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In the present paper, we shall investigate an extension of Nussbaum's
reduction theory [3] for unbounded operators in Hubert space from the
point of view of continuous reduction theory. We can see that Nussbaum's
reduction theory, somewhat, depending upon the measure theoretic argu-
ments has been considered in the case that the fibres of field of Hubert
spaces are separable. However, if we have a point of view of continuous
field of Hubert spaces introduced in [6], we can extend Nussbaum's
reduction theory for unbounded operators in Hubert space to unbounded
operators in continuous fields of Hubert spaces of which each fibre is not
necessarily separable. Our argument is based on some elementary facts
concerning the characteristic matrix of a closed operator which was
introduced in [5].

Let Ω be a compact Hausdorίϊ space, then Ω is called a Stonean space
if the closure of every open set is open (see [1] and [4]). Let Ω be a
Stonean space, H = CF(Ω, H(ω)) a continuous field of Hubert spaces over
Ω. Let A be a bounded C(£?)-module homomorphism of H into H, then
there exists an operator field {A(ω)} such that, for each ξ, η e H,

{{Aζ){ω) I η{ω)) = (A(ω)ξ(ω) \ η{ω))

for every ω e Ω where each A(ω) is a bounded operator on H(ω) and C(Ω)
is the algebra of all complex-valued continuous functions on Ω [6; Pro-
position 4.4]. In this paper, we shall investigate to decompose unbounded
operators in H = CF(Ω, H(ω)) in the above mentioned form for bounded
operators. As application of the above representation for unbounded
operators in continuous field of Hubert spaces, we shall show that the
square root for densely defined positive operator exists and, further, if
A is densely defined decomposable operator, then A can be written
uniquely of the form A = VS (the polar decomposition of A), where S is
a self-adjoint, positive operator and V is a partially isometric operator.

1. Notation and Preliminaries. In this section, we provide some
notations and facts that will be used later. We assume, throughout our
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discussions, Ω to be a Stonean space, but the reader will notice that the
assumption is merely used for convenience and the proofs can be mostly
effected without this assumption. Let Ω be a Stonean space, and let C(Ω)
be the algebra of all complex-valued continuous functions on Ω. For a
field {H(ω); ωe Ω] of Hubert spaces, the elements ξ = {ζ(ω)} of ΐ[ωeΩH(ω)
are called vector fields. If fe C(Ω) and ξ = {ξ(ω)} is a vector field, fζ =
{/(ω)f(ω)}. If ζ = {ξ(ω)} and η = {η(ω)} are vector fields, the (£, 9) is the
function: α> —> (f (ω) | ??(ω)), and | £ | is the function: ω —> || £(ω) ||, where
(ί(α>) I )j>(ω)) is the inner product defined in H(ω) and || ξ(ω) \\ = (ζ(ω) \ ξ(ω))112.
Let B(K) be the algebra of all bounded operators on a Hubert space K;
then each element of Y[ωeΩB(H(ω)) is called operator field. If A = {A(α>)}
in Π«β*BCH(ω)) and f - {ξ(ω)} in Π.e a #(<*>), then Aζ = {A(ω)ξ(ω)}.

We give the definition of continuous field of Hubert spaces over Ω
introduced in [6].

DEFINITION 1.1. ([6; Definition 3.1]). Let Ω be a Stonean space, and
let {H(ω); ωeΩ} be a field of Hubert spaces over Ω. A subspace H of
ΐ[ωeΩH(ω) is said to be a continuous field of Hubert spaces over Ω, if
there exists a subspace F of ~[[ωeΩH(ω) such that

( 1 ) for every ζeF, the function ω—>||£(α>)|| is continuous on Ω,
( 2 ) for each ωe Ω, the subspace {ζ(ω): ξe F} is dense in H(ω),
( 3) H — {ξ 6 Πωeβ iϊ(ω): for each positive number ε and each ωoe Ω,

there exist an element £0 in F and a neighborhood ?7(ω0) of ωQ such that
|| ζ(ω) - ξo(ω) || < ε for every ω e U(ω0)},

( 4 ) if ξ = {ί(ω)} is a vector field such that the function ω —• || f(ω) ||
is bounded, and for each ηe F, the function ω—+(ξ(a)) \ Viω)) is a continuous
function on β, then ζ e H.

Under Definition 1.1, H is a C(£?)-module in the ordinary algebraic
sense and, for any ξ = {ζ(ω)} and η = {η(a))} in H, the function ω —>
(ζ((θ) I y(o))) is continuous on Ω, thus (f, 57) is an element of C(Ω). Further-
more we can show that, in H, the following properties satisfy:

( 1 ) {ξ,V) = iV,S)*f
( 2 ) (ί, £) ^ 0 and is 0 only for f = 0,
( 3) (aξx + δί2, 7) = α(f,, ί?) + 6(ί2, 7)

for all £, f!, ξ2fηeH and α, 6e C(β). We use the notion

where on the right we mean the usual positive square root and norm in
C(Ω). Then if is a normed space with respect to the above mentioned
norm || ||. In particular, H is complete with respect to the norm || ξ || =
sup{||£(ω)||:ωeβ} for ζeH. Thus we denote H = CF(Ω, H(ω)) and we
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call F a s a fundamental subspace for H. Let G be a subspace of HωeΩ H(ω)
such that Hz)Go>F, then G is a fundamental subspace of H, that is,
H = CG(£?, #(&>)) is the mean of Definition 1.1. A bounded operator A
from a continuous field Hi. = CFl(Ω, HJ^ώ)) of Hubert spaces over Ω into
a second continuous field H2 = C^2(£, &i(ω)) of Hubert spaces over J2 is a
mapping from Hi into iϊ2 that is not only linear and continuous in the
usual operator norm, but is also a C(fl)-module homomorphism. We shall
write the element of C(Ω) (typically /, g, , α, 6, •) on the left of the
element of H (typically ξ9η9 •••)• We call A* the adjoint operator of
A e B(H) if (Aξ, η) = (ξ, A*η) for all ζ, η e H = CF(Ω, H(ω)). Then A* is
a bounded operator and the algebra B(H) of all bounded operators on H
is a C*-algebra [6; Corollary 3.7]. This permits the formulation of the
following definition.

DEFINITION 1.2 ([6; Definition 4.1 and 4.2]). Let H = CF(Ω9 H{ω)) be
a continuous field of Hubert spaces over a Stonean space Ω. An element
A in B(H) is called a decomposable operator if, for each ω e Ω, there
exists an element A{ω) of B(H(ω)) such that for all ζ, ηe H and each
ωeΩ, ((Aξ)(ω) | η{ω)) - (A(ω)ξ(ω) \ v(ω)).

Let {A(ω)} be an element of ΐ[ωeΩB(H(ω)) such that the function ω—>
||A(α>)|| is bounded. The field {A{ω)} is called continuous if, for every
ζ = {ξ(ω)} e H = CF(Ω, H(ω)), the vector field {A(ω)ξ(ω)} is an element of H.

Definition 1.2 says that every element A of B(H) is represented as
an element {A(ω)} of ljJωeΩB(H(ω)) satisfying (Aζ)(ω) = A(ω)ζ(ω) for each
ωeΩ and ξ e H. Thus we consider, throughout our discussions, every
element A of B(H) to be an element oίγ[ωeΩ B(H(ω)) in the above mentioned
mean. Furthermore, if A = {A(ω)} is an operator field such that the func-
tion ω—>|| A(α>)|| is bounded and the field {A{ω)} is continuous, then A is
considered an element of B(H).

We shall contemplate some closed operator which is able to decom-
posable. Before going to dispute about the above mentioned closed operator,
we have some considerations.

We will introduce a notation of continuous submodule. To introduce
the notation, we must show that if ^ is a closed submodule of H, ^£{ω)
is a closed subspace in H{ώ) for every ωeΩ. The following proposition
says that each ^€(ω) is a closed subspace in H{ω).

PROPOSITION 1.3. Let H — CF{Ω, H{ω)) be a continuous field of Hilbert
spaces over a Stonean space Ω. Let ^ be a closed submodule of H.
Then each ^£(ω) = {ζ(ω); ξ = {ξ(ω)} e ^£) is a closed subspace of H(ω).

PROOF. For an arbitrary fixed element ω0 of Ω, let λ be the canonical
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mapping of ^€ onto ^ ( ω 0 ) : ^£ 3ζ —>?(ωo)e ̂ (ωQ), and let Vωo be the
kernel of λ; then λ induces a mapping λ of ^f/Vωo onto ^f(ω0). Then
λ is isometric, and so ^(ω0) is a closed subspace of H(ωQ). In fact, since
|| λ || ^ 1, || λ II ^ 1. On the other hand, for each ζ e ^£ and an arbitrary-
positive number ε, the set

is an open set containing ω0. Thus let z be the projection in C(Ω) corre-
sponding to the closure of (?, then λ(z£) = X(ζ). Hence (1 — z)ζ is an
element of VωQ. Furthermore, we have

| | *£ | | =Bwp{z(ω)\\ξ(ω)\\:ωeΩ}

= suv{z(ω)\\ξ(ω)\\:ωeG}

Hence

inί{\\ξ + η\\:ηe VωQ} ^ \\zξ\\ £ | | ί ( ω o ) | | + ε .

Since ε is an arbitrary positive number,

Therefore, λ is isometric and so ^f(ω0) is a closed subspace of H(ω0) for
every ωQ e Ω.

For our purpose, we introduce the following definition.

DEFINITION 1.4. Let H = CF(Ω, H(ω)) be a continuous field of Hubert
spaces over a Stonean space Ω. By a continuous submodule ^ we mean
a subset of iϊsuch that ^£ is a closed submodule and ^£ = C^(Ω,

The above definition is equivalent to the ATΓ*-submodule in [2], but
our definition can be introduced even if Ω is not a Stonean space.

Next, we shall show that the notation of continuous submodule is
equivalent to an another notation.

THEOREM 1.5. Let H = CF(Ω, H(ω)) be a continuous field of Hilbert
spaces over a Stonean space Ω. Let ^ be a closed submodule of H.
Then the following conditions are equivalent.

(1) ^y£ is a continuous submodule,
(2) if ξ = {ξ(co)} is an element of ΐ[ωeΩ^^(co) such that, for every

rj e ^€, the function ω —* (ξ((ΰ) \ η(a))) is continuous on Ω and the function
ω-+\\ ξ(ω) \\ is bounded; then ξ is an element of ^*C

(3) let {ea} be orthogonal projections in C(Ω) with sup ea = I and
{ξa} a bounded subset of ^ C then Σ ββ£α is an element of
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PROOF. (1) => (2): This assertion was denoted by the remark after
Definition 1.1.

(2) => (1): To prove that Λ = C^(Ωf ^(ω)), we must show that ̂ /T
satisfies the conditions (1), (2), (3) and (4) in Definition 1.1 with respect to
^£ itself. It is trivial by the properties of ^ f that (1), (2) and (4) arise.
Thus, we must show the condition (3). If ξ is an element of Π«eβ^(α>)
such that, for arbitrary positive number ε and each element ω0 of Ω, there
exist ξ' of ^ and a neighborhood t7Ί(α>0) of ω0 satisfying || ξ(ω) — ξ'(ω) || <
e/2 for every ωe U^o). Then, since ζ' is an element of if, there exist
an element ξ" of F and a neighborhood U2(ω0) of ω0 satisfying ||f'(ω) —
ξ"(ω) || < e/2 for every ωe U2(ω0). Put U(ω0) = U^o) n U2(ω0), then U(ω0)
is a neighborhood of ω0 and we have the following equation: || ζ(ω) — ξ"(ω) || <
ε for every ω e U(ω0). Thus, ξ is an element of H and so, for each η e ̂ £^
the function ω-+(ξ(ω) \ rjifύ)) is continuous on Ω. Therefore, by the assump-
tion, ζ is an element of ^*C Thus, ^ — C^(Ω, ^€(ω)).

(1)̂ =>(3): We showed this assertion in [6; Theorem 4.5].
Let B{H) be the C*-algebra of all bounded operators on a continuous

field H = CF(Ω, H(ω)) of Hubert spaces. We call an element P in B(H)
a projection if it is a self-ad joint idempotent: P 2 = Pand P* = P. Then
we have the following result.

THEOREM 1.6. Let H = CF(Ω, H(ω)) be a continuous field of Hilbert
spaces. If a subset ^ of H is a continuous submodule of H, then there
exists a projection P such that PH = ^£1 Conversely let P be a projec-
tion on H, then PH = ^£ is a continuous submodule of H.

PROOF. Let ^ be a continuous submodule of H, then, for every
ωeΩ, ^t(ω) is a closed subspace of H{ω) and ^ = C^(Ω, ^ ( ω ) ) . Let
P{ώ) be the projection of H{ω) onto ^€(ω), then the operator field {P(ω)}
is continuous. In fact, for each ξ e H and η e ^ {P(ω)ξ(ω)} is an element
of ΐ[ωeΩ^(o)) and we have: for each ωeΩ,

(P(ω)ξ(ω) I η{ω)) = (ξ(ω) \ P(ω)η(ω)) = (ξ(ω) \ η(ω)) .

Thus the function ω —> (P(ω)ζ(ω) | r]{o))) is continuous on Ω, and so the
vector field {P(ω)ζ(ω)} is an element of ^£ by Theorem 1.5. Hence, for
each ξ, ηeH, the function ω—>(P(ω)ξ(ω) | η{ω)) is continuous on Ω. There-
fore P = {P(o))} is continuous and it is a projection such that PH = ^

Conversely, let P = {P(ω)} be a projection on i ϊ = CF{Ω, H{ω)) and
put ^ = PH, then ^ is a closed submodule of i ϊ because P is an element
of B(H). If £ = {f(ω)} is an element of ΐ[ωeΩ^(ω) such that the func-
tion ω—•||f(ω)|| is bounded and, for each ) j e j ; the function α>—>

)) is continuous on Ω; then since P̂ ? e ^ for every 57 e H, for
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each 7) e H, the function

ω - (ξ(ω) I (Pη)(ω)) = (ξ(ω) \ P(ω)η(ω))

is continuous on Ω. Furthermore, since ξ(ω) e ^£(ω) for every ω e Ω,

(ξ(ω) I P(ω)η(ω)) = (P(ω)ζ(ω) \ η{ω)) = (f (ω) | )?(ω)) .

This shows that the function ω —> (ξ((θ) \ rj(ω)) is continuous on Ω, and so
ζ e H. Hence, since ζ e H and Pζ = ξ, ξe ^ . Therefore ^ is a continuous
submodule of H.

2. The s-closed operators in continuous fields of Hubert spaces. Let
H, = CFl(Ω, H^ω)) and H2 - C ^ β , H2(ω)) be continuous fields of Hubert
spaces over a Stonean space Ω. Let fli. 0 H2 be the direct sum of Hγ and
iϊ 2. We define, for each {&, f2} and {̂ , %} in H^H, and zeC(Ω),

({fl, f,}, {>?!, %}) = (f 1, ̂ l) + (£„ %)

and

Then Έί^ 0 JT2 is a C(J2)-moduled Banach space with respect to the norm

and has an inner product on C(Ω) where | {ξu ξ2}\ = {\ ξ, |2 + | ζ2 \ψ2. Further-
more, we can show that Hi 0 Hz is a continuous field of Hubert spaces
over Ω with a fundamental subspace F10 JP2- In fact, Fr 0 i^2 and ίZΊ 0
flί are subspace of IL 6 β(i ϊ i(ω) 0 H2(ω)).

The following result shows the above consideration. The proof of
this assertion is shown by considering the properties of continuous field
of Hubert spaces and the direct sum, and so we omit the proof.

PROPOSITION 2.1. Let H, = CFι(Ω, H^ω)) and H2 = CF2(Ω, H2(ω)) be
continuous fields of Hubert spaces over Ω, then ίZΊ 0 H2 is a continuous
field of Hilbert spaces over Ω (defined respect to ί7! φ F 2).

Let H = CF(Ω, H(ω)) be a continuous field of Hilbert spaces over a
Stonean space Ω and A be an arbitrary operator in H (not necessarily
bounded). Throughout in the remainder of this paper, we suppose that
the domain 3f(A) of A is submodule and A is C(ί2)-module homomorphism
on &(A).

We have a similar notation to operator theory in Hilbert spaces.

DEFINITION 2.2. Let H = CF(Ω, H(ω)) be a continuous field of Hilbert
spaces over a Stonean space Ω and A an operator in H with the domain

The graph of A is the set G(A) of all pairs of vectors {ξ, rj) in
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the direct sum H®H= CFΘF(Ω, H(ω) 0 H(ω)) such that η = Aξ for ξ e
A is closed if and only if the relations

ξn e &r(A), lim ξn = ξ, lim Aξn = η
n—*oo n—»oo

imply that ξ e &r(A) and Aξ = η.

Let {ξn} and {ηn} in 3ί(A) be two sequences such that, if lini.^ ξn =
lim^*, Ύ]n and both limits of two sequences {Aξn} and {Aηn} exist, then
limn_»00 A£Λ = lim,^ A^n. Then A has a closed extension. Among these
is the so-called minimal closed extension, which is contained in every closed
extension of the operator A. The minimal closed extension is uniquely
defined for each operator A. It is denoted by A and is called the closure
of A. In order to obtain A, it is sufficient to adjoint to £gr(A) all those
elements ξ e &{Ά) which are limit of sequence {ξJ in 3f(A) such that there
exists the limit of sequence {Aξn}, and to require that Aξ = lim,^ Aζn.
Then the closure of G(A) in H®H= CmF{Ω, H{ω)®H{ω)) is G(A).

Let A be an operator in H with the domain £%r(A). Put

3r(A) = {ξ = ΣJ eaζa: {L} is a bounded subset of

such that {Aξa} is a bounded subset and {ea} are

orthogonal projections in C(Ω) with sup ea = 1} ,

and

= {ζ = Σ eαfα: {ία} is a bounded subset of

and {ea} are orthogonal projections in C(Ω) with

sup eα = 1} ,

then both subsets £kr(A) and 3?{A) are submodules of i ί by the follow-
ing result.

LEMMA 2.3. Let A he an operator with the domain £&{A) in a con-
tinuous field H = CF(Ω, H(ω)) of Hubert spaces over Ω. Then both subsets
U and &(A) are submodules of H.

PROOF. If we can show that &(A) is a submodule of H, then we
can show by the same way that £&(A) is a submodule of H. Thus, we
show that ϋ^A) is a submodule of H. For any ξ = Σ e«?« and rj =
ΣjfβVβ in &(A), ξ = η if and only iί'eafβζa = eafβηβ for any α, β. Since
it is evident that £&(A) is C(β)-module, we show that £&(A) is linear.
Since the set {ξa + ηβ}Vtβ is bounded and {eafβ}atβ are orthogonal projections
with supα>/5 eafβ = I, we put ζ = Σ β«Λ(ί« + Vβ) i n ^ ( ^ ) For any a, βf
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- eafβ(ξa + Ύ]β) = eafβξa + ejβηβ

= eafβζ + eafβη = eafβ(ξ + η) .

Thus ζ = £ + η and so £ + η is an element in &{A).
Under the assumption in Lemma 2.3, put, for every £ = Σ e«ί« in

Aζ = A(Σ ββ£β) = Σ

then A is an operator in H = C (̂i2, iϊ(ω)) with the domain £^r(A). We
must show that A is well-defined. In fact, if £ = Σ eaL = ΣΛ%, e«Λ£« =
βαΛ^ for any α, /3. Thus, we have

eafβAξa = Aeafβξa = Aejβηβ = eJβAηβ

and so Σ eaAζa = ΣΛA%.
Furthermore, we have the following fact.

LEMMA 2.4. Under the assumption in Lemma 2.3 αmZ £/&e notation
before the lemma, suppose that A is a closed operator; then the graph
G(A) of A is a continuous submodule of H@H = CmF(Ω, H(ω) 0H(ω)).

PROOF. By the closedness of A and Lemma 2.3, G(A) is a closed sub-
module. Thus, we must show by Theorem 1.5 that if {{£α, Aζa}} is a
bounded subset in G(A) and {ea} are orthogonal projections in C(Ω) with
sup ea = I, then Σ ea{Ly Aξa} is an element of G(A). Since £α is an element

in Sf{A) = &{A), we can represent £α by £a = Σ e?α̂ "α s u c h t h a t ί̂ "α} i s

a bounded subset of &r(A) with the upperbound || £α || and {βfα} are orthogonal
projections in C(Ω) with sup efα = /. Then Σ e«ί« = Σ β«β?α̂ fα and {eae?JatCa

are orthogonal projections in C(ί2) with sup eαβfα = /. Thus, Σ e«ί« i s i n

£&(A) and A(Σ e«f«) = Σ β«A£α. Thus, G(Ά) is a continuous submodule
of H@H.

The proof of the following lemma is trivial and is left to the readers.

LEMMA 2.5. Let ^/ί be a submodule of a continuous field H =
CF(Ω, H(o))) over Ω such that, for each bounded subset {ζa} in ^/ί and
family {ea} of orthogonal projections in C{Ω) with sup ea = I, Σ e«f« is

in ^/ί\ then the norm closure ^ of ^€ is a continuous submodule of H.

From the above lemmas, let A be an operator in a continuous field
H= CF{Ω, H{ω)) with the domain &r(A), then the closure G(Ά) of the graph
G(Ά) of Ά defined before Lemma 2.4 is a continuous submodule of H@H
by Lemmas 2.3 and 2.4. If A has a closed extension, then the graph G(A)
of the closure A of A is the closure G(A) of G(A). Thus, if Ά has a
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closed extension, the graph of A is a continuous submodule of i f 0 i f .
Furthermore, if there exists a closed operator B in H such that Bz) A
and the graph G(B) of B is a continuous submodule of HQ)H =
CFΘF(Ω, H(ω) 0 H(ω)), then it is evident by the definition of A that Bz)Ά.
Thus, A has a closed extension and 5 D 4 . Therefore, if A has a closed
extension, then the closure A is the minimal extension among the operator
B such that Bz)A and the graph G(B) of B is a continuous submodule
of if 0 if = CFΘF(Ω, H(ω) 0 fΓ(α>)).

From the above considerations, we have the following definition.

DEFINITION 2.6. Let H = (7̂ (42, H{ώ)) be a continuous field of Hubert
spaces over Ω and A an operator in H with the domain ^(A). A is s-
closed if and only if the graph G(A) of A is a continuous submodule of
Hφ H = CFΘF(Ω, H{ώ) 0 H{ω)). If A has a closed extension, then we
say that A has an s-closed extension. The minimal s-closed extension is
uniquely defined by A and is called the s-closure of A. It is denoted
by Is.

Let H = CF(Ω, H(ω)) be a continuous field of Hubert spaces and A an
operator in H with the domain £&(A). If there exist vectors rj and ψ
in H such that (Af, ^) = (f, )?*) for every ξe &(A), then we put A*η =
rj* and call the adjoint operator of A. If ^ (A) is dense in H, then A
has the adjoint operator A*. If the adjoint operator A* exists, then A*
is an s-closed operator by the following result.

PROPOSITION 2.7. Let A be an operator in a continuous field H =
CF(Ω, H(ω)) such that £2f(A) is dense in H, then the graph G(A*) of the
adjoint operator A* of A is a continuous submodule of HQ)H.

PROOF. Let {{ζa, A*fα}} be a bounded subset in G(A*) and {ea} are
orthogonal projections in C(Ω) with sup ea = /. Let Ga be the closed and
open set in Ω corresponding to ea. Put f = Σ e«ί« Then for each η e
&r(A) and ωeGao, we have

(Aη, ξ)(ω) = {Aη, Σ ej;a)(ω) = {Aη, eaoζao)(ω)

= {Aη, ξaQ)(ω) = (ηf A*fαo)(ω)

= (η, eaoA*ζao)(ω) = ft, Σ eaA*ξa)(ω) .

Thus ζ e ^r(A*) and A*f = A*(Σ e β f β )=ΣU*f β . Therefore, Σ ea{ξaf A*ζa} =
{Σ eaζa, Σ e«A*fα} is an element of G(A*). This shows that G(A*) is a
continuous submodule of if 0 if.

By Proposition 2.7, A* = A*.
Let A be an operator in a continuous field H = C (̂ί2, if(ω)) with the
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domain £&(A) such that &(A) is dense in H, that is, the adjoint operator
A* of A exists. We have the following considerations similar to one in
operator theory in Hubert spaces. We now define an operator £ 7 o n i ϊ 0
H by

U{ξ, V) = {iη, -iξ) .

Then, the operator U is a unitary operator and U2 = I. Put G'(Ά) =
UG(Ά), then G(A*) = (Hζ&H)Q G\A). Hence, applying the operator U,
we get

H®H= G(A)® UG(A*) = G(A) 0 G\A*)

where Ά is an operator defined the remark before Lemma 2.4 and G(Ά)
is the closure of G(Ά). Thus the adjoint operator A** of A* exists if A
has the s-closure.

From the above considerations, we have the following result.

PROPOSITION 2.8. Let A be an operator in a continuous field H =
CF{Ω, H(ω)) of Hilbert spaces such that £&(A) is dense in H. Suppose
A has the closure (that is, A has the s-closure), then A** exists and

G(AS) = G(A) =

COROLLARY 2.9. Let A be an operator in H = CF(Ω, H(ώ)) such that
£&(A) is dense in H and A has the s-closure. Then A is s-closed if and
only if A = A = A**.

3. The characteristic matrices of s-closed operators. Let if be a
Hilbert space. Each bounded operator S on K®K is uniquely expres-
sible, through the relation

S' {ίl, f2} —* {Snζι + S12ζ2, S>2if 1 + ^22^2}

is terms of a 2 x 2 matrix (Stj) of bounded linear operators on K.
Let T be a closed operator in K and P the projection of K 0 K onto

the graph G(T). Then, in [5], Stone called the matrix (P<y) of P the
characteristic matrix of T.

In the case of continuous fields of Hilbert spaces, we have the follow-
ing properties similar to the results mentioned in the preceding sentence.
The following result can be shown by the way similar to the way in
Hilbert spaces and so we leave its proof to the readers.

PROPOSITION 3.1. Let H= CF(Ω, H(ώ)) be a continuous field of Hilbert
spaces over Ω. Let S be a bounded operator on H @ H = CFΘF(Ω, H(o)) 0
H(o))), then S can be uniquely expressible by 2 x 2 matrix (S^ ) of bounded
operators on H = CF(Ωf H(ω)), through the relation
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S: {ζ» £,} — {Snξ, + Sί2ξ2, S21ξL + S22ζ2}

for every ξl9 ξ2eH= CF(Ω, H(ω)).

Thus we denote S = (S^ ). If ^£ is a continuous submodule of H 0
H = C^CG, if(α>) 0 if(ω)), then the projection P of HφH onto ^ has
the matrix representation (P,y). Hence we have the following result which
extend the characteristic matrix in Hubert spaces to one of continuous
fields of Hubert spaces.

PROPOSITION 3.2. Let H= CF(Ω, H(ω)) be a continuous field of Hilbert
spaces. Let ^£ be a continuous submodule of H@H and P the projec-
tion of Hφ H onto ^f with the matrix representation P = (Pa). Then
^ # is the graph of an s-closed operator A if and only if Pl2ξ = (I —
Pzz)^ — 0 implies ζ = 0. The operator A is necessarily the uniquely
determined s-closed operator, which can be described as the mapping

A: P uf, + P12f2 — P21f, + P22f2 ,

where ζ1 and ξ2 are arbitrary elements of H. Hence P2 1 = APn and P22 =
AP12.

PROOF. (Sufficiency): If {0, ξ] e ^//, then {0, f} = P{0, ξ] = {P12ξ, P22f}.
This implies that Pί2ξ = (I — P22)ξ = 0. By the assumption, ζ = 0. Next,
define an operator A in H;

A: Pnξ, + P12f2 -> P21f, + P22ί2

where ζ1 and ζ2 are elements in H. Then if P ^ + P12f2 = 0,

P{ξ19 ξ2} = {Puίi + P12ί2, PΆξi + P 2 2ίJ

= {o, p2 1ί, + p22ξ2} 6 ^ r .

Hence P21ξί + P22f2 = 0, that is, A is well-defined. Since ^/έ is a continuous
submodule in Hφ H, A is an s-closed operator. It is evident that P2 1 =
APn and P22 = AP12.

(Necessity): Since A{Pnξι + P12ί2) = P21ξ, + P22ί2 for every ξl9 ζ2e H,
if P12ί = ( / - P22)f = 0, then the relation P{0, ζ] = {0, ζ}eG(A) implies
f = 0 .

COROLLARY 3.3. A 2 x 2 matrix P = (P o ) o/ bounded operators on
H®H is the projection of H(&H onto the graph G(A) of an s-closed
operator A in H if and only if it satisfies the relations

(1) Prs = PH (i, 3 = 1,2);

( 2 ) Σ P Λ = Pti (i,j=l,2);

(3)
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where N(T) denotes the null space of an operator T.

DEFINITION 3.4. The matrix (Pi5) of the projection P of H®H =
CmF(Ω, H(ω) 0 H(ω)) onto the graph G(A) of s-closed operator A is called
the characteristic matrix of the operator A.

Then we have the following result. We can show by the way similar
to one in Hubert spaces, and so we omit the proof.

PROPOSITION 3.5. Let A be an s-closed operator such that &{A) is
dense in H=CF(Ω, H(ω)). Let (P^ ) and {Qa) be the characteristic matrices
of A and its adjoint A* respectively. Then

Qll — J ^22> Ql2 = •* 21 1 Q21 — -ML2> ^ 2 2 = I Pll

Furthermore, we have the following result. Its proof is evident and
is left to the readers.

PROPOSITION 3.6. Let (Pi3) be the characteristic matrix of an s-closed
operator A in a continuous field H = CF(Ω, H(ω)) of Hilbert spaces. If
A'1 exists, it is s-closed and its characteristic matrix (Q^ ) satisfies the
relations

Qίί — P.22> Ql2 — P.21> Q2I — Pl2) Q22 = Pll

4. Decomposable operators in continuous fields of Hilbert spaces.
Let H = CF(Ω, H(o))) be a continuous field of Hilbert spaces over a Stonean
space Ω. For every ωe Ω let A(ω) be a closed linear operator in H(ω),
then the mapping ω—> A{ώ) (or denoted by {A{ω)}) will be called a field
of closed operators on Ω or simply a field of operators on Ω.

In this section, we shall argue continuous fields of closed operators
and decomposable operators in continuous fields of Hilbert spaces.

LEMMA 4.1. Let S = {S(o))} be a bounded, self-ad joint operator on
H = CF(Ω, H(o))) such that S(co) is one-to-one for every ωe Ω. Ifζ =
{ξ(o))} e H = CF{Ω, H(ω)) is an arbitrary element such that ξ(ω) e 2&{S{ω)~ι)
for every coeΩ and the function co—> || S(o))~1ξ(ω) \\ is bounded, then the
field ω —> S((o)~^((u) is a continuous vector field (that is, the field
{Siω^ζiω)} is an element of H).

PROOF. Since S(ω) is self-ad joint and one-to-one, &(S(ω)) = H{ώ) for
every ωe Ω. Thus, for each ζe H, any positive number ε and ωe Ω, there
exist an element ηω of &(S) and a closed and open neighborhood U(ω)
of ω such that

|| ζ(ω') - ηω(ω') || < ε for every ω' e U{ώ) .

Hence there exists a family [ηω, U(ω)}ωeΩ of pairs of elements in
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and closed and open neighborhood of each ω satisfying

|| ξ(ωf) - ηω{ω') || < ε for every ω' e U(ω) .

Considering the open covering {U(ω); ω e Ω) of Ω, there exists a finite
subcovering {U(ωt); i = 1, 2, , n} of {U(ω); ω e Ω}. We can suppose that
{Uicϋi); i = 1, 2, , n) are mutually disjoint. Put zt the projection in C(Ω)
corresponding to U{ω%). Then let η = Σ?=i ZiV*t9 V is a n element of
and satisfies

|| ξ(ω) — η(ω) || < e for every ωe Ω .

Therefore ξ is an element of &(S). Thus, to prove that the vector field
{S(ω)~\J(α>)} is continuous, we show that, for each )?e ^?(S), the function
ω — (S(ωyιξ(ω) \ η{ω)) is continuous. For each η = [η{ω)} e &(S), there
exists an element ζ = {ζ(ω)} in H such that Sζ = η, thus we get the
relation

(S(ω)-*ξ(ω) I η{ω)) = (S(ω)-ιf (ω) | S(ω)ζ(ω)) - (f (ω) | ζ(ω)) .

Therefore, the function ω —> (S(ω)~1ξ(ω) | ^(ω)) is continuous.

LEMMA 4.2. Lei {A(ω)} 6e a field of closed operators over Ω and, for
each ωe Ω, (Pi:, (α>)) the characteristic matrix of A((θ). Suppose that the
operator fields {Po (ω)} (i, j = 1, 2) are continuous. Then if ξ = {ξ((*))} is
an element of H = CF(Ω, H(ω)) such that ξ(ω)e £^(A(ω)) for all ωe Ω and
the function ω —> || A(ω)ξ(ω) \\ is bounded, then {A(ω)ξ(ω)} is an element
of H.

PROOF. Since the operator fields Pί3 = {Pij(ω)} (i, j = l,2) are continuous,
every Pί3- is an element of B(H). By the definition of ξ, we get

A(ω)ξ(ω) = Pn(ω)ξ(ω) + P22(ω)A(ω)ξ(ω) .

Thus (I(ω) - P22(ω))A(ω)ξ(ω) = P21(ω)ξ(ω) for each ωeΩ. Since the vector
fields {P<i(ω)£(ω)} (i, jf = 1, 2) are continuous and (I(ω) — P22(ω)) is one-to-
one and self-adjoint for all ωeΩ by Proposition 3.2, the vector field
{A(ω)ξ(ω)} = {(/(ω) - P22(ω))~1ί)2i(ω)f(ω)} is continuous by Lemma 4.1.

THEOREM 4.3. Let H = CF(Ω, H{ώ)) be a continuous field of Hilbert
spaces over a Stonean space Ω. Let {A(ω)}e ΐ[ωeΩB(H(ω)) be an operator
field such that the function ω —> || A(ω) \\ is bounded. Let {Pi3{ω)) be the
characteristic matrix of A{ώ) for each ωeΩ. Then the operator field
{A(ω)} is continuous if and only if the operator fields {Pij{ω)} (i, j = 1, 2)
are continuous.

PROOF. We showed the sufficiency of theorem in Lemma 4.2. Thus,
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we show the proof of the necessity of theorem. Put A = {A(ω)}9 then A
is an element of B(H) and two operator fields {A*(ω)} and {I(ω) + A*(ω)A(ω)}
are continuous. Furthermore, A*(ω) = A{ω)*, and two functions ω—>
|| A(ω)* || and ω—>|| J(ω) + A(ω)*A{ω) || are bounded. Hence, since Pu(ω) =
(J(ω) + A(ω)*A(ω)Y\ by Proposition 3.2 and Corollary 3.3,

P2l(ω) = A(ω)Pn(ω), P12(ω) = P 2 1(ω)* and P2 2(ω) - A(ω)P12(ω) .

Therefore the operator fields {Pi3 (ω)} (i, j = 1, 2) are continuous.

By Theorem 4.3, we give the following definition in which we define
the continuity of fields of closed operators.

DEFINITION 4.4. A field {A(ω)} of closed operators is said to be con-
tinuous if the operator fields of characteristic matrices of A(ω) are con-
tinuous.

This definition is legitimate because it agrees with the definition of
continuous fields {A(ω)} of bounded operators such that the function ω —>
||A(α>)|| is bounded by Theorem 4.3.

Under the above mentioned definition, let {A(α>)} be a continuous field
of closed operators and {Pij{ω)) the characteristic matrix of A{ω) for every
ωeΩ, then the fields PiS = {Pi:j(ω)} (ΐ, j = 1, 2) are continuous field of
bounded operators. Define the set ^ = {Σ eaζa; {ξa} is a bounded subset
in H = CF(Ω, H(ω)) such that ξa(ω)e £gr(A(ω)) for every ωeΩ and a and
{A(ω)ζa(ω)}a}(O is bounded, and {ea} are mutually orthogonal projections in
C(Ω) with sup ea = I}; then ^ is a submodule of H. Let Ga be the closed
and open set in Ω corresponding to eaf then, for each £ = Σ eaζa in - ^
and ω e Ga, we have the following equation

A(ω)ξ(ω) = A(ω)ζa{ω) = P«(ω)fβ(ω) + P22(ω)A(ω)ξa(ω)

= Pή(o>)ξ(ω) + P22(ω)A(ω)ξ(ω) .

Define an operator A' as follows; for each ξ = {ξ(o))} in H such that
ί(ω) e &(A(ω)) for every ωeΩ and {A(ω)ξ (ω)} is bounded, A'ξ = ^ where
)y = {A(ω)ξ(ω)} because, by Lemma 4.2, η = {A(ω)f(α>)} is an element of
H = CF{Ω, H(ω)). Then A' is a C(β)-module homomorphism of the sub-
module {ξe H; ξ(ω)e £&(A(ω)) for every ωeΩ and {A(ω)ξ(ω)} is bounded}.
Furthermore define an operator A on ̂ J? as follows; for each ξ = Σ e«ί« e

^ Aξ = Σ β«A'£α. Then A is well-defined and A is a C(J2)-module
homomorphism on ^ C We have the following relations; for each ζ =
Σ eaξa e ^£ and ω e Ga,

A(ω)ξ(ω) = P2ί(ω)ξ(ω) + P22{ω)A{ω)ζ{ω)

AeJ = P21eaξ + P*Φ*Aζ and Af - P21f + P 2 2 Aί .
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From the above considerations, we get the following result.

LEMMA 4.5. Let {A(o))} be a continuous field of closed operators and
let (Pi3(ω)) the characteristic matrix of A{ω) for every ωeΩ; then there
exists an s-closed operator B such that P = (Pij) is the characteristic
matrix of B.

From Lemma 4.5, we have the following theorem.

THEOREM 4.6. Let H = CF{Ω, H{ω)) be a continuous field of Hilbert
spaces and {A{ω)} a continuous field of closed operators) then A = B where
A is the operator defined before Lemma 4.5 and B is the operator de-
termined in Lemma 4.5. Thus, A is an s-closed operator.

PROOF. By the definition of the operator A, the domain &(A) of A
is the submodule ^// = {Σ e<*ζa> {£«} is a bounded subset in H such that
ξa{ω)G £2r{A(ω)) for each ωe Ω and a, and {A(ω)ξa(ω)}af(ϋ is bounded, and
{ea} are mutually orthogonal projections in C(Ω) with sup ea = /}. Further-
more, since the operator B is an s-closed operator, the graph G(B) of B
is a continuous submodule of Hξ&H= CFΘF(Ω, H(ω) © H(ω)). Thus, let
{ξa} be a bounded subset of &r(B) such that {Bξa} is a bounded set in H,
and let {ea} a family of mutually orthogonal projections in C(Ω) with
sup ea = I; then Σ eaξa is an element of j^(JB) and £ ( Σ eaξa) = Σ eaBξa.
For each ξ e 2$(B), there exist two elements ξj and f2 in f ί such that
f - P11fι + P12f2. Since ξ(ω) = Pn(o>)ζi(ω) + ^i2(ω)f2(ω) is an element of

and

(Bξ)(ω) = (P81fOίω) + (P22ί2)(^) -

- A(ω)ξ(ω)

for every ωeΩ. Thus, S c A ,
Conversely, let f is an arbitrary element of &(A), then there exists

a bounded set {ξa} of i ϊ such that ζa(ω)e &{A{ώj) for every ωeΩ and α,
and {A(ω)ξa(ω)}a>ω is bounded, and the set {eα}.of mutually orthogonal
projections in C(β) such that f = Σ e«?« Now since eαf = eaξa for each
a and P(ω){ζa(ω), A(ω)ξa(ω)} ={ ξa(ω), A(ω)ζa(ω)} for every ω and α,
P{ξa, V*} = {Sa, Va) where rja = {A(ω)ξa(o>)}eH= CAP, H{ω)). Thus, ξa is
an element of £2f{B) and Bξa = ^α for each α:. By the assumption of the
boundedness of {A(ω)ζa(ω)}a>(0, the set {Bξa} is a bounded set. Thus ζ =
Σ eaξa is an element of ^r(B). Therefore, A = B.

From Theorem 4.6, if a field {A(ω)} of closed operators is continuous,
we can considered {A(ω)} as an s-closed operator in H and so we denote
A = {A(ω)}.
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Next, we shall consider whether s-closed operator can be represented
as a continuous field of closed operators. We give the following definition
which is used for the above mentioned consideration.

DEFINITION 4.7. Let A be an s-closed operator in a continuous field
H = CF(Ω, H{ω)) of Hubert spaces. A is called a decomposable operator
if there exists a continuous field {A(ω)} of closed operators such that A =
{A(ω)} in the mean of the remark after Theorem 4.6.

We want to any s-closed operator be decomposable, but unfortunately
we can give the following example in which we get an s-closed operator
that is not decomposable.

EXAMPLE 4.8. Let H = CF(βN, H{ώ)) be a continuous field of Hubert
spaces over βN where βN is the Stone-Cech compactification of the set
of all positive integers. If we consider a von Neumann algebra of type
J with the center C(βN), we can show that there exists a continuous field
of Hubert spaces over βN mentioned in the above sentence. Let / be an
element of C(βN) such that f(n) = 1/n for every ne N and f(ω) = 0 for
every ωe βN\Nand D = //where I is the identity of B(H), that is, for
each ζ= {ξ(ω)}eH= CF(βN,H(ω)), (Dζ)(ω) = f(ω)ξ(ω) for every ωeΩ;
then D is a positive operator on H with 0 ^ D <̂  1.

Under the above considerations, define an operator P on Hξ&H as
follows:

/ D (D(I-D)Y'2\

\(D(I- D))1'2 I- D J '

further put

P — Π P — P — (Γ)(T — ΏΛYI2 P — T — Ώ

Then we have the following relations;

(Δ ) 2.Λ *ikίkj — *ij i Λ J — L> Δ)>

( 3 ) (/ - P22)ζ = 0 implies ζ = 0.
The proofs of (1) and (2) are trivial by the definition of the operators Pi5

(iy j = if 2) and so we show the proof of (3).
( 3): If (J - P22)ζ = 0, then Dξ = 0. Thus f(n)ξ(n) = (l/n)ξ(n) = 0

for every ne N, and so ξ(n) = 0 for every ne N. Since the function ω —>
||£(ω)|| is continuous and N is dense in βN, ξ(ω) = 0 for every ωe βN.
Therefore (I - P22)ξ = 0 implies ξ = 0.

By the above consideration and Corollary 3.3, there exists an s-closed
operator A of which the characteristic matrix is P. If A is decomposable
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and we denote A = {A(ω)}, then, by Theorem 4.6, the characteristic matrices
of A(ω) must be {Pi3(ω)). But, for every ω e βN\N, we have

(/ - P22){ω) = I(ω) - P22(ω) = D{ω) = 0 .

Thus, by Corollary 3.3, {Pi3(ω)) is the characteristic matrix of no s-closed
operator. Therefore, A is not decomposable.

In the above Example 4.8, we showed that there exists an s-closed
operator A, even if the continuous submodule of H = CF(βN, H{ω)) gener-
ated by 2&{A) is H, A is not decomposable.

We show that arbitrary densely defined s-closed operator is decom-
posable. To show it, we have some considerations which can show by
considering the properties of operator theory in Hubert spaces and the
characteristic matrix of closed operators, and so we omit the proof.

LEMMA 4.9. Let A = {A(ω)} be a continuous field of closed operators
with the adjoint operator A* such that &(A*) is dense in H=CF(Ω, H{ω)).
Then, for any ωeΩ, A(ω) is one-to-one, thus A is one-to-one.

LEMMA 4.10. Let A be a densely defined s-closed operator in H =
CF(Ω, H(ω)), let {Pί3) be the characteristic matrix of A. Then &{I—P22) =

By Lemmas 4.9 and 4.10, we have the following corollary.

COROLLARY 4.11. Let Abe a densely defined s-closed operator in H —
CF{Ω, H{ω)). Let (Pi3) be the characteristic matrix of A. Then &(I — P22)
is dense in H and, for each ωe Ω, I((ΰ) — P22{o)) is one-to-one.

From the above considerations, we have the following theorem which
says to any densely defined s-closed operator be decomposable.

THEOREM 4.12. Let A be an s-closed operator in a continuous field
H = CF(Ω, H{(s))) of Hilbert spaces such that £&(A) is dense in H, then
A is decomposable.

PROOF. Let ( P o ) be the characteristic matrix of A and Ptύ — (Pu(ω))
(if j = 1, 2). Then Pi3(ω) (i, j = 1, 2) are bounded operators on H(ω) for
every ωeΩ. By the properties of characteristic matrix, we have the
following relations

(1) Ptj(ω)* = P,5(ω) = P3i(ω) (i, j = 1, 2),

( 2 ) £pth(ω)PkJ(ω) = PiJ(ω) (ί, j = 1, 2).

Furthermore, by Corollary 4.11, N(I(ω) - P22(ω)) = {0}. Thus, by Corollary
3.3, there exists a closed operator A(ω) for every ωeΩ such that the
characteristic matrix of A(ω) is {Pi3{co)) for every ωeΩ. Since for if j =
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1, 2, the fields {Pij(o))} are continuous, the field {A(ω)} is a continuous field
of closed operators. Furthermore, we have the following relation;

A(ω): Pn(a))U(o) + P12(ω)f2(ω) -> P21(ω)£ x(ω) + P22(ω)£2(ω)

for any ζl9 f 2 e H and ω e Ω. Therefore, the relation

implies A = {A(ω)} and ^(A(ω)) = {£(ω); ζ = {ξ(ω)}e
In Theorem 4.12, we supposed that an operator A is a densely defined

s-closed operator. Then if we write as A~{A(ω)}, A(ω) are densely defined
closed operators. The following proposition shows that if every A(ω) is
densely defined and the field A = {A(ω)} is continuous, then both operators
A and A* are densely defined.

PROPOSITION 4.13. Let A = {A(ω)} be a continuous field of closed
operators such that, for each ω e Ω, £^(A(ω)) is dense in H{ω), then
and &(A*) are dense in H.

The above result is shown by considering the properties of the char-
acteristic matrices and the continuous fields of Hubert spaces and we omit
the proof.

Considering the properties of the characteristic matrices of the s-closed
operators, Theorem 4.12 and Proposition 4.13, we have the following
corollaries.

COROLLARY 4.14. Let A = {A(ω)} be a decomposable operator in H —
CF(Ω, H(ω)) with the dense domain &(A), then A*(ω) = A(ω)* for every
ωe Ω.

COROLLARY 4.15. Let A = {A(ω)} and B = {B(ω)} be two decomposable
operators. Then AaB if and only if A(ω) c B(ω) for every ωe Ω.

COROLLARY 4.16. Let A = {A(a))} be a densely defined decomposable
operator, then A is symmetric if and only if A(ω) are symmetric.

5. Applications of decomposable operators. In this section, we shall
show that the square root for a densely defined self-ad joint, positive oper-
ator exists and if A is a densely defined s-closed operator then it can be
written uniquely of the form A = VS (the polar decomposition of A), where
S is a self-adjoint, positive operator and V is a partially isometric oper-
ator and V is a partially isometric operator. We recall that a bounded
operator B and an arbitrary operator A are said to be permutable if
BA(zAB. If SI is a C(β)-moduled C*-subalgebra of B{H) with SI = 3ί",
then we define that an s-closed A is affiliated to 21 (we denote AηΈ) if
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BA c AB for every Be 31. Then, by [6; Theorem 5.7], we have a remark
of a relation of the field {A(ω)} and the field {2t(ω)}.

Before the proof of the polar decomposition, we have some consider-
ations. From the remark before Proposition 2.8, we have the following
lemma.

LEMMA 5.1. Let A = {A(ω)} be a densely defined s-closed operator in
a continuous field H = CF(Ω, H(a))), then A*A is self-adjoint and positive.

PROOF. For each ξ, η e £ί(A*A), (A*Aξ, η) = (Aξ, Aη) = (ξ, A*Aη) and
(A*Aξ, ξ) = {Aξ, Aξ) *> 0. Thus A*A is a positive operator.

By Lemma 4.10, A*A and / + A*A are symmetric. Now, since
&(I + A* A) = H, the operator I + A* A is a self-adjoint operator. In
fact, if B is a densely defined symmetric operator with &(B) = H, then,
for each ηe^r(B*), there exists an element ξe&r(B) with Bξ = B*η.
Thus, for each ζ e ^ ( ΰ ) ,

CBC, V) = (C 5*)7) = (Bζ, ξ) .

Therefore since &(B) = H, η = ξ e &r(A). Thus, 1+ A* A is a self-adjoint
operator. Therefore A* A is a self-ad joint operator.

Before the definition of square root of a self-adjoint, positive operator,
we consider the following corollary by Lemma 5.1 and Corollary 4.14.

COROLLARY 5.2. Let A = {A(o))} be an s-closed operator such that
= H, and let A* = {A*(ω)} the adjoint operator of A, then the field

{A*{ω)A{ω)} is a continuous field of self-adjoint, positive operators and
A* A = {A*(

THEOREM 5.3. Let A = {A(ω)} be a self-ad joint, positive operator in
a continuous field H = CF{Ω, H{ω)) of Hilbert spaces, then there exists
uniquely the self-adjoint, positive operator B = {B(co)} in H— CF(Ω, H{ω))
such that B2 = A.

PROOF. Since A{ω) are self-adjoint, positive operator, for each ω e Ω,
there exists the square root A(ω)ι{2 of A{ώ) which is a self-ad joint, posi-
tive operator. We shall show that the field {A(ωf12} is a continuous field
of closed operators. Put, for each ωe Ω,

Qn(ω) = (I(ω) + A(ω)Γ , QΆ(ω) = A{ω)^(I{ω) + A(ω))"1 ,

Qί2(ω) - A(ωY'2(I(ω) + A{ω))~ι and Q22(ω) = A(ω)(I(ω) + A(ω))"1 .

Then, since the fields {A(ω)} and {I{ώ) + A(ω)} are continuous, the field
{(I(ω) + A(ω))"1} is a continuous field of closed operators. Furthermore,
since || (I(o)) + A(α)))"11| ίϋ 1, the field {Qί2(o))} is a continuous field of bounded
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operators. By the same way, the field {Q22(co)} is continuous. Further-
more, by the relation Q12(α>)2 = A(ω)(I(ω) + A{ω))~2, the field {Qί2(ωf} is
continuous. Thus, there exists the positive operator S of B(H) with S =
{Qi2(ω)2}. Then Sll2(ω) = Qi2(ω). In fact, let [pX^ be a sequence of
polynomials such that pn(S) —> Slβ as n —> °° (in the norm topology). Then
pn(S)(ω) = pn(S(ω)) = pn(Ql2(ω)% pn(S)(ω)^Sίl2(ω) as * ™ and pn{Ql2{ω)2)-+
Q]2(ω) as n —> oo for every ωe Ω. Thus, Sll2(ω) = Qi2(ω) for every ω e β .
Therefore, the field {Q12(ω)} is continuous and so the field {Q2ί(o))} is contin-
uous and so the field {Q2ί(ω)} is continuous. Next, we shall show that the
field {A((i))lj2} is a continuous field of closed operators. From Proposition
3.2 and Definition 4.4, we say that the matrix (Qi5{ώ)) is the characteristic
matrix of A(ω)1'2. If ξ(ω) is an element such that Q12(ω)ξ(ω) = (I(ω) -
Q22(co))ξ(ω) = 0, then

A(ωyι*(I(ω) + ^ ( ω ) ) - 1 ^ ) = 0 and A(ω)(I(ω) + Aiω))-1^) = ξ(ω) .

Then, ξ(ω) = A(ω)(I(α>) + ^(ω))- 1 ^) = A(ωγi2A(ωyι\I(ω) +
0. Furthermore, for each ζt and ζ2eH, we have

) + Aίω))-1?^) + Aίω)1^/^) +
= A(ωy'2(I(ω) + Aίω))-1

Thus, (Qϋ(ω)) is the characteristic matrix of A(ω)112 for every ω e Ω by
Proposition 3.2. Put Qti = {^.(ω)} (i, i = 1, 2) and £ = {A(ω)1/2}, then B
is a self-adjoint, positive operator such that the characteristic matrix of
B is (Qtj). Furthermore, by Theorem 4.6, B\ω) =B(ω)2 = (A(ω)1'2)2 = A(ω),
and so B2 = A. The unicity of existence is obvious.

By Lemma 5.1 and Theorem 5.3, we introduce the following definition.

DEFINITION 5.4. Let A = {A(ω)} be a densely defined s-closed oper-
ator. Then we denote the square root (A*A)1'2 of A*A as | A \ and call
the absolute value of A.

Then I A \ (ω)2 = (A*A)(ω) = A*(ω)A(ω) and | A | (ω) = \ A(ω) \ for every
ω e Ω. Furthermore, we can show by the elementary examination that

Next, we shall consider the polar decomposition of s-closed operators.
Let A = {A(co)} be a densely defined s-closed operator in a continuous

field H = CF(Ω, H{ω)) of Hubert spaces. Define two subsets H, and H2

of H as follows;
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Hx = the closure of {Σ ea | A \ ξa: {| A \ ξa} is bounded,

{f α }c^( |A|) and {ea} are orthogonal projections in

C(Ω) with sup ea = /} ,

iϊ2 = the closure of {Σ eaAξa: {Aξa} is bounded, {fα} c &{A)

and {eα} are orthogonal projections in C(Ω) with

sup ea = 1} .

Then both iϊΊ and i2"2 are continuous submodules of i ϊ . In fact, let {ξJ
be a bounded set in {Σ eα | A | ξa: {\ A \ ξa} is bounded and {ea} are orthogonal
projections in C(Ω) with sup ea = /} and {βj are orthogonal projections in
C(Ω) with sup e, = /, then each ξe is represented as follows; ξt =
Σ , α e ; J A | £ α where {|A|f;α} ία is bounded with upper bound | | £ , | | and
{ee

cjί(x are orthogonal projections in C(Ω) with sup,α e\a = I. Then X, e,f, =
ΣiΣeaete'ta\A\ξ'ta, {\A\ζ'la}e,ea is a bounded subset of H and {e£β;β}ffίβ are
orthogonal projections in C(Ω) and sup ece[a = I. Thus Σ ê ί, e ίZΊ. There-
fore, by Theorem 1.5, Ht is a continuous submodule of if, similarily ϋΓ2

is also a continuous submodule of H.
Define an operator V of Hx to JEZ*2 as follows; for each ξ = Σ e« I 4̂.1 ί«

in Hlf

Then, we have

Thus, the above defined V is well-defined and V is an isometrical oper-
ator. Hence we have the extension V" of V to Hλ that is an isometrical
opepator of Hι onto H2. Let Et (i = 1, 2) be the projections of H onto
Hi (i = 1, 2) respectively, and let F = £ r

2 F / ' £ r

1 , then V is a partially
isometrical operator on H with the initial domain Hλ and the final domain
H2. Furthermore, we can show that A — V\A\ and if Hι and H2 are
fixed, V is determined uniquely. From the above consideration, we have
the following theorem.

THEOREM 5.5. Let A = \A(ω)} be a densely defined s-closed operator
in a continuous field H = CF{Ω, H{ώ)) of Hilbert spaces over a Stonean
space Ω, then A can be written uniquely of the form A = V\A\ where
V is a partially isometrical operator with the initial domain Hι = the
closure of {Σ ea \ A \ ξa: {| A \ ξa) is bounded, {ξa} c £^(| A |) and {ea} are
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orthogonal projections in C(Ω) with sup ea = 1} and the final domain
H2 = the closure of {Σ eaAξa: {Aξa} is bounded, {ξa} c &(A) and {ea} are
orthogonal projections in C(Ω) with supeα — /}.

The representation of A in the above theorem is called the polar
decomposition of A.

In Theorem 5.5, we gave the polar decomposition of a densely defined
s-closed operator. Let A be a densely defined s-closed operator and V\ A |
the polar decomposition of A, then we have a relation: A(ω)= V(ω) \ A \ (co) =
V(ω) I A(ω) | for every ω e Ω. But, we cannot assert in general that V(ω)
is the partially isometrical operator with the initial domain &(\A{ω)\)
and the final domain &(A{ω)). For example, let Ω be the spectrum space
of L°°(0, 1) and H = CF(Ω, H(ω)) a continuous field of Hubert spaces over
Ω, then there exists a continuous function / on Ω such that f(co0) = 0 and
f(ω) Φθ if ω Φ α>0. Put A = fl in B(H), then H, = H (i = 1, 2), but
I A(ω0) I = 0 and so A(ω0) = 0.

If Si is a C(β)-moduled C*-subalgebra of B(H) with SI = SΓ where
H = CF{Ω, H{ω)) is a continuous field of Hubert spaces over β, then, by

[6; Theorem 5.7], St = C(β, 3I(ω)) where €{ω) is the weak closure of SC(ω) =
{A(ω): A e SI with A = {A(ω)}}. Then, we can show the following result
which can be proved an elementary examination, and so the proof is left
to the readers.

PROPOSITION 5.6. Let SI be a C(Ωymoduled C*-subalgebra of B(H)
with SI = St" where H — CF(Ω, H(ω)) is a continuous field of Hilbert spaces,
and let A = {A(ω)} be an arbitrary densely defined s-closed operator in

H] then Aη^L if and only if A(ω)η

<k(ω) for every ω e Ω.

NOTE. When this paper was firstly typewritten and sent to many
authors, the title of this paper was "Continuous reduction theory of un-
bounded operators in continuous fields of Hilbert spaces".
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