PROPOSITION 32. Let s ∈ (C×)ν+2/Wν+2 be the Satake parameter of Λ. Then

Fϕ(T )Pν+2(q
−(ν+1+(n0+1)/2)T ; s) =

2ν+4∑
k=0

(−1)k(q−(ν+1+(n0+1)/2)T )k
ν+1∑
r=0

Bϕ,k(r)(6.3)

with

Bϕ,k(r) = (aν+1,k(r)− q−(ν+1+(n0+1)/2)(D(r) + qr)aν+1,k−1(r)

− q−(ν+1+(n0+1)/2)C
(r)
ν+1aν+1,k−1(r + 1)

)
ϕ(r, 0)

+ q−(ν+1+(n0+1)/2)aν+1,k−1(r + 1)ϕ′(r, 0)

+ q−(ν+1+(n0+1)/2)+r(aν+1,k−1(r)− aν+1,k−1(r + 1))ϕ′′(r, 0) .

(6.4)

PROOF. Similar to the proof of [14, Proposition 1 (p. 349)]. �

PROPOSITION 33. Set c̃(r)Y = {h ∈ GYν+1 | rankOp/πOp
(πh (mod πOp)) = r} =

GYν+1 ∩ c̃
(r)
ν+1. Then ϕ(r, 0) = ϕ′(r, 0) = ϕ′′(r, 0) = 0 if r > ν′ = ν(Sν+1|Y⊥). If 0 � r � ν′,

then

ϕ(r, 0) = (c̃
(r)
Y ∗ ϕ)(1) , ϕ′(r, 0) = C′

rϕ(r, 0) , ϕ′′(r, 0) = C′′
r ϕ(r, 0) ,

where

C′
r = q1−e/2 ∑

X∈Uν+1

c̃
(r)
Y X∈π−1Lν+1

ψp(τSν+1(Y,X)) ,

C′′
r = q1−e/2 ∑

z∈U0

ψp

(
τSν+1

(
Y,
[

0
z
0

]))
.
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PROOF. If r > ν′, then c̃(r)Y = ∅ by Lemma 12. Hence the first assertion follows. In or-
der to show the second statement, first note that for eachX the number of ζ ∈ (2−1Sν+1[X]+
π−1Op)∩Qp)/Zp is q1−e/2. By this remark, combined with Lemma 29, we write ϕ′(r, 0) as

a sum of q1−e/2ψp(τSν+1(Y, hX))ϕ(m(1; h)) over all (h,X) ∈ (c̃(r)ν+1/Kν+1)× (π−1Lν+1/

Lν+1) such that

h−1X ∈ L∗
ν+1 ,(6.5)

hX ∈ π−1Lν+1 , Sν+1[X]/√D ∈ τ (π−1Op) .(6.6)

Since Y is reduced for (Sν+1, Lν+1), the condition (6.5) implies h ∈ GYν+1Kν+1 by

Lemma 21. Hence we can write the set of cosets h ∈ c̃(r)ν+1/Kν+1 satisfying (6.5) as (c̃(r)ν+1 ∩
GYν+1Kν+1)/Kν+1 ∼= c̃

(r)
Y /K

Y
ν+1. Thus, in the summation defining ϕ′(r, 0), changing the

range of h from c̃
(r)
ν+1/Kν+1 to c̃(r)Y /K

Y
ν+1 does not affect ϕ′(r, 0). Let c(r)Y ∈ GYν+1 be a repre-

sentative of c̃(r)Y /K
Y
ν+1. Then for those h ∈ c̃(r)Y /KY

ν+1, the first condition in (6.6) is equivalent

to c(r)Y X ∈ π−1Lν+1, independent of individual h. Hence ϕ′(r, 0) is factored into the prod-

uct of C′
r and

∑
h∈c̃(r)Y /KY

ν+1
ϕ(m(1; h)) = (c̃

(r)
Y ∗ ϕ)(1). This proves the formula for ϕ′(r, 0).

Similar arguments yield formulas of ϕ(r, 0) and ϕ′′(r, 0). �

The numbers C′
r and C′′

r are evaluated in terms of βY (Lemma 20) and ρY (Lemma 18).

LEMMA 34. For 0 � r � ν′,

C′
r = qr+1−e/2(−qν+n0−r+e/2 + qν+1−r (q∂ + βY )) ,

C′′
r = q∂+1−e/2(1 − δ(Y �∈ L′

ν+1
∗)) = q∂+1−e/2 − qρY ,

and

Bϕ,k(r) = {aν+1,k(r)− q−(ν+1+(n0+1)/2)+r+1ρY aν+1,k−1(r)

+ q−(ν+1+(n0+1)/2)+r+1(−q2ν+n0−2r+1 + qν−r+1−e/2βY + ρY )

×aν+1,k−1(r + 1)
}
Λ0(c̃

(r)
Y )ϕ(1) .

(6.7)

PROOF. Let us compute C′
r . By Lemma 6, choosing a Witt basis of Mp properly, we

may assume that the identification (R, Vp) = (Sν+1, Lν+1) is made so that Y =
[

0r
Y ′
0

]
with

Y ′ =
[ 0ν−r

a
a
1

0ν−r

]
, (a ∈ Op,a ∈ L∗

0). Then the element c(r)ν+1 fixes the vector Y if 0 � r � ν,

namely c(r)ν+1 ∈ GYν+1 (0 � r � ν). The condition c(r)Y X ∈ π−1Lν+1, X ∈ Uν+1 for a vector

X =
[ x1
X′
y1

]
, (x1, y1 ∈ Erp,X′ ∈ Vν−r+1) is equivalent to

x1 ∈ (π−1Op/Op)
r , y1 = 0 , X′ ∈ Uν−r+1 .
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Hence C′
r = qr+1−e/2θν−r+1(Y

′) with θn the exponential sum studied in 3.7. Using Lemma
20 (2), Lemma 18 and Lemma 19, we have

C′
r = qr+1−e/2(−qν+n0−r+e/2 + qν−r+1(q∂ + βY ′)) .

Note βY ′ = βY , since V0,Y = V0,Y ′ .
The evaluation of C′′

r is simpler. Since U0 = L′
0/L0, we have C′′

r = q1−e/2θ ′
0(a). Use

Lemma 20 (1) to obtain C′′
r = q∂+1−e/2δ(a ∈ L′

0
∗). By δ(Y ∈ L′

ν+1
∗) = δ(a ∈ L′

0
∗), the

conclusion follows.
Using Proposition 33 and the values of C′

r , C
′′
r , from (6.4), we obtain the formula (6.7)

by a computation. �

Set ν′ = ν(Sν+1|Y⊥), n′
0 = n0(Sν+1|Y⊥) and ∂ ′ = ∂Sν+1|Y⊥(Lν+1 ∩ Y⊥). Since Y is

reduced for (Sν+1, Lν+1), by Lemma 5, there exists an anisotropic skew-hermitian matrix S′
0

(among the ones listed in Lemma 8) such that (Sν+1|Y⊥, Y⊥) ∼= (S′
ν ′ ,O2ν ′+n′

0
p ). Then the

Witt tower {(S′
n, Vn)}n∈N determines the coefficients {bn,k(r)} of Hecke polynomials in the

same way as the Witt tower {(Sn, Vn)}n∈N determines the coefficients {an,k(r)}. Lemma 25
(2), combined with Lemma 11, implies that possible values of (n′

0, ∂
′) are (n0 − 1, ∂ − 1),

(n0 − 1, ∂) and (n0 + 1, ∂).

LEMMA 35. (1) Suppose (n′
0, ∂

′) = (n0 − 1, ∂ − 1). Set b̃n,k(r) = bn,k(r) +
Abn,k−1(r) with A = −q∂−n0/2+1−e/2. Then

an,k(r)− q−(n+(n0+1)/2)+∂+r+1−e/2an,k−1(r)

− q−(n+(n0+1)/2)+r+1−e/2(qn−r − 1)(qn+n0−r+e/2−1 + q∂)an,k−1(r + 1)

= q−k/2b̃n,k(r)

for 0 � k � 2n+ 1, 0 � r � n.
(2) Suppose (n′

0, ∂
′) = (n0 − 1, ∂). Then

an+1,k(r)+ (q(n0−1)/2 − qn−r+(n0+1)/2)an+1,k−1(r + 1) = q−k/2bn+1,k(r)

for 0 � k � 2(n+ 1), 0 � r � n+ 1.
(3) Suppose (n′

0, ∂
′) = (n0 + 1, ∂). Set b̃n,k(r) = bn,k(r) − (A + B)bn,k−1(r) +

ABbn,k−2(r) with A = q−n0/2, B = −q∂−n0+1/2. Then

an,k(r)− (qn−r−1+(n0+1)/2 + q∂−n0/2)an,k−1(r + 1) = q−k/2b̃n−1,k(r)(6.8)

for 0 � k � 2n, 0 � r � n− 1.

PROOF. Consider the case (n′
0, ∂

′) = (n0 + 1, ∂); we then have ν′ = ν. The formula
(6.8) for (n, k, r) such that k ∈ {2n, 2n − 1} and 0 � r � n − 1 is proved by a direct
calculation with the aid of Lemma 24. Note this in particular cares the case of n = 1. Let
us prove (6.8) by induction on n. Suppose n > 1, 0 � k � 2n and 0 � r � n. Let
us consider the case r = 0 first. Use Lemma 23 (1) to write an+1,k(0) − (qn+(n0+1)/2 +
q∂−n0/2)an+1,k−1(1) − q−k/2b̃n,k(0) in terms of an,k′(i), b̃n−1,k′(i); then by induction as-
sumption we can write b̃n−1,k′(i) in terms of an,k′′(j). After a straightforward but tedious



CERTAIN RANKIN-SELBERG INTEGRALS FOR UNITARY GROUPS 143

computation, we obtain

an+1,k(0)− (qn+(n0+1)/2 + q∂−n0/2)an+1,k−1(1)− q−k/2b̃n,k(0)
= q−(1+n0/2)(qn+1+n0−1/2 + q∂)

{
an,k−1(1)+ an,k−3(1)

− q−(n+(n0+1)/2)(qan,k−2(0)+ C(1)n an,k−2(2)+D(1)an,k−2(1))
}
.

The formula inside the curly bracket on the right-hand side is zero by Lemma 23 (2).
Consider the case r > 0. Since the formula is obvious when k = 0, we assume k > 0.

Then using Lemma 23 (1) (i), we have

an+1,k(r)− (qn−r+(n0+1)/2 + q∂−n0/2)an+1,k−1(r + 1)− q−k/2b̃n,k(r)
= q−(n+(n0+1)/2){an,k−1(r − 1)− (qn−r+(n0+1)/2 + q∂−n0/2)an,k−2(r)

− q−(k−1)/2b̃n−1,k−1(r − 1)
}

after a computation. By the induction assumption, the right-hand side is zero. This proves
(6.8) completely. �

PROPOSITION 36. Let s ∈ (C×)ν+2/Wν+2 and s0 ∈ (C×)ν ′
/Wν ′ be the Satake pa-

rameters of Λ and Λ0, respectively. Then we have

Fϕ(T ) =Pν ′(q−(ν+1+(n0+1)/2)−1/2T ; s0)

Pν+2(q−(ν+1+(n0+1)/2)T ; s)
BY (q

−(ν+1+(n0+1)/2)−1/2T )ϕ(1)

with

BY (T ) =




1 + q∂−n0/2+1−e/2T , (n′
0, ∂

′) = (n0 − 1, ∂ − 1) ,

1 , (n′
0, ∂

′) = (n0 − 1, ∂) ,

(1 − q−n0/2T )(1 + q∂−(n0−1)/2T ) , (n′
0, ∂

′) = (n0 + 1, ∂) .

PROOF. Consider the case (n′
0, ∂

′) = (n0 +1, ∂). In this case, ν′ = ν. From the Table 1
in Lemma 11, we have ρY = 0, e = 1 and βY = −q∂ . The formula (6.7) is simplified as

Bϕ,k(r) = (aν+1,k(r)− q(n0+1)/2(qν−r + q∂−n0−1/2)aν+1,k−1(r + 1))Λ0(c̃
(r)
Y )ϕ(1)

and this equals q−k/2b̃n−1,k(r)Λ0(c̃
(r)
Y )ϕ(1) by Lemma 35. By definition (see Lemma 23),

Pν ′(q−1/2T0; s0)=∑2ν
k=0(−1)kq−k/2T k0

∑ν
r=0 bν,k(r)Λ0(c̃

(r)
Y ) with T0 =q−(ν+1+(n0+1)/2)T .

By (6.3) and (6.8), we have

Fϕ(T )Pν+2(T0; s)

=
2(ν+1)∑
k=0

(−1)kT k0

ν∑
r=0

q−k/2(bν,k(r)− (A+ B)bν,k−1(r)+ ABbν,k−2(r))Λ0(c̃
(r)
Y )ϕ(1)

= Pν(q
−1/2T0; s0)(1 + (A+ B)q−1/2T0 + AB(q−1/2T0)

2)ϕ(1)

= Pν(q
−1/2T0; s0)(1 − q−(n0+1)/2T0)(1 + q∂−n0/2T0)ϕ(1).

This proves the desired formula. The remaining cases are similar. �
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Now Theorem 28 follows from Proposition 36 combined with the following lemma
which is a direct consequence of the definition of local L-factors recalled in 4.1.

LEMMA 37. If T = q−s+(m+1)/2, then

Pν ′(q−(ν+1+(n0+1)/2)−1/2T ; s0)

Pν+2(q−(ν+1+(n0+1)/2)T ; s)
BY (q

−(ν+1+(n0+1)/2)−1/2T ) = L(s,Λp)

L(s + 1/2,Λ0,p)

1

ζm,p(2s)
.

6.3. Computation at split primes. In this subsection, we use the settings and the nota-
tions in 4.2. Recall that R = (T ,−tT ) with some T ∈ GLm(Zp) and hence R̃ = (T̃ ,−tT̃ )

with T̃ =
[ −1

T
1

]
∈ GLm+2(Zp). Then Gp = {(g1, g2) ∈ GLm+2(Qp)

2 | tg2T̃ g1 = T̃ } is

identified with GLm+2(Qp) by the first projection. SimilarlyG0,p ∼= GLm(Qp). Put

γ (X1,X2; z) =

1 tX1 z

1m X2
1


 , (X1,X2, z) ∈ Qm

p × Qm
p × Qp .

Then for X = (X1,X2) ∈ Emp and ζ ∈ Qp, we have n(X; ζ ) = γ (−tT X2,X1; ζ −
2−1tX2TX1) by the identificationGp = GLm+2(Qp) made above.

Let us write Y = (Y ′, Y ′′), and D0 ∈ Z×
p a solution of the equation t2 = D, i.e.,

√
D =

(D0,−D0).

LEMMA 38. Let ϕ ∈ WY
p .

(1) If t1, t2 ∈ Q×
p , X1,X2 ∈ Qm

p and h ∈ GLm(Qp) satisfy t1th−1X1 ∈ Zmp and
t2hX2 ∈ Zmp , then

ϕ(diag(t1, h, t
−1
2 )γ (X1,X2; ζ )) = ϕ(diag(t1, h, t

−1
2 )) .

(2) Let t1, t2 ∈ Q×
p and h ∈ GLm(Qp). Then ϕ(t1, h, t

−1
2 ) = 0 unless

t1h
−1Y ′ ∈ Zmp , t2

thtT Y ′′ ∈ Zmp .

PROOF. By (6.1), we have

ϕ(diag(t1, h, t
−1
2 )γ (X1,X2; ζ ))

= ψp((−t2/D0)
tY ′′T hX2)ψp((t1/D0)

tY ′th−1X1)ϕ(diag(t1, h, t
−1
2 )) .

Noting D0 ∈ Z×
p , T ∈ GLm(Zp) and ψp |Z×

p = 1, we have the first part of the lemma. To

obtain the second part, it suffices to note that ϕ(diag(t1, h, t
−1
2 )γ (X1,X2; 0)) =

ϕ(diag(t1, h, t
−1
2 )) for (X1,X2) ∈ Zmp ⊕ Zmp . �

LEMMA 39. Let Fϕ(T1, T2) ∈ C[[T1, T2]] be the formal power series

Fϕ(T1, T2) =
∑
l1,l2�0

ϕ(diag(pl1 , 1m, p−l2))T l11 T
l2

2 .

If ϕ is bounded on Gp, then ζp(ϕ; s) = Fϕ(p
−s+(m+1)/2, p−s+(m+1)/2) for Re(s) > (m +

1)/2.
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PROOF. This follows from the definition (6.2) by the decomposition

E×
p =

⋃
l1,l2∈Z

(pl1Z×
p × pl2Z×

p )

and Lemma 38 (2). Note that pl1Y ′ �∈ Zmp if l1 < 0 and pl2Y ′′ �∈ Zmp if l2 < 0, since
Y = (Y ′, Y ′′) is assumed to be Op-primitive in M = Zmp ⊕ Zmp . Since ϕ is bounded, by
Lemma 38 (2), the integral ζ(|ϕ|; Re(s)) is majorized by the geometric series∑

l1,l2�0

q(−Re(s)+(m+1)/2)l1q(−Re(s)+(m+1)/2)l2 ,

which is convergent in Re(s) > (m+ 1)/2. �

For i, j � 0 such that i + j � m, put c(i,j)m = p(1,...,1,0,...,0,−1,...,−1) (1 appears i times
and −1 appears j times in the exponent of p) and set c̃(i,j)m = Kmc

(i,j)
m Km. We use the same

notation c̃(i,j)m to denote its characteristic function. Fix a complete set of representatives R(i,j)m

of Km/Km ∩ c(i,j)m Km(c
(i,j)
m )−1.

LEMMA 40. (1) For 0 � i � m+ 2, the double coset c̃(i,0)m+2 is a disjoint union of the
following left Km+2 cosets.

• diag(1, αc(i,0)m , 1)γ (0, Y1; 0)Km+2 with

α ∈ R(i,0)m , Y1 =
[
y1

0m−i

]
∈ p−1Zmp /Z

m
p .

• diag(1, αc(i−1,0)
m , p)Km+2 with α ∈ R(i−1,0)

m .
• diag(p, αc(i−1,0)

m , 1)γ (X2, Y2; z2)Km+2 with

α ∈ R(i−1,0)
m , z2 ∈ p−1Zp/Zp ,

X2 =
[

0i−1
x2

]
∈ p−1Zmp /Z

m
p , Y2 =

[
y1

0m−i+1

]
∈ p−1Zmp /Z

m
p .

• diag(p, αc(i−2,0)
m , p)γ (X3, 0; 0)Km+2 with

α ∈ R(i−2,0)
m , X3 =

[
0i−2
x2

]
∈ p−1Zmp /Z

m
p .

(2) For 0 � j � m+ 2, the double coset c̃(0,j)m+2 is a disjoint union of the following left
Km+2 cosets.

• diag(1, αc(0,j)m , 1)γ (X1, 0; 0)Km+2 with

α ∈ R(0,j)m , X1 =
[

0m−j
x2

]
∈ p−1Zmp /Z

m
p .

• diag(p−1, αc
(0,j−1)
m , 1)Km+2 with α ∈ R(0,j−1)

m .
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• diag(1, αc(0,j−1)
m , p−1)γ (X′

2, Y
′
2; z′2)Km+2 with

α ∈ R(0,j−1)
m , z′2 ∈ p−1Zp/Zp ,

X′
2 =

[
0m−j+1
x ′

2

]
∈ p−1Zmp /Z

m
p , Y ′

2 =
[
y1

0j−1

]
∈ p−1Zmp /Z

m
p .

• diag(p−1, αc
(0,j−2)
m , p−1)γ (0, Y3; 0)Km+2 with

α ∈ R(0,j−2)
m , Y3 =

[
y1

0j−2

]
∈ p−1Zmp /Z

m
p .

PROOF. This is proved by the elementary divisor theory. �

LEMMA 41. For 0 � i � m+ 2, l1, l2 ∈ N ,

(ϕ ∗ c̃(i,0)m+2)(diag(pl1, 1m, p−l2))
= piϕ(i; l1, l2)+ ϕ(i − 1; l1, l2 − 1)

+ pm+1ϕ(i − 1; l1 + 1, l2)+ pm−i+2ϕ(i − 2; l1 + 1, l2 − 1)

with

ϕ(i; l1, l2) =
∑

α∈R(i,0)m

ϕ(diag(pl1, αc(i,0)m , p−l2)) , (0 � i � m)

and ϕ(i; l1, l2) = 0 if i < 0 or i > m.

PROOF. By the Iwasawa decomposition of the double coset c̃(i,0)m+2 given in Lemma 40,
the integral

(ϕ ∗ c̃(i,0)m+2)(diag(pl1, 1m, p
−l2)) =

∑
g∈c̃(i,0)m+2/Km+2

ϕ(diag(pl1, 1m, p
−l2)g)

is a sum of the following four terms.

I1 =
∑

α∈R(i,0)m

y1∈(p−1Zp/Zp)
i

ϕ
(
diag(pl1, αc(i,0)m , p−l2)γ

(
0,
[ y1

0m−i
]; 0
))
,

I2 =
∑

α∈R(i−1,0)
m

ϕ(diag(pl1, αc(i−1,0)
m , p−l2+1)) ,

I3 =
∑

α∈R(i−1,0)
m ,z2∈p−1Zp/Zp

x2∈(p−1Zp/Zp)
m−i+1,y1∈(p−1Zp/Zp)

i−1

ϕ
(
diag(pl1+1, αc(i−1,0)

m , p−l2)

× γ
([ 0i−1

x2

]
,
[ y1

0m−i+1

]; z2
))
,

I4 =
∑

α∈R(i−2,0)
m

x2∈(p−1Zp/Zp)
m−i+2

ϕ
(
diag(pl1+1, αc(i−2,0)

m , p−l2+1)γ
([ 0i−2

x2

]; 0
))
.
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Now apply Lemma 38 to see that I1 equals∑
α∈R(i,0)m

y1∈(p−1Zp/Zp)
i

ϕ(diag(pl1 , αc(i,0)m , p−l2))=�(p−1Zp/Zp)
i
∑

α∈R(i,0)m

ϕ(diag(pl1 , αc(i,0)m , p−l2))

= piϕ(i; l1, l2) .
Similarly we have I2 = ϕ(i−1; l1, l2−1), I3 = pm+1ϕ(i−1; l1+1, l2) and I4 = pm−i+2ϕ(i−
2; l1 + 1, l2 − 1). �

LEMMA 42. Let s ∈ (C×)m+2/Sm+2 be the Satake parameter of Λ. We have

Fϕ(T1, T2)P
(1)
m+2(p

−(m+1)/2T1; s)

=
m+1∑
i=0

(−1)ip−i(m+1)+i(i−1)/2
∞∑
l2=0

(piϕ(i; 0, l2)+ ϕ(i − 1; 0, l2)T2)T
i

1T
l2

2 .

PROOF. Since

P
(1)
m+2 (T1; s) =

m+2∑
i=0

(−1)ip−i(m+2−i)/2Λp(c̃(i,0)m+2)T
i
1(6.9)

([12, p. 269]), we have

Fϕ(T1, T2)P
(1)
m+2(p

−(m+1)/2T1; s)

=
∑
l1,l2�0

ϕ(diag(pl1, 1, p−l2))T l11 T
l2

2

m+2∑
i=0

(−1)ip−i(m+2−i)/2−i(m+1)/2Λp(c̃
(i,0)
m+2)T

i
1

=
∑
l2�0

T
l2
2

∑
l1�0

m+2∑
i=0

(−1)ip−i(m+1)+i(i−1)/2(ϕ ∗ c̃(i,0)m+2)(diag(pl1, 1, p−l2))T i+l11

=
∑
l2�0

T
l2
2

∑
l1�0

m+2∑
i=0

(−1)ip−i(m+1)+i(i−1)/2{piϕ(i; l1, l2)+ ϕ(i − 1; l1, l2 − 1)

+ pm+1ϕ(i − 1; l1 + 1, l2)+ pm−i+2ϕ(i − 2; l1 + 1, l2 − 1)
}
T
i+l1

1

=
∑
l2�0

T
l2
2

∑
0�i�m+2

k�i

(−1)ip−i(m+1)+i(i−1)/2{piϕ(i; k − i, l2)+ ϕ(i − 1; k − i, l2 − 1)

+ pm+1ϕ(i − 1; k − i + 1, l2)+ pm−i+2ϕ(i − 2; k − i + 1, l2 − 1)
}
T k1

=
∑
l2�0

∑
k�0

T k1 T
l2
2

{ ∑
0�i�m+2

k�i

(−1)ip−i(m+1)+i(i−1)/2 · piϕ(i; k − i, l2)

+
∑

0�i�m+1
k>i

(−1)i+1p−i(m+1)+i(i−1)/2 · piϕ(i; k − i, l2)
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+
∑

0�i�m+2
k�i

(−1)ip−i(m+1)+i(i−1)/2ϕ(i − 1; k − i, l2 − 1)

+
∑

0�i�m+2
k>i

(−1)i+1p−i(m+1)+i(i−1)/2ϕ(i − 1; k − i, l2 − 1)

}

=
∑

0�i�m+1

(−1)ip−i(m+1)+i(i−1)/2
∑
l2�0

(piϕ(i; 0, l2)+ ϕ(i − 1; 0, l2 − 1))T i1T
l2

2 .

�

LEMMA 43. For i � 0, l2 � 0, we have

ϕ(i; 0, l2)P
(2)
m+2(p

−(m+1)/2T2; s)

=
m+2∑
j=0

(−1)jp−j (m+1)+j (j−1)/2(pj ϕ̃(i, j ; l2)+ ϕ̃′(i, j − 1; l2)

+ pm+1ϕ̃(i, j − 1; l2 + 1)+ pm−j+2ϕ̃′(i, j − 2; l2 + 1)
)
T
j

2

with

ϕ̃(i, j ; l2) =
∑

h1∈c̃(i,0)m /Km,

h−1
1 Y ′,pl2 th1

tT Y ′′∈Zmp

∑
h2∈c̃(0,j)m /Km

ϕ(diag(1, h1h2, p
−l2)) ,(6.10)

ϕ̃′(i, j ; l2) =
∑

h1∈c̃(i,0)m /Km,

h−1
1 Y ′,pl2 th1

tT Y ′′∈Zmp

∑
h2∈c̃(0,j)m /Km

ϕ(diag(p−1, h1h2, p
−l2)) .(6.11)

PROOF. By Lemma 38 (2), we can write ϕ(i; 0, l2) as a sum of ϕ(diag(1, h, p−l2)) over
all h ∈ c̃(i,0)m /Km such that h−1Y ′ ∈ Zmp and pl2 thtT Y ′′ ∈ Zmp . Since

P
(2)
m+2(T2; s) =

m+2∑
j=0

(−1)jp−j (m+2−j)/2Λ(c̃(0,j)m+2 )T
j

2 ,(6.12)

we can calculate ϕ(i; 0, l2)P
(2)
m+2(p

−(m+1)/2T2; s) using Lemma 41 by a similar way to
Lemma 42. �

LEMMA 44. We have ϕ̃′(i, j ; 0) = 0 for 0 � i, j � m.

PROOF. By Lemma 38, we have ϕ(diag(p−1, h, 1)) = 0 unless p−1h−1Y ′′ ∈ Zmp ,
thtT Y ′′ ∈ Zmp , a fortiori tY ′′T Y ′ ∈ pZp. The assumption that Y should be reduced for

(R,Mp) means R[Y ] ∈ O×
p , or equivalently tY ′′T Y ′ ∈ Z×

p . Hence ϕ(diag(p−1, h, 1)) = 0
for any h ∈ GLm(Qp). �
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LEMMA 45. For 0 � i, j � m, put

S
(i,j)
m = {(h1, h2) ∈ (c̃(i,0)m /Km)× (c̃

(0,j)
m /Km) | h−1

1 Y ′,
th1

tT Y ′′, (h1h2)
−1Y ′, t(h1h2)

tT Y ′′ ∈ Zmp
}
.

Then

ϕ̃(i, j ; 0) =
∑

(h1,h2)∈S(i,j)m

ϕ(diag(1, h1h2, 1)) .

In particular, we have ϕ̃(i, j ; 0) = 0 if i = m or j = m.

PROOF. The first assertion is a consequence of Lemma 38 and the definition (6.10).
Assume i = m. Then the condition h1 ∈ c̃

(i,0)
m yields h1 = pk1 with some k1 ∈ Km.

Combining this with the condition h−1
1 Y ′ ∈ Zmp , we obtain Y ′ ∈ pZmp , contradictory to

Y ′ ∈ Zmp − pZmp . Hence S(i,j)m = ∅ and ϕ̃(i, j ; 0) = 0 if i = m.

Suppose (h1, h2) ∈ S(i,m)m . Then the condition h2 ∈ c̃(0,m)m yields h2 = p−1k2 with some
k2 ∈ Km; this, together with t(h1h2)

tT Y ′′ ∈ Zmp , implies th1
tT Y ′′ ∈ pZmp . Since h−1

1 Y ′ ∈ Zmp ,

we obtain tY ′′T Y ′ ∈ pZp, contradictory to R[Y ] ∈ O×
p . Hence S(i,j)m = ∅ and ϕ̃(i, j ; 0) = 0

if j = m. �

LEMMA 46.

Fϕ(T1, T2)P
(1)
m+2(p

−(m+1)/2T1; s)P (2)m+2(p
−(m+1)/2T2; s)

= (1 − p−(m+1)T1T2)

m−1∑
i=0

m−1∑
j=0

(−1)i+jp−(i+j)m+i(i−1)/2+j (j−1)/2ϕ̃(i, j ; 0)T i1T
j

2 .

PROOF. From Lemmas 42 and 43,

Fϕ(T1,T2)P
(1)
m+2(p

−(m+1)/2T1; s)P (2)m+2(p
−(m+1)/22T2; s)

=
m+1∑
i=0

(−1)ip−i(m+1)+i(i−1)/2T i1

×
∑
l2�0

{piϕ(i; 0, l2)+ ϕ(i − 1; 0, l2)T2}P (2)m+2(p
−(m+1)/2T2; s)T l22

=
m+1∑
i=0

(−1)ip−i(m+1)+i(i−1)/2T i1

∑
l2�0

m+2∑
j=0

(−1)jp−j (m+1)+j (j−1)/2T
j+l2

2

(6.13)
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× {pi+j ϕ̃(i, j ; l2)+ piϕ̃′(i, j − 1; l2)
+ pi+m+1ϕ̃(i, j − 1; l2 + 1)+ pi−j+m+2ϕ̃′(i, j − 2; l2 + 1)

+ (pjϕ(i − 1, j ; l2)+ ϕ̃′(i − 1, j − 1; l2)
+ pm+1ϕ̃(i − 1, j − 1; l2 + 1)+ pm−j+2ϕ̃′(i − 1, j − 2; l2 + 1)

)
T2
}

=
m+1∑
i=0

(−1)ip−i(m+1)+i(i−1)/2T i1

× (piΦ(i; T2)+Φ(i − 1; T2)T2 + piΦ ′(i; T2)+ Φ ′(i − 1; T2)T2) ,

where, for each i, we set

Φ(i; T2) =
∑
l2�0

m+1∑
j=0

(−1)jp−j (m+1)+j (j−1)/2T
j+l2

2

× (pj ϕ̃(i, j ; l2)+ pm+1ϕ̃(i, j − 1; l2 + 1)) ,

Φ ′(i; T2) =
∑
l2�0

m+1∑
j=0

(−1)jp−j (m+1)+j (j−1)/2T
j+l2

2

× (ϕ̃′(i, j − 1; l2)+ pm−j+2ϕ̃′(i, j − 2; l2 + 1)) .

By making a change of variables j + l2 = k in the summation with respect to l2, we easily
obtain

Φ(i; T2) =
m+1∑
j=0

(−1)jp−j (m+1)+j (j−1)/2pj ϕ̃(i, j ; 0)T j2 ,

Φ ′(i; T2) =
m+1∑
j=0

(−1)jp−j (m+1)+j (j−1)/2ϕ̃′(i, j − 1; 0)T j2 .

By these expressions of Φ(i; T2) and Φ ′(i; T2), from the last formula of (6.13), we have

Fϕ(T1,T2)P
(1)
m+2(p

−(m+1)/2T1; s)P (2)m+2(p
−(m+1)2T2; s)

=
m+1∑
i=0

(−1)ip−i(m+1)+i(i−1)/2T i1

m+1∑
j=0

(−1)jp−j (m+1)+j (j−1)/2T
j

2

× {pi+j ϕ̃(i, j ; 0)+ piϕ̃′(i, j − 1; 0)

+ pj ϕ̃(i − 1, j ; 0)T2 + ϕ̃′(i − 1, j − 1; 0)T2
}

= (1 − p−(m+1)T1T2)

m−1∑
i=0

(−1)ip−im+i(i−1)/2T i1

×
m−1∑
j=0

(−1)jp−jm+j (j−1)/2T
j

2 ϕ̃(i, j ; 0)
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using Lemmas 44 and 45 to prove the last equality. �

6.3.1. Since Y = (Y ′, Y ′′) is primitive in M∗
p (= Mp), Y ′ and Y ′′ belong to Zmp−pZmp .

Since Y is reduced for (R,Mp), we have tY ′tT Y ′′ ∈ Z×
p . Hence we may assume

Y ′ =
[

1
0m−1

]
, tT Y ′′ =

[
u1
u2

]
(u1 ∈ Z×

p , u2 ∈ Zm−1
p ) .

By the identification G0,p = GLm(Qp), the subgroup GY0,p = {(h1, h2) ∈ G0,p | h1Y
′ =

Y ′, h2Y
′′ = Y ′′} (resp. KY

0,p) is identified with

0GLm−1(Qp) =
{[

1 u−1
1
tu2(1m−1−h)

0m−1,1 h

] ∣∣∣ h ∈ GLm−1(Qp)
}
,

(resp. 0Km−1 = 0GLm−1(Qp) ∩ GLm(Zp)) .

For 0 � i, j � m − 1, let 0c
(i,j)
m−1 and 0c̃

(i,j)
m−1 be the image of c(i,j)m−1 and c̃(i,j)m−1 by the obvious

isomorphism 0GLm−1(Qp)
∼= GLm−1(Qp).

LEMMA 47. Let 0 � i, j � m − 1. The natural inclusion from 0GLm−1(Qp) into
GLm(Qp) induces bijections

0c̃
(i,0)
m−1/

0Km−1 ∼= {h1 ∈ c̃(i,0)m /Km | h−1
1 Y ′, th1

tT Y ′′ ∈ Zmp } ,
0c̃
(0,j)
m−1/

0Km−1 ∼= {h1 ∈ c̃(0,j)m /Km | h−1
1 Y ′, th1

tT Y ′′ ∈ Zmp } .
PROOF. By the Iwasawa decomposition of GLm(Qp), we may assume that a coset h1 ∈

c̃
(i,0)
m /Km is represented by a matrix of the form[

a X

0 h

]
, (a ∈ Q×

p ,X ∈ M1,m−1(Qp), h ∈ GLm−1(Qp)) .

From the condition h−1
1 Y ′ ∈ Zmp we have a−1 ∈ Zp. Another condition th1

tT Y ′′ ∈ Zmp is

equivalent to au1 ∈ Zp, tXu1 + thu2 ∈ Zm−1
p . Since u1 ∈ Z×

p , we have a ∈ Zp. Thus
a ∈ Z×

p . This means we may assume a = 1. Then the formula

h1

[
1 −u−1

1 (tc − tu2)

0 1m−1

]
=
[

1 u−1
1
tu2(1m−1 − h)

0 h

]

with c = tXu1 + thu2 ∈ Zm−1
p shows that h1 lies in the image of the map 0GLm−1(Qp) →

GLm(Qp) modulo Km. �

PROPOSITION 48. Let s0 ∈ (C×)m−1/Sm−1 be the Satake parameter of Λ0. Then

Fϕ(T1, T2)P
(1)
m+2(p

−(m+1)/2T1; s)P (2)m+2(p
−(m+1)/2T2; s)

= (1 − p−(m+1)T1T2)P
(1)
m−1(p

−(m+2)/2T1; s0)P
(2)
m−1(p

−(m+2)/2T2; s0) .
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PROOF. By Lemmas 45 and 47, we have

ϕ̃(i, j ; 0) =
∑

h1∈0c̃
(i,0)
m−1/

0Km−1

h2∈0c̃
(0,j)
m−1/

0Km−1

ϕ(diag(1, h1h2, 1)) = Λ0(
0c̃
(i,0)
m−1)Λ0(

0c̃
(0,j)
m−1 )ϕ(1) .

By Lemma 46, (6.9) and (6.12), we have the conclusion. �

7. Archimedean Whittaker functions. We retain the notations in Section 5.
Let WY∞ be the space of right K∞-finite C∞-functions ϕ : G∞ → C which satisfies the

two conditions:
(a) ϕ(nm(1; k0)g) = ψY,∞(n)ϕ(g) for any n ∈ N∞ and any k0 ∈ GY0,∞. (cf. (5.7).)

Here ψY,∞ : N∞ → C(1) is the archimedean component of the character ψY defined by (5.5).
(b) ϕ is uniformly of moderate growth, i.e., there exists a constant r ∈ R such that for

each D ∈ U(g) the estimation

|RDϕ(g∞)| � C|Tr(tḡ∞g∞)|r , g∞ ∈ G∞(7.1)

holds with a constant C > 0. Here g is the Lie algebra of G∞, U(g) the universal enveloping
algebra of g and RD the right-action by D.
By the right translation, WY∞ becomes a (g,K∞)-module. For an irreducible (g,K∞)-module
(π,Hπ), the π-isotypic part of WY∞, which we denote by WY∞(π), is defined to be the image
of the natural map Hπ ⊗ Hom(g,K∞)(Hπ,WY∞) → WY∞.

We study the functions ϕ ∈ WY∞(π) for two special cases:
• (Case 1). π is a class one principal series representation.
• (Case 2). π is a unitarizable non-trivial representation such that H1,1(g,K∞;π) �=

0.
In practice, we take an irreducible unitary representation (τ,W) of K∞ and consider the

space WY
τ (π) = (WY∞(π)⊗W)K∞ consisting of W -valued functions.

LetΩ be the Casimir element of U(m+1, 1) corresponding to the U(m+1, 1)-invariant
R-bilinear form (X1,X2) 
→ 2−1tr(X1X2) on u(m+ 1, 1).

7.1. Case 1. For ν ∈ C, let π(ν) be the representation π(ν) of G∞ ∼= U(m + 1, 1)
induced from the one dimensional representation (P∞ �) m(t; g0)n 
→ |N(t)|(ν+m+1)/2 of
P∞. Take τ0 to be the one dimensional trivial representation of K∞, and consider a function
ϕ ∈ WY

τ0
(π(ν)). Since the Casimir operator Ω acts on π(ν) by the scalar ν2 − (m+ 1)2 (see

[19, Proposition 6.2.2 (1)]), the function φ(t) = ϕ(m(t; 1m)) (t > 0) satisfies

∂2φ − 2(m+ 1)∂φ − 16π2|R[Y ]/√D|t2φ = {ν2 − (m+ 1)2}φ ,
with ∂ = t (∂/∂t) the Euler operator. By examining the differential equation, it is easy to see
that there exists, up to a constant multiple, a unique function ϕπ(ν)0 ∈ WY

τ0
(π(ν)) such that

ϕ
π(ν)
0 (m(t; 1m)) = tm+1Kν

(
4πt

∣∣∣∣R[Y ]√
D

∣∣∣∣
1/2 )

, t > 0 .(7.2)

Here Kν(z) is the modified Bessel function.
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7.2. Case 2.
7.2.1. Invariant tensors. Let σ0 be the base point of D defined in the paragraph 5.1.1.

Set

v−
0 = |R̃[σ0]|−1/2σ0 = |D|−1/4


(1 + √

D)/2
0m
1


 , v+

Ỹ
= |R̃[Ỹ ]|−1/2Ỹ = |∆|−1/2


0
Y

0


 .

The orthogonal complement σ⊥
0 of σ0 in Ṽ∞ = Cm+2 is a positive definite K∞-irreducible

subspace with the induced inner product 〈v, v′〉 = iR̃(v, v′). For f ∈ EndC(σ
⊥
0 ), let f∗ ∈

EndC(σ
⊥
0 ) be its adjoint, i.e., 〈f(v), v′〉 = 〈v, f∗(v′)〉 for v, v′ ∈ σ⊥

0 . Then 〈f1|f2〉 = trσ⊥
0
(f1f∗2)

yields a K∞-invariant Hermitian inner product on the C-vector space EndC(σ
⊥
0 ). Set

E = EndC(σ
⊥
0 ) , E◦ = {f ∈ E |〈f|1σ⊥

0
〉 = 0} .

Then E = E◦ ⊕ 〈1σ⊥
0
〉C is a K∞-irreducible decomposition. We denote the action of K∞

on E by τ1,1, i.e., τ1,1(k)f = kfk−1 for k ∈ Kσ and f ∈ E. The subrepresentation on E◦ is
denoted by τ ◦

1,1.

The KỸ∞-module σ⊥
0 has two irreducible components; the one dimensional space

〈Ỹ 〉C and its orthogonal complement Ỹ⊥ ∩ σ⊥
0 . For two vectors v1, v2 ∈ σ⊥

0 , let us define
X(v1|v2) ∈ E by

X(v1|v2)(v) = 〈v, v2〉v1 (v ∈ σ⊥
0 ) .

The formula X(v1|v2)
∗ = X(v2|v1) is easily proved. For any f ∈ E let f◦ be its orthogonal

projection to E◦, or explicitly f◦ = f − (1/(m+ 1))〈f|1σ⊥
0
〉1σ⊥

0
.

LEMMA 49. TheKỸ∞-fixed part of E is two dimensional space generated by X(v+
Ỹ
|v+
Ỹ
)

and 1σ⊥
0

, and the vector X(v+
Ỹ
|v+
Ỹ
)◦ spans the KỸ∞-fixed part of E◦:

EK
Ỹ∞ = 〈X(v+

Ỹ
|v+
Ỹ
), 1σ⊥

0
〉C , (E◦)KỸ∞ = 〈X(v+

Ỹ
|v+
Ỹ
)◦〉C .

PROOF. First note K∞ ∼= U(m + 1) × U(1) and KỸ∞ ∼= diag(U(m), 1) × U(1). Since
any irreducible representation of U(m+ 1) contains the trivial representation of U(m) at most

once, we have dim((E◦)KỸ∞) � 1 and dim(EK
Ỹ∞) � 2. It is obvious that X(v+

Ỹ
|v+
Ỹ
) and 1σ⊥

0

are KỸ∞-fixed and are linearly independent. �

The groupG0,∞ coincides with the stabilizer in P∞ of the vector σ0. The group P∞ acts
on the unitary character group of N∞ naturally. The compact group GY0,∞ coincided with the
group of elements of G0,∞ which fix the character ψ∞,Y . Consider the unit vector

v+
0 = |D|−1/4


(1 − √

D)/2
0m
1


 .
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Then (σ⊥
0 )

G0,∞ = 〈v+
0 〉C and (σ⊥

0 )
GY0,∞ = 〈v+

0 , v
+
Ỹ
〉C . Set

y00 =
(
m+ 1

m

)1/2

X(v+
0 |v+

0 )
◦ , y01 = −X(v+

0 |v+
Ỹ
)◦ , y10 = X(v+

Ỹ
|v+

0 )
◦ ,(7.3)

y11 = −
(

1

m(m− 1)

)1/2

(mX(v+
Ỹ
|v+
Ỹ
)◦ + X(v+

0 |v+
0 )

◦) .(7.4)

LEMMA 50. The 4 vectors yij (i, j = 0, 1) form an orthonormal basis of the space of
GY0,∞-fixed part of E◦. Set Xm = X(v+

Ỹ
|v+

0 ). Then the operators τ1,1(Xm) and τ1,1(X
∗
m) keep

the space (E◦)G
Y
0,∞ = 〈yij | i, j = 0, 1〉C invariant; their action is explicitly given by

τ1,1(Xm)




y00

y01

y10

y11


 =




0 0 A0 0
A0 0 0 A1
0 0 0 0
0 0 A1 0






y00

y01

y10

y11


 ,

τ1,1(X
∗
m)




y00

y01

y10

y11


 =




0 A0 0 0
0 0 0 0
A0 0 0 A1
0 A1 0 0






y00

y01

y10

y11




(7.5)

where A0 = ((m+ 1)/m)1/2 and A1 = ((m− 1)/m)1/2.

PROOF. For simplicity set W = 〈v−
0 , v

+
0 〉⊥C . Since v+

0 is G0,∞-fixed, the G0,∞-ir-
reducible decomposition σ⊥

0 = W ⊕ 〈v+
0 〉C yields the decomposition

E ∼= End(W)⊕W ⊕W∗ ⊕ 〈X(v+
0 |v+

0 )〉C
of G0,∞-modules. Noting that W = 〈v−

0 , v
+
0 , v

+
Ỹ
〉⊥C ⊕ 〈v+

Ỹ
〉C is an irreducible decomposi-

tion of GY0,∞-module, the subspaces CX(v+
Ỹ
|v+

0 ), CX(v+
0 |v+

Ỹ
) and 〈X(v+

Ỹ
|v+
Ỹ
), prW 〉C of E

correspond to WGY0,∞ , (W∗)G
Y
0,∞ and End(W)G

Y
0,∞ on the right-hand side, respectively. Here

prW ∈ E is the orthogonal projector to W . Thus

EG
Y
0,∞ = 〈X(v+

0 |v+
0 ),X(v

+
0 |v+

Ỹ
),X(v+

Ỹ
|v+

0 ),X(v
+
Ỹ
|v+
Ỹ
), prW 〉C .

Taking projection to E◦, we obtain (E◦)G
Y
0,∞ = 〈yij | i, j = 0, 1〉C because X(v+

0 |v+
0 )

◦ =
−pr◦W . By direct computation, we can check that {yij } is an orthonormal system in E◦. The
table (7.5) can also be checked by a direct computation. Note the action of Lie(K∞)C ∼= E
on E is given by the bracket: τ1,1(X)Z = [X,Z] = XZ − ZX. �

7.2.2. Certain cohomological representations. Choose an orthonormal basis {vj }mj=1

of σ⊥
0 such that vm = v+

Ỹ
and set vm+1 = v−

0 . Then we have an isomorphism c : G∞→U(m+
1, 1) such that dcC(X(vj |vi)) = Eij (1 � i, j � m+ 1), where dcC : gC → glm+1(C) is the
complexification of the tangent map dc andEij are the matrix units of glm+1(C). Let T be the
compact Cartan subgroup of U(m+ 1, 1) formed by all the diagonal matrices in U(m+ 1, 1).
Let {εj }1�j�m+1 be the basis of t∗C dual to the basis Ejj (1 � j � m + 1) of tC . Here tC



CERTAIN RANKIN-SELBERG INTEGRALS FOR UNITARY GROUPS 155

is the complexified Lie algebra of T . For a tC-root β, let gC(β) denote the β-root space in
gC . Let q be the sum of those tC-root spaces gC(β) such that β(E11 − Emm) � 0. Then q is
a θ -stable parabolic subalgebra of g in the sense of [22]. Here θ is the Cartan involution of g

corresponding to K∞.
The construction in [22] yields an irreducible unitarizable (g,K∞)-module Aq such that

H1,1(g,K∞;Aq) �= 0, which we denote by π11. By [22, Proposition 6.1], the representation
π11 is characterized by the two properties: (1) π11 contains the K∞-type τ ◦

1,1 and (2) the
Casimir elementΩ acts on π11 by 0.

7.2.3. An explicit formula of Whittaker functions.

PROPOSITION 51. Let ϕ ∈ WY
τ ◦

1,1
(π11). There exists a constant Cϕ such that ϕ =

Cϕϕ
π11
0 , where ϕπ11

0 ∈ WY
τ ◦

1,1
(π11) is given by

ϕ
π11
0 (m(t; 1m)) =

(
4π

∣∣∣∣R[Y ]√
D

∣∣∣∣
1/2)−(m+1) ∑

i,j=0,1

φij

(
4πt

∣∣∣∣R[Y ]√
D

∣∣∣∣
1/2)

yij , t > 0(7.6)

with

φ00(t) =
(

m

m+ 1

)1/2

tm+3Km−1(t) ,(7.7)

φ01(t) = φ10(t) =
(

m

m+ 1

)1/2 (
d

dt
− 2(m+ 1)

t

)
φ00(t) ,

φ11(t) =
(
m− 1

m+ 1

)1/2

φ00(t)− 2m1/2(m− 1)1/2

t
φ10(t) .(7.8)

PROOF. Note the highest tC-weight of τ ◦
1,1 is ε1 − εm. It is known that the highest

tC-weight of a K∞-type of π11 is contained in the cone {(a + 1)ε1 − (b + 1)εm + (b −
a)εm+1 | a, b ∈ N}. In particular, the tC-weights −εm + εm+1 and ε1 − εm+1 are not the
highest weights of K∞-types of π11. Hence, ∇−1ϕ = 0,∇+(m+1)ϕ = 0 holds, where ∇ i

is the Schmid operator ([19], [16]). Since the function t 
→ ϕ(m(t; 1m)) takes its values in

(E◦)G
Y
0,∞ , it can be written as

∑
i,j=0,1 φij (t)y

ij with some functions φij (t). By the same way
as [16], using Lemma 50, one can deduce the equations among φij ’s.

Here is the result. Let ∂ = t (d/dt), the Euler operator.
• The equation Ωw = 0:

∂2φ − 2(m+ 1)∂φ + A(t)φ = 0 , φ =



φ00
φ10
φ01
φ11


(7.9)
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with

A(t) = −N2t214 − 2Nt




0 A0 A0 0
A0 0 0 A1
A0 0 0 A1
0 A1 A1 0


+




0 0 0 0
0 2m+ 1 0 0
0 0 2m+ 1 0
0 0 0 4m




and A0 = ((m+ 1)/m)1/2, A1 = ((m− 1)/m)1/2, N = 4π|R[Y ]/√D | 1/2.
• The equation ∇−1w = 0:

∂φ00 − 2(m+ 1)φ00 −NtA0φ10 = 0 ,(7.10)

∂φ01 − (2m+ 1)φ01 − Nt
A0

m+ 1
φ00 − NtA1φ11 = 0 .(7.11)

• The equation ∇+(m+1)w = 0:

∂φ00 − 2(m+ 1)φ00 −NtA0φ01 = 0 ,(7.12)

∂φ10 − (2m+ 1)φ10 − Nt
A0

m+ 1
φ00 − NtA1φ11 = 0 .(7.13)

From (7.9), (7.10) and (7.12), we obtain

∂2φ00(t)− 2(m+ 3)∂φ00(t)+ (−N2t2 + 8(m+ 1))φ00(t) = 0 ,

which, by putting φ00(t) = tm+5/2u(t), is transformed to the classical Whittaker’s differential
equation

d2u

dz2 +
(−1

4
+ 1/4 − (m− 1)2

z2

)
u = 0

with respect to the new variable z = 2Nt . Hence u(t) has to be proportional toW0,m−1(2Nt)
since ϕ(m(t; 1m)) should be of polynomial growth as t → +∞. �

8. Computation of Archimedean local-zeta integrals. We retain the notations in
Sections 5 and 7.

The aim in this section is to evaluate the local-zeta integral

ζ∞(ϕ; s) =
∫

C×
〈v0|ϕ(m(t; 1m))〉|t|s−(m+1)/2

C d×t , ϕ ∈ WY
τ (π) .(8.1)

Here (τ,W) is an irreducible unitary representation of K∞ with a KỸ∞-fixed unit vector v0 ∈
W and 〈 | 〉 is the inner-product of W . (Note |t|C = t t̄ for t ∈ C.)

LEMMA 52. We have

ζ∞(ϕ; s) =
∫ ∞

0
〈v0|ϕ(m(t; 1m))〉t2s−m−2dt .(8.2)

PROOF. Write the integral (8.1) by the polar coordinates on C×. Then use the KỸ∞-
invariance of the vector v0 to compute the integral on the unit circle. �
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We compute the zeta-integral (8.1) more concretely for (Case 1) and (Case 2) discussed
in 7.1 and 7.2.

Let ε ∈ {0, 1} be the parity of m. Set ΓR(s) = π−s/2Γ (s/2), ΓC(s) = 2(2π)−sΓ (s)
with Γ (s) the gamma function.

8.1. Case 1. We consider the case when π is the spherical principal series representa-
tion π(ν) and (τ0,W0) the trivial representation with v0 = 1 ∈ W0 = C.

PROPOSITION 53. Let ϕπ(ν)0 ∈ WY
τ0
(π(ν)) be the function whose restriction to the

split torus m(t; 1m) (t > 0) is given by (7.2). Then ζ∞(ϕπ(ν)0 ; s) is convergent on Re(s) >
|Re(ν)|/2, and

ζ∞(ϕπ(ν)0 ; s) = 2−(ε+9)/2|D|(m+ε−2)/4|N(dR(M))|1/4|R[Y ]|1/2

× (2|D|−1/2)s
L∞(s, π(ν))

L∞(s + 1/2,M ∩ Y⊥)
1

ζm,∞(2s)
(8.3)

with

L∞(s, π(ν)) = |N(dR(M))|s/2|D|[(m+2)/2]sΓC (s + ν/2) ΓC (s − ν/2)

×
[m/2]∏
j=1

ΓC (s + (m+ 1)/2 − j)2ΓC(s)
ε ,

(8.4)

L∞(s,M ∩ Y⊥) = |N(dR|Y⊥(M ∩ Y⊥))|s/2|D|[(m−1)/2]s

×
[(m−1)/2]∏
j=1

ΓC (s +m/2 − j)2 ΓC(s)
1−ε.

(8.5)

We also set

ζm,∞(s) = |D|(1−ε)s/2ΓR(s − ε + 1) .(8.6)

PROOF. Set N = 4πt|R[Y ]/√D|1/2. By the formula (7.2) and the definition (8.2),

ζ∞(ϕπ(ν))0 ; s) =
∫ ∞

0
tm+1Kν(Nt)t

2s−m−2dt

= N−2s
∫ ∞

0
Kν(t)t

2s−1dt

= 22s−2N−2sΓ (s + ν/2)Γ (s − ν/2)

for Re(s) > |Re(ν)|/2. Here we use [2, 6.561, 16 (p. 668)] to prove the third equality.
The remaining part of the proof is a direct computation. We use the relation N(dR(M)) =
N(dR|Y⊥(M ∩ Y⊥))|R[Y ]|−2, which is a consequence of Lemma 25. �

8.2. Case 2. Let π11 and (τ,W) = (τ ◦
1,1,E

◦) be as in the paragraph 7.2.2. Then

v0 = X(v+
Ỹ
|v+
Ỹ
)◦ is a KỸ∞-fixed unit vector of E◦.
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PROPOSITION 54. Let ϕπ11
0 ∈ WY

τ ◦
1,1
(π11) be the function whose restriction to the split

torus m(t; 1m) (t > 0) is given by (7.6). Then ζ(ϕπ11
0 ; s) is convergent on Re(s) > (m−1)/2,

and

ζ∞(ϕπ11
0 ; s) = −mπm+1

m+ 1
2m−(ε+3)/2|D|(m+ε−2)/4|N(dR(M))|1/4|R[Y ]|1/2

× (2|D|−1/2)s
L∞(s, π11)

L∞(s + 1/2,M ∩ Y⊥)
1

ζm,∞(2s)

m∏
j=2

(s + (m+ 1)/2 − j)−1

with

L∞(s, π11) = |N(dR(M))|s/2|D|[(m+2)/2]sΓC(s + (m+ 1)/2)2

×
[m/2]∏
j=1

ΓC (s + (m+ 1)/2 − j)2 ΓC(s)
ε .

(8.7)

PROOF. By (7.3), we have

v0 = −1√
m(m+ 1)

(y00 + (m2 − 1)1/2y11) .

Substitute this and the formula (7.6) to the integral (8.2); then ζ∞(ϕπ11
0 , s) equals

(−1/
√
m(m+ 1))N−2s times∫ ∞

0
(φ00(t)+ (m2 − 1)1/2φ11(t))t

2s−m−2dt

=
∫ ∞

0

{(
m+ 4m(m2 − 1)

t2

)
φ00(t)− 2m(m− 1)

t
φ′

00(t)

}
t2s−m−2dt

= 2m(m− 1)(2s +m− 1)
∫ ∞

0
φ00(t)t

2s−m−4dt +m

∫ ∞

0
φ00(t)t

2s−m−2dt

(8.8)

if Re(s) > (m − 1)/2. Here, to prove the second equality we apply the integration-by-part
and eliminate φ′

00, noting that φ00(t) is of exponential decay as t → ∞ and Km−1(t) =
O(t−(m−1)) as t → +0. By (7.7) and the formula [2, 6.561, 16 (p. 668)], we have∫ ∞

0
φ00(t)t

2s−m−2dt = (m/(m+ 1))1/2 22sΓ (s + (m+ 1)/2)Γ (s − (m− 3)/2) .

Use this formula to compute the integrals in the last form of (8.8); then we obtain

ζ∞(ϕπ11
0 , s) = −m

m+ 1
N−2s22s

{
(m− 1)(2s +m− 1)

2
Γ (s + (m− 1)/2)Γ (s − (m− 1)/2)

+ Γ (s + (m+ 1)/2)Γ (s − (m− 3)/2)

}

= −m
m+ 1

N−2s22sΓ (s + (m+ 1)/2)2
m∏
j=2

(s + (m+ 1)/2 − j)−1
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by using the equation Γ (x + 1) = xΓ (x) several times. The remaining part of the proof is a
direct computation. �

9. Global results. We retain the notations and the assumptions made in Section 5.
Let (τ,W) be an irreducible unitary representation of K∞ with a non-zero KỸ∞-fixed vector
v0 ∈ W . Let F : GQ\GA → W be a cusp form with the KfK∞-equivariance (5.3). Suppose
F is a Hecke eigenfunction, i.e., there exists a C-algebra homomorphism Λp : Hp → C for
each prime p such that

F ∗ φ = Λp(φ)F , φ ∈ Hp .

Then the L-function of F is defined to be the Euler product

L(s, F ) =
∏
p

L(s,Λp) ,

over all the prime numbers p, where L(s,Λp) is the local L-factor attached to the character
Λp of Hp for each p (see Section 4). It is known that the infinite product L(s, F ) converges
absolutely for Re(s) > c with a sufficiently large c > 0.

Our aim in this section is to study the automorphic L-function L(s, F ) of F by the
integral (5.4), relying on the results of Murase and Sugano which we shall recall below.

9.1. Murase-Sugano’s results on global L-functions. Let us assume that the function
f : GY0,Q\GY0,A/KY

0,fG
Y
0,∞ → C used to form the Eisenstein series (see 5.4) is also a Hecke

eigenfunction, i.e., there exists a C-algebra homomorphism Λ0,p : HY
p → C for each prime

p such that φ0 ∗ f = Λ0,p(φ0)f for all φ0 ∈ HY
p .

THEOREM 55 (Murase and Sugano [8]). Suppose the class number of E is one. De-
fine the completed L-function L̂(s, f ) := L(s, f )L∞(s,M ∩ Y⊥) with the gamma factor
L∞(s,M ∩ Y⊥) given by (8.5). Then,

(1) The holomorphic function L̂(s, f ) originally defined on some right-half plane is
meromorphically continued to the whole complex plane with the functional equation L̂(s, f )=
L̂(1 − s, f ).

(2) The meromorphic function L̂(s, f ) on C is holomorphic except possible simple
poles at s = m/2 − j (0 � j � m− 1).

(3) The function L̂(s, f ) has a pole at s = m/2 if and only if f is a constant function.

The normalized Eisenstein series associated to f is defined by

E∗(f ; s; g) = (2|D|−1/2)−s ζ̂m(2s + 1)L̂(s + 1, f )E(f ; s; g) .

Here ζm(s) is the completed Riemann zeta function ζ̂ (s) for an odd m, and is the completed
Dirichlet L-function L̂(s, ω) for an even m. We need the following result.

THEOREM 56 (Murase and Sugano [8]). Suppose the class number of E is one. Then
the function E∗(f ; s; g) is meromorphic on the whole s-plane C and invariant by the sub-
stitution of the variable s → −s. It is holomorphic except possible simple poles at s =
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m/2 − k (0 � k � m). The residue at its right most possible pole s = m/2 is the constant

Ress=m/2E∗(s; f ; g) = f (1)ζm(m)Ress=m/2L̂(s, f ) .

9.2. An estimation of Whittaker integrals. Recall the Whittaker integral of F defined
by (5.6).

LEMMA 57. The function ϕFf,Y |G∞ belongs to the space WY∞ ⊗W .

PROOF. By the definition of the automorphic forms [10, I.2.17], there exists a constant
r ∈ R such that for each D ∈ U(g) the estimation ‖RDF(g)‖ � C0‖g‖rGA

holds for all
g ∈ GA with a constant C0 > 0. Here ‖ · ‖GA

is a height function of GA ([10, I.2.2]).
SinceGY0,Q\GY0,A ×NQ\NA is compact, by the properties of the height function [10, (ii),(iii)
(p. 20)], we obtain the estimation

‖RDF(nm(1; g0)g∞)‖ � C1|Tr(tḡ∞g∞)| r , g0 ∈ GY0,A, n ∈ NA, g∞ ∈ G∞

with a constant C1 > 0. From this, the estimation for ϕFf,Y |G∞ follows by integration (see
(5.6)). �

9.3. Automorphic L-functions for wave-forms. Let (τ,W) = (τ0,W0) be the trivial
representation of K∞. A cusp form F is called a wave-form if it is an eigenfunction of the
Casimir operator Ω . Let ν2 − (m + 1)2 with ν ∈ C be the eigenvalue, i.e., ΩF = {ν2 −
(m + 1)2}F . Let ϕFf,Y be the Whittaker integral of F along (f, Y ) defined by (5.6). Since

the restriction ϕFf,Y |G∞ belongs to WY
τ0
(π(ν)), the result of 7.1 yields the unique constant

cf,Y (F ) ∈ C such that

ϕFf,Y (m(t; 1m)) = cf,Y (F )ϕ
π(ν)
0 (m(t; 1m)) , t > 0 .

We call the number cf,Y (F ) the (f, Y )-Whittaker coefficient of F .

THEOREM 58. Let L̂(s, F ) = L(s, F )L∞(s, π(ν)) be the completed L-function of F
with the gamma factor defined by (8.4). Then for s ∈ C such that Re(s) > (m+ 1)/2,∫

GỸ
Q

\GỸ
A

E∗(f ; s − 1/2; h)F (h)dh = B0cf,Y (F )L̂(s, F )

with B0 = 2−(ε+8)/2|D|(m+ε−3)/4|N(dR(M))|1/4|R[Y ]|1/2. Here ε ∈ {0, 1} is the parity of
m.

PROOF. By the property of ZFf,Y (s) noted in 4.1, this follows from Theorem 26, Theo-

rem 28 and Proposition 53. Note |Re(ν)| � m + 1, since F ∈ L2(GQ\GA) implies π(ν) is
unitarizable. �

THEOREM 59. Assume the class number of E is one. Suppose cf,Y (F ) �= 0 for some
Y and f as above.

(1) The completed L-function L̂(s, F ) is continued to a meromorphic function on the
whole complex plane with the functional equation L̂(1 − s, F ) = L̂(s, F ).
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(2) The meromorphic function L̂(s, F ) is holomorphic on C except at possible simple
poles s = (m+ 1)/2 − j (0 � j � m).

(3) If f is not constant, then L̂(s, F ) is holomorphic at s = (m+ 1)/2. If f is the
constant function 1, then

Ress=(m+1)/2L̂(s, F ) = B−1
0 c1,Y (F )

−1ζ̂m(m){Ress=m/2L̂(s, 1)}
∫
GỸQ\GỸA

F(h)dh .

PROOF. This follows from Theorems 56 and 58. �

COROLLARY 60. The following two conditions on F are equivalent.
(1) The integral

∫
GỸ

Q
\GỸ

A

F(h)dh is not zero.

(2) c1,Y (F ) �= 0 and the L-function L(s, F ) has a pole at s = (m+ 1)/2.

9.4. Automorphic L-functions for certain harmonic forms. Let (τ,W) = (τ ◦
1,1,E

◦)
and π11 be as in 8.2. Assume F belongs to the space {L2(GQ\GA)

∞ ⊗ W }KfK∞ and sat-
isfies ΩF = 0. Here L2(GQ\GA)

∞ denotes the space of smooth vectors in L2(GQ\GA).
By the characterizing property of π11 recalled in the paragraph 8.2.2, the functions g 
→
〈w|F(g)〉 (w ∈ E◦) generate a π11-isotypic (g,K∞)-submodule of finite length in L2(GQ\
GA)

∞. Let ϕFf,Y be the Whittaker integral of F along (f, Y ). Since the restriction ϕFf,Y |G∞
belongs to the space WY

τ ◦
1,1
(π11), Proposition 51 yields the unique constant cf,Y (F ) ∈ C such

that

ϕFf,Y (m(t; 1m)) = cf,Y (F )ϕ
π11
0 (m(t; 1m)) , t > 0

where ϕπ11
0 is the function constructed in Proposition 51. We call the number cf,Y (F ) the

(f, Y )-Whittaker coefficient of F .

THEOREM 61. Let L̂(s, F ) = L(s, F )L∞(s, π11) be the completed L-function with
the gamma factor defined by (8.7). Let v11 = X(v+

Ỹ
|v+
Ỹ
)◦. Then for s ∈ C such that Re(s) >

(m+ 1)/2, ∫
GỸQ\GỸA

E∗(f ; s − 1/2; h)〈v11|F(h)〉dh

= B1cf,Y (F )

m∏
j=2

(s + (m+ 1)/2 − j)−1L̂(s, F ) ,

where B1 = −2m+3πm+1B0(m/(m+ 1)) with B0 the same constant as in Theorem 58.

PROOF. By the same reasoning as Theorem 58, this follows from Theorems 26 and 28
and Proposition 54. �

THEOREM 62. Assume the class number of E is one. Suppose cf,Y (F ) �= 0 for some
(f, Y ) as above.

(1) The completed L-function L̂(s, F ) is continued to a meromorphic function on the
whole complex plane with the functional equation L̂(1 − s, F ) = (−1)m−1L̂(s, F ).
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(2) The meromorphic function L̂(s, F ) is holomorphic on C except at possible simple
poles s = (m+ 1)/2, (−m+ 1)/2.

(3) If f is not constant, then L̂(s, F ) is holomorphic at s = (m+ 1)/2. If f is the
constant function 1, then

Ress=(m+1)/2L̂(s, F )

= B−1
1 (m− 1)! c1,Y (F )

−1ζ̂m(m){Ress=m/2L̂(s, 1)}
∫
GỸ

Q
\GỸ

A

〈v11 |F(h)〉dh .

PROOF. This follows from Theorems 56 and 61. �

COROLLARY 63. The following two conditions on F are equivalent.
(1) The integral

∫
GỸQ\GỸA

〈v11|F(h)〉dh is not zero.

(2) c1,Y (F ) �= 0 and the L-function L(s, F ) has a pole at s = (m+ 1)/2.

10. Examples. Let us give examples of (R,M, Y ) which satisfies the assumptions
in 5.2.

LEMMA 64. Let R = −√
DT with T a positive definite symmetric matrix belonging

to GLm(Z). Suppose m �≡ 2 (mod 4). Then there exists a maximal O-integral lattice M in
(R,Em) containing Om such that dR(M) = √

D
εO with ε ∈ {0, 1} the parity of m.

PROOF. Let Λ be the set of all the O-integral lattices in (R,Em) containing Om; the
set Λ is not empty since Om ∈ Λ. Since L ∈ Λ is O-integral, the inclusion Om ⊂ L yields
L ⊂ R−1Om. Any maximal element M of Λ, whose existence is ensured by the fact that
R−1Om is Noetherian, is a maximal O-integral lattice in (R,Em). Since Om ⊂ M ⊂ M∗ ⊂
R−1Om, �(M∗/M) divides �(R−1Om/Om) = |D|m, which means dR(Mp) = Op for all
p ∈ I(E) ∪ S(E). Let p ∈ R(E). If m is odd, then, by Lemma 8, we have necessarily
dR(Mp) = √

DOp. This proves the assertion. Let us consider the case when m is a multiple
of 4. Then detR = Dm/2 = N(

√
D)m/2 ∈ N(E×

p ). By Lemma 8 and Lemma 5, this implies
that M is split, i.e., M0 = {0} in the decomposition (3.1). Thus dR(Mp) = Op. This proves
the assertion. �

EXAMPLE 1. Let m = 4k + 1 and T = tT ∈ GL4k(Z) be positive definite. Sup-
pose D ≡ 1 (mod 4). Choose a maximal O-integral lattice L in (−√

DT,E4k) such that
d−√

DT
(L) = O by Lemma 64. Set V = E⊕E4k, R = diag(−√

D,−√
DT ), M = O⊕L.

Then since dR(M) = √
DO, M is a maximal O-integral lattice in (R, V ) by Proposition 9.

EXAMPLE 2. Let m = 4k + 2 and T = tT ∈ GL4k+1(Z) be positive definite.
Choose a maximal O-integral lattice L in (−√

DT,E4k+1) such that d−√
DT (L) = √

DO
by Lemma 64. Set V = E ⊕ E4k+1 and define R, M by the same formula in Example 1.
Then dR(M) = DO. Suppose |D| is a product of primes of the form 4l + 3 (l ∈ N). Since

− det(R) = N(
√
D

2k+1
) ∈ N(E×), det(R) �∈ N(E×

p ) for any p ∈ R(E). Hence M is a
maximal O-integral lattice in (R, V ) by Proposition 9.
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In both of these examples, the vector Y = (1/
√
D, 0) ∈ V satisfies the assumption in

the paragraph 5.2.1.

REMARK. Let (R,M, Y ) be as in Examples 1 and 2 above. In [21], we show that
there exist infinitely many linearly independent Hecke eigen wave-cusp-forms F : GQ\GA/

KfK∞ → C such that c1,Y (F ) �= 0 and
∫
GỸ

Q
\GỸ

A

F(h)dh �= 0.
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