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1. A meromorphic function F'(z) = f(g(2)) is said to have f(z) and
9(2) as left and right factors respectively, provided that f(z) is non-linear
and meromorphic and ¢(z) is non-linear and entire (9 may be meromorphic
when f(z) is rational). F'(z) is said to be prime (pseudo-prime) if every
factorization of the above form implies that g(z) is linear (a polynomial)
unless f(2) is linear (rational). An entire function F'(z) is said to be
E-prime if it is prime for entire f and g.

Gross [7] posed an open problem whether there exist prime entire
periodic functions. In this paper we shall prove the existence of an
entire periodic function which is prime (Theorem 2). Our proof is very
hard and needs a new idea. We make use of a regular function in 0 <
|w|] < . In [7] it was shown that the E-primeness does not imply the
primeness. We shall give here another example showing this fact. Our
example needs a slightly complicated consideration in its proof. However
it seems to be interesting in its own right. Gross’ proof is very simple.
We shall give several related results.

2. We need several known results.

LEMMA 1. [4]. Let f(z) be an entire function. Assume that there
exists an unbounded sequence {a,}y-, such that all the roots of the equa-
tions f(2) = a,(n=1,2, ---) lie on a single straight line. Then f(z) is
a polynomial of degree at most two.

This and the following lemma play an important role in the factor-
ization theory.

LEMMA 2. [11]. Let F'(z) be an entire function of finite order.
Assume that F(2) = f(9(z)) holds with two transcendental entire functions
fand g. Then the order p; of f is equal to zero and o, < Pg.

This result holds for meromorphic F. Indeed Edrei and Fuchs [5]
proved the following.

LEMMA 8. [5]. Let f be meromorphic of positive order, and let g(2)
be transcendental entire. Then F(z) = f(g(2)) is of infinite order.
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The following lemma was firstly stated in [3] and a complete proof
of its general form was given in [§].

LEMMA 4. Let a,2) be entire and of finite order po. Let g,2) also
be entire, and let 9.(z) — gi(2), (1 # j) be a transcendental function or
polynomial of degree greater than o. Then

S a2 = a2)
holds only when ayz) = a,(z) = -+ = a,(z) = 0.

We shall use the following notations: o, A, and p, are the order,
the lower order and the hyper-order of f, which are defined by

mlog T(r, f) . lim log T(r, f)
o0 log r == log r
and
Tm log log T(r, f) )
0 log r
LEMMA 5. [9]. Let f be entire with p; < . Then
Pror < 0y -
LEMMA 6. [10]. Let f be entire with Ay > 0. Then
Oray = 0y -

LEMMA 7. Let f be exp L(z) with transcendental entire L(z). Then
Ny = co. If L(z) is nmot a constant, then Ay = 1.

This is very easy to prove by Poélya’s method. The second part was
stated already in [10].
Further we shall make use of several results on factorization.

LEMMA 8. [2]. Let p(z) be any mon-constant polynomial. Then
e’ + p(z) is prime.

LEMMA 9. [1], [6]. If f is any entire function of order less thamn
1/2 and g is entire, then f(9) is periodic if and only if g 1s.

LEmMA 10. [12]. If f is an arbitrary non-constant entire funmction
and p an arbitrary polynomial of degree = 3, then f(p) is mot periodic.

LEMMA 11. [12]. If p s a mon-constant polynomial and g an entire
function, then the periodicity of p(g9) implies that of g.

Lemma 11 is a special case of Lemma 9. We need another growth
lemma.
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LEMMA 12. Let h(w) be single-valued and regular in 0 < |w]| < .
If h(e?) is of finite order, then h(w) is of order zero around w = 0 and
W= co,

PROOF. h(w) can be represented as a sum h(w) = I(w) + J(w), where
I(w), J(w) are regular in |w| < o, 0 < |w| respectively. Suppose o; >0
or p; > 0, then p;,z = o Or Pr,: = . Since I(¢?) is bounded in Hz < d
and J(¢°) is bounded in &#z = —4,06 >0,

M, (oo(r) = max (M;.(r) , M;.»(r)) + 0Q) .
Hence 0;,: = o Or 0;,: = o or both imply that 0,.,: = . Thus we
have the desired result.

3. We shall start from proving the following proposition.

PROPOSITION 1. Let F(2) be

(¢ — 1) exp(ef — 22) .
Then F(z) is E-prime.

ProoF. Suppose that F(z) = f(9(z)) with two non-linear entire func-
tions f and g. Evidently F(z) = 0 has roots on a single straight line,
that is, the imaginary axis. Assume that f(w) = 0 has an infinite number
of roots {w;}. Then g(z) = w; must have its roots on the imaginary axis
for all . By Lemma 1 g(z) must be a polynomial of degree at most
two. We may assume that g(z) = az* + bz + ¢, a # 0. Evidently 0o, = 1,
0r = . Let fi(w) be the canonical product formed by the zeros of f(w).
Although p; = oo, Oy(r,0» = 1 and hence Oy (o5 = 1/2 imply that fi(w) is
well defined and oy, = 1/2. Let exp L(w) be f(w)/f(w). Then Pz = oo.
Hence L(w) is not a polynomial. Since F'(z) has two expressions

F(z) = (¢’ — 1) exp (¢’ — 22)
— fl(azz + bz + c)eL(az2+bz+c)
we have
¢ — 1 = fi(az® + bz + c)e*? ,
e —22=Laz* +bz+¢)— X))+ d, d=2pni.

Evidently 0.ipxy < 1. Hence X(2) has the form az + 8. Thus
e—Q2—a+ B—d= L@+ bz +c).
If @ # 2, then we have a contradiction by Lemma 8. Hence @ = 2. Then
e+ B — d = L(az* + bz + ¢)

and
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e — 1= Af(az* + bz +c)e*, A+0.

By cancelling out the exponential term e¢* and then putting w = az*+ bz + ¢,
we have

Af.l(w):L(w)+d—B—1 )
(L(w) + d — B)

Since L(az* + bz +c¢)=e¢+ 8 — d, o = 1/2. Hence L(w) + d — B8 has
zeros which do not coincide with the zeros of L(w) + d — 8 — 1. Thus
fi(w) is not entire and hence f(w) = f,(w)e*™ is not entire, which is a
contradiction.

Assume that f(w) =0 has only a finite number of roots. Then
f(w) = Q(w) exp M(w) with a polynomial @ and an entire function M.
Assume that M is not a constant. In this case A\, = 1. Hence by Lemma

6, 0r = p,. Since p, =1, we have p, < 1. By the two expressions of
F(z) we have

Q(9(2)) = (¢ — )™,
X))+ M) =e — 22+ d .

Here X(z) is entire. Thus pq, = 0, < 1 implies X(2) = az + B and then
0, = 1. If a # —2, then the identity

e — 2+ a)z+d— B = My))
implies that M should be linear by Lemma 8. Thus putting M(w) =
Aw + B we have
AgR)+ B=¢e¢— 2+ a)z+d— 8,
Q9(z)) = (¢f — g™ .

Cancelling out g¢(z) we have
A, + A + «oo + A" =0

with polynomials 4; (=0, 1, .-, m), which are not zero, and non-zero
constants «; such that a, # «; for k # j. This gives a contradiction by
Lemma 4. If a = -2,

e+ d— B = My(z)

and Lemma 1 imply that g¢(2) is a polynomial of degree at most two,
when M(w) = 0 has an infinite number of roots. This is untenable, since
0, = 1. Hence M(w) has only a finite number of zeros. By Lemma 2
Ox = 0. Hence M(w) is not transcendental, that is, M(w) is a polynomial.
In this case we have
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Q(9(2)) = Dye* — 1)e™™,
M(g(z)) = e+ D, .
By cancelling out ¢* and then putting w = g(z)
DI(M(w) - Dz _ 1)
(M(w) — D,y

Then Q(w) is not entire, which is a contradiction.
Next assume that f(w) = Q(w) is a polynomial. Then

F(z) = Q(9(2)) = (¢* — 1) exp (¢* — 22) .

Assume that Q(w) has at least two different zeros w,, w,. Then g(z) — w;
has zeros whose counting function is of order at most one. By forming
the canonical product by the zeros of g(z) — w; and denoting it by G;(z)
we have

Qw) =

9(2) — w; = Gy(r)e"™ .

Evidently pg, < 1. Further p, = foy,) = Pr = 1. Hence Popn, = 1. By
Lemma 7 N\eyp = 1 and then by Lemma 6 Ou; = ﬁexp,,j = 1. On the other
hand by Lemma 5 ﬁexpyj < ou;. Hence Or; = 1. Let us consider

w, — w, = Gz — Gt .
By Lemma 4 H, — H, should be a linear polynomial, since o;; < 1. Then
w, — w, = (AGe™” — G,)e"r .

If AG,exp(az) — G, # 0, the right hand side has « as its order. However
w, — w, is a constant. By w, # w,AG,exp (az) — G, = 0. Thus we arrive
at a contradiction. Therefore Q(w) = A(w — w,)". Then AG,(2)" = (¢* — 1)e*
has only simple zeros. Thus » = 1, that is, @(w) is linear. Thus we have
the desired result.

Evidently F'(z) admits F'(z) = f(g9(z)),

16“’ , gRR)=¢".

flw)=2=

w
Hence we have
THEOREM 1. The E-primeness does not imply the primeness.
4. In this section we shall prove the following.
THEOREM 2. There is an entire periodic function, which is prime.

PROOF. Let us consider
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F(z):n]z[l (1 exp e )I=I< ﬁe—;pe—”)'

H,(w):ﬁ(l— w )

n=1 expe”

Put

Then by a simple consideration we have
log M(r, I1,) < log r log log » ,
where M(r, f) is the maximum modulus of f on |2| = . Hence
log M(r, II,(¢*)) < log M(M(r, €°), II,)
< log M(r, ¢*) log log M(r, ¢%)
=rlogr,

which shows that 07 ,: = 1. Similarly we have 0g,,-: = 1 for

Tyw) = T (1— .—“’d)

n=1 expexpe”
Thus o < 1. pr =1 is evident. Hence o, = 1.

(a) Suppose that F(z) = f(9(z)) with two transcendental entire
functions f and g. Then p, =1 implies o, =0 and p, < pr=1. By
Lemma 9 g(z) is periodic. Its period should be n.27wi with a positive
integer n,. Let g(e” + 2j71) and g(—expe™ + 2j7i) be denoted by X,; and
Y,;, respectively. Then X,; = X,,,,, Y,,j =Y,, for 5 — k= pn, Consider
the equations ¢(z) = X,;, 9)=Y,;,5=0,1, ---, m, — 1. These have
solutions e" + 2Imi, —expe™ + 2mni, respectively. Hence f(X,;) =0,
f(Y,;) = 0. There is no other zero of f(x). Hence by p, =10

f@)= AT T (1~ X>ﬁﬁ< Y>

n=1 j=0 nJ

_ _ 9(2) _9(2)
F() = ATLTI (1 XM)H 1 (1 "‘y,,) :
From the first factor all the zeros of F'(z) lying in the right half-plane,

that is, e” + 2I7¢ appear and the second factor carries all the zeros of
F(z) lying in the left half-plane. Hence by

Omen = Puna—glx,y = 1

oe)= AT I (1 — %)6“,, ,

ni

I = AT T (1 - %)wm . AA = A,

ng
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where ¢ =0 or £1. Firstly we shall consider the case ¢ = 0. g(2) is
representable as &,(w)oexp (z/n,) with a regular function A,(w) in 0 <
|w| < 0. Let w be exp (z/n,). Then

o) = 4TI (1= 22),

M) = 4T T (1 - 202
Yﬂj
Assume that &, (w) is regular at w = 0. Then I7,(w ™) should be regular
at w = 0 but it has an essential singularity at w = 0. This is impossible.
Hence h,(w) has a pole or an essential singularity at w = 0. Then I7,(w™)
should have an essential singularity at w = 0 but this is not the case.
This is again impossible. We next consider the case ¢ = 1. The case
¢ = —1 is quite similar as in the case ¢ = 1. It is very easy to prove
a = p/n, with a positive integer p. (» may be negative, but it does
not have any effect in the following discussion.) Let w be exp (z/n,).
Then
mw) = 4T (1 - 20 ),
Xoj
Tw) = AT II (1 - h_l@)w-P :
Y.;

The same process as in the case € = 0 does work in this case and leads
us to a contradiction.

(b) Suppose that f is transcendental entire and ¢ is a polynomial
of degree at least two. Then by Lemma 10 ¢ is a quadratic polynomial.
We put

9(z) = a(z—a)*+ 8.

Assume that two points z, and z, satisfy g(z,) = ¢(z,). Then 2a = 2, + z,.
Therefore all the zeros of F'(z) are distributed symmetrically with respect
to a. Consider the asymptotic distribution of the zeros of F'(z). They
are distributed more densely in the right half-plane than in the left.
So there is no centre point of symmetry of them. This is a contradiction.

(¢) Suppose that f is a polynomial of degree at least two and g
is transcendental entire. By Lemma 11 g is periodic. Let f be A(w —
w,) +++ (w— w,). There is at most one w;, say w,, such that g(z) — w,
has no zero. Then g(z) — w, = Be”, since o, = 1. Here B+# 0, a # 0.
In this case

F(z) = A_B(;vtz(w1 — W, + Be‘") ce e (w1 — W, + Beaz) .
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Let n,277 be the period of g(z). Then & = s/n, with an integer s. Of
course n, is a positive integer. Let x be exp (z/n,). Then

II(x™) 1 (x™) = ABx*(w, — w, + Bx*) + -+ (w, — w, + Bx*) .

The left hand side has an essential singularity at © = - but the right
hand side does not. This is impossible. Hence g(z) — w; has a zero and
hence in virtue of its periodicity it has infinitely many zeros. Further
there is no multiple zero of f, since F'(z) has no multiple zero. We
should remark that Rényi’s proof of Lemma 11 shows that 1< n,<p =
the degree of f(w). Let g(2) be represented as h,(e*’™) with a regular
function h,(x) in 0 < |z| < . Put x = exp (2/n,). Then

I (z™) T (™) = S(hy()) .

Hence z = 0 and # = <« are singularities of h,(x). Since k,(e*’™) is of the
first order, 0;, = 0 around # = 0 and & = . This is due to Lemma 12.
Let z,, be the zeros of g(z) — w,. Consider the set {<#z,}. Its elements
have the form m,log|x;| with h(x;) — w, = 0, 2, = n,log x; + 2n,p7i.
There are only a finite number of different z; with the same modulus.
Suppose that the set {<#z,} is a finite set. Then h,(x) — w, has only a
finite number of zeros. This implies that h,(x) — w, is a rational function
of x. Thus I (z™)I,(x~*) = A(h(x) — w,) - -- (h(x) — w,) has only a finite
number of zeros but the left hand side does have an infinite number of
zeros. This is untenable. Hence all the equations g(z) = w;, =1, +--, »
have an infinite number of roots having different real parts. Let W; be
the set of zeros of ¢g(z) — w;. Each W; contains points z;, such that
PBjju— +o0, Pry, — —oo along suitable subsequences {1}, {{,} of {I}.
All the zeros of F(z) are divided into p different (disjoint) groups W;,
j=1,--.,p. We transfer these by exp (z;/n,). Then h,(x) — w; has
roots exp (z;;/ny). If z; = z;, + 2snmi, then exp (2;,/n,) = exp (z;,/n,). We
denote z; the different exp (z;,/n,). Then, if p = n,,

x5, = €(J, 1) exp (¢"/n)
and
Lj,—n = E(j’ —n) exp (—(exp en)/,no) y

where &(j, +=n) is an n,-th root of unity which depends on j and £n. In
what follows it is sufficient to consider the case

h(@) = w; + AT (1= 21 (1 - 22 Ryw)

Lj,e/ t=1 x
= w; + w(x)R;(x) .




FACTORIZATION OF ENTIRE FUNCTIONS 329

Here R;(x) is a rational function of x. This representation is possible.
In fact
(ho(@) — w;)/mi(x) = M()
has no zero in 0 < |z| < « and hence it has the form
R(x)es™®

with R(x) = 2’ and rational S(z), where ¢ is an integer. However M(x)
is of order zero around x =0 and x = «. Hence S(x) should be a
constant. Hence M(z) = Ri(x) # 0in 0 < |2 | < . Let us consider 7;(x).
Put z = z,,. Then

i, = A; X, X, ,
X1=£I1<1— h—) , X, =”1°i[1<1——_xﬁ—_ﬂ> .

Ljn Lim

Evidently X,—1 if x,,— . Let us consider | X,|. For | X,| we have

| X, = I (exp (6" — e)m) = 1)

_ &1, m)
% Il (g, m)

> 1
n=m+1< exp ((e" — e")/no)> )
For the first factor

ﬁl<exp e — ¢ _ 1)

1 '”'o

- 1S m T (1 — 1
= exp o Zl (e — ) 1_1[ (1 exp ((e™ — e")/n0)>

> (1 — ¢) exp (l (m — (L — s’)e'”) .
Moo
g—0,e—0as m— o,

The last factor tends to 1 if m — . Further

&(d, m) # &(1, m)
for 7 # 1 and hence

le(g, m) — &(1, m) |
=|1—exp(2ni/n)|=Zd>0.

Hence as m — «

|X,| = 8(L — &) exp (mn" 1em) .

0
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On the other hand
| B < Aexp(Len).
n

0
Hence as m —
77'-J'(xlm)'lg.’i(xl'rn) > .
Now let us consider w, + 7w (2)R,(x) = w; + 7;(x)R;(x). Along {x,,} we
have w, — w; = w;(®)R;(x) — by 7 (x.,) = 0. This is evidently a contra-
diction. Several variants of the above case may occur. However the

same consideration does work in every case. If » > n,= 1, then we make
hy(x) = w; + 7¥(x) and

w, — w, = 7y (x) — ni(x), wf=rmx;-R;.

Let x,, be zeros of w¥(x). Its subset tending to o is denoted by {x..}
again. This is a subset of {e(1, n)exp (¢"/n,)}. Let 2 be =z,,. Then
¥(x,) = 0 and 7}(x,)— co. This part is quite similar as in the above
case. Then we arrive at a contradictory relation w, — w, = . Hence
f should be a linear polynomial.

(d) In order to go further we need the following

PROPOSITION 2. Let F(z) be an entire function which admits a fac-
torization f(g(2)) with transcendental meromorphic (not entire) f and
transcendental entire g. Then

fw) = frw)/(w —w)", 9(@)=w, + ",
Sr(w) # 0,

where f* is transcendental entire, M a mon-constant entire function and
n a positive integer.

PrOOF. Assume that f(w) = « has two different roots w, and w..
Then one of two equations g(z) = w,, ¢g(z) = w, admits an infinite number of
roots, which must be poles of F(z). This is a contradiction. Hence
f(w) = o has only one root w, and then g(z) = w, has no root. Hence
we have the desired result.

Suppose that f is transcendental meromorphic (not entire) and g is
transcendental entire. By Lemma 3 we have p, = 0. Let {w}} be the
set of zeros of f*(w). ps.= p; =0 implies that {w}} is an infinite set.
Then by the second fundamental theorem

T(r, F) = N(r, 0, F) > Kzle(r, w?, g)

= Km(r, g) — O(log rm(r, 9))
= K'm(r, 9) .
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Hence

0, =p0or=1.

However by its form 0, = 1. Hence p, = 1. Therefore M(z) = az + 5.
Then the set of solutions of

wf = w, + Be™
coincides with the set of roots of F(2) = 0. They are

z:ilogwf_w‘ n 2pmi, )
a

B a

By the periodicity of F with period 277 we have ¢ =1 or —1. If a =1,
then

F(z) = Ae ™ f*(w, + Be?)
and

A
w'n

I (w)(w™) = f*(w, + Bw) .

This is a contradiction, since the left hand side has w = 0 as an essential
singularity but the right hand side has w =0 as a pole. If a = —1,
then

F(z) = Ae* f*(w, + Be™)
and

I (w1 (w) = % F*(w, + Bw) .

This is again a contradiction by the similar reasoning.

(e) Suppose that f is transcendental meromorphic (not entire) and
g is a non-linear polynomial. In this case f has at least one pole w, and
9(2) = w, has at least one root. Hence F'(z) has at least one pole, which
is clearly untenable.

(f) Suppose that f is non-linear rational (not a polynomial) and ¢
is meromorphic. Let @, be a pole of f. Then g(z) — a, # 0. Let g,(2)
be 1/(9(z) — @,). Then F(z) = R(9,(2)) with rational R and entire g,, R
has only one pole b. Hence ¢,(z) = b+ Ae*®. Since o, = 0, = 1, a(z)
must be az. Thus

F(z) = P(b + Ae*)e™ ™
with a polynomial P and a positive integer m. « should be +1 as in

(d). Then we can apply the same reasoning as in (d) and we arrive at
a contradiction.
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Summing up the above results we have the primeness of

Fe) = [i (1~ exi)ze"‘)}i(l_ expeTpe)

which is clearly entire and periodic. Therefore we have the desired
result.

It is very easy to show that F'(z) = h(¢) with regular A(w) in
0 < |w]| < « is not pseudo-prime, when either w = 0 or w = o« is not an
essential singularity of A(w) but one of them is. Even if both two points
are essential singularities of i(w), F'(2) is not always prime. This is shown
by two typical examples:

Mw) = A + 3 A 0! + w)
F(z) = h(e”) J
= {4,+ 5 A + eI} oz
and
Ww) = 3 A;R(w)
F@) = he) = {5, 4,7} Re) ,
where R is a rational function of w. We do not know whether these

two are all possible types of factorization of our F.

5. Let us denote em the class of entire functions satisfying the
condition in Proposition 2.

THEOREM 3. Let F'(z) belong to the class em. Assume that F(z) = A
has only finitely many roots for an A # . Then F(2) is not pseudo-
prime in entire semse.

PROOF. F'(2) is representable as F'(z) = f(g(2))
fw) = fAw)(w — w)*, [f*w)+*0,
9(z) = w, + Be"® .
Consider f(w) = A and g(z) = w. ¢(2) has already two lacunary values
w, and . Hence g(z) = w has infinitely many roots, if w = w,, . Since
A # oo, w satisfying f(w) = A does not coincide with w, . Then

F(z) = A has an infinite number of roots, if f(w) = A has at least one
root. This is untenable. Hence f(w) = A has no root and hence

Fr(w) = Aw — w) + ¢
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with a non-constant entire function L(w). Therefore
F(z) = A + L pmwergromrnenion
B

We put
1
1 =A4+ —e ’
Si(w) 5°
9:(z) = —nM(2) + L(w, + Be¥?) .
Then F'(2) = f1(9.(2)) -
Theorem 3 gives only a sufficient condition. This is shown by

F(z) = {1 — exp(—e”)}expexpe’.
It admits two factorizations
w —

{1 — e ) expe“}oe’, { 1 e“’} cexpe’.

Another remark is the following: If F(z)eem, then A= 1. A
method of proof was shown in the (d) step of proving Theorem 2.

THEOREM 4. Let F(z)eem. If pr= 1, then F(z) is pseudo-prime in
entire sense. If 1< 0z, F(2) admits a factorization f(9(M(z))), where f
or g 18 a polynomial and M(z) is entire.

PrOOF. Consider the case o, = 1. By Proposition 2 we have

F(z) = Ae " f*(w, + Be*),
A=¢e¢m, B=2¢, f*w)+#0.

Suppose that F(2) = fi(9.(?)) with two transcendental entire f, and g,.
Then p;, = 0 and hence by Lemma 9 g,(2) is periodic. Its period should
be equal to n2wi/a. Therefore g,(z) = h,(e**™) with a regular function
h(x) in 0 < |z| < . Hence putting w = exp (az/n,)

Aw " f*(w, + Bw™) = f,(h(w)) .

If h,(w) has an essential singularity or a pole at w = 0, then fi(h,(w)) has
w = 0 as an essential singularity. However w = 0 is only a pole of the
left hand side. This is impossible. Hence h,(w) is entire. This is again
a contradiction, since the left hand side has really a pole at w = 0.
Hence we have the desired result, if o, = 1. Next we shall consider

the case 1 < pz. Then
F(2) = Fy(w) > M(2) ,
Fy(w) = e " f*(w, + Be")
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with entire M(z). Since F(z) is pseudo-prime in entire sense, F(z) =
fi(9.(z)). Here f, is a polynomial unless g, is so. Hence
F(z) = fi(9.(M(2))) .

This gives the desired result.
There remain two problems: When is an Feem, o =1, E-prime?
Is every Feem, pr < - pseudo-prime in entire sense?

THEOREM 5. Let F(z) belong to em. Assume that the lower order
of N(r, 0, F) is less than 1. Then F(z) has 0 as a lacunary value.

Proor. Suppose firstly that f*(w) = 0 has at least two roots. Here
F(z) = f(9(2), f(w)= f*w)/(w—w)",
9(z) = w, + ", f*w)#0.
Then by the second fundamental theorem
)“N(r,O,F) g )\'g g 1 )
since
N('rr 0; F) z N(”', w29 g) + N(’I", way g)
= m(r, 9) + O (log rm(r, 9)) .
This is impossible. Assume that f*(w) = 0 has only one root. Then
N(r, 0, F) = N(r, w,, g). Since N(r, =, 9) = N(r, w,, 9) =0, Myrom =N =1
by the second fundamental theorem. Thus we have again a contradiction.

If f*(w) does not vanish, then F(z) = 0 has no root. Thus we have the
desired result.

THEOREM 6. Let F'(z) belong to em. Assume that the lower order
of N(r,0, F) is less than 1. Then pr = 1.

ProoF. By the above proof of Theorem 5 to be considered is a case
that f*(w) = 0 has no root. Then f*(w) = exp L(w) with entire L. Then

F(z) = e ™" exp (L(w, + ")) .
Since M;. =1, p, = o, = 1. This is the desired result.

6. In this section we shall be concerned with a remark on Lemma
10, since it seems to belong to our range of idea of using the function
h(e?). Let F(z) be represented as f(P(z)) with entire f and a polynomial
P(z). Suppose that F' is entire periodic. Then P(2) is of degree at most
two by Lemma 10. What can be said about f when P is quadratic?
The following, which may or may not be new, gives the definite answer.
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THEOREM 7. Let F(z) be entire periodic with period 2mi. Assume
that F(z) is represented as f(P(2)) with entire f and a polynomial P(z)
of degree = 2. Then

flw) = g{cosh \/w; c}

with entire g and constants ¢ and B.
Proor. We may put P(z) = B(z — a)* + ¢. Then
F(z) = f(P(2)) = h(e)
with regular i(x) in 0 < || < . Let 2 —a be 2. Then
Sf(Bx*+ ¢) = h(Ae”), A=¢"
is an even function of x. Hence h(Ae®) = h(4e™®). Let h(w) be

Then a,A” = a_,A™™ for any n. Put L, = a,A". Then
W(Ae?) = a, + 3, Li(e” + ¢7%)
< e+ e " \"
ST

2
Let g(X) be
> MX"
Then
f(Bx* + ¢) = g {cosh z} .
Hence

f(w) = g{cosh w; c} .

COROLLARY. Besides the assumptions in Theorem T we assume that
or > 1. Then f(w) is not pseudo-prime.
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