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In the present paper, we shall investigate an extension of Nussbaum’s
reduction theory [3] for unbounded operators in Hilbert space from the
point of view of continuous reduction theory. We can see that Nussbaum’s
reduction theory, somewhat, depending upon the measure theoretic argu-
ments has been considered in the case that the fibres of field of Hilbert
spaces are separable. However, if we have a point of view of continuous
field of Hilbert spaces introduced in [6], we can extend Nussbaum’s
reduction theory for unbounded operators in Hilbert space to unbounded
operators in continuous fields of Hilbert spaces of which each fibre is not
necessarily separable. Our argument is based on some elementary facts
concerning the characteristic matrix of a closed operator which was
introduced in [5].

Let 2 be a compact Hausdorff space, then 2 is called a Stonean space
if the closure of every open set is open (see [1] and [4]). Let 2 be a
Stonean space, H = C»(2, H(w)) a continuous field of Hilbert spaces over
Q. Let A be a bounded C(£2)-module homomorphism of H into H, then
there exists an operator field {A(w)} such that, for each &, ne H,

((48)(@) [ 7(@)) = (A(w)é(@) | ()

for every we 2 where each A(w) is a bounded operator on H(w) and C(2)
is the algebra of all complex-valued continuous functions on 2 [6; Pro-
position 4.4]. In this paper, we shall investigate to decompose unbounded
operators in H = Cr(2, H(w)) in the above mentioned form for bounded
operators. As application of the above representation for unbounded
operators in continuous field of Hilbert spaces, we shall show that the
square root for densely defined positive operator exists and, further, if
A is densely defined decomposable operator, then A can be written
uniquely of the form A = VS (the polar decomposition of A), where S is
a self-adjoint, positive operator and V is a partially isometric operator.

1. Notation and Preliminaries. In this section, we provide some
notations and facts that will be used later. We assume, throughout our
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discussions, 2 to be a Stonean space, but the reader will notice that the
assumption is merely used for convenience and the proofs can be mostly
effected without this assumption. Let 2 be a Stonean space, and let C(2)
be the algebra of all complex-valued continuous functions on 2. For a
field {H(w); w € 2} of Hilbert spaces, the elements & = {&(®)} of [[... H(®)
are called vector fields. If fe C(2) and ¢ = {é(w)} is a vector field, f&é =
{f(w)e(w)}. If &€ = {&(w)} and 1 = {N(w)} are vector fields, the (¢, ) is the
function: @ — (§(w) | P(®)), and |&| is the function: @ — | &w)]||, where
(é(w) | P(w)) is the inner product defined in H(w) and || &(w) || = (&(w) | &(w)).
Let B(K) be the algebra of all bounded operators on a Hilbert space K;
then each element of I],., B(H(w)) is called operator field. If A = {A(w)}
in [loco B(H(w)) and & = {&(®)} in [[.co H(®w), then A¢ = {A(w)&(w)}.

We give the definition of continuous field of Hilbert spaces over 2
introduced in [6].

DEFINITION 1.1. ([6; Definition 3.1]). Let 2 be a Stonean space, and
let {H(w); w € 2} be a field of Hilbert spaces over 2. A subspace H of
II.co H(®) is said to be a continuous field of Hilbert spaces over 2, if
there exists a subspace F' of [[,.. H(®) such that

(1) for every &£e¢ F, the function w — || &(w)|| is continuous on 2,

(2) for each we 2, the subspace {&(w): é€ F'} is dense in H(w),

(3) H = {£€Ilsco H(w): for each positive number ¢ and each w, < 2,
there exist an element & in F' and a neighborhood U(w,) of w, such that
II1é(w) — &w) || < ¢ for every we U(wy)},

(4) if & = {&(w)} is a vector field such that the function w — || &(w) ||
is bounded, and for each 7 € F', the function w— (£(w) | Y(w)) is a continuous
function on 2, then &¢ H.

Under Definition 1.1, H is a C(2)-module in the ordinary algebraic
sense and, for any ¢ = {&(w)} and 7 = {9(w)} in H, the function w—
(&(w) | 9(w)) is continuous on 2, thus (£, 7) is an element of C(2). Further-
more we can show that, in H, the following properties satisfy:

(1) ¢&n =09

(2) (&) =0 and is 0 only for & =0,

(8) (a& + b&, 1) = a(&, 1) + b(&, 1)
for all & &, &, 7e H and a, be C(2). We use the notion

161 = " 1€l = I1E]l = sup {|| (o) ||: @ € 2}

where on the right we mean the usual positive square root and norm in
C(2). Then H is a normed space with respect to the above mentioned
norm || -|. In particular, H is complete with respect to the norm || ¢|| =
sup {|| é(w) ||: w e 2} for £c H. Thus we denote H = Cp(2, H(w)) and we
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call F'as a fundamental subspace for H. Let G be a subspace of [[,., H(®)
such that HOD GO F, then G is a fundamental subspace of H, that is,
H = Cyi(2, H(w)) is the mean of Definition 1.1. A bounded operator A
from a continuous field H, = Cy (2, H(w)) of Hilbert spaces over 2 into
a second continuous field H, = Cp,(2, H,(w)) of Hilbert spaces over 2 is a
mapping from H, into H, that is not only linear and continuous in the
usual operator norm, but is also a C(2)-module homomorphism. We shall
write the element of C(2) (typically f, g, ---, @, b, ---) on the left of the
element of H (typically & 7, ---). We call A* the adjoint operator of
Ae B(H) if (A&, 1) = (&, A*n) for all & ne H = Cx(2, H(w)). Then A* is
a bounded operator and the algebra B(H) of all bounded operators on H
is a C*-algebra [6; Corollary 3.7]. This permits the formulation of the
following definition.

DEFINITION 1.2 ([6; Definition 4.1 and 4.2]). Let H = Cr(2, H(w)) be
a continuous field of Hilbert spaces over a Stonean space 2. An element
A in B(H) is called a decomposable operator if, for each we 2, there
exists an element A(w) of B(H(w)) such that for all & 7€ H and each
we 2, (A8 (o) | N(w)) = (A(@)5(w) | ().

Let {A(w)} be an element of [[..o B(H(w)) such that the function w —
|| A(w)|] is bounded. The field {A(w)} is called continuous if, for every
& = {&(w)} e H = Cx(R, H(w)), the vector field {A(w)&(w)} is an element of H.

Definition 1.2 says that every element A of B(H) is represented as
an element {A(®)} of [l... B(H(w)) satisfying (4¢)(w) = A(w)é(w) for each
weR and £e¢ H. Thus we consider, throughout our discussions, every
element A of B(H) to be an element of [],., B(H(®)) in the above mentioned
mean. Furthermore, if A = {A(w)} is an operator field such that the funec-
tion w — || A(®)|| is bounded and the field {A(w)} is continuous, then A is
considered an element of B(H).

We shall contemplate some closed operator which is able to decom-
posable. Before going to dispute about the above mentioned closed operator,
we have some considerations.

We will introduce a notation of continuous submodule. To introduce
the notation, we must show that if _# is a closed submodule of H, #(®)
is a closed subspace in H(w) for every we 2. The following proposition
says that each .#(w) is a closed subspace in H(w).

PROPOSITION 1.8. Let H = Cp(2, H(w)) be a continuous field of Hilbert
spaces over a Stonean space 2. Let .# be a closed submodule of H.
Then each #(w) = {&(w); & = {&(w)}e A~} is a closed subspace of H(w).

Proor. For an arbitrary fixed element w, of 2, let A be the canonical
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mapping of _Z onto Z(w,): A 3&— &w,) € #(w,), and let V, be the
kernel of \; then N induces a mapping X of .#Z/V,, onto .#(w,). Then
X is isometric, and so . (w,) is a closed subspace of H(w,). In fact, since
N[ 1, [|[X]| 1. On the other hand, for each ¢ _# and an arbitrary
positive number ¢, the set

G = {w: [[&@i) || + & > |[&(w) ]}

is an open set containing w,. Thus let z be the projection in C(£2) corre-
sponding to the closure of G, then M (2£) = M¢&). Hence (1 — 2)¢ is an
element of V,,. Furthermore, we have

12§ || = sup {2(w) || {(@) ||: @ € 2}
= sup {2(w) || &(@) ||: w € G}
=&l || + €.
Hence
inf {||&¢ + 7]l:7e Vo) = [|2¢]| = ||[&(wl) || + .
Since ¢ is an arbitrary positive number,
inf (|1 + 71l 7€ Vi) = [l @Il -

Therefore, X is isometric and so .Z(w,) is a closed subspace of H(w,) for
every w,€ Q.
For our purpose, we introduce the following definition.

DEFINITION 1.4. Let H = C,(2, H(w)) be a continuous field of Hilbert
spaces over a Stonean space 2. By a continuous submodule .#Z we mean
a subset of H such that _# is a closed submodule and .#Z = C (2, #(w)).

The above definition is equivalent to the AW *-submodule in [2], but
our definition can be introduced even if 2 is not a Stonean space.

Next, we shall show that the notation of continuous submodule is
equivalent to an another notation.

THEOREM 1.5. Let H = Cx(2, H(®w)) be a continuous field of Hilbert
spaces over a Stonean space 2. Let _.# be a closed submodule of H.
Then the following conditions are equivalent.

(1) A is a continuous submodule,

(2) if & ={&w)} is an element of Tluco A4 (@) such that, for every
nNe . #, the function @ — (&(®) | N(®)) is continuous on 2 and the function
o — || &(w)]|| is bounded; then & is an element of _#.

(3) let {e.} be orthogonal projections in C(Q) with supe, = I and
{&,} a bounded subset of _#, then > e,&, is an element of _#.
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PROOF. (1) = (2): This assertion was denoted by the remark after
Definition 1.1.

(2) = (1): To prove that .Z = C (2, # (w)), we must show that _~Z
satisfies the conditions (1), (2), (3) and (4) in Definition 1.1 with respect to
A itself. It is trivial by the properties of _# that (1), (2) and (4) arise.
Thus, we must show the condition (3). If ¢ is an element of [[,.o . #(®)
such that, for arbitrary positive number ¢ and each element w, of 2, there
exist & of _# and a neighborhood U,(®,) of w, satisfying || &(w) — &'(w) || <
¢/2 for every we U(w,). Then, since & is an element of H, there exist
an element &’ of F' and a neighborhood U,(w,) of w, satisfying || &'(®w) —
&'(w) || < ¢/2 for every we Uyw,). Put Ulw,) = U(w,) N Uy(w,), then U(w,)
is a neighborhood of w, and we have the following equation: || {(w)—&" () || <
¢ for every we U(w,). Thus, ¢ is an element of H and so, for each ne _#;
the function w—(&(w) | 7(w)) is continuous on 2. Therefore, by the assump-
tion, £ is an element of _#Z Thus, #Z = C (2, #(w)).

(1) = (3): We showed this assertion in [6; Theorem 4.5].

Let B(H) be the C*-algebra of all bounded operators on a continuous
field H = C,(2, H(w)) of Hilbert spaces. We call an element P in B(H)
a projection if it is a self-adjoint idempotent: P* = P and P* = P. Then
we have the following result.

THEOREM 1.6. Let H = Cy(2, H(w)) be a continuous field of Hilbert
spaces. If a subset . # of H 1is a continuous submodule of H, then there
exists a projection P such that PH = _#. Conversely let P be a projec-
tion on H, then PH = _# 1is a continuous submodule of H.

PrROOF. Let _Z be a continuous submodule of H, then, for every
we R, #(w) is a closed subspace of H(w) and .#Z = C (2, #(w)). Let
P(w) be the projection of H(w) onto .# (w), then the operator field {P(w)}
is continuous. In fact, for each ¢€ H and 7€ _#, {P(®w)é(w)} is an element
of Tloco -4 (w) and we have: for each we 2,

(P(w)é(@) | N(@)) = () | P(@)n(w)) = (§(@) | 7(@)) .
Thus the function @ — (P(w)&(®) | 7(®)) is continuous on 2, and so the
vector field {P(w)é(w)} is an element of .# by Theorem 1.5. Hence, for
each &, 7€ H, the function v — (P(®)&(w) | 7(w)) is continuous on 2. There-
fore P = {P(w)} is continuous and it is a projection such that PH = _#

Conversely, let P = {P(w)} be a projection on H = Cyx(2, H(®)) and
put .#Z = PH, then _# is a closed submodule of H because P is an element
of B(H). If ¢ ={&(w)} is an element of [[....#(®) such that the func-
tion @ — || &w)|| is bounded and, for each 7e_# the function w—
(é(w) | p(w)) is continuous on 2; then since Pye . # for every ne H, for



418 H. TAKEMOTO

each 7€ H, the function
o — (&(w) | (P)(@)) = (§(w) | P(0)7n(w))

is continuous on 2. Furthermore, since &(w)e #Z(w) for every we 2,

(¢(@) | P(@)(®)) = (P(@)i(@) | 7(@)) = (§(@) | 7(@)) .

This shows that the function @ — (&(w) | P(w)) is continuous on 2, and so

&e H. Hence, since £€ H and Ps=¢, £€ _#. Therefore # is a continuous
submodule of H.

2. The s-closed operators in continuous fields of Hilbert spaces. Let
H, = Cy (2, H(w)) and H, = C;,(2, Hy(®)) be continuous fields of Hilbert
spaces over a Stonean space 2. Let H, & H, be the direct sum of H, and
H,. We define, for each {¢, &} and {n, %} in H, @ H, and ze C(2),

({51, 52}, {771; 772}) = (Eu 7]1) + (52; 772)
and

z{él, 52} = {zély zEZ} .
Then H, P H, is a C(£2)-moduled Banach space with respect to the norm

&y &I =11 H&, &HIT = [1T&P + [& I

and has an inner product on C(2) where | {&,, &}| = {| & * + | & [*}®. Further-
more, we can show that H, @ H, is a continuous field of Hilbert spaces
over 2 with a fundamental subspace F, P F,. In fact, F,P F, and H, P
H, are subspace of []...(H,(w) P Hyw)).

The following result shows the above consideration. The proof of
this assertion is shown by considering the properties of continuous field
of Hilbert spaces and the direct sum, and so we omit the proof.

PROPOSITION 2.1. Let H, = Cp (2, H(w)) and H, = Cp(2, Hy(w)) be
continuous fields of Hilbert spaces over 2, then H, P H, is a continuous
field of Hilbert spaces over 2 (defined respect to F, P F).

Let H = Cx(2, H(w)) be a continuous field of Hilbert spaces over a
Stonean space 2 and A be an arbitrary operator in H (not necessarily
bounded). Throughout in the remainder of this paper, we suppose that
the domain =(4) of A is submodule and A is C(2)-module homomorphism
on Z(4).

We have a similar notation to operator theory in Hilbert spaces.

DEFINITION 2.2. Let H = Cy(2, H(w)) be a continuous field of Hilbert

spaces over a Stonean space 2 and A an operator in H with the domain
2(A). The graph of A is the set G(A) of all pairs of vectors {& %} in



DECOMPOSABLE OPERATORS 419

the direct sum H @ H = Crer(2, H(w) P H(w)) such that n = A& for &e
2(A). A is closed if and only if the relations

. e 2(4), lim¢, = ¢, lim A¢, =7

imply that ée &7(4) and Af = .

Let {&,} and {n,} in =(4) be two sequences such that, if lim,__ &, =
lim, ., 7, and both limits of two sequences {A&,} and {A47,} exist, then
lim,_, A¢, =lim,_ . An,. Then A has a closed extension. Among these
is the so-called minimal closed extension, which is contained in every closed
extension of the operator A. The minimal closed extension is uniquely
defined for each operator A. It is denoted by A and is called the closure
of A. In order to obtain A, it is sufficient to adjoint to <7(A) all those
elements &€ <7(A) which are limit of sequence {£,} in <7(A4) such that there
exists the limit of sequence {A¢f,}, and to require that A¢ = lim,_, AE,.
Then the closure of G(A) in H® H = Crex(2, Hw) @ H(w)) is G(A).

Let A be an operator in H with the domain & (4). Put

S(A) = {6 = S ebar {6 is a bounded subset of <r(A)

such that {4¢&,} is a bounded subset and {e,} are
orthogonal projections in C(Q) with supe, = I},

and

=é(A) ={& =3 e, {&} is a bounded subset of =(A4)
and {e,} are orthogonal projections in C(2) with
supe, = I},

then both subsets <7(A4) and Q(A) are submodules of H by the follow-
ing result.

LEMMA 2.3. Let A be an operator with the domain =2(A) in a con-
tinuous field H = Cx(2, H(w)) of Hilbert spaces over 2. Then both subsets

(4) and Q(A) are submodules of H.

ProOF. If we can show that <7(A) is a submodule of H, then we
can show by the same way that Q(A) is a submodule of H. Thus, we
show that <(A4) is a submodule of H. For any &= Y e, and 7 =
S fims in (A), & =7 if and only if e,fsé, = e.fs7s for any @, 8. Since
it is evident that <(4) is C(2)-module, we show that <r(4) is linear.
Since the set {&, + 7%4}.,s is bounded and {e,fs}. s are orthogonal projections
with sup,s e.f; = I, we put § = 3 e, filé + 1) in Z(4). For any a, B,
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€afsC = €.fos(8a + 0p) = €afsba + €afsMs
= €[5 + eafsl) = €ufs(6 + 7)) .
Thus { =& + 7 and so £ + 7 is an element in <7 (A).
Under the assumption in Lemma 2.3, put, for every & = 3 ¢e.5, in
Z(4),

Ag = AT e.f) = 3 e AL, ,

then A4 is an operator in H = Cx(2, H(w)) with the domain QZ(A). We
must show that A is well-defined. In fact, if &€ = 3} .8, = 3 fa7s, €afsla =
e.feM for any «, 8. Thus, we have

eaf3 AL, = Ae,foly = Ae,fiN)s = eafs AN

and so Z eaA‘Sa = Zfﬂijﬂ'
Furthermore, we have the following fact.

LEmMMA 2.4. Under the assuznption in Lemma 2.3 and the notation
befgfre the~ lemma, suppose that A is a closed operator; them the graph
G(A) of A is a continuous submodule of H@P H = Crer(2, H(w) P H(w)).

PROOF. By the closedness of A and Lemma 2.3, G(A) is a closed sub-
module. Thus, we must show by Theorem 1.5 that if {{5,, A&}} is a
bounded subset in G(A) and {e,} are orthogonal projections in C(2) with
supe, = I, then 3 e (&, A&} is an element of G(A). Since &, is an element
in 2(4) = &7(A), we can represent &, by & =3 e: ¢ such that {7} is
a bounded subset of &(A4) with the upperbound || &. || and {e } are orthogonal
projections in C(Q2) with supef, = I. Then 3 e.é, = 3 e.ef ¢, and {e.el }a,.,
are orthogonal projections in C(2) with supe.ef = I. Thus, > e, is in
(4) and A(S e.l) = S e, A2,. Thus, G(A) is a continuous submodule
of H® H.

The proof of the following lemma is trivial and is left to the readers.

LEMMA 2.5. Let .# be a submodule of a continuous field H =
Cy(R, H(w)) over 2 such that, for each bounded subset {&.} in #Z and
family {e.} of orthogonal projections in C(Q) with supe, = I, >, e, 8
in _#; then the norm closure _#Z of # is a continuous submodule of H.

From the above lemmas, let A be an operator in a continuous field
H = CF(.Q,NH(a))) with the domain <7(A4), then the closure m of the graph
G(A) of A defined before Lemma 2.4 is a continuous submodule of HH H
by Lemmas 2.3 and 2.4. If A has a closed extension, then the graph G(;l)
of the closure A of A is the closure G(A) of G(A). Thus, if A has a
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closed extension, the graph of A4 is a continuous submodule of H ¢ H.
Furthermore, if there exists a closed operator B in H such that BD A4
and the graph G(B) of B is a continuous submodule of H@ H =
Cror(2, H(®) @ H(w)), then it is evident by the definition of A that BOA.
Thus, A has a closed extension and BD A. Therefore, if A has a closed
extension, then the closure A is the minimal extension among the operator
B such that BD A and the graph G(B) of B is a continuous submodule
of HP H = Crer(2, H®) B H(w)).

From the above considerations, we have the following definition.

DEFINITION 2.6. Let H = Cx(2, H(w)) be a continuous field of Hilbert
spaces over 2 and A an operator in H with the domain <7(4). A is s-
closed if and only if the graph G(A4) of A is a continuous submodule of
H® H = Cror(R, Hw) @ H(w)). If A has a closed extension, then we
say that A has an s-closed extension. The minimal s-closed extension is
uniquely defined by A and is called the s-closure of A. It is denoted
by A°.

Let H = C(2, H(w)) be a continuous field of Hilbert spaces and A an
operator in H with the domain < (A4). If there exist vectors » and 7*
in H such that (A&, 7)) = (&, »*) for every &€ &7(A), then we put A*y =
»* and call the adjoint operator of A. If Q(A) is dense in H, then A
has the adjoint operator A*. If the adjoint operator A* exists, then A*
is an s-closed operator by the following result.

PROPOSITION 2.7. Let A be an operator in a continuous field H =
Cx(2, H(w)) such that < (A) is dense in H, then the graph G(A*) of the
adjoint operator A* of A is a continuous submodule of H @ H.

ProorF. Let {{&, A*&,}} be a bounded subset in G(A*) and {e,} are
orthogonal projections in C(2) with supe, = I. Let G, be the closed and
open set in 2 corresponding to e,. Put & = >\e,&. Then for each 7e
Z2(4A) and we G,,, we have

(ij» 5)((0) = (A7], Z eaEa)(w) = (A77, eaogao)(w)
= (A‘)?, an)(w) = (77’ A*an)(a))
= (1, €x,A*E0 ) (@) = (1, 3] €, A*E) (W) .
Thus ¢ € 2(A*) and A*E=A*(D e.é.)=> e, A*E,. Therefore, > e &, A*E,}=
3 el . e, A*E,) is an element of G(A*). This shows that G(4*) is a
continuous submodule of H & H.

By Proposition 2.7, A* = A*.
Let A be an operator in a continuous field H = Cx(2, H(w)) with the
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domain <7(A) such that <7(A) is dense in H, that is, the adjoint operator
A* of A exists. We have the following considerations similar to one in

operator theory in Hilbert spaces. We now define an operator U on H P
H by

Then, the operator U is a unitary operator and U?= I. Put G'(A) =

UG(A), then G(A*) = (H@® H)© G'(A). Hence, applying the operator U,
we get

HOH=GA) D UGA*) = GA) B G'(A%)

where A is an operator defined the remark before Lemma 2.4 and G(A)
is the closure of G(A). Thus the adjoint operator A** of A* exists if A
has the s-closure.

From the above considerations, we have the following result.

PROPOSITION 2.8. Let A be an operator in a continuous field H =
(ZF(Q’ H(w)) of Hilbert spaces such that Q(A) 1s dense in H. Suppose
A has the closure (that is, A has the s-closure), then A** exists and
G(AY) = G(A) = G(A™).

COROLLARY 2.9. Let A be an operator in H = Cp(Q, H(®w)) such that

Q(A) 18 densNe wn H and A has the s-closure. Then A is s-closed if and
only if A= A= A**,

3. The characteristic matrices of s-closed operators. Let K be a
Hilbert space. Each bounded operator S on K@ K is uniquely expres-
sible, through the relation

S: {Eu Ez} - {SnEl + SlZEZ} S21§1 + Szzfz}

is terms of a 2 x 2 matrix (S;;) of bounded linear operators on K.

Let T be a closed operator in K and P the projection of K K onto
the graph G(T). Then, in [5], Stone called the matrix (P,;) of P the
characteristic matrix of 7.

In the case of continuous fields of Hilbert spaces, we have the follow-
ing properties similar to the results mentioned in the preceding sentence.
The following result can be shown by the way similar to the way in
Hilbert spaces and so we leave its proof to the readers.

PROPOSITION 3.1. Let H=CH(2, H(w)) be a continuous field of Hilbert
spaces over 2. Let S be a bounded operator on H@ H = Crer(2, H(w) P
H(w)), then S can be uniquely expressible by 2 x 2 matrix (S;;) of bounded
operators on H = C(2, H(w)), through the relation
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S: (&, &} — {Sué + Sué, Sué + Suésl
for every &, & e H = Cy(2, Hw)).
Thus we denote S = (S;;). If _# is a continuous submodule of H @
H = Crer(2, H(w) @ H(w)), then the projection P of H@ H onto .~ has
the matrix representation (P;;). Hence we have the following result which

extend the characteristic matrix in Hilbert spaces to one of continuous
fields of Hilbert spaces.

PROPOSITION 38.2. Let H= Cx(2, H(w)) be a continuous field of Hilbert
spaces. Let _# be a continuous submodule of H@ H and P the projec-
tion of H H onto # with the matrix representation P = (Py;). Then
A 1is the graph of an s-closed operator A if and only if P,t = (I —
P,)e =0 implies £= 0. The operator A 1is necessarily the wuniquely
determined s-closed operator, which can be described as the mapping

A: P1151 + szfz'_’ b PzzSz )

where &, and &, are arbitrary elements of H. Hence P,y = AP, and P, =
AP,

Proor. (Sufficiency): If {0, &} e 4 then {0, &} = P{0, &} = {P.,&, Pyt}.
This implies that P,,6 = (I — Py)¢é = 0. By the assumption, £ = 0. Next,
define an operator A in H;

A: Pu& + P12§2'_’ by Pzzsz
where & and &, are elements in H. Then if P,& + P& = 0,

P{Ely &} = {P11§1 + P&, P&, + Pt}
= {0! PZlEI + PzzEg} € ..//Z' .

Hence P,¢&, + P&, = 0, that is, A is well-defined. Since _Z is a continuous
submodule in H& H, A is an s-closed operator. It is evident that P, =
AP, and P,= AP,.

(Necessity): Since A(P.&, + P,t) = P&, + Py&, for every &, &,¢ H,
if Po,é= (I — Pyt =0, then the relation P{0, &} = {0, £} € G(A) implies
E=0. :

COROLLARY 3.3. A 2 x 2 matriz P= (P;;) of bounded operators on
H@ H is the projection of HP H onto the graph G(A) of an s-closed
operator A in H if and only tf it satisfies the relations

(1) P5=P,; (3,5=12)

(2) XPuPy=Py (,i=12)
(3) NU— Pa)=(0)
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where N(T) denotes the null space of an operator T.

DEFINITION 3.4. The matrix (P,;) of the projection P of HP H =
Crer(2, H(w) @ H(w)) onto the graph G(A) of s-closed operator A is called
the characteristic matrix of the operator A.

Then we have the following result. We can show by the way similar
to one in Hilbert spaces, and so we omit the proof.

PROPOSITION 3.5. Let A be an s-closed operator such that < (A) is
dense in H=Cp(2, H(w)). Let (P;;) and (Q;;) be the characteristic matrices
of A and its adjoint A* respectively. Then

Qu:I"Pzz,Qm:Panm:P12yQ22:I—Pu-

Furthermore, we have the following result. Its proof is evident and
is left to the readers.

PROPOSITION 3.6. Let (P,;) be the characteristic matrix of an s-closed
operator A im a continuous field H = Cy(2, H(w)) of Hilbert spaces. If
A™' exists, it is s-closed and its characteristic matrixz (Q;;) satisfies the
relations

Qu:Pzz;Qm: Pzn Qm:Pm, Q22:P11-

4. Decomposable operators in continuous fields of Hilbert spaces.
Let H = Cx(2, H(w)) be a continuous field of Hilbert spaces over a Stonean
space Q2. For every we 2 let A(w) be a closed linear operator in H(w),
then the mapping @ — A(®) (or denoted by {A(w)}) will be called a field
of closed operators on 2 or simply a field of operators on Q.

In this section, we shall argue continuous fields of closed operators
and decomposable operators in continuous fields of Hilbert spaces.

LEMMA 4.1. Let S = {S(w)} be a bounded, self-adjoint operator omn
H = Cx(2, H(w)) such that S(w) is one-to-one for every weR. If &=
{&(w)} e H = Cx(2, H(w)) ts an arbitrary element such that &(w) e 2(S(w)™)
for every we 2 and the function @ — || S(w)'&(w)]|| is bounded, then the
field @ — S(w)'&(w) is a continuous wector field (that 1is, the field
{S(w)'&(w)} 18 an element of H).

ProoF. Since S(w) is self-adjoint and one-to-one, <Z(S(w)) = H(w) for
every we 2. Thus, for each £ € H, any positive number € and w € 2, there
exist an element 7, of <#(S) and a closed and open neighborhood U(w)
of w such that

[|&(@") — n(@)]] < ¢ for every o'e U(w) .

Hence there exists a family {7,, U(®)},co of pairs of elements in .ZZ(S)
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and closed and open neighborhood of each w satisfying
[|&(@) — (@) ] < ¢ for every o' e U(w) .

Considering the open covering {U(w); w € 2} of 2, there exists a finite
subcovering {U(w,);1 =1, 2, ---, n} of {U(w); w € 2}). We can suppose that
{Ulwy);© =1, 2, ---, n} are mutually disjoint. Put z, the projection in C(2)
corresponding to U(w,). Then let » = 31, 2:7,,, 7 is an element of .ZZ(S)
and satisfies

[|&(w) — n(w)|] < e for every we 2.

Therefore ¢ is an element of .<Z(S). Thus, to prove that the vector field
{S(w)*&(w)} is continuous, we show that, for each e .zZ(S), the function
o — (S(w)*&(w) | n(w)) is continuous. For each 7 = {N(w)}e Z(S), there
exists an element { = {{(w)} in H such that S{ = 7, thus we get the
relation

(S(@) () | 9(@)) = (S(w)&(w) | S(w)(w)) = (&) | {w)) .
Therefore, the function w — (S(w)™*&(w) | 7(w)) is continuous.

LEMMA 4.2. Let {A(w)} be a field of closed operators over 2 and, for
each we 2, (P,j(w)) the characteristic matriz of A(w). Suppose that the
operator fields {P;(w)} (i, 7 = 1, 2) are continuous. Then if & = {&(w)} is
an element of H = Cp(R, H(w)) such that &(w) e o (A(w)) for all we 2 and
the function o — || A(w)e(w)]|| is bounded, then {A(w)(w)} is an element
of H.

PRrOOF. Since the operator fields P,;={P,;(w)} (¢, =1, 2) are continuous,
every P,; is an element of B(H). By the definition of &, we get

A(w)é(w) = Ppy(0)é(®) + Pu(@)A(0)é(w) .

Thus (I(w) — Pyu(w))A(w)é(®) = P,(w)&(w) for each we 2. Since the vector
fields {P,;(w)s(w)} (3, j = 1, 2) are continuous and (I(w) — P,(w)) is one-to-
one and self-adjoint for all we 2 by Proposition 3.2, the vector field
{A(w)é(®)} = {(I(w) — Pyu(®)) ' P,(w)&(w)} is continuous by Lemma 4.1.

THEOREM 4.3. Let H = Cx(2, H(w)) be a continuous field of Hilbert
spaces over a Stonean space 2. Let {A(w)}€ [1..0 B(H(®)) be an operator
field such that the function w — || A(w)]|| is bounded. Let (P,;(w)) be the
characteristic matriz of A(w) for each we 2. Then the operator field
{A(w)} ts continuous if and only if the operator fields {P;(w)} (¢, 5 = 1, 2)
are continuous.

Proor. We showed the sufficiency of theorem in Lemma 4.2. Thus,



426 H. TAKEMOTO

we show the proof of the necessity of theorem. Put A = {A(®)}, then A
is an element of B(H) and two operator fields {A*(w)} and {I(w)+ A*(w)A(w)}
are continuous. Furthermore, A*(w) = A(w)*, and two functions w —
|| A(w)* || and @ —|| I[(®) + A(®w)*A(w) || are bounded. Hence, since P, (w) =
(I(w) + A(w)*A(w))™*, by Proposition 3.2 and Corollary 3.3,

P,(®) = A(w)P,(w), Py(w) = Py(w)* and Py(w)= A(w)Py(w) .
Therefore the operator fields {P,;(®)} (1, 7 = 1, 2) are continuous.

By Theorem 4.3, we give the following definition in which we define
the continuity of fields of closed operators.

DEFINITION 4.4. A field {A(w)} of closed operators is said to be con-
tinuous if the operator fields of characteristic matrices of A(w) are con-
tinuous.

This definition is legitimate because it agrees with the definition of
continuous fields {A(w)} of bounded operators such that the function w —
|| A(w)]|| is bounded by Theorem 4.3.

Under the above mentioned definition, let {A(w)} be a continuous field
of closed operators and (P;;(w)) the characteristic matrix of A(w) for every
we 2, then the fields P;; = {P;;(w)} (¢, 5 = 1,2) are continuous field of
bounded operators. Define the set .Z = {3 ¢.&,; {&.} is a bounded subset
in H= Cyx(2, H(w)) such that ¢, (w)e 2(A(w)) for every we 2 and a and
{A(®)& (@)} is bounded, and {e,} are mutually orthogonal projections in
C(Q) with supe, = I}; then _# is a submodule of H. Let G, be the closed
and open set in £ corresponding to e, then, for each & = > e,5, in . Z
and we G,, we have the following equation

A(@)i(w) = A()e (@) = Py(w)é () + Pyu(w)A(w)é ()

= Pu(w)é(w) + Pu(w)A(®)é(®) .
Define an operator A’ as follows; for each &= {&()} in H such that
&(w) e 2(A(w)) for every w e 2 and {A(w)é(w)} is bounded, A'¢ = 7 where
7N = {A(®)&(w)} because, by Lemma 4.2, 7 = {A(w)&(w)} is an element of
H = Cy(2, Hw)). Then A’ is a C(2)-module homomorphism of the sub-
module {£¢ H; &(w) e 2(A(w)) for every we 2 and {A(w)&(w)} is bounded}.
Furthermore define an operator A on _# as follows; for each & = >)e.&, €
A, A= ,e,A's,. Then A is well-defined and A is a C(2)-module
homomorphism on _#Z We have the following relations; for each & =
S el.e # and we G,

A(w)é(w) = Py(w)é(w) + Pyu(w)A(w)é(w)
Ae = Pyel + Ppe, Af and A€ = P& + P,Af.
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From the above considerations, we get the following result.

LEMMA 4.5. Let {A(w)} be a continuous field of closed operators and
let (P;;(w)) the characteristic matrix of A(w) for every w e 2; then there
exists an s-closed operator B such that P = (P;) ts the characteristic
matrix of B.

From Lemma 4.5, we have the following theorem.

THEOREM 4.6. Let H = Cx(2, H(w)) be a continuous field of Hilbert
spaces and {A(w)} a continuous field of closed operators; then A = B where
A is the operator defined before Lemma 4.5 and B is the operator de-
termined in Lemma 4.5. Thus, A is an s-closed operator.

Proor. By the definition of the operator A, the domain < (A4) of A
is the submodule .7 = {3]¢.t,; {£&.} is a bounded subset in H such that
£ (w) e 2 (A(w)) for each we 2 and a, and {A(w)é(®)},. is bounded, and
{e,} are mutually orthogonal projections in C(2) with supe, = I}. Further-
more, since the operator B is an s-closed operator, the graph G(B) of B
is a continuous submodule of H@ H = Crep(2, H(w) @ H(w)). Thus, let
{&,} be a bounded subset of = (B) such that {B&,} is a bounded set in H,
and let {e,} a family of mutually orthogonal projections in C(2) with
supe, = I; then > e, is an element of &2(B) and B(3 e.&,) = D, e, BE,.
For each ¢ &(B), there exist two elements & and & in H such that
& = Pué + Pué. Since &(0) = Py(0)é(w) + Pu(w)é(w) is an element of
(A(w)) and

(BE)(G)) = (P2IEI)(Q)) + (P2252)(0)) = le(w)&(w) + Pzz(w)sz(w)
= A(w)é(w)

for every we 2. Thus, BC A.

Conversely, let & is an arbitrary element of <7(A), then there exists
a bounded set {&,} of H such that £,(w)e Z7(A(w)) for every we 2 and «,
and {A(®)& (@)}, is bounded, and the set {e,} of mutually orthogonal
projections in C(£) such that & = > e&,. Now since ¢,& = ¢,&, for each
a and P(0){é(0), A(@)(0)} ={E(w), A(®)é ()} for every w and a,
P{ée, Mo} = {6ay M} Where 7, = {A(®)é(w)} € H = Cx(?, H(w)). Thus, &, is
an element of &7(B) and B¢, = 7, for each @. By the assumption of the
boundedness of {A(®)&(®)}.., the set {B&,} is a bounded set. Thus & =
ek, is an element of =7(B). Therefore, A = B.

From Theorem 4.6, if a field {A(w)} of closed operators is continuous,
we can considered {A(w)} as an s-closed operator in H and so we denote
A = {A(w)}.
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Next, we shall consider whether s-closed operator can be represented
as a continuous field of closed operators. We give the following definition
which is used for the above mentioned consideration.

DEFINITION 4.7. Let A be an s-closed operator in a continuous field
H = Cx(2, H(w)) of Hilbert spaces. A is called a decomposable operator
if there exists a continuous field {A(w)} of closed operators such that A =
{A(w)} in the mean of the remark after Theorem 4.6.

We want to any s-closed operator be decomposable, but unfortunately
we can give the following example in which we get an s-closed operator
that is not decomposable.

ExampLE 4.8. Let H = C»(8N, H(w)) be a continuous field of Hilbert
spaces over BN where QN is the Stone-Cech compactification of the set
of all positive integers. If we consider a von Neumann algebra of type
I with the center C(BN), we can show that there exists a continuous field
of Hilbert spaces over SN mentioned in the above sentence. Let f be an
element of C(BN) such that f(n) = 1/n for every ne N and f(w) = 0 for
every w € BN\N and D = fI where I is the identity of B(H), that is, for
each & = {&(w)}e H = Cx(BN, H(w)), (D)(®) = f(w)é(w) for every weQ;
then D is a positive operator on H with 0 < D < 1.

Under the above considerations, define an operator P on HP H as
follows:

B ( D (DI — D))"
~ (DI — D)y I-D ) '

further put
Pn:D; sz:Pﬁ:(D(I""D))l/Z; PZZZI—D-

Then we have the following relations;
(1) Pi=P; (1,5=1,2),

(2) X PuPy=P; (,35=12),

(3) (I— Pp)é=0 implies £=0.

The proofs of (1) and (2) are trivial by the definition of the operators P;;
(¢, 5 =1, 2) and so we show the proof of (3).

(3): If (I— Pyt=0, then Dé =0. Thus f(n)é(n) = (1/n)é(n) =0
for every ne N, and so &n) = 0 for every n€ N. Since the function w —
|| &(w) || is continuous and N is dense in BN, &(w) = 0 for every we SN.
Therefore (I — P,)&é = 0 implies & = 0.

By the above consideration and Corollary 3.3, there exists an s-closed
operator A of which the characteristic matrix is P. If A is decomposable
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and we denote A={A(w)}, then, by Theorem 4.6, the characteristic matrices
of A(w) must be (P;;(w)). But, for every we SN\N, we have

(I — Pp)(w) = I(w) — Py(w) = D(w) = 0.

Thus, by Corollary 3.3, (P,;(w)) is the characteristic matrix of no s-closed
operator. Therefore, A is not decomposable.

In the above Example 4.8, we showed that there exists an s-closed
operator A, even if the continuous submodule of H = Cx(G8N, H(w)) gener-
ated by 2(4) is H, A is not decomposable.

We show that arbitrary densely defined s-closed operator is decom-
posable. To show it, we have some considerations which can show by
considering the properties of operator theory in Hilbert spaces and the
characteristic matrix of closed operators, and so we omit the proof.

LEMMA 4.9. Let A = {A(w)} be a continuous field of closed operators
with the adjoint operator A* such that F2(A*) is dense in H=Cy2, H(w)).
Then, for any we 2, A(w) is one-to-one, thus A is one-to-one.

LEMMA 4.10. Let A be a densely defined s-closed operator in H =
Cr(2, H(w)), let (P;;) be the characteristic matrix of A. Then FB(I—P,) =
(I + AA*) = 2(AA*).

By Lemmas 4.9 and 4.10, we have the following corollary.

COROLLARY 4.11. Let A be a densely defined s-closed operator in H =
Cx(2, H(w)). Let (P,;) be the characteristic matrix of A. Then B (I —P,)
18 dense in H and, for each we 2, I(w) — Py(w) is one-to-one.

From the above considerations, we have the following theorem which
says to any densely defined s-closed operator be decomposable.

THEOREM 4.12. Let A be an s-closed operator in a cowntinuous field
H = Cy(2, Hw)) of Hilbert spaces such that = (A) is dense in H, then
A 18 decomposable.

PROOF. Let (P;;) be the characteristic matrix of 4 and P,; = (P,;(w))
(4,5 =1,2). Then P, () (¢, j =1, 2) are bounded operators on H(w) for
every we 2. By the properties of characteristic matrix, we have the
following relations

(1) Pyw)* = Pj(w) = Py(w) (i,7=1,2),

(2) kgf Py(w)P(w) = Py(w) (3,7 =1,2).

Furthermore, by Corollary 4.11, N(I(w) — P,(w)) = {0}. Thus, by Corollary
3.3, there exists a closed operator A(w) for every we 2 such that the
characteristic matrix of A(w) is (P;;(w)) for every we 2. Since for 4, j =
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1, 2, the fields {P,;(w)} are continuous, the field {A(®w)} is a continuous field
of closed operators. Furthermore, we have the following relation;

A(w): Py(w)é(w) + Py(w)éy(@) — Pyu(w)&(w) + Pyu(w)é(w)
for any &, &, H and we 2. Therefore, the relation

A: PIIEI + P12§2'_’ &1+ Pzzsz )

implies A = {A(w)} and Z(4A()) = {§(); & = {{(w)} e Z(4)}.

In Theorem 4.12, we supposed that an operator A is a densely defined
s-closed operator. Then if we write as A={A(w)}, A(w) are densely defined
closed operators. The following proposition shows that if every A(w) is
densely defined and the field A = {A(w)} is continuous, then both operators
A and A* are densely defined.

PROPOSITION 4.13. Let A = {A(w)} be a continuous field of closed

operators such that, for each we 2, F(A(w)) 1s dense in H(w), then 2(A)
and Z(A*) are dense in H.

The above result is shown by considering the properties of the char-
acteristic matrices and the continuous fields of Hilbert spaces and we omit
the proof.

Considering the properties of the characteristic matrices of the s-closed
operators, Theorem 4.12 and Proposition 4.13, we have the following
corollaries.

COROLLARY 4.14. Let A = {A(w)} be a decomposable operator in H =
C(2, H(w)) with the dense domain (A), then A*(w) = A(w)* for every
we Q.

COROLLARY 4.15. Let A = {A(w)} and B = {B(w)} be two decomposable
operators. Then AC B if and only if A(w)C B(w) for every e L.

COROLLARY 4.16. Let A = {A(w)} be a densely defined decomposable
operator, then A is symmetric if and only if A(w) are symmetric.

5. Applications of decomposable operators. In this section, we shall
show that the square root for a densely defined self-adjoint, positive oper-
ator exists and if A is a densely defined s-closed operator then it can be
written uniquely of the form A = VS (the polar decomposition of A), where
S is a self-adjoint, positive operator and V is a partially isometric oper-
ator and V is a partially isometric operator. We recall that a bounded
operator B and an arbitrary operator A are said to be permutable if
BAcC AB. If 2 is a C(2)-moduled C*-subalgebra of B(H) with 2 = %",
then we define that an s-closed A is affiliated to % (we denote A,%) if
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BA C AB for every Be 9. Then, by [6; Theorem 5.7], we have a remark
of a relation of the field {A(w)} and the field {(w)}.

Before the proof of the polar decomposition, we have some consider-
ations. From the remark before Proposition 2.8, we have the following
lemma.

LEMMA 5.1. Let A = {A(w)} be a densely defined s-closed operator in
a continuous field H = Cp(2, H(w)), then A*A is self-adjoint and positive.

ProoF. For each & ne o(A*A), (A*AE, 1) = (A, An) = (&, A*An) and
(A*AE, &) = (Ag, A8) = 0. Thus A*A is a positive operator.

By Lemma 4.10, A*A and I+ A*A are symmetric. Now, since
P(I + A*A) = H, the operator I + A*A is a self-adjoint operator. In
fact, if B is a densely defined symmetric operator with .<Z(B) = H, then,
for each ne &7(B*), there exists an element &{e &(B) with B¢ = B*1.
Thus, for each {e &= (B),

(B, 7)) = (§, B*n) = (B, &) .
Therefore since Z(B) = H, 7 = &€ 2(A). Thus, I+ A*A is a self-adjoint
operator. Therefore A*A is a self-adjoint operator.

Before the definition of square root of a self-adjoint, positive operator,
we consider the following corollary by Lemma 5.1 and Corollary 4.14.

COROLLARY 5.2. Let A = {A(w)} be an s-closed operator such that
2(A) = H, and let A* = {A*(w)} the adjoint operator of A, then the field
{A*(w)A(w)} 18 a continuous field of self-adjoint, positive operators and
A*A = {A¥(w)A(w)}.

THEOREM 5.3. Let A = {A(w)} be a self-adjoint, positive operator in
a continuwous field H = Cp(R, H(w)) of Hilbert spaces, then there exists
uniquely the self-adjoint, positive operator B = {B(w)} in H = Cx(2, H(w))
such that B* = A.

Proor. Since A(w) are self-adjoint, positive operator, for each w e 2,
there exists the square root A(w)'? of A(w) which is a self-adjoint, posi-

tive operator. We shall show that the field {A(w)'*} is a continuous field
of closed operators. Put, for each we 2,

QRu(@) = ([(w) + A@))™, Qu(®) = A(w)"*(I(w) + A(®))™",
Qu(®) = A(w)*(I(w) + A(@))™ and Qu(w) = A(0)I(®) + A(w))™ .
Then, since the fields {A(w)} and {I(®w) + A(w)} are continuous, the field

{(I(w) + A(w))™*} is a continuous field of closed operators. Furthermore,
since || (I(®) + A(w))™* || £ 1, the field {Q.(®)} is a continuous field of bounded
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operators. By the same way, the field {Q.(w)} is continuous. Further-
more, by the relation Q,(w)* = A(w)(I(w) + A(®))%, the field {Q.(w)*} is
continuous. Thus, there exists the positive operator S of B(H) with S =
{Q:(w)}. Then S'*(w)= Q. (®). In fact, let {p,}5-, be a sequence of
polynomials such that ,(S) — S** as » — c (in the norm topology). Then
0.(S)(@) = p.(S(0)) = D.(Qu(®)), P.(S)(@)—S"*(w) as n—co and p,(Qu(w)")—
Q(w) as n— « for every we 2. Thus, S w) = Q,.(w) for every we Q.
Therefore, the field {Q.,(®)} is continuous and so the field {Q..(®)} is contin-
uous and so the field {Q.(w)} is continuous. Next, we shall show that the
field {A(®)"?} is a continuous field of closed operators. From Proposition
3.2 and Definition 4.4, we say that the matrix (Q,;(®)) is the characteristic
matrix of A(w)'"*. If &w) is an element such that Q. (w)é&(w) = (I(w) —
sz(w))f(w) = 0, then

A(w)(I(w) + A@)) (@) =0 and A(w)I(®) + Aw))"é(w) = &) .

Then, ¢(@) = A(w) () + A(w)) (o) = A(w)*A(w)*(I(®) + Aw)) (o) =
0. Furthermore, for each &, and & e H, we have

A(@)"Qu(@)é(@) + Qu(@)é(w)}
= A(@)"*{(I(w) + A@))6(0) + Aw)"(I(0) + A(®))'é(w)}
= A(w)*(I(w) + A))é(w) + Al@)I(®) + A())"é(w)
= QZI((D)SI((‘)) + Q22(w)52(w) .

Thus, (Q,;(®)) is the characteristic matrix of A(w)'? for every we 2 by
Proposition 3.2. Put Q,; = {Q,;(®w)} (4, 5 = 1, 2) and B = {A(w)'?}, then B
is a self-adjoint, positive operator such that the characteristic matrix of
Bis (Q;;). Furthermore, by Theorem 4.6, Bw) = B(w)’ = (A(®)'"?)* = A(w),
and so B> = A. The unicity of existence is obvious.

By Lemma 5.1 and Theorem 5.3, we introduce the following definition.

DEFINITION 5.4. Let A = {A(w)} be a densely defined s-closed oper-
ator. Then we denote the square root (A*A)'”* of A*A as | A| and call
the absolute value of A.

Then | A| (w)* = (A*A)(w) = A*(w)A(w) and | A | (w) = | A(w) | for every
we Q2. Furthermore, we can show by the elementary examination that
2(4]) = 2(4).

Next, we shall consider the polar decomposition of s-closed operators.

Let A = {A(w)} be a densely defined s-closed operator in a continuous
field H = Cx(2, H(w)) of Hilbert spaces. Define two subsets H, and H,
of H as follows;
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H, = the closure of {3\e,|A|&: {|A4]&.} is bounded,
{&Jc =2(A|) and {e,} are orthogonal projections in
C(2) with supe, = I},

H, = the closure of {3 e, A¢,: {A&,} is bounded, {£,}C 2(4)
and {e,} are orthogonal projections in C(2) with
supe, = I}.

Then both H, and H, are continuous submodules of H. In fact, let {&}
be a bounded set in {3 ¢, | A| &.: {| A]| &} is bounded and {e,} are orthogonal
projections in C(2) with supe, = I} and {e,} are orthogonal projections in
C(2) with supe = I, then each & 1is represented as follows; &, =
w .| Al &, where {|A]|¢& )., is bounded with upper bound [|¢.|| and
{e: )., are orthogonal projections in C(2) with sup,_ e;, = I. Then 3 ef, =
DX ee, A&, {|Al&).,., is a bounded subset of H and {ee}. ., are
orthogonal projections in C(2) and supee, = I. Thus 3 e € H,. There-
fore, by Theorem 1.5, H, is a continuous submodule of H, similarily H,
is also a continuous submodule of H.
Define an operator V' of H, to H, as follows; for each £ = >, e, | A| &,
in H,

ViXe|Alé) = XAl .
Then, we have
[ 2ea| Al &l = sup |lec | Al &I
= sup || e A% | = || 2 e Al " -

Thus, the above defined V' is well-defined and V'’ is an isometrical oper-
ator. Hence we have the extension V" of V' to H, that is an isometrical
opepator of H, onto H,. Let E, (« = 1, 2) be the projections of H onto
H, (i =1, 2) respectively, and let V = E,V"”E,, then V is a partially
isometrical operator on H with the initial domain H, and the final domain
H,. Furthermore, we can show that A = V| A| and if H, and H, are
fixed, V is determined uniquely. From the above consideration, we have
the following theorem.

THEOREM 5.5. Let A = {A(w)} be a densely defined s-closed operator
m a continuous field H = Cx(2, H(w)) of Hilbert spaces over a Stonean
space 2, then A can be written uniquely of the form A = V|A| where
V is a partially isometrical operator with the initial domain H, = the
closure of {3 e.|A|&: {|A]&} ts bounded, (&} 2(A]) and {e,} are
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orthogonal projections in C(2) with supe, = I} and the final domain
H, = the closure of {3 e, A&,: {AE&,} is bounded, {&,} € 2(4) and {e,} are
orthogonal projections in C(Q) with supe, = I}.

The representation of A in the above theorem is called the polar
decomposition of A.

In Theorem 5.5, we gave the polar decomposition of a densely defined
s-closed operator. Let A be a densely defined s-closed operator and V| A|
the polar decomposition of 4, then we have a relation: A(w)= V(w) | A|(®w)=
V(w) | A(w)| for every we 2. But, we cannot assert in general that V(w)
is the partially isometrical operator with the initial domain 2(| A(®w)|)
and the final domain .ZZ(A(w)). For example, let 2 be the spectrum space
of L”(0,1) and H = Cx(2, H(w)) a continuous field of Hilbert spaces over
2, then there exists a continuous function f on 2 such that f(w,) = 0 and
fl)#0 if w+# w, Put A=fI in B(H), then H, = H (i =1, 2), but
| A(wy) | = 0 and so A(w,) = 0.

If A is a C(Q)-moduled C*-subalgebra of B(H) with 2 = A" where
H = Cyx(2, H(w)) is a continuous field of Hilbert spaces over 2, then, by

[6; Theorem 5.7], A = C(Q, ?J,Z'(\w/)) where E),IE)/) is the weak closure of A(w) =
{A(w): Aeq with A = {A(w)}}. Then, we can show the following result
which can be proved an elementary examination, and so the proof is left
to the readers.

PROPOSITION 5.6. Let U be a C(2)-moduled C*-subalgebra of B(H)
with A = A" where H = Cx(2, H(w)) is a continuous field of Hilbert spaces,
and let A = {A(®w)} be an arbitrary demsely defined s-closed operator in

H; then AN if and only if A(a))”%/T,(?o/) for every we Q.

NoTE. When this paper was firstly typewritten and sent to many
authors, the title of this paper was “Continuous reduction theory of un-
bounded operators in continuous fields of Hilbert spaces”.
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