
Tόhoku Math. Journ.
27(1975), 321-336.

FACTORIZATION OF ENTIRE FUNCTIONS
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1. A meromorphic function F(z) = f(g(z)) is said to have f(z) and
g(z) as left and right factors respectively, provided that f(z) is non-linear
and meromorphic and g(z) is non-linear and entire (g may be meromorphic
when f(z) is rational). F(z) is said to be prime (pseudo-prime) if every
factorization of the above form implies that g(z) is linear (a polynomial)
unless f(z) is linear (rational). An entire function F{z) is said to be
-E-prime if it is prime for entire / and g.

Gross [7] posed an open problem whether there exist prime entire
periodic functions. In this paper we shall prove the existence of an
entire periodic function which is prime (Theorem 2). Our proof is very
hard and needs a new idea. We make use of a regular function in 0 <
I w I < oo. In [7] it was shown that the E'-primeness does not imply the
primeness. We shall give here another example showing this fact. Our
example needs a slightly complicated consideration in its proof. However
it seems to be interesting in its own right. Gross' proof is very simple.
We shall give several related results.

2. We need several known results.

LEMMA 1. [4]. Let f(z) be an entire function. Assume that there
exists an unbounded sequence {an}n=ί such that all the roots of the equa-
tions f(z) = an{n = 1, 2, •) lie on a single straight line. Then f{z) is
a polynomial of degree at most two.

This and the following lemma play an important role in the factor-
ization theory.

LEMMA 2. [11]. Let F{z) be an entire function of finite order.
Assume that F(z) — f{g{z)) holds with two transcendental entire functions
f and g. Then the order pf of f is equal to zero and pg ^ pF.

This result holds for meromorphic F. Indeed Edrei and Fuchs [5]
proved the following.

LEMMA 3. [5]. Let f be meromorphic of positive order, and let g(z)
be transcendental entire. Then F(z) — f(g(z)) is of infinite order.
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The following lemma was firstly stated in [3] and a complete proof
of its general form was given in [8].

LEMMA 4. Let at{z) be entire and of finite order p. Let g^z) also
be entire, and let g^z) — gj(z), (i Φ j) be a transcendental function or
polynomial of degree greater than p. Then

Σ α,(s)β"(β) = ao(z)
i = l

holds only when ao(z) = a^z) = ' = an(z) = 0.

We shall use the following notations: pfj Xf and pf are the order,
the lower order and the hyper-order of /, which are defined by

lim l o g T < r ' />, lim
log r r->°° log r

a n d

log r

LEMMA 5. [9]. Let f be entire with pf < oo, Then

βfig) ^ Pi

LEMMA 6. [10]. Let f be entire with Xf > 0. Then

βfig) ^ P3

LEMMA 7. Let f be exp L(z) with transcendental entire L(z). Then
χf = oo. If L(z) is not a constant, then \f ^ 1.

This is very easy to prove by Pόlya's method. The second part was
stated already in [10].

Further we shall make use of several results on factorization.

LEMMA 8. [2], Let p(z) be any non-constant polynomial. Then
ez + p(z) is prime.

LEMMA 9. [1], [6]. Iff is any entire function of order less than
1/2 and g is entire, then f(g) is periodic if and only if g is.

LEMMA 10. [12]. Iff is an arbitrary non-constant entire function
and p an arbitrary polynomial of degree ̂  3, then f(p) is not periodic.

LEMMA 11. [12]. If p is a non-constant polynomial and g an entire
function, then the periodicity of p(g) implies that of g.

Lemma 11 is a special case of Lemma 9. We need another growth
lemma.
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LEMMA 12. Let h(w) be single-valued and regular in 0 < | w | < oo.
If h(ez) is of finite order, then h(w) is of order zero around w = 0 and
W = oo.

PROOF. h(w) can be represented as a sum h(w) = I(w) + J(w), where
I{w), J(w) are regular in | w | < oo, 0 < | w | respectively. Suppose PJ > 0
or |07 > 0, then ρJ{e*) — °° or /07(β*) = oo. Since I(ez) is bounded in
and J(ez) is bounded in &z ^ -<?, <5 > 0,

ΛfA(..>(r) = max (AΓ/(#.,(r) , ikΓJ(e*>(r)) + 0(1) .

Hence |OJ(eZ) = oo or pI{eZ) = oo or both imply that jθΛ{β*) = oo. Thus we
have the desired result.

3. We shall start from proving the following proposition.

PROPOSITION 1. Let F(z) be

(ez - l)exp(β z - 2s) .

Then F(z) is E-prime.

PROOF. Suppose that F(z) — f(g(z)) with two non-linear entire func-
tions / and g. Evidently F(z) = 0 has roots on a single straight line,
that is, the imaginary axis. Assume that f(w) = 0 has an infinite number
of roots {Wj}. Then g{z) = wά must have its roots on the imaginary axis
for all j . By Lemma 1 g(z) must be a polynomial of degree at most
two. We may assume that g(z) = az2 + bz + c, a Φ 0. Evidently pF = 1,
pF = co. Let fi(w) be the canonical product formed by the zeros of f(w).
Although jθ/= oo, pN(r,o,F) = 1 and hence pN{r,o,f) = 1/2 imply that f{w) is
well defined and ρfl = 1/2. Let expL(w) be f(w)/fj(w)m Then /oexpL = oo.
Hence L(w) is not a polynomial. Since F(z) has two expressions

F(z) = (ez - 1) exp (ez - 2z)
= Λ(αz2 + δ^ + β)β^(«2+» + )

we have

ez - 1 = /(α^ 2 + δz + c)βZ(z) ,

ez - 2z = L(az2 + bz + c) - X{z) + d , d = 2pττί .

Evidently pexvU) ^ l Hence X(z) has the form 0:2; + β. Thus

e2 - (2 - <φ + /3 - d = L(az2 + bz + c) .

If a Φ 2, then we have a contradiction by Lemma 8. Hence a = 2. Then

ez + /3 - d = L(az2 + bz + c)

and



324 M. OZAWA

ez - 1 = Af,(az2 + bz + c)e2

By cancelling out the exponential term ez and then putting w = az2 + bz + c,
we have

wί - £ M + d - β - 1
w) - (L(w) + d-β)2

Since L(az2 + bz + c) = ez + β — d, pL{w) = 1/2. Hence L{w) + d — β has
zeros which do not coincide with the zeros of L(w) + d — β — 1. Thus
fι{w) is not entire and hence f(w) = fί(w)eL{w) is not entire, which is a
contradiction.

Assume that f(w) = 0 has only a finite number of roots. Then
f(w) = Q(w) exp M(w) with a polynomial Q and an entire function M.
Assume that M is not a constant. In this case Xf ^ 1. Hence by Lemma
6, ρF^> pg. Since pF = 1, we have ^ <; 1. By the two expressions of
F(z) we have

Q(g(Z)) = (β _ l)βX(.) ,

JKΓ(«) + M(g(z)) = ez-2z + d.

Here X(a;) is entire. Thus pQ{g) = pg ^ 1 implies X(^) — az Λ β and then
/0ff = 1. If a Φ — 2, then the identity

ez - (2 + <φ + d - β = M(g(z))

implies that M should be linear by Lemma 8. Thus putting M(w) =
Aw + B we have

Ag(z) + B = ez - (2 + ά)z + d - β ,

Cancelling out g(z) we have

Λ + A^z + + Ame*™z = 0

with polynomials Ay (i = 0, 1, , m), which are not zero, and non-zero
constants ocό such that ak Φ a5 for k Φ j . This gives a contradiction by
Lemma 4. If a = —2,

e' + d - /3 = M(g(z))

and Lemma 1 imply that g(z) is a polynomial of degree at most two,
when M(w) = 0 has an infinite number of roots. This is untenable, since
pg = 1. Hence M(w) has only a finite number of zeros. By Lemma 2
/o* = 0. Hence M(w) is not transcendental, that is, M(w) is a polynomial.
In this case we have
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Q(g(z)) = A(β* - l)e" 2 z ,

M{g{z)) = ez + A .

By cancelling out ez and then putting w = g(z)

O ί v = A(M(w) - A - 1)
^ v ' (M(w)-A) 2

Then Q(w) is not entire, which is a contradiction.
Next assume that f(w) = Q(w) is a polynomial. Then

TO = Q(g(z)) = (ez - 1) exp (*• - 2s) .

Assume that Q(w) has at least two different zeros wlf w2. Then g(z) — ws

has zeros whose counting function is of order at most one. By forming
the canonical product by the zeros of g(z) — ws and denoting it by Gj(z)
we have

g(z) - ws = Gό{z)eH*{z) .

Evidently ρG. ^ 1. Further pg = pQ{g) = pF = 1. Hence pe^Hj = 1. By
Lemma 7 λexpw, = 1 and then by Lemma 6 pHj ^ pex^Hj = 1. On the other
hand by Lemma 5 peχVHj ^ |Offi. Hence ^^^ = 1. Let us consider

w2 — wι — G2e
Hz — Gβ1*1 .

By Lemma 4 H2 — Hx should be a linear polynomial, since pGj ^ 1. Then

w2- w,= (AG2e
az - Gx)eH' .

If AG2 exp(α^) — Gi ^ 0, the right hand side has °o as its order. However
w2 — w1 is a constant. By w2 =̂ w^AGz exp (as) — Gx ^ 0. Thus we arrive
at a contradiction. Therefore Q(w) — A(w — w^. Then AG^zY = (ez — l)ex

has only simple zeros. Thus n = 1, that is, Q{w) is linear. Thus we have
the desired result.

Evidently F(z) admits F(z) = f(g(z)),

Hence we have

THEOREM 1. 7%e E-primeness does not imply the primeness.

4. In this section we shall prove the following.

THEOREM 2. There is an entire periodic function, which is prime.

PROOF. Let us consider
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0 0 / Z \ 00 /

F(z) = Π (1 - -ϊ-τ) Π (l -
exp exp e

Put

tf,(«0 = Π ( l -
i\ expeV

Then by a simple consideration we have

log M(r, Π0 <̂  log r log log r ,

where M(r, f) is the maximum modulus of / on \z\ = r. Hence

log M(r, n,{ez)) ^ log M(M(r, ez), Π,)
^ log M(r, ez) log log M(r, ez)
— γ Jog γ 9

which shows that pΠι{e^ — l Similarly we have Pπ2{e-
z) — 1 f̂ r

Π2(w) = fl ( l )
»=i \ exp exp en/

Thus pF ^ 1. |OF ^ 1 is evident. Hence ^ = 1.

( a ) Suppose that F(z) = f(g(z)) with two transcendental entire
functions / and g. Then pF = 1 implies pf = 0 and pg <^ pF = 1. By
Lemma 9 #(z) is periodic. Its period should be wo2πί with a positive
integer nQ. Let cy(ew + 2jπi) and cjr( — expβ% + 2iττΐ) be denoted by Xnj and
Yni9 respectively. Then Xnj = Xnk, Ynj = Fwfc for j — k = pn0. Consider
the equations g(z) = Xn3 , g(z) = F n J , j

1 = 0, 1, , nQ — 1. These have
solutions en + 2Ϊ7ri, — expe" + 2mπi, respectively. Hence f(Xnj) = 0,
f(Ynj) = 0. There is no other zero of f(x). Hence by pf = 0

From the first factor all the zeros of F(z) lying in the right half-plane,
that is, en + 2lπi appear and the second factor carries all the zeros of
F(z) lying in the left half-plane. Hence by

= A, Π Π f 1 - ψ

^βV" , AA* = A
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where ε = 0 or ± 1 . Firstly we shall consider the case ε = 0. g(z) is
representable as h^w) o exp (z/n0) with a regular function h^w) in 0 <
\w\ < oo. Let w be exτp(z/n0). Then

Π (onno\ —A TT ΓT ί Λ — ^11 ^W ») — JLX 1 1 1 1 I 1 — — —

Assume that h^w) is regular at w = 0. Then /72(w
 %0) should be regular

at w = 0 but it has an essential singularity at w — 0. This is impossible.
Hence h^w) has a pole or an essential singularity at w — 0. Then Π^w710)
should have an essential singularity at w = 0 but this is not the case.
This is again impossible. We next consider the case ε = ± 1 . The case
ε = — 1 is quite similar as in the case ε = 1. It is very easy to prove
a = p/nQ with a positive integer p. (p may be negative, but it does
not have any effect in the following discussion.) Let w be exp (z/n0).
Then

TJ (n.jΠΛ _ Λ TT TT Λ _ hSw) \ p
iiι\ω ) — Ά-i 11 11 \ -1- — — — Iw j

J-nj

The same process as in the case ε = 0 does work in this case and leads
us to a contradiction.

(b) Suppose that / is transcendental entire and g is a polynomial
of degree at least two. Then by Lemma 10 g is a quadratic polynomial.
We put

g(z) = a(z - a)2 + β .

Assume that two points zγ and z2 satisfy g{z^ = g(z2). Then 2α = z1 + z2.
Therefore all the zeros of F(z) are distributed symmetrically with respect
to α. Consider the asymptotic distribution of the zeros of F(z). They
are distributed more densely in the right half-plane than in the left.
So there is no centre point of symmetry of them. This is a contradiction.

(c) Suppose that / is a polynomial of degree at least two and g
is transcendental entire. By Lemma 11 g is periodic. Let / be A(w —
Wi) (w — wp). There is at most one wjf say wlf such that g(z) — wt

has no zero. Then g(z) — wt = Beaz, since pg = 1. Here B Φ 0, a Φ 0.
In this case

F(z) = ABeaz{w1 - w2 + Beaz) (w, - wp + Beaz) .
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Let no2πi be the period of g(z). Then a = s/nQ with an integer s. Of
course nQ is a positive integer. Let x be exp (z/n0). Then

The left hand side has an essential singularity at x = oo but the right
hand side does not. This is impossible. Hence g(z) — wά has a zero and
hence in virtue of its periodicity it has infinitely many zeros. Further
there is no multiple zero of /, since F(z) has no multiple zero. We
should remark that Renyi's proof of Lemma 11 shows that 1 ^ n0 ^ p =
the degree of f(w). Let g(z) be represented as hfa*1**) with a regular
function h^x) in 0 < | x | < oo. Put x = exp (z/n0). Then

Hence a? = 0 and x = oo are singularities of ^(g). Since h^e'1*0) is of the
first order, phl = 0 around x = 0 and g = oo. This is due to Lemma 12.
Let zn be the zeros of g(z) — wlm Consider the set {&zlt}m Its elements
have the form nQ log | xs \ with h^Xj) — wx — 0, 2^ = n0 log α?y + 2π0p^ί
There are only a finite number of different x3- with the same modulus.
Suppose that the set {&zu} is a finite set. Then h^x) — wλ has only a
finite number of zeros. This implies that h^x) — wι is a rational function
of ». Thus Π1(xn°)Π2(x~nή = A(hL(x) — w,) (fĉ x) — wP) has only a finite
number of zeros but the left hand side does have an infinite number of
zeros. This is untenable. Hence all the equations g(z) = wif j = 1, , p
have an infinite number of roots having different real parts. Let W3- be
the set of zeros of g(z) — w3 . Each Ws contains points zix such that
&%nμ —* + °° > &Zn» —" — °° along suitable subsequences {lμ}, {ΪJ of {I}.
All the zeros of F(z) are divided into p different (disjoint) groups Wjf

i = l , * , p . We transfer these by exj)(zdl/n0). Then h^x) — w5 has
roots exp (Zjiln0). If zn = zjk + 2sn0πi, then exp (zjι/nQ) = exp (zjk/n0). We
denote cĉ  the different exp (z3 ι/n0). Then, if p = n0,

xjn = e(j, n) exp (en/n0)

and

where e{j, ±n) is an no-th root of unity which depends on j and ±%. In
what follows it is sufficient to consider the case

hix) = w, + A} Π ( l - — ) Π (l - ^^jBjix)

= wj + π}{x)Rά(x) .
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Here Rj(x) is a rational function of x. This representation is possible.
In fact

(hάx) - wά)lπά(x) = M(x)

has no zero in 0 < | x | < oo and hence it has the form

R(x)eS(x)

with R(x) = xq and rational S(x), where q is an integer. However M(x)
is of order zero around x — 0 and x = oo. Hence S(#) should be a
constant. Hence M(x) — R5{x) ^ O i n O < | # | < o o . Let us consider π^x).
Put x = a?lm. Then

Evidently X2—*1 if α; lm—*oo. Let us consider I-3ΓJ. For \X1\ we have

X 1 -
j , m) 1 - en)lnn)J '

For the first factor

n

= exp —
1 m-1 m-1 / 1 \

— Σ (βw - βw) Π ( 1 )
n o i κ ' i \ exp ((βw - e%)Mo) /

^ (1 - e) exp f—(m - 1)(1 - ε >

ε' —> 0, ε —• 0 as m

The last factor tends to 1 if m -* oo. Further

ε(i, m) Φ ε(l, m)

for j φ 1 and hence

^ 11 - exp (2πi/nQ) \ ̂  δ > 0 .

Hence as m —> oo

, I ̂  8(1 - ε") exp f^ -em) .
\ n0 /
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On the other hand

Hence as m ^ ω

πό(xlm)Rά(xlm) -> oo .

Now let us consider w1 + π^R^x) — w5 + π5(x)Rά(x). Along {xίm} we
have wι — w3- = πά(x)Rό(x) —• oo by π^x^) = 0. This is evidently a contra-
diction. Several variants of the above case may occur. However the
same consideration does work in every case. If p > n0 ^ 1, then we make
h^x) = w5 + πf(x) and

w2 — wx = π?(x) — πf(x) , π* = πά Rά .

Let xln be zeros of π?(x). Its subset tending to oo is denoted by {xίn}
again. This is a subset of {ε(l, n) exp (en/nQ)}. Let x be xln. Then
πΐ(χin) = 0 and π*(&lw) —• oo. This part is quite similar as in the above
case. Then we arrive at a contradictory relation w2 — wx = oo. Hence
/ should be a linear polynomial.

(d) In order to go further we need the following

PROPOSITION 2. Let F(z) be an entire function which admits a fac-
torization f(g(z)) with transcendental meromorphic (not entire) f and
transcendental entire g. Then

f(w) = f*(w)l(w - w,Y , g(z) = wί + eM'z) ,

/*(O Φ o,
where f* is transcendental entire, M a non-constant entire function and
n a positive integer.

PROOF. Assume that f(w) = oo has two different roots wL and w2.
Then one of two equations g(z) = wlf g(z) = w2 admits an infinite number of
roots, which must be poles of F{z). This is a contradiction. Hence
f(w) = oo has only one root wι and then g(z) = wx has no root. Hence
we have the desired result.

Suppose that / is transcendental meromorphic (not entire) and g is
transcendental entire. By Lemma 3 we have ρf = 0. Let {w*} be the
set of zeros of f*(w). pf* = pf = 0 implies that {w*} is an infinite set.
Then by the second fundamental theorem

JΓ + 1

T(r, F) ^ N(r, 0, F) ^ Σ N(r, wf, g)
1

Ξ> Km(r, g) — O(log rm(r, g))

^ K'm{r, g) .
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Hence

ρ g ^ ρ F = 1 .

However by its form pg ^ 1. Hence ρg = 1. Therefore M(z) = az + β.
Then the set of solutions of

wf = w1 + Beaz

coincides with the set of roots of F(z) = 0. They are

z = λ log w* ~
a log + .
a B a

By the periodicity of F with period 2πi we have a = 1 or — 1. If a = 1,
then

Aβ~wz/*(^1 + Bez)

and

Π^Π^w-1) = —f^w, +

This is a contradiction, since the left hand side has w = 0 as an essential
singularity but the right hand side has w = 0 as a pole. If α: = —1,
then

and

Π^w-^Π^w) = —f*(w1

wn

This is again a contradiction by the similar reasoning.
(e) Suppose that / is transcendental meromorphic (not entire) and

g is a non-linear polynomial. In this case / has at least one pole w0 and
g(z) = w0 has at least one root. Hence F(z) has at least one pole, which
is clearly untenable.

(f ) Suppose that / is non-linear rational (not a polynomial) and g
is meromorphic. Let αx be a pole of /. Then g(z) — ax Φ 0. Let gx{z)
be l/(g(z) — αO Then F(z) = R(g1(z)) with rational R and entire glm R
has only one pole b. Hence gφ) = b + Aeα(z). Since ^ = ^ = 1, a(z)
must be α«. Thus

F(z) = P(δ + Aeαz)β~mαz

with a polynomial P and a positive integer m. α should be ± 1 as in
(d). Then we can apply the same reasoning as in (d) and we arrive at
a contradiction.
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Summing up the above results we have the primeness of

exp en / »=i \ exp

which is clearly entire and periodic. Therefore we have the desired
result.

It is very easy to show that F(z) = h(ez) with regular h(w) in
0 < \w\ < oo is not pseudo-prime, when either w = 0 or w = oo is not an
essential singularity of h(w) but one of them is. Even if both two points
are essential singularities of h(w), F(z) is not always prime. This is shown
by two typical examples:

h(w) = Ao + Σ Aj(wj + w~j) ,

-4- V A (P^'W i

and

if(2) = MO = -JΣ Λ

where R is a rational function of w. We do not know whether these
two are all possible types of factorization of our F.

5. Let us denote εm the class of entire functions satisfying the
condition in Proposition 2.

THEOREM 3. Let F(z) belong to the class εm. Assume that F(z) = A
has only finitely many roots for an A Φ oo. Then F(z) is not pseudo-
prime in entire sense.

PROOF. F(Z) is representable as F(z) = f(g(z))

f(w) = f*(w)/(w - w,Y , /*(w1) Φ 0 ,

g{z) = w1 + .BeΛί(z) .

Consider /(w) = A and g(z) = w. g(z) has already two lacunary values
w1 and oo. Hence g(z) = w has infinitely many roots, if w Φ wl9 oo. Since
A Φ oo9 w satisfying f(w) = A does not coincide with wlf oo. Then
F(z) — A has an infinite number of roots, if f(w) = A has at least one
root. This is untenable. Hence f(w) = A has no root and hence

f*(w) = A(w - Wχ) + βL(w)
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with a non-constant entire function L(w). Therefore

F(z) = A + Le-^eL^+BeM[z)).
B

We put

Λ(w) = A + —e,

9i(z) = —nM(z) + L{wι + BeM{z)) .

Then F(z) = f^gfc)) .

Theorem 3 gives only a sufficient condition. This is shown by

F(z) = {1 — exp (—ez)} exp exp ez .

It admits two factorizations

{(1 - e~w) exp ew}oez , \ w ~ 1ew

exp ez.

Another remark is the following: If F(z) e em, then λF ^ 1. A
method of proof was shown in the (d) step of proving Theorem 2.

THEOREM 4. Let F(z) e em. If pF = 1, then F(z) is pseudo-prime in
entire sense. If 1 < pF, F(z) admits a factorization f(g(M(z))), where f
or g is a polynomial and M(z) is entire.

PROOF. Consider the case pF = 1. By Proposition 2 we have

F(z) = Ae-^'piwt + Beaz) ,

A = e~nβ , B = eβ , f*(wj Φ 0 .

Suppose that F(z) = fι(gι(z)) with two transcendental entire /i and # le

Then /t>/1 = 0 and hence by Lemma 9 gγ{z) is periodic. Its period should
be equal to no2πi/a. Therefore gx(z) = λ^e"7*0) with a regular function
hL(x) in 0 < I x | < oo. Hence putting w = exp (az/n0)

Aw-nn"f""{wι + Bwn°) = /Maw)) .

If h^w) has an essential singularity or a pole at w = 0, then f^h^w)) has
w = 0 as an essential singularity. However w = 0 is only a pole of the
left hand side. This is impossible. Hence hγ(w) is entire. This is again
a contradiction, since the left hand side has really a pole at w = 0.
Hence we have the desired result, if pF = 1. Next we shall consider
the case 1 < ρF. Then

Bew)
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with entire M(z). Since F^z) is pseudo-prime in entire sense, F^z) =
fi{9ι(z)) Here f is a polynomial unless g1 is so. Hence

F(z) = fifaiMiz))) .

This gives the desired result.
There remain two problems: When is an Feεm, pF = 1, JB'-prime?

Is every i^e εm, pF < ^ pseudo-prime in entire sense?

THEOREM 5. Let F(z) belong to εm. Assume that the lower order
of N(r, 0, F) is less than 1. Then F(z) has 0 as a lacunary value.

PROOF. Suppose firstly that f*(w) = 0 has at least two roots. Here

F(z) = f(g(z)) , f(w) = f*(w)/(w-wd*,

g(z) = w, + eM{z) , f*(wt) Φ 0 .

Then by the second fundamental theorem

VzV(r,0,F) = ^g = 1 9

since

N(r, 0, F) ^ i\Γ(r, w2, g) + iV(r, w8, 9)

^ m(r, ^) + 0 (log rm(rf g)) .

This is impossible. Assume that f*(w) — 0 has only one root. Then
N(r, 0, F) = N(r, w2, g). Since N{r, co, g) = N(r, wl9 g) = 0, Xmr,0,F) = \^1
by the second fundamental theorem. Thus we have again a contradiction.
If f*(w) does not vanish, then F(z) = 0 has no root. Thus we have the
desired result.

THEOREM 6. Let F(z) belong to em. Assume that the lower order
of N(r, 0, F) is less than 1. Then pF ^ 1.

PROOF. By the above proof of Theorem 5 to be considered is a case
that f*(w) = 0 has no root. Then f*(w) = exp L(w) with entire L. Then

F(z) = e~nM[z) exp {L{w, + eM{z))) .

Since λ/ Ξ> 1, pF ;> ^ ^ 1. This is the desired result.

6. In this section we shall be concerned with a remark on Lemma
10, since it seems to belong to our range of idea of using the function
h{ez). Let F(z) be represented as f(P(z)) with entire / and a polynomial
P(z). Suppose that F is entire periodic. Then P(z) is of degree at most
two by Lemma 10. What can be said about / when P is quadratic?
The following, which may or may not be new, gives the definite answer.
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THEOREM 7. Let F{z) be entire periodic with period 2πi. Assume
that F(z) is represented as f(P(z)) with entire f and a polynomial P(z)
of degree ^ 2. Then

B

with entire g and constants c and B.

PROOF. We may put P{z) = B(z - a)2 + c. Then

F(z) = f(P(z)) = h(e*)

with regular h(x) in 0 < | x \ < oo. Let z — a be x. Then

f(Bx2 + c) = h(Aex) , A = ea

is an even function of x. Hence h(Aex) = h(Ae~x). Let h(w) be

Σ
Then anA

n = a,-nA * for any n. Put Ln = anA
n. Then

h(Aex) = Σ

Let ff(X) be

Σ
Then

^2 + c) = g {cosh

Hence

f(w) = g {cosh

COROLLARY. Besides the assumptions in Theorem 7 we assume that
pF > 1. Then f{w) is not pseudo-prime.
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