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ON THE HANKEL TRANSFORM OF DISTRIBUTIONS
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(Received November 21, 1973)

1. Introduction. Let an integral transform F(y) of a complex-valued
function f(x) defined over the interval (— °°, <*>), with respect to the kernel
k(x, y) for real parameter y be defined as

( i ) F(y)= Γ f(x)k(x,y)dx = Tf.
J —00

Let us assume that there exists a function h(x, y) defined for real x, y such
that under certain restrictions on f(x) the transform F(y) is inverted by

(π) /(») = Γ F(y)h(x,y)dy.
J-oo

There are mainly two approaches to extend the classical transform (i) to
generalized functions. In the first approach a testing function space H
is constructed over (-co, oo) which is closed with respect to the classical
transform (i) and then the corresponding transform of the generalized
function / of the dual space is defined through the generalization of the
ParsevaΓs equation as follows

(iii) (Tf, φ) = </, Tφ) for all φeH.

This approach has been followed by L. Schwartz [7] to extend Fourier
transform to distributions of slow growth. Zemanian [9] has also followed
this approach to extend Hankel transform to generalized functions.

The second approach consists in defining a testing function space over
(—oo, oo) containing the Kernel function k(x, y) for each real y and then
defining the transform F(y) of the generalized function / by the relation

(iv) F(y) = (f(x), k{x, y)) .

This approach has been followed in the extensions of Laplace [12], [13]
Mellin [12], Stieltjes [4] transforms to generalized functions. The inversion
formula (ii) for generalized functions is then extended by establishing:

lim ( Γ </(&), k(x, y))h(x, y)dy, φ) = </, φ)
iV-oo \Jθ /
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for each φ e 22(1) (generally).
Our goal is to extend the classical Hankel inversion formula estab-

lished by A. Schwartz [6] to a certain class of generalized functions,
following the second approach, which is more natural and explicit and
is very well suited for specific computations. Following the first approach
Zemanian [9] extended the classical Hankel transform to a certain class
of generalized functions of slow growth and proved the inversion theorem
for distributions of compact support only. Later Koh and Zemanian [3],
following the second approach, gave an extension of the Hankel transform;
they also proved an inversion theorem for a larger class of generalized
functions. In this paper the following Hankel inversion formula as
proved by A. Schwartz [6] is extended to a certain class of generalized
functions interpreting convergence in the weak distributional sense, which
has distinct advantages over the works done by Zemanian [9] and Koh
and Zemanian [3].

Let v > —1/2 and L consist of all measurable functions defined on
0 < x < oo such that

11/11 =

where

dm(x) =

Also let ^(x) = 2 ι 7> + ΐ)χ-uJu(x) for all x > 0, where Jv(x) is the
Bessel function of the first kind of order v.

T H E O R E M (A. L . S c h w a r t z ) . Suppose feL and [ | f(y)yv+112\dy < oo.
Jo

If f is of bounded variation in a neighborhood of x, then,

lim \λ^(xu)dm(u) \° f(v)J-{uy)dm(y) = hf(x + 0) + f(x - 0)} .
a o o JO JO ^

\
a-»oo JO

We extend the above result to a class of generalized functions and
prove some related results. Specifically, we define a generalized Hankel
transform following the approach used in [3], and prove the corresponding
inversion theorem. In Section 4 we give an example of a class of regular
generalized functions which are Hankel transformable in our sense but
not in the sense of Koh and Zemanian [3]. Moreover, the inversion
formula (Theorem 3) is used to find the distributional solution of a
differential equation which cannot be solved by the technique used in [3]
(see Remark 1 in Section 5).

At first it would appear that the generalized function space
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considered by Zemanian [9] is larger than the space H'aδ{I) of ours, but
this is not the case. We give examples in Section 4, showing that our
testing function space and that used by Zemanian overlap and neither is
contained in the other properly. Consequently neither of the generalized
function spaces is properly contained in the other.

2. The testing function space Ha>δ(I) and its dual. Let 1 = (0, oo),
x e I and a, δ, v be fixed real numbers satisfying v > —1/2, 0 < a ^ v + 1/2
and δ ;> 0. Let ξ(x) be an infinitely differentiate function defined over
7, satisfying ζ(x) > 0 for all x > 0 and such that

o < x < 1

Now define Ha>δ(I) to be the collection of all infinitely differentiable
complex-valued functions φ(x) on 7 with the property

φ(x)
Ύk(φ(x)) = SUP

0<ίC<oo
<

<m'(x)J

for each ft = 0, 1, , where 4k = Dl + ((2v + l)/x)Dz; Dx = d/cte and
mf(a?) - [2vΓ{v + l)]"1^2^1.

The sequence {TjϊU is a separating collection of seminorms [11, p. 7]
which generates the topology of Haίδ(I). It can be readily seen that
Hajδ(I) is a locally convex, sequentially complete, Hausdorff topological
vector space. The dual space of Hafδ(I) is denoted by Hf

a,δ{I).

NOTE 1. Let &{I) denote the space of infinitely differentiable func-
tions with compact support on 7, equipped with the usual topology. The
dual space 3ί\I) is the space of Schwartz distributions on 7 [11, p. 33].
It is easy to check that the space 3f{I) c Ha>δ(I), and that the topology
of £&{I) is stronger than that induced on it by Ha>δ(I). Hence the
restriction of any / e Hά,δ(I) to 3f{ϊ) is in ^ ' ( 7 ) .

NOTE 2. We point out that the space Haδ{I) is not in general closed
with respect to differentiation. For example take a function on 7 defined
as φ(x) = xf where v > -1/2. Obviously φ(x) e Ha,δ(I) for v - 1/2 < 8 <
v + 1/2 but the derivatives of φ{x) do not belong to Ha>δ(I). Hence we
cannot define distributional differentiation in H'atδ{I) in the way it was
defined in &\I) [10, p. 47].

NOTE 3. Let f{x) be a locally integrable function defined for x > 0

and satisfying \ (| f{x) \ )/(ξ(x)) dm{x) < oo. Then f(x) generates a regular
Jo

generalized function in H'a,δ{I) defined by



340 L. S. DUBE AND J. N. PANDEY

( 1 ) <f,Φ>= Γ f(x)Φ(v)dx

In fact,

ξ(χ)

which shows that (1) defines a functional /on H«,δ(I). The linearity and
continuity of / follow from (1) and (2) respectively.

NOTE 4. For v > -1/2 the regular generalized functions determined
in [3, (ix)] may be easily shown to be contained in H'ayδ{I).

NOTE 5. Let v + 1/2 > a > 2. Then the regular generalized function
space generated by the elements of the function space for which the
inversion formula of Schwartz [6] is valid is contained in H

3. The generalized Hankel transform. For feHά>δ(Σ), define its
generalized Hankel transform by the relation

( 3) F(y) = = </(&), m'(x)J?(xy)} , y > 0 .

Notice that (3) is well defined since using Δ\^{xy) = { — l)ky2k^{xy), for
k = 0, 1, 2, , it follows easily that mf{x)^(xy) e Ha,δ(I) for fixed y > 0.

It can also be verified that mf(x)(dk/dyk)^(xy) e Ha,δ(I) for each
y > 0 and k = 1, 2.

THEOREM 1. For y > 0, let F(y) be the generalized Hankel transform
of / ; then F(y) is differentiate and

§F{y) (f(x), m(x)4
dy \ dy

PROOF. Let h be an arbitrary increment in y. Without any loss of
generality assume 0 < | h \ < y/2. Now

F(y + h)- F(y) =

h

Let θh(x) denote the expression

h

h)} - J?{xy) _ J_
h dy

We will show that m'{x)θh(x) converges to zero in Hatδ{I) as h—+0.
Our result will then follow from the continuity of f(x). Now, for any
non-negative integer k
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1 ΓΓ2/ + Λ fw

x~"M {(2k-v)(2k-v-l)?k-*-2J>(xt)
hLjy Jy

+ 2(2k - v)xfk-"-ιJlι)(xt) + xΨ"-"J.<2)(xt)}dt du~\

= Ji + I, + 1, ,

where
1 Cv+hΓ

I, = {-l)k2vΓ{v + l)(2fc - y - l)-i

and /2, 73 are defined similarly.
Using the asymptotic orders of Bessel functions and their deriva-

tives, it can be shown that for each m = 0, 1 and 2, the expression
I ξ(x)χ-"+mJin)(xt) I is uniformly bounded for all x > 0 and y/2^t^ Sy/2.
Let Bm, m = 0, 1, 2, be the corresponding bounds. Then for fixed y > 0,

+ 1) I (2k - v){2k - v - 1) | J5 0 JLI f"+" V f
\h\\Jy h

*dt du

g 2T(υ + 1) I (2k - v)(2k - v - 1) | Bo

 2 '| h | — 0 as fe — 0 .

(f)(f)
Similarly it can be shown that for fixed y > 0,12 and 73 both converge
to zero as h —> 0 uniformly for all # > 0. Hence for each k = 0, 1, 2, ,
£(aO4£(0A(α;)) —• 0 as Λ -> 0, uniformly for all x > 0.

This completes the proof of the theorem.

REMARK. We do not know whether the second order derivative of
F(y) exists in general.

THEOREM 2. Let F(y) be the generalized Hankel transform of

feHUI). Then

\F(y)\ = O(ymn{2~a'0)), y-+ 0 +

and

where r is a non-negative integer.
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PROOF. In view of a general result [11, Th. 1.8.1], there exists a
constant C > 0 and a non-negative integer r such that

I < f(x), m\x)^(xy) \ = \F(y)\£ CmaxΎk(^(xy)mf(x))

= Cmax sup \ξ{x)Ak

x£
r{xy)\

O^k^r 0<a;<oo

= C2T(y + 1) max sup | ξ(x)y2k(xy)-"J>(xy) | .
O^k^ 0 < <

We now evaluate the quantity ξ{x)y2k{xy)~uJv{xy) (for k = 0 or r according
as i/—>0+ or 2/-+ oo) by dividing the #-line into three parts 0 < x ^ 1,
Kx^l/y and I/?/ < α; < oo for y -> 0+ and 0 < x ^ 1/j/, l/y < x ^ 1
and 1 < a? < oo for y —• oo and thus conclude that

Mln(-«.0,) y ^ O +

This completes the proof of Theorem 2.

Before giving the inversion theorem we prove the following required
lemmas.

LEMMA 1. Let 0 < a <̂  v + 1/2. Then for fixed x > 0,

+0 in Ha,δ(I) as η-+0+ .

PROOF. For any non-negative integer k we have

^ ί(ί) Γ
Jo

(y + l)]-ιΛf ΓI
JO

where £(£) ̂  M£α for all ί > 0, and an appropriate constant M > 0.

Since 0 < α ^ y + 1/2, | (ty)a^(ty) \ is bounded for all t, y > 0. There-
fore, in view of the fact that | ^{xy) \ ̂  1, there is a constant K
(depending on v and a) such that the left-hand side of (4) is bounded
by

which clearly approaches zero as )?-+0 + , independently of t.

LEMMA 2. If f G Hά,δ(I) then for fixed x > 0 and any positive number
N we have
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(5)
), m'it)

PROOF. In view of Theorems 1 and 2, the integral on the left-hand
side of (5) exists. It can be shown readily that for fixed x > 0, m'(t)
times the integral on the right-hand side of (5) belongs to Ha}δ(I), and
therefore the right-hand side of (5) is meaningful.

To prove (5), we need to establish that for η > 0,

(6)
), m\t)

which can be proved by using the technique of Riemann sums. The proof
is very similar to that of Theorem 2 in [5], and therefore is omitted.
The result (5) now follows by letting η—>0+ in (6) and applying Lemma 1.

S N

<J?ivt) J?(%y)dmiy) by the symbol

GN(t,x).

LEMMA 3. For positive numbers a and δ, one has

1, ίe(α, δ)

S b i

GNit, x)dmix) = — f t = a, t = δ
a Δ

0 , tί[a,b].
PROOF. The result follows quite readily from HankePs inversion

formula [2, p. 96].

LEMMA 4. Let φix) e Sfil) with support contained in [a, b], 0 < a < 6.
Then

( 7) m'it) \ GS, x)Φix)dx — Φ{t) in Ha,δ(I) as N->oo .

PROOF. It can be easily seen that ΔtGNit, x) = AxGN(t, x). Therefore

S b Γb

GNit, x)φix)dx = I AxGNit, x)φix)dx

(by integration by parts) .
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Operating with Δt successively and applying Lemma 3, we get

limΓj? Γ GN(t, x)φ(x)dx - φ(t)~]

= lim \ GN(t, x)[φk(x) - φk(t)]dm(x) ,

where φk{x) denotes 4*(J&L) e Sf(l) f or k = 0, 1, 2, . . . . Our problem is
\m{x)J

now reduced to proving that

( 8) lim ζ{t) Γ GN(t, x)[f{x) - f{t)]dm{x) = 0 ,
i\r->oo }a

uniformly for all t > 0 where ψ(x) e &(I) with support contained in [α, 6].
Substitute

G (t x) = 2>Γ(v + i) (xt)-N[xJv+1(Nx)JXNt) - tJv+1(Nt)Ju(Nx)]
(x2 - t2)

as given in [8, p. 134] into (8), and express the left-hand side of (8) as
I = Iι — I2 where

V + 2 ^x>> "" ^ Jv+1(Nx)dx
x2 — t2

and

I2 = Nξ(t)t-u+1J,UNt) Γ xv+1 ^ x ) ~ ^ l ) JXNx)dx .
Jβ x2 — t

As before, one can find a constant K' such that ξ(t) <̂  K'ta 2, for
alH > 0. Moreover for t > 6, ψ{t) = 0. Then using the asymptotic orders
of Bessel functions, the fact that ψ(x) is bounded, and the inequality
I x2 — t21 > t2 — b2 for t > 6, we can find a constant I? (depending on v)
such that

*α-(H-3/2) f &

Therefore for an arbitrary ε > 0, there exists a number L > b suf-
ficiently large that

(9 ) lim 1121< ε f or all t > L .

For a ^ t <: 6, using the inequality £(£) <̂  K'ta~2 and an analogue of
the Riemann-Lebesgue lemma [8, p. 457] we get
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as iV-+oo

( 1 0 > - Γ 1 Ί
" r0 i a s N .

LVNJ

In the above asymptotic order, uniformity with respect to t is implied.
For further details see [1, p. 41].

Similarly for b < t ^ L we have

(11) 1121 ̂  iΓ'δ^^+^^-VFoΓ-^LΊ as i\Γ-> oo .

Lastly, when 0 < t < α, find a constant K" such that f(£) ^
and hence arrive at

(12) I 721 ̂  ί C ' V + V F o Γ - ^ Ί as N-+ ̂  .

Note that the asymptotic orders in (11) and (12) are also uniform

with respect to t.

Combining (9), (10), (11) and (12) we conclude that

lim I J21 = 0 uniformly for all t > 0 .

N-*oo

Therefore,

(13) lim I2 = 0 uniformly for all t > 0 .
iV-><»

Similar techniques can be used to show that
lim Iι = 0 uniformly for all t > 0 ,

which combined with (13) proves the required result.

Now we prove the following inversion theorem.

THEOREM 3. Let f e Hάtδ(I) and let F(y) be the generalized Hankel
transform of / . Then for each φe

(14) ^F{y)^{xy)dm{y\ φ(xή — </, φ), as

PROOF. Suppose that the support of φ(x) is contained in (a, 6),
0 < a < b. We prove (14) by justifying the steps in the following ma-
nipulations.
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aF(y)J?(xy)dm(y),φ(x)/

(15) = j * \ NJ{y)J?{xy)dm{y)φ{x)d(x)

= [φ(x)d(x)\N(f(t), m'(t)J?(yt))J?(xy)dm(y)
Ja Jo

(16) - J'(/(*), m'(£) J*^(»O^(aw)dm(»))^)ci(aί)

(17) = (/(*), m\t) £ G*(ί, ^ ( ^ ) ) ώ m ^ ) "* </(*)» *(*)> a s ^ ^ °°

Step (15) is obvious in view of Theorems 1 and 2. Step (16) follows
from Lemma 2. Step (17) is obtained by applying techniques similar to
those used in proving Lemma 2. The final step comes from Lemma 4.

This completes the proof of Theorem 3.

Next, we give a structure formula for the restriction of an element
feH^I) to ^ ( / ) .

THEOREM 4. Let f be an arbitrary element of Ha,δ{I). Then there
exist bounded measurable functions gi(x) defined for x > 0 for i — 0, 1,
2, , r where r is some non ^negative integer depending upon f such
that for an arbitrary φ e £&(!) we have

, Φ> = 9 φ(x)

PROOF. In view of the boundedness property of generalized functions
there exists a constant C > 0 and a non-negative integer r depending upon
/ such that all φ e

C Max sup
fc 0<x<oo

C Max sup

C Max sup
Lm(t)\ t t2 / Jl

^ c± sup
k=oo<χ<oo j t t

Therefore, in view of the Riesz representation theorem and Hahn-
Banach theorem there exist bounded measurable functions gt{x) defined
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over / = (0, oo), i = 0, 1, , r satisfying

x x2 ) Λl= Σ m(x)

gi(t)dt\,

[By integration by parts]

a? / J o

-^ r
Jo

{) x

This completes the proof of Theorem 4.

4. In this section we give a few interesting examples comparing
the space H'atδ(I) with the generalized function spaces considered by Koh
and Zemanian [3] and Zemanian [9].

EXAMPLE 1. Let f{x) be a locally integrable function defined for x>0
such that

_ XT * eJ , X —• o o ,

where ε and η are some positive numbers. Clearly f(x)eHάtδ(I) as a
regular generalized function in view of Note 3 in Section 2.

Now, let φ(x) be an infinitely differentiate function defined over I
satisfying

(0, 0 < z < l

It is easy to show that φ(x) belongs to the testing function space con-

sidered by Koh and Zemanian [3]. As I f(x)φ(x)dx does not exist, it
Jo

follows that f(x) does not belong to the corresponding dual space.
EXAMPLE 2. We have seen that for each fixed y > 0, m\x)^(xy) e

Hafδ(I). However m\x)e^{xy) g £ify (the testing function space considered
by Zemanian [9]), because m\x)^f{xy) is not of rapid descent.

EXAMPLE 3. Let φ(x) be an infinitely differentiate function defined
over / such that

x , 0 < x < l , v ^ - -

e~x , x ^ 2 .
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It is easy to verify that φ(x)e£έfv [9], but φ(x)g Hatδ(I).

From Examples 2 and 3 and the fact that the space &(I) is contained
in both the spaces <%?> and Ha>δ(I), it follows that the spaces Sίfv and
Ha>δ(I) overlap, and neither is contained in the other. Therefore the
generalized function spaces SίfJ and Ha>δ(I) also overlap and neither is
contained in the other.

5. Now we will apply our inversion formula to the solution of
certain differential equations.

We define an operator Δx: H
r

a>δ{I)—>Hά>δ(I) given by the relation

(Δ*xf{x), φ{x)) =

for all / 6 H'a,δ{I) and φ(x) e Ha>δ(I), 0 < a ^ v + 1/2; δ ̂  0. Let us call
the operator Δ*x the adjoint of the operator Δx = Dx + {(2v + ΐ)/x)Dx. It
can also be shown that for all k = 1, 2, 3, and φ(x) e Ha,δ(I) one will
have

{(Δ*x)
kf{x\ φ(x)) = x), m\x)Δl(-ψλ) .

It can be readily seen that if / is a regular distribution in Hά,δ(I)
generated by a member of &(I), then

Δΐf = ΔJ .

For each k = 1, 2, 3, and y > 0 one can show that

{{Δtff{x\ J?{xy)m\x)) = {-l)ky*\

That is,

(18)

Now consider the operator equation

(19) P(Δ:)u = g ,

where g e Hf

a>b{I) and P is any polynomial whose zeros do not lie on the
negative real axis. Our object is to find a generalized function u e Hά,δ(I)
satisfying the operator equation (18).

Taking the generalized Hankel transform of both sides of (19) and
using (18) we get

(20) P(-y2)U(v)= G(y),

where U and G are the generalized Hankel transform of u and g respec-
tively.
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We now wish to find ueH'a,δ{I) such that Sίfu = G(y)/P(-y2).
We claim that for each ψ e

(21) (u, φ) = lim (\N-S^K *f(*v)dm{y), φ(x)) .
N \J P( y2) ̂  I

We know that for every geHά,δ(I) there exists a non-negative integer
r satisfying

= G(y) = O[y2r~^2] , y-+^ .

Let Q(x) be a polynomial of degree r + 1 defined by

Q(x) = xr+1 + 1 if r is odd and

Q(x) = # r + 1 — 1 if r is even .

The fact that the right hand side integral in (21) converges in the distri-
butional sense as N—+ °o can now be proved as follows

(22) x J o P(y)Q(v)

l-y)Q(-y,
[by integration by parts] .

A careful computation now shows that using (22) we can find K, M > 0
such that for all JVi, N2 > K we have

y2rdy

—• 0 as Nlf N2

Therefore,

lim (\-£^jr(xy)dm(y),φ(x)) exists
\J P( 2)^ I

and in view of the completeness of 3ϊ\I) there exists / e &ί\I) such
that

(23) Hm (^^l^^(χy)dm(y)f φ(x)) = </, φ) .

The function / as determined in (23) is the restriction of ueHά,δ(I) to
) . We now prove that / satisfies the differential equation
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(24) P{Ax)u = g on

In view of the continuity of the operation of differentiation and multi-
plication by 1/x in &'(ΐ) one can show that

(25) l im (p{A x ) \ [ψ^^(xy)dm(y) , φ(x)) = <P(Ax)f, φ)

for all φ e &(I) .

Therefore, using Theorem 3, in (25) we get

(g, φ) = <P(Λ)/, Φ) .

Thus / determined in (23), which belongs to &\I) and is the
restriction of ueHa,δ(I) to £&(I), satisfies the distributional differential
equation

(26) P{Δx)f - g .

Now observe that ^f(axϊ) — 2vΓ(v + ϊ)(axi)~uJv(axi) satisfies the dis-
tributional differential equation

(27) (D2 + ^±^D - a2)u - 0 .
\ x I

Using the method of variation of parameters one can show that the
general solution of (27) in 3ϊ\I) is given by

u(x) = jr(aχiίc[ [t2^1 ̂ \atϊ)]-ιdt + d\

where c and d are arbitrary constants.
Hence for a polynomial P(x) = (x — a\){x — a\) (x — c4), where the

di are distinct real numbers, the general solution of the distributional
differential equation (24) in £&\I) is given by

(28) u(x) = f ±

where ck and dk are arbitrary constants and / is the distribution in 3ϊf(ΐ)
as determined in (23).

REMARK. In equation (24), let g(x) be a regular distribution as
given in Example 1, Section 4. With such a choice of g, the differential
equation (24) cannot be solved by using the transform technique of Koh
and Zemanian as used in [3], whereas it is solvable by our transform
technique.

A Dirichlet problem in cylindrical co-ordinates:
We will now find the conventional function u(r, z) on the domain
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{(r, z): 0 < r < oof 0 < z < oo} which satisfies the differential equation

(29) *L + *L±1*L + *L = O, r,z>0, v>-\
dr2 r dr dz2 2

and the following boundary conditions,

( a ) ——(r, 2;) = 0 L as r -> 00 for a fixed z > 0 .
3r L rv+1/2 J

( b ) u(rf z) = 0 v+l/2 L as r —> co for a fixed 2 > 0 .

( c) i^(r, z) - oΓ-ί-Ί, r — 0+ for a fixed 2 > 0 .

(d) limtφ , 2) = 0 in ^ ' (J)
Z—*oo

(e) lim «(r, 2) = / in ^ ' ( 1 ) where / e ^,,(1) .
z->0+

We will find the solution in the space Hάfδ(I) with 0 < a <̂  v + 1/2 and
<5 ^ 0. Taking the Hankel transform of both sides of (31) (for fixed
z > 0) with respect to the kernel ^{ry)mr{r) and using integration by-
parts we get

(30) -
dz2

In view of the condition (c) and the fact that v + 1/2 > 0 it follows that
u(r, z) = o[l/r2v+1], r—>0 + . Therefore, the limit terms in the integration
by parts vanish in the light of conditions (a), (b) and (c). We have also
assumed that 3ίf(d2u{r, z)/dz2) = (d2/dz2)U(y, z). Solving (30) we get,

U(y, z) = A(y)eyz + B(y)e~vz .

In view of the conditions (d) and (e) it is reasonable to assume (though
we do not care to justify it) that

lim U(y, z) = 0 and lim U(y, z) = S(f(J) = F{y) .
z—*<χ> z—*0+

Therefore we get,

U(y, z) = 2%)β-' .

Using the inversion formula stated in Theorem 3 we get

(31) u(r, z) = lim {"F(y)e-yz f (yr)dm(y) in &'(I) .
N-*oo JO

For each φe &(ΐ) one can show that



352 L. S. DUBE AND J. N. PANDEY

(32) (u(r, z), φ(r)) = \^φ(r)dr ^F{y)e~y* JF{yr)dm{y) .

Now one can observe from (32) that

(33) u(r, z) = j o F(y)e-yz^(yr)dm(y) , r, z > 0 .

Using the asymptotic orders of F(y) as established in Section 2 we
can justify that

(F r +
 I F ) *

 =

Therefore u(r, z) as defined in (31) satisfies the differential equation (29).
The boundary conditions (a) and (b) can be verified easily in view

of the analogue of the Riemann-Lebesgue Lemma [8; p. 457]. Again, for
v > -1/2 there exists N> 0 satisfying, | ^\x)xv+1i2\ ^ N uniformly for
all x > 0. Therefore,

dr ΓV(v)i'
Jo

This verifies (c). The verification of (d) is trivial. To verify (e) we
choose a polynomial Q(x) as defined in Section 4 and then we have

<u(r, z\ φ(r)) = Γ φ{r)drQ{Ar) Γ
Jo Jo ( — y2)

Γ
Jo

[by integration by parts] .

That is,

% z), Φ(r))

= lim I m\r)Q{Ar)\-^f-\dr\ ^ e ' f ^ m™> .
N-*™ J α I m (r)J Jo Q( — yΔ)

We assume that the support of φ(x) is contained in (a, 6), 6 > a > 0.
The right hand side expression in (34) converges uniformly for all z > 0
as iV—*co. Therefore, letting z—>0+ in (34) and switching the limit
operation with respect to N and z in the right hand side of (34) we get

lim <u(r, z), φ(r))
z-»0+

= lim

or
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lim O(r, z), φ{r)) = lim [ φ(r)dr V F{y)^f{yr)dm{y)
2—0+ N->oo J α JO

[By integration by parts]

= </, ̂ >
[In view of Theorem 3] .

Thus the condition (e) is also verified. The solution obtained is unique
in the sense of equality over 3ϊ{I) in view of the following uniqueness
theorem.

THEOREM 5. For f,ge H^δ(I) let us define Sίff = F(y) and Sίfg = G(y)
for all y > 0. If F(y) = G(y) for all y > 0 then f = g in the sense of
equality over

PROOF. By Theorem 3

/ - 0 = lim \N[F(y) - G(y)]^(xy)dm(y) = 0 . •
N-*oo JO
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