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1. Introduction. Recently, Chow and Yorke [1] have extended
Vrkoé’s result [2] on integrally asymptotic stability for ordinary differential
equations. They have given substantially simpler proofs of Vrkoé’s
results based on the method used in [3] and shown that every integrally
asymptotically stable system behaves nicely not only for perturbations
integrable on [0, ) but also for the larger class of interval bounded
functions, i.e., the class of functions p(¢) such that

t+1
sups [p(w) | du < oo .
t=20 t

On the other hand, Kato and Yoshizawa [4] have extended Chow
and Yorke’s results to functional differential equations without using
Liapunov’s method. Here, we show that the converse theorem holds for
integral stability of functional differential equations under suitable con-
ditions.

2. Preliminaries. Let I denote the interval 0 < ¢ < o and let ||
be the Euclidean norm of € R™. For a given & > 0, C denotes the space
of continuous functions mapping the interval [—#, 0] into BR™ and for
6€C, || 4| =sup_ngoso | #(0)|. Let Cy be the set of ¢ € C such that || ¢ || < H.
Let Cu(L)(0 < L < =) be the set of g€ Cy such that |4(6,) — ¢(6,)| <
L|6, — 6,] for all 4,, 6, [—h, 0] and Cy(c0) be ULso Cx(L). For ¢ e Cy(co),

let || ¢l be the norm defined by Il = 41| + |  14(0)|s, where 4(o)

denotes the right-hand derivative of ¢(u) at w = 6 if it exists and 0 if
it does not exist. For any continuous function x(u) defined on an interval
including [t — &, t], the symbol x, will denote the restriction of x(u) to
the interval [t — h, ], i.e., x, is an element of C defined by z,(0) = z(¢ + 9),
—h <60 0. Let B, be the set of measurable functions p: I— R™ such
that ess sup,.;|p(u)| < « for any compact interval J in I. Let B be a
normed vector space in B,, and we denote the norm of » by || »||s.
Consider the functional differential equation
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(1.1) &) = f(t, @)

where f(t, ¢) is an m-vector functional which is defined on I x Cj.
Corresponding to (1.1), consider a perturbed system

1.2) ¥(@) = F (¢ v.) + @) ,

where p is an element of B. We make the following assumptions.
(H1) f:Ix Cy— R™ is continuous in (¢, ¢).
H2) |f (ht, #) | = Ut)||¢]|| on I x Cy, where I(t) is continuous.
t+
(H3) S u)dw < b for all ¢ = 0.
t

REMARK. (H1) can be replaced by the following more general
assumption:

(H1*) f(-, ¢) is measurable for each ¢, f(¢, -) is continuous for
each t, and for any ¢ > 0, any compact set S in C; and any compact
interval J in I, there exists a (¢, S, J) > 0 such that ||¢ — v || < V(e S, J)
implies | f(s, ) — f(s, ¥)| < € for all seJ, e S and e Cy.

In the following, we shall denote by (¢, ¢, ) a solution of (1.1)
through (&, 4,) and similarly by y(¢, t,, é,) a solution of (1.2).

Let 0<a < H,r>h and L > a/(r — h). For each (¢, ¢) in [r, ) X
Cy (), A,(t, 9, L) will denote the set of Lipschitz continuous functions
& [—h, t] — R™ such that

&=0,& = ¢, &€ C,(L) for all se[0,t — h].

Let V(t, ¢, L): [r, ) X Cy(o) — R' be a functional and S (¢, ¢) be
the set of (s, t, ), and we define the functional

Violt, 6, L) = sup T2 (V(t + 5, @0, L) — Vb, ¢, L)) .
2(8)€S(1.1)(t,9) 300+ O
DEFINITION 1. The zero solution of (1.1) is stable under B pertur-
bations (hereafter called S under B), if for any ¢ > 0, there exists a
d(¢) > 0 such that for any ¢, =0, any ¢,€ C; and any p€ B, || ¢, < d(e)
and || p|[z < d(e) imply |y(, ¢, 40)| < & for all ¢ = ¢,.

DEFINITION 2. The zero solution of (1.1) is attracting under B pertur-
bations (A under B for brevity), if there exists a 0, > 0 and for any
€ > 0, there exist a T(¢) > 0 and an 7(¢) > 0 such that for any ¢, = 0,

any ¢,€ C, and any pe B, || ¢,|| < 0, and || p ||z < 7(¢) imply | y(t, &, $0) | < &
for all ¢t = ¢, + T'(¢).

DEFINITION 3. The zero solution of (1.1) is asymptotically stable
under B perturbations (AS under B), if it is stable under B perturbations
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and is attracting under B perturbations.

DEFINITION 4. A function pe B, is said to be interval bounded if

t
t

+1
stlg)s | p(u) | du < o .

We shall denote the space of interval bounded functions in B, by
t+1
B,z with norm ||p||;z = supS | p(w) | dw. Especially, when B = B' =
t=20 t

B, N L0, ) and the zero solution is S under B, we sometimes say the
zero solution of (1.1) is integrally stable (IS).

LEMMA 1. Let B be either B;z or B'. Then S under B 1is equiva-
lent to (|-, 1l ll) — S wunder B w.r.t. Cy(w) on [r, ). A under
B, (|-l 1l - 1l) — A under Bw.r.t. Cy(co) on [r, <) and (|- ||, ] -]) — A
under B w.r.t. Cy(e) on [r, ) are equivalent. Moreover, if the zero
solution of (1.1) is A under B, it is S under B.

Here (|| - ||, || - ]l) — S under B w.r.t. Cy(co) on [r, o) means that
te=0,¢,€Cy |l 6o]|] and |y(t, t,, ¢0)| are replaced by t, = 7, ¢,€ Cy(co),
[| 6o ll. and || y.(to, #o) ||, respectively in the above definition of S under B.

It is not difficult to prove this lemma. It is sufficient to show that
for any ¢ > 0, there exist a d(¢) > 0 and an 7(¢) > 0 such that for any
t, =0, any ¢,€ Cy and any p€ Bz, || ¢0]| < 0(¢) and || p||;» < 7(e) imply
| Ysprrinlto, #o) . < &, and to show that for any &> 0, there exist a
0() >0 and an 7(¢) > 0 such that for any pe B;; and any y(¢, &, ),
ly(t, to, ¢o)| < 0(e) for all ¢t =¢, and || p|l;s < 7(e) imply || yuts, Pl <&
for all ¢t = ¢, + 2h. To show this, notice that a solution (¢, ¢, 4,) can
be written as follows

St —t)), to—h=t=t,,
t; tO; o) = ¢ t
y( ¢) {¢O(O) + St f(uy yu(tO, ¢0))du + St p(u)du ’ t > to .

t
From this it follows that [[y.(t., o)l = Il ¢l + St L) || yulto, $0) || du +
t
S | p(u) | dw, and by Gronwall’s inequality we obtain
to

1o.tto 011 = (Ilenll + | 1p00) | ) exp {[ dpdu}, o<

Moreover for t, + h <t < t,, we have y,(¢, ¢,) € Cy() and
t ¢
oo 81 = (Ilgall + | 19 [au)(1 + _ tw)an)

X exp {S’ )l + S:_h| p(u) | du .
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for all ¢t = ¢, + 2h.
3. Liapunov functionals. Let 0 <a < H,r>h and L > a/(r — h).
For each (¢, g) € [r, ) x C,(), let V{(t, ¢, L) be defined by

t

(3.1) Vit o, L) = inf (o0 dw) — S, 8] du,

tedg(t,6,0) )0

where A =0 is a constant. In case L, > L, > a/(r — h), we have 0 =
V(¢t, ¢, L) < V(t, ¢, L,), because A,(t, ¢, L) is contained in A,(t, ¢, L,).
Therefore W(t, ¢) can be defined by

(3.2) W, )= inf V(6 L)=lmV(, g L).

L>al(r—h

On the other hand, A,(¢, ¢, L) contains an element which attains the
value of V{(¢, ¢, L) since A,(t, 4, L) is compact. Moreover V(¢, 4, L) has
the following properties.

LEMMA 2. Let t = r, g€ Cy() and pe€ B,. Then we have the ine-
qualities:

(3.3) 0=Vt o, )=+ + 1)l

t+r—h
where supS l(u)du < b'. For t satisfying
t20 t

. 1 t+o
12| = lim "™ | p(u) | du
3-0+ 0 J¢

(3.9 wa(t, ¢, L) = Viuo(, ¢, L) + | p() ] .

ProOF. Let &€ A.(¢, ¢, L) be a function such that &wu) =0 on [—F,
t — h —a/L] and the graph of & on [t — h — a/L,t — h] is a straight
line between (¢t — b — a/L, 0) and (¢ — h, §(—h)). Then we have

0= V(¢ ¢, L)
< emiiw - rwe)dus | 14w - S &)l du
=l - fae)ldu+ | 1dw) - S, 80 du
<lo=ml+ 16w~ wwdu+{ 1901130+ 1161 | ttwin
<lhel(t+(,  wwdn)+ [ 160140
<ol + 816+ )< @+ +Dllglh,

where " > 0 is a constant such that
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t+a/L t+r—h
sup g w)du < sup S Wwydu < b’ .
t=0 t

t20 Jt

Now, the assumption » € B, implies | p(¢) | = lim,_,, 1/ Sm p(u) | du a.e.
t

in ¢. For such a t, we take z = x(s)e S,.,(¢, ) and y = y(s) e Si.»(t, ),
and we choose 0 <d <% such that x and v exist on [¢, ¢t + d]. Let
&e At + 0, 2,5, L) be a function such that

V(t + 0, %45, L) = S:H et Igd(u’) — flw, &) du .

Moreover, let 7° be a function such that »* = £ on [—h, ] and 7’(u) =
y(uw) on [t,t + 6]. Then we obtain

Vit + 8, Us L) S || €740 [30) = £ty 7 du

Now let L' > max (L, M), where M = HmaX,c,<..; (u). From the
assumption (H1) it follows that for any & > 0, there exists a 7(¢) > 0
such that for any 0 <s<t¢+h, and +, € Cy(L’) and any € Cy, | (s, v,) —
(s, )| <e if ||y — qﬁzll < (). Therefore, if 6,0 <9, < h, satisfies

0, < Y(e)/4AM and if S v ]p(u)ldu < Y(€)/2 and 0 < ¢ < 0,, we have z,,,€
t
Cy(L') and || ®,,s — ytHH < 7(e). Since we have

Vi, ¢, L) = llm {V(t + 0, Ysrsy L) — V&, ¢, L)}

< lim < {V(t + 0, %uroy L) — V2, ¢, L)}

-0+

+ Iim = > {V(t + 0, Yis, L) — V(t + 0, x,.5, L)}

30+

S Vi g D+ T {7 e 1) — S )
-0+ 0 (Jo

— e 18 w) - Fu, &) | du

< Vit g, D)+ T {7 e (1) — £, 70 |
a0+ 0 Jt

— &) — flu, &)} du < VIt 6, L)
-q@%fﬁmm—mm+umm%¢mamm

A

Vilt, ¢ L)+ T ) £y ) + p(0) = F (0, 0 | du + ¢

A
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we see that Vi(t, ¢, L) < Viwn(t, ¢, L) + | p(t)|, because ¢ > 0 is arbi-
trary.

REMARK. If f(¢, ¢) satisfies | f(¢, ¢) — f (&, v)| S UE) || ¢ — ¥ ||, we can
prove | V(t, ¢, L) — V(t, ¥, L)| < (b + 1)||¢ — v ||, for ¢ and y such that
$(—h) = y(—h).

LEMMA 3. Let »r > h,L > a/(r —h) and 0 < a,<a. For t=1r and
p€ Cof0), let x(s),t —h=s=t+ A (A>0), be a function such that
z,=¢ and x,€C,(Ly) on [t,t + Al. If L= L, v(s) = V(s, x., L) 1s con-
tinwous on [t, t + A]. EHspectally, if 2(s) € S..,(¢, @), v(s) is non-increasing
and we have

(3'5) V{Ll)(s’ xa! L) é —)\:V(S, xsr L) .

PrROOF. Let a = a — a, and let B be a positive number such that
lz(s)|/sSL—pBon[t—h,t+ A]l. Forselt, t+ A], we take £€ A,(s, x,, L).
Let ne A.(s, x,, L) be a function such that the graph of » on [0, s — &]
is a straight line between (0,0) and (s — &, (s — k)). Then |7H(uw)| =
a—a=a,and |)(u)| <L — B forall ue[0,s]. For & nandq(0<qg<1l),
let &2=(0—q)+qn. Then &%¢ A, .(s, 2, L — qB) and consequently
&'¢ A,(s,x,, L). Since f(u, ) is uniformly continuous on [0, t + A] x C,(L),
for any e > 0 there exists a Y(¢) > 0 such that for any u,, u,€|[0, ¢t + A]
and any y, ¥, € Co(L), | f (%, 1) — F (U, ¥) | < €/(16(t + A)) if [u, — u,| +
[| 4, — 42 |] <7(e). For this v(¢), we choose a ¢ such that 2aq < 7(e),
2Lq(t + A) < ¢/16 and 0 < ¢ < 1. Then for 0 < u < s, we have

&, — & < g sup | £6) — 7(0)| = 2aq < 7(¢) ,

and hence we obtain
(e éw = £, e 1au — [ een 1) — £, 89 au

@8 = |- w15 ) - f @)

sqfltw—iwla+ S <+ =5
For t<s, <8 <t+ A,0=(s;—h)/(s;— h) and &€ A,(s, 2., L), define
C(w) by
0 if —~h<u<0
L(w) = E"(au)+Slﬁh(x(sl—k)—x(sz_h) fo<u<s —h
w(w) ifs,~h<u<s,.
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Let 0 < r, < ¢/L min (a, B(t — k)/2) and ]s1 —8;|<7. Thenfor 0 <u<s,
we have

|@(s, — h) —a(s: —h)| =@ —qa+ Lr<a

[Lw)| < |£%(ou) | + —2
si,—h

and

Lr,

1) | < o |&'(ou)| + 2 —

1 26— ) — als: — h)| = o(L — ¢B) + —

§(1+ )(L—q/s) —<L

—h

and hence { belongs to A.(s, ,, L). On the other hand, let 0 < 7, <
1/L min (¢/16, 7(¢)), | s, — s.| < 7. and x(u) = &%(ou). Then for 0<u=<s,—h,
we obtain

16 = %Il = sup [Cu+ 6) = 2w + 0)| < L|s, — 5] < Lr,

and

Lr,

lx(sl—h)—x(sz_h)!< s—h

|(w) — #(w)| = -

Thus we have
|7 e ) — £, Gy lau = [ e 1 5w) — fw, 1)1 du
@0 =7 1w - g+ 7A@ ) - Fu, 1)l
= Lr,+ % < % .

Now let M = a maXocu<;+4 (%) and 7, >0 be a number such that

7, < min (l,tljhh>7(e) , Lr,< %

and

—A(8;—wu/a)

— 6—2(32—14) €

<8(L-1-M)(t-{—A) )

sup sup

I8y —sglsr3 0Sust+4

o

If |s, — s,| <7 then for 0 < u < s, — h, we have
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1% = &l = sUD | x(w + 0) — &'(ou + )]
= sup [&(ou + a0) — &'(ou + 6)|

th(a—1)§Lht ”h<v(e),

and hence we obtain the following inequality.

81—h .
|7 e 3 = Fo, 70 1w
(3.8) .
= [ e ) - f e au| < F

since
7 emrnms 0 — £ 20
so—h 2
~ e @) - @) du

=| [ 18ou) — F, 1) | dw

a S e e | £9(u) — f(u, &) du
+ {7 o - D 1Ew] du
= ‘ S:rh e | £ (ou) — f(u, 5.) | du
- S:z—h e | £%(u) — f(u, &) du,!
+ 71, 1) — £, &) du + L,
= \ S:rh e o | Eau) — f(u, £5.) | du
- S:Z_h et | () — f(u, §1) | dul

+ "7 ) — flow, gy du - 2

A

LI im0 — f(u, )| du
g Jo

o2~k —2(8p—u) | A9 q 38
— [T ) — S, ) ] +



FUNCTIONAL DIFFERENTIAL EQUATIONS 469

83—k e‘“’l""’") e .
égo —— — ¢ |16 w) — f(w, &) [ du
3 _ 4e
+E <
8 < 8

Moreover, let 0 < r, < ¢/8(L + M) and |s, — s,|] < r,. Then we have
83—k .
(3.9) [ e 1w - F, G ldu < £

Finally, let 0 < 2Lr, < 7(¢), (¢’ — 1) (L + M)(t + A) < ¢/16 and | s, — s, | < 5.
Then we obtain
sup [ L(u) — &'(u) |

Osus=s)—

= max(_sup |C0) ~ €@, sup |E0) ~ £ )

0

< max ( sup |Cw)— 2w+ sup |1(w) - £,

sup | L(w) — a(s,— B[+ _sup | &) — (s, — h)|)

s)—hsu<sy—h s)—h=u=<sy—
=< max (| (s, — k) — a(s, — k)|
+__sup [&'(ou) — ' W), Lis: — 81) + Lis: — 81))

0=Suss) —
< max (L(s, — s,) + L(¢ — 1)(s, — k), 2Lr;)
< max (2Lr;, 2Lr;) = 2Lr, < ¥(€) .

From this it follows that

S:_h et | g’(u) — f(u, 2| du
— S:l—h g | Eq(u) — flu, £2)| du

<

[ ermmaqe - £, €)1 = 18w — @, &) ) du
(3.10) n .
+ - (8w + 1@ &) du
=" 17,0 — F el du
Ary i _6_ i
+ (e 1)(L+M)(t+A)<16+16 g’

since &(u) = £%u) on [s, — h, s,]. Now let r, = min (r,, 75, 7, 7, 75) and let
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&€ Au(s, 2., L) be a function such that
oed = Vioy my L) = |07 140 = F(w, £ du

where 0<s,—s <7, and s, s;€[t,t + A]. Then from (3.6) through
(3.10), we obtain

o(s) = | e 18w — £, 0 du
< S e | u) — f(u, £,)| du
. S e [C(w) — f(w, L) du
< g e | f(u) — f(u, x.) | dw + %
i S ] E(u) — f(u, L) du
< (7" om0 — s, el au + 3
4 S :h e~ | E(u) — f(u, C,)| du

e - o
[ ettt i 1
[ e ) — f, 60 du + T8
8o—h 8

< "ot fw) — flu, e ldu +

< S: e | E(u) — fu, &) du + € = v(s;) + ¢,

that is, v(s)) — v(s;) <e. On the other hand, let &€ A(s, =, L) be a
function such that

o) = Visy moy 1) = |07 160 = @, 8| du,

and extend & so as to be &(u) = x(u) on [s, s,]. Let 0 < (L + M)r' <e¢
and |s, — s,| < 7'. Then we have
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“wéﬁuﬁvwam—fmfowu
gawwnfywwwam—fW£owu
éy}ﬂ“”ﬂw—fWJowu

+ e bw) — Fu, 8 du

Sv(s) + (L + My <w(s) + e,

and thus v(s) is continuous on [¢, ¢t + A].
Especially, when x(s) = (s, t, ¢), we extend &€ A,(s, x,, L) so as to
be &(u) = x(u) on [s, s + 0] for some d > 0. Then we obtain

g“(m+mam—foJMu
§ﬂﬂkﬂmﬁw—fm&ﬂm-

Since this is true for all &€ A,(s, x,, L), v(s) is non-increasing. For
2t = x(u) € Si..(s, x,), we have

V(S + 5, x:+h L) g 6~“ V(S, Ls, L) ’
and hence

Vﬂ’tl(s’ Lsy L) é —X V(s’ Lsy L) ’
which implies (3.5).

4., Theorems. We are ready to prove our theorems.

THEOREM 1. In order that the zero solution of (1.1) be integrally
stable, it 1s mecessary and sufficient that for some a,0 < a < H, and
* > h, there exists a family of Liapunov functionals {V(t, ¢, L)}, L >
a/(r — h), defined on [r, ) X C,() which satisfies the following con-
ditions:

(i) V@, ¢, L) is continuous along a curve which ts Ly-Lipschitz
continuous, where L = L.

(i) b(lgll) = Vt, ¢, L) = K|l ], on [r, o) X Cule0) ,

where b(s) 1s continuous, increasing and positive dfﬁnite.
— i+
(iii) Vi, ¢, L) < Vi, ¢, L) + lim, 0, 1/0 St | p(u) | du on [r, o)X
C.(), where p € B,.
(IV) V:l.l)(t7 8, L) =0 on [’f', 00) X C,,(L).
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PRrROOF. Assume that there exists a family of Liapunov funectionals
which satisfies the conditions in the theorem and the zero solution of
(1.1) is not integrally stable. Then, since IS is equivalent to (|| - ||, || - ||) —
IS w.r.t. Cy() on [r, ) by Lemma 1, there exists an ¢ >0 and
sequences {t,}, {7.}, {.(t)} and {8,} such that

1

r=ts5,, peB, | Inwla<t,
ty n

60 € Cu() ||¢nnl<% and |2 (tu, $2) |L = &,

where y" = y"(s, ., ¢,) is a solution of (1.2) with »(¢) = p,(t). Choose an
n so large that 1/n <a and (K + 1)/n < b(s,). Let ¢,€ Cy(L,), M, =
@ MaX;, <uso, (w) and P, = ess sub;,<us., | Po(%)|. For an L such that
L >max(L,, M, + P,, a/(r — }z;)); consider V(¢ ¢, L). By (iii) and (iv), we
have V/u(s, ¥, L) < [, o, 1/5S | p(u)| du, because Vs, y?, L) < V', ofs,
y*, L). Hence, for ¢, <s < r,,t, we obtain

VS, ¥ty )y L) < Vit U2 (b #0), L) + | | Da(w) ] duc .
tn

Setting s = 7,, we have

Vi 2t 6, 1) S Kl L+ = < EEL < ey

On the other hand, by [|y? (t., ¢.)|l. = & and (i), we obtain
V(@,, ¥2,(8as ¢4), L) = B(|| y7, (8, ¢4) I]) = b(e0)

which is a contradiction. Thus the zero solution of (1.1) is integrally
stable.

Now for an a,0 < a < H,r > h and N = 0, define V{(¢, ¢, L) by (3.1),
where L > a/(r — h). By Lemma 3, V{(¢, ¢, L) is continuous along a curve
which is L,-Lipschitz continuous, where L = L,, and V{(¢, ¢, L) satisfies
(iv). From Lemma 2 it follows that V(¢, ¢, L) satisfies V(¢, ¢, L) < K || ¢ ]|,
and (iii). Thus it is sufficient to prove that W(¢, ¢) is positive definite
if the zero solution of (1.1) is IS. Suppose not. Then there exists an
g > 0, sequences {t,} and {¢,} such that ¢, = 7, ¢, € C.(0), || ¢. |l = & and

W(t,, 6.)—0 as m— oo .

Let d(s,) be the number in the definition of (||« ||, || - ||.) — IS w.r.t. Cy(o).
Choose an 7 so large that W(t,, ¢,) < d(s,). Then for sufficiently large
L > a/(r — h), we have V(t,, ¢., L) < d(s,). Now let é€ A,(t,, ., L) be a
function such that
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16w = £, 201 du < o6e)
and define p(¢) by

{E(t) S &) for te]0,¢,]

p(®) = for te(t,, «).

Then ¢&(¢) is a solution of #(t) = f(¢, x,) + p(t) through (0,0) on the
interval 0 =t <¢,, but [|&, | =1¢.l. = ¢&. This contradicts the defi-

nition of (||-||, || +|].) — IS w.r.t. Cyz(e). This proves the theorem.

THEOREM 2. In order that the zero solution of (1.1) be integrally
attracting, it 1s necessary and sufficient that for some a, 0 < a < H, and
r>h, there exists a family of Liapunov functionals { V(¢, 4, L)}, L>a/(r—h),
defined on [r, ) X C,(o) which satisfies conditions (i), (ii) and (iii) in
Theorem 1, and

(iv) Vi@, ¢, L) = — V¢, ¢, L) on [r, o) X Ci(c°) .

PrOOF. Assume that there exists a family of Liapunov functionals
which satisfies the conditions in the theorem and the zero solution of
(1.1) is not integrally attracting. Then, since IA is equivalent to
ANl - 1l) — IA w.r.t. Cy(e) on [r, ) by Lemma 1, for any 6 > 0
such that 6K < b(a), there exists an & > 0, sequences {t,}, {7.}, {9.(t)}
and {4,} such that t, = r, 7, = t, +n, p, € B, S | () | du <1/n, 6, € Ca(co),

[|4alls <0 and [|y? (t., ¢.)|l: = €, Where y”(s t., ¢.) is a solution of (1.2)

with p(t) = p.(t). Now choose an #» so that 6K + 1/» < b(a) and 6Ke™™ +
1/n < b(s). Let ¢,¢€C.(L,), M, = a max, <.<., l(u) and

P, = e8g sup | Da(u) | .

MT”

For an L such that L > max (Lm M, + P,, a/(r — h)), consider V(¢ ¢, L).
From (iii) and (iv), it follows that for ¢, < s <7,

Vs, Uit 83, L) S Vit ¥t 6 D™ + " [ pa(w) | du -
Setting s = 7,, we have

V(Tay U2 (tnr 60), L) < 0Ke™™ + % < ble)

But, by ||yZ.(ts ¢4)]l. = & and (i), we have
V(T oy Y2 (Ear $4), L) = b(I| Y2, (t0, 60) [1) = B(ES) »
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which is a contradiction. Thus the zero solution of (1.1) is I4.

Now assume that the zero solution of (1.1) is IA. Then by Lemma
1, the zero solution of (1.1) is IS and IA is equivalent to (|||, || -|.) —
IA w.r.t. Cy(ee) on [r, ). Let d, correspond to the d, in the definition
of (J|-1l, Il -1l) — IA w.r.t. Cyz(e) on [r, ). For o7 such that 0 < o5 < 9,
let @« =0f and let » > h. For N =1, define V(¢, ¢, L) by (3.1), where
L > a/(r — k). It is sufficient to prove the positive definiteness of W(¢, 4).
Suppose not. Then there exists an & > 0 and sequences {¢,} and {¢,}
such that t, = 7, ¢, € Cu(), || 84|l = & and

W(t,, ¢.)—0 as n— o .

If {t,} is bounded, we have a contradiction in a similar way to the proof
of Theorem 1. Now we consider the case where

t,— > as mnm— oo .
Choose an 7 such that
ty > T(eo) + 7+ 1, W, ¢,) < 7€) "0,

where T(e,) and 7(¢,) are numbers corresponding to those in the defi-
nition of (|||, ||+ |l.) — IA w.r.t. Cy(eo) on [r, ). Then for sufficiently
large L > a/(r — k), we have V(t,, ¢., L) < n(&,)e” T2 Moreover, let
e A,(t., 6., L) be a function such that

St“ e~ | E(u) — f(u, &) | du < 7(g)e ot
0
and set ¢, — (T(s;) + 1) = t,. Thent, = r and ¢, > ¢, + T(s,). Then clearly
o= (Tte0)+1) S‘n l E(u) — Flu, £) | du
to

_ S”e-”W*“lé(u)—-fTu,Eu)ldu

to

< S et | §u) — fu, £)] du < p(e)e T+

0

and hence, we have

[ 14 = £, €)1 du < 966 -
Define p(¢) by

(t) . {é(t) - f(t’ Et) for te [O’ tn]
P =10 for te(t,, «),

Then &(t) is a solution of #(t) = f(¢, x,) + »(t) on ¢, <t <t, such that
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[|&,1l < 8. However |&, |, = ¢, which contradicts the definition of
-1, 11l — IA w.r.t. Cyg(eo) on [r, ) since ¢, > ¢, + T(c,). This proves
the theorem.

Now we shall show the equivalence between IA and A under B,;.

THEOREM 3. If the zero solution of (1.1) is integrally attracting,
then it is attracting under B,z perturbations.

PrROOF. Assume that the zero solution of (1.1) is integrally attracting.
First we prove that the zero solution of (1.1) is S under B;;. By
Theorem 2, there exists a family of Liapunov functionals {V{(¢, ¢, L)},
L > a/(r — h), defined on [r, =) X C,(~) which satisfies (i), (ii), (iii) and
(iv)’. Suppose that the zero solution of (1.1) is not S under B,;. Then
by Lemma 1, it is not (|| ||, || - ]l.) — S under B,; w.r.t. Cy(c0) on [r, ).
Therefore there exists an ¢, 0 <¢, < a, and for any 6 > 0, there exist
D(8), to, tiy, g and y = y(s, &, ) such that pe By, ||p|lx <0, r =t = t,
o€ Co(=2), || $olly < 0, || ¥e,(ter #0) Il = & and |y(t, to, 60)| < a for telt, t..
We take a k, 0 < &k < 1/K, such that Kb(ke,) < b(s,). We may assume 0
is so small that

5 < b(%) < blke), Kbke) + 6 < b(e,) .

Sinee || o ||, < 8 < b((b(ke,))/K) < bke,) < Kke, < &, there is some t,€ (£, t,)
such that

19tts 51l = 5 (2B, gt 81> b (2E) for tet, ) -

Let yt2(t0y $)€ Co(Ly), M = a max; <u<i, l(u) and P = ess SUP:, <ust, | p(w)|.
Consider V(t, ¢, L), where L > max (L,, M + P, a/(r — k)). From (ii), (iii)
and (iv)’, it follows that
Vit, y:(to, d0), L) = Viea(t, ot o), L)
é - V(t, yt(tO’ ¢0)9 L) + q(t) é —b(” ?/t(to; ¢0) ”1) + q(t)

= oM 1 gy < 0 + a9

where q(t) = lim,_,, 1/0 Sm | p(w)| du. Now integrating from ¢, to ¢, we
t
have
t
V(tl, ytl(tO: ¢0)9 L) - V(tZy ytz(to’ ¢0)’ L) = —a(tl - tZ) + St lp(u)l dw

and thus
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b(&) = b(]| ytl(to; o0 || = V(¢ ’!/tl(to, $0), L)
§ V(tb ytz(to; ¢0), L) + 3 é K” ytz(tm ¢0) ”1 + 3

< Kb(%&i—» 46 < Kb(ke)) + 0 ,

which contradicts the choice of 6. Thus the zero solution of (1.1) is S
under B;j.

Next, we shall prove that the zero solution of (1.1) is A under B;;.
By Lemma 1, it is sufficient to prove the (||-||, || -||) — Attraction under
B;; perturbations w.r.t. Cy(oo) on [r, ). By the above-mentioned, there
exist two increasing functions 6 = d(¢) and 7 = 7(¢) on [0, a] such that

(4.1) | 2l:5 < 7 implies || y s, 60) |, < €

for all pe B;p ¢o€ Co(), || #ol], <6 and ¢t =¢t, = r. Let 6, = d(a). Let
€ > 0 be given. We claim that

Ka + %b(é(e))

7(¢) = min (7(¢), %5(5(8))) and T(e) = —
50(3()

are the required numbers in the definition of (|[-||, ||-]]) — 4 under Bz
w.r.t. Cy(e) on [r, ). All we have to show is that there exists t*e
(to, to + T(e)) such that [|y.(t, go)ll. < d(€), where go€ Co() and |[¢]; <
0, = 6(a), because we have

[y, g0) |l: < € for all ¢ =, + T(e) = t*

by (4.1) since 7(e) < 7(¢).
Now suppose that there does not exist such a t*. Then

0(e) = [|ydto, ¢0) |l: = @ for all teli, t, + T(e)] .
In a way similar to the previous proof, we obtain

0 <b((e) = V(t, + T, yt0+T(to; $o), L)
= Vo, Yo (tor $0)s L) — b@(ENT + (T + 1)1
S K| %]l — ®0() — 7)T + 7

< Ka — (b(a(e)) - é-b(&(e)))T + -;—b(ﬁ(s)) — Ka— Ka=0.

This contradiction shows that the zero solution of (1.1) is A under B;;.

REMARK. If the zero solution of (1.1) is IA, then it is totally
asymptotically stable (TAS), too. Here, the zero solution of (1.1) is TAS
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if it is S under B; and A under B;.
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