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THE GAUSS MAP OF KAEHLER IMMERSIONS
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1. Introduction. It is a central idea in the study of immersions of
Riemannian manifolds that the associated Gauss map clarifies the re-
lationship among geometric objects under consideration. Fundamental
results in this aspect which are closely related to our study are the
following.

First, in the classical theory of surfaces, with an oriented 2-manifold
M in a Euclidean 3-space there is associated the spherical Gauss map,
ikf —>S2, which assigns to a point p of M the well-defined unit normal
vector at p, identified with a point of the unit sphere S2 by parallel
displacement. It is well-known that the Jacobian coincides with the second
fundamental form of M [2].

More generally, with a Riemannian w-manifold M immersed in a
simply connected complete iSΓ-space of constant curvature, Obata [4]
associates the (generalized) Gauss map, which assigns to each point p of
M the totally geodesic w-subspace tangent to M at p. By the Gauss
map in this sense is given a geometric interpretation of the third funda-
mental form of the immersion.

The purpose of this note is first to define the Gauss map a la
Obata for a holomorphic immersion of a Kaehlerian ^-manifold M into
a simply connected complete Kaehlerian JV-space V of constant holomorphic
sectional curvature, and then to obtain a relationship among the Ricci
form of M, the fundamental 2-form of M and the third fundamental form
of the immersion (Theorem 4.1). The Gauss map in our generalized sense
is a mapping: M-+ Q, where Q stands for the space, which has a natural
complex structure and a quadratic differential form (see § 3), of all the
totally geodesic complex %-subspaces in V, and will be proved to be
anti-holomorphic (Theorem 3.2). As an application of Theorem 4.1, we
obtain a characterization of Einstein submanifolds in terms of the Gauss
map (Theorem 4.2). A new interpretation of theorems of Smyth [6] and
Ogiue [5] will also be given from the Gauss map viewpoint (Theorems
4.3 and 4.4).

It should be remarked that, in the corresponding case, the Gauss
map in this paper is essentially the same one as that of Nomizu-Smyth
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[3] defined for a complex hypersurface M of the complex (n + l)-space
Cn+1, which is a mapping of M into the complex projective w-space Pn(C)
and relates the Kaehlerian connections of M and Pn(C).

2. Preliminaries. We will summerize some of the basic formulas
of Kaehlerian geometry, to begin with. For details, see [1, 2].

In order to avoid repetition, it will be agreed that our indices have
the following ranges throughout this paper:

0 ^ A, B, C, ^ N ,

1 £ a, β, Ύ, ^ N ,

1 ^ i, 3, k, ^ n ,

n + lSr,8,t, ^ iV .

Let V be a Kaehlerian JV-manifold with metric g. Then # defines a
Hermitian scalar product on each tangent space of V and a connection
of type (1, 0) under whose parallelism the scalar product is preserved.
More precisely, let (x, eu « ,β^) be a field of unitary frames, defined
for a; in a neighborhood of V. Its dual coframe field consists of N
complex-valued linear differential forms Θa of type (1, 0) such that g can
be locally written as

g = 2 Σ θa ® θa .
a

Then the connection forms θa

β are characterized by the conditions

(1) θ°β + θl = O,

dθa= - Σ θ% A θβ .
β

The curvature forms Θa

β of V are defined by

( 2 ) dθ"β= - Σ θ"τ A θr

β + Θa

β ,

and thus we have

face (£iβ V 1 T?a -f)T A ftδ

r,δ

where Ra

βr-δ are components of the curvature tensor of V. V is of constant
holomorphic sectional curvature c if and only if

( 3 ) θ*β = (c/2)(θa A θβ + δaβ Σ θr A θ?) .
r

The system of equations in (1) and (2) are called the structure equations
of V.

The fundamental 2-form Φ and the Ricci form Ψ of V are defined
respectively by
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Φ = -2i^θaAΘa ,
a

9 = -2i Σ @a

a = -2i Σ S α ^ α Λ θ> ,

where Sa$ = Σr -K£r? a r e components of the Ricci tensor of V. V is called
Einsteinian if ^ is proportional to Φ with constant factor, i.e. Ψ = kΦ
for a constant k.

Now, let V denote one of the following simply connected complete
Kaehlerian iV-manifolds:

( i ) PN(C), a complex projective iV-space.
(ii) CN, a complex iV-space.
(iii) HN{C), a complex hyperbolic AΓ-space.

The bundle F(V) of the unitary frames on V can be identified with
the group G(N) which is one of the following according to the type of
V:

( i ) U(N + 1), the group of all linear isometries of CN+ί equiped
with the standard Hermitian metric: F(z, w) = ΣA ZAWA.

(ii) E(N), the group consisting of all transformations y—>u(y) + x9

ue U(N),xeCN, of CN.
(iii) 17(1, N), the group of all linear isometries of CN+ι equiped with

the indefinite Hermitian metric: F(z, w) = —z°w° + ^Jaz
awa.

In fact, fixing a point p° of V and a unitary frame 6° = (p°, e°ίf , e°N)
at p°, there is one and only one transformation h in G(N) which sends
b° into a frame b = (p, eu , eN) at a point p of V, and the correspond-
ence b <-* h is the desired identification. The isotropy subgroup K(N) at
p° is £7(1) x U(N) in the cases (i) and (iii), and U(N) in the case (ii).
Obviously V is the homogeneous space G(N)/K(N).

Let <pi be the Maurer-Cartan forms on G(N). Then φ | satisfy the
following algebraic relations:

φ°a=0 , φ«β + φβ

a = 0 ,

where from now on ε takes the value

I 1 if G(N) = Z7(iV + 1) , F = PV(C) ,

• e = J 0 if G(N) = E(N), V = CN ,

• ( - I if G(N)=U(1,N), V=HN(C).

φi also satisfy the structure equations:

( 4 ) (Z^ - - Σ ^ Λ φc

B .
6'

On putting
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θ« = ψζ ,

the Kaehler metric dσ2 on V is given by

dσ2 =

and (4) becomes

( 5 ) dθ"= -

Mf = - Σ #? Λ ^ + ε(0α Λ 8> + δaβ Σ θr Λ <?r) ,

which are the structure equations of V. From (5), the curvature form
Θβ of V is given by

0? = e(θa A θβ + δaβ ΣVrΛ θr),
r

which shows by (3) that V is of constant holomorphic sectional curva-
ture 2ε.

Throughout the rest of this note V always denotes one of the above-
mentioned simply connected complete Kaehlerian JV-manifolds. Let M be
a Kaehlerian w-manifold isometrically immersed into the space V by a
holomorphic mapping x:M—+V,F(M) denote the bundle of unitary
frames on M, and B be the set of elements b = (p, el9 , eN) such that
(P, el9 , en) 6 F(M) and (x(p), dxie,), , tfa?(βj, βn+1, , eN) e F( V). B
becomes naturally a differentiable manifold and ψ: B—>M, φ(p, el9 ,
QN) = P> can be viewed as a principal bundle with the fibre U(n) x U(N—ri).
The natural immersion x:B—*F(V)= G(N) is defined by x(b) = (x(p),
dx{eύ, — *, dx(en), en+1, *"feN)9 which is nothing but the natural identifi-
cation of an element of B with a frame of F(V).

Let ωa, ωa

β be the 1-forms on B induced from θa, θa

β by the map
x: ωa = £*0α, ωa

β = x*θa

β. Then we have

( 6 ) ωr = 0 ,

and the Kaehler metric ds2 on M is given by

ds2 = 2 Σ ωW .
i

From (5) and (6), we obtain

dω* = - Σ 0)1 A ωk ,
k

dω* = - Σ ω * Λω* - Σ ωί Λωj + e(ω'Λώ' + δ4ί Σ » ' Λ ώ * ) ,
A; r ft

where the second one is called the Gauss equation of the immersion x.
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The curvature form Ω) of M can then be written as

Ω) = dω) + Σ o)ί A ω)

= - Σ » ; Λ ωj + ε(ω{ A & + 8ti Σ.o'Άώ").
r k

It follows that

(7) Ψ -ε(n + l)Φ + 111=0 ,

where W denotes the Ricci form of M, Φ the fundamental 2-form of M,
and we have put

111= -2i^Λω
r

i/\ώr

i .
i,r

Finally note that the vanishing of all col defines a totally geodesic immer-
sion x.

3. The Gauss map. Let Q be the set of all the totally geodesic
complex %-subspaces in V. Then the group G(N) acts on Q transitively.
Take a point p in Q. Then the isotropy subgroup at p is identified with
G(n) x U(N — n), where G{n) is viewed as acting on the totally geodesic
complex %-subspace Vo representing the point p in Q and U(N — n) on
the totally geodesic complex (N — w)-subspace orthogonal to Vo at the
point of intersection which is kept fixed. Therefore Q is identified with
a homogeneous space

Q = G(N)/G(n) x U(N - n) .

By using the Maurer-Cartan forms φi of G(N) we introduce a quadratic
differential form dΣ2 and the associated 2-form Ξ on Q respectively by

dΣ2 = 2 Σ ε<Proφro + 2 Σ φ\φ\ ,
r i,r

Ξ = -2i Σ εψl Λ φl - 2ί Σ ^ί Λ φί ,
i

which are obviously invariant under the action of G(N). Furthermore
we introduce an invariant complex structure J on Q given by

i.e. the φr

0, φl are 1-forms of type (0, 1) on Q.
The structure (dΣ2, J) on Q is natural in the following sense:
In the case G(N) = U(N + 1), Q is the complex Grassmann manifold

Gn+hN+1(C) of the complex (n + l)-subspaces through the origin in the
complex (N + l)-space and (dΣ2

y J) is the standard Kaehlerian structure
on it with respect to which Q is a Hermitian symmetric space. If, in
particular, n = JV — 1, then Q is nothing but the complex protective
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iV-space PN(C) with the Fubini-Study metric of constant holomorphic
sectional curvature 2.

In the case G(N) = Z7(l, N), (dΣ2, J) is the standard pseudo-Riemannian
Kaehlerian structure with respect to which Q is a pseudo-Riemannian
Hermitian symmetric space.

In the case G(N) = E(N), dΣ2 is obviously degenerate. However, if
we consider the natural projection of Q onto the complex Grassmann
manifold Gn,N(C), obtained by identifying the parallel planes, (dΣ2, J)
coincides with the structure induced from the standard Kaehlerian
structure on Gn,N(C) by the projection.

DEFINITION. With an immersion x: M—•* V we associate the (gener-
alized) Gauss map f:M—*Q, where f(p), pe M, is the totally geodesic
complex w-subspace tangent to x(M) at x(p).

We consider the following diagram of mappings:

£> > Γ \V ) = (JΓ(JM )

( 8 ) I I

V f Γ
M-^ Q = G(N)IG(n) x U(N - n) ,

where π is the natural projection and x is the natural identification of
a frame in B with an element of G(N) mentioned in § 2. The diagram
(8) is clearly commutative.

It can be easily seen from (8) that the form f*Ξ induced from Ξ
on Q by the Gauss map / coincides with III:

(9) ΠI=f*Ξ= - 2 i Σ a > ί Λ ώ j ,

since we observe that

(10) f*φl = ωr ,

f*<Pri = 0)1 ,

and ωr = 0 by (6). We call /// the third fundamental form of the
immersion x.

PROPOSITION 3.1. The Gauss map f is a constant map if and only
if the immersion x is totally geodesic.

In fact, from (9) the Gauss map / is a constant map if and only if
III vanishes identically, i.e. ω\ = 0 identically. Moreover, we have

THEOREM 3.2. The Gauss map f is an anti-holomorphic mapping.

It suffices to note that ω\ are 1-forms of type (1, 0) on M. Then
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the second equation of (10) shows that / is anti-holomorphic.

4. Results. First, we state the relation (7) as

THEOREM 4.1. Suppose that a Kaehlerian n-manifold M is holomor-
phically and isometrically immersed into a simply connected complete
Kaehlerian N-space V of constant holomorphic sectional curvature 2ε.
Then the relation (7) holds among the Ricci form Ψ on M, the funda-
mental 2-form Φ of M and the third fundamental form III of the
immersion.

Note that from (7) Ψ is proportional to Φ if and only if III is. Thus
we have

THEOREM 4.2. Let M and V be as above. Then M is an Einstein
manifold if and only if the Gauss map f is a homothety or a constant
map.

If, in particular, M is a complex hypersurface of F, i.e.n = N — 1,
then the case in which the Gauss map is homothetic is very limited.
For example, let V be a complex (n + l)-space Cn+ί. Then the scalar
curvature S = 2 ^ Sΰ of M is non-positive. On the other hand, the
Gauss map can be viewed, by projecting Q onto Gn>n+ι(C) = Pn(C), as
a mapping of M into a complex protective %-space Pn(C), which has a
positive scalar curvature. Hence there exists no homothety between M
and Q, since every homothety preserves the sign of the scalar curvature.
More precisely, we obtain

THEOREM 4.3. Let M be a complex hypersurface immersed into a
simply connected complete Kaehlerian (n + ϊ)-space V of constant holo-
morphic sectional curvature 2e. // the Gauss map f is a homothety,
then V must be the complex protective (n + ϊ)-space Pn+1(C) and f is an
isometry of M into Q = Pn+1(C).

It should be remarked that, on account of Proposition 3.1 and
Theorem 4.2, this theorem is equivalent to the classification theorem of
Smyth [1, 6] for complex Einstein hypersurfaces of V, which states that
such an M is totally geodesic or else ε > 0 and M is locally holomorphically
isometric to the complex hyperquadric Qn(C) in Pn+1(C). In fact, we
have only to note here that for Qn(C) in Pn+ι(C), the connection forms
ωf+1 coincide with ω{ under a suitable change of the frame field.

In the light of this example, it may be said that it is of particular
interest to find sufficient conditions for the Gauss map to reduce to an
isometry. To close the note, we give a new interpretation of a theorem
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of Ogiue [5] from this point of view. Namely,

THEOREM 4.4 Let M be a compact complex hypersurface imbedded
into the complex protective (n + l)space Pn+1(C) of constant holomorphic
sectional curvature 2. If every holomorphic sectional curvature of M
is positive, then the Gauss map f is an isometry or a constant map.

Of course, in Theorem 4.4 (Theorem 4.3), if the Gauss map / is an
isometry, then M is (locally) a complex hyperquadric Qn(C) in Pn+1(C),
and the image of / is also (in) a complex hyperquadric Qn{C) of Q =
Pn+1(C).
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