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NOTES ON BANAIH SPA*Έ CX):

VITALI-HAHN-SAKS' THEOREM ANΪ) K-SPAίΈS.*'

By

Masahiro Nakamura.

Since H. Freudenthal Ĉ J established the spectral respresentation for the

vector-lattices, the closed analogy between the theory of the vector-lattices

and that of the additive set functions are pointed out by several authors.

As its consequence the well-known theorem of Radon-Nikodym are abstractly

handled.

This note 0 lies in this direction, and firstly we prove the Hahn-de-

composition theorem and the Vitali-Hahn-Saks theorem of the additive set

functions for the Banach-lattices. The former, as proved by G. Birkhoff ι2~),

is alreadly known in strictly monotone Banach lattices. But, as will be seen

in the following, if we restrict the linear functional suitably, then Birkhoff^

proof is applicable in some more general cases. The later is obtained by

T. Ogasawara C12D and H. Nakano £10^ independently. Ogasawara's proof

depends on his representation theory and concrete case of the Vitali-Hahn-

Saks theorem. On the other hand, Nakano's proof is fine but does not contain

the classical theory of the additive set functions. In this note, we prove it

containing both cases, using the method of S. Saks Γ13J. Hence it may be

observed with some interest.

As an application of the above theorems, we prove in § 3 some structure

theorems due to T. Ogasawara fllD on K-spaces. In §2, we will prove some

lemmas, which are due to T. Ogasawara ClΌ, (l^- We gave a sketch of

proof, which does not depends on the concrete representation theory, and

then seems to be somewhat simpler than those of T. Ogasawara.

Throughout this note, we use the terminologies of the text books of

G. Birkoff (2J and S. Banach (I') without any explanation. But there is one

different point which is the notion of the "ideal" of the vector lattices. We

use it here as "closed admissible 1-ideal" in (31 or 'complemented normal

*) Received Dec. 18th, 1948.
1) A part of this note is contained in Japanese [9]. The author expresses Irs hearty

thanks to Prof. S. Kakutaiύ who .<rnve the auther valuable remarks.
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subspace" in [2>

1. We concern, in this article, with complete Banach lattices. We will

begin by the following definitions.

Definition 1. A set S= \χa\ in a complete Banch lattice is said to have

the Moore-Smith property provided that A-Λ, uβ€ S imply xΛ\/Aβs S (or dually).

And a set 64 of positive elements \ χΛ ] with the Moore-Smith property is

said to be order-convergent to zero, symbolically xΛ 10, if the greatest lower

bound of S is zero.

Definition 2. A linear functional / defined on a complete Banach

lattice E is said to be order-continuous provided that/•(**) converges to

zero in the Moore-Smith sense whenever x^ order-converges to zero, that

is, for any c>0 and any χΛ j 0 there exists a such that xβ<χΛ implies \f(xβ~) [

<£.

This notion of order-continuity, due to T. Ogasawara C5J, seems to play

an essential rδle in the theory of complete Banach lattices, for it resembles

the notion of the absolute continuity in the theory of the additive set

functions. Many theorems on absolutely continuous set functions are

generalized to the concept of the order-continuous linear functionals on the

complete Banach lattice. Firstly, the so-called Jordan-Hahn decomposition

theorem of the additive set functions is proved in the complete Banach

lattice as following:

Theorem 1. By mean of an order-continuous linear functional, every

complete Banach lattice is decomposed into direct sum of positive, negative

and null ideals.

By positive, negative and null ideals, we mean complemented normal

subspaces with elements x such that 0<y<[,χ| implies / (y)>0, /(y)<0, f(y)

-0 respectively, as defined in ['2J §151. This theorem is proved already by

G. Birkhoff Γ2Ί for the strictly monotone normed Banach lattices. But

examining his proof, we see that the strict monotonity of the norm is not

essentially used and it can be replaced by the order-continuity of the given

linear functional. Therefore, proof of the theorem is done parallel as that

of G. Birkhoff. Hence we omit the details.

By Theorem 1, we see, that for any order-continuous linear founctional

/ the order-cόntinuily of I/I and g follows for any \<j\ < |/|. For, / + G τ ) -

/ 00 where « is the component of x in the positive ideal, and 0<^y<Lf

implies 0 <Ξ <j U) ^f(x) for any x > 0 . Thus, we have immediaetly:

Corollary 1. All order-continuous linear functionals on a complete
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Banach lattice form a metrically closed normal subspace in the conjugate

space.

Nextly, we show that the Vitali-Hahn-Saks theorem can be proved in

the complete Banach lattice, using the method of the proof due to S. Saks

an
Theormn 2. If an enumerable sequence of the order-continuous linear

functionals converges weakly on a complete Banach lattice, then the limit

is also order-continuous.

Proof. Let [fn\ be a sequence converging weakly to/,, and \χoί[ be a

Moore-Smith set of positive elements order-converging to zero. Without loss

of generality, we can assume 0<;4Λ<;l. By /we denote the interval from 0

to 1, and put

By Corollary 1, / exists and is a positive order-continuous linear functional.

Since, by Theorem 1, it suffices to show the theorem for the positive

ideal of/, we may assume without loss of generality, that 1 belongs to* the

positive ideal of/ and /(1) = 1. Then, by a theorem due to G. Birkhoff

C2; Theorem 3.13J, / defines a continuous metric on the interval / considered

as a distributive lattice. Since its metric topology coincides with star

convergence, /< becomes continuous on the metric space /.

Let £ be any positive number and put

Hn={x |£>l/»Oϋ-/»(Λ)ί, m^n, xεl\,

then Hn is closed in / and V nHΛ~L Since, by the above used theorem due

to G. Birkoff, the lattice completeness of / implies the metric completeness,

/ becomes a set of the second category. Hence, by the well-known Baire's

category theorem, some Hn contains a sphere S with center a and radius \.

Now, if we put for any x such that /

y^aΛ (1—Λ) and

then yι and y.λ belong to the sphere S. Hence, by the definition of Hn,

[/»(*)-/«(*) I - \f*(yt-yό-My*-yi) I
S \Myι)~fm(yύ I + \fn(y z)-fm(y>z) I ^ 28

for all m;>/7. Therefore, for any £>0, there is a δ>0 such that/U)<δ

implies |/W(Λ) I <3£ for all m. Thus we have ]/0(Λ) | <3£. This proves the

theorem.

Since the essential point of the proof is the positive ideal of / includes

all positive and negative ideals of / , and since in the case of the absolutely
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continnuous set functions this is satisfied by the existence of the given

measure, the later half of the proof gives the following well-known Vitali-

Hahn-Saks theorem:

Theorem 3. If a sequence of additive and absolutely continuous set

functions, defined on a space with finite completely additive measure,

converges on every set, then the limit is also absolutely continuous and

moreover the functions are equi-absolutely continuous.

It is also remarked, that Theorem 2 is true for the sequentially order-

continuous case, that is, if ί.nι\Ό implies fnC%nO~*0 for all m and fiΛ

comverges weakly to f0, then/0 (ΛW<>->0 In this case, the proof requires

some modification, since the Hahn-decomposition theorem does not hold to

the sequentially order-continuous case.

2. We will give some applications of Theorem 1. We begin to state the

following theorem due to Ogasawara CIO

Theorem 4. For a complete Banach lattice, the following three

conditions are equivalent:

Condition Fl: Every linear functional is order-continuous,

Condition F2: xn φ 0 implies | χn | -> 0,

Condition F3: yΛ 10 imdlies UΛ |-» 0.

F2 follows from Fl by virtue of Dini's theorem for monotone sequence

of continuous functions, F3 follows from F2 as same manner as Theorem 8

of the next article, and evidently F3 implies Fl.

In this article we assume that the given Banach lattice E is complete

and satisfies one of the above conditions. Thus Theorem 1 is applicable for

any linear functional / on is. Therefore, if we denote by P/] Nf the

positive and rull ideals of y>0 respectively, then by the definition of join of

two positive functionals / and g we have

f\g U) = sup {/00+ί/ (*) I λ=,y+;ε>0, y, z^0\.

It is easily verified that Pfy g = Pf\j Pg aud iV/V g-N/fi Ng. And dually

it gilts for the meet, Pfhg=PfΓι Pg and Nf Λ g^NfU Ng.

Therefore if we put

/*=V )P\J\\fiI\

for an ideal / in £*, the conjugate space of E, then we see by above

equalities, that the correspondence I-*Ib determines a lattice homomorpbism

from the structure lattice L*, the lattice of ideals in E*, to the structure

X^ttice L of E.

Conversely, as was proved essentially by Kantorovitch C8}, U [ 0 implies
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Λ^/Λ)=/ΛCJ»:)->0. Hence, we can apply Theorem 1 taking elements of the

given space as linear functionals on the conjugate space. And the following

lemma credits the above arguments in this case.

Lemma 1. Every Banach lattice is closed sub-lattice in the second

conjugate space.

Since the linearity and the closedness follow from the general theory of

the Banach spaces, it is sufficient to show that the order relation and the

lattice operations are preserved. Concerning the former, if x is positive in

E and not positive in E**, the second conjugate of E, then, applying

Theorem 1 to x as a linear functional on £*, we have a non-zero negative

ideal of x in E*, that is, / ( Λ ) < 0 for some />0, which is a contradition.

Concerning the later, it is sufficient to prove that f(χ) attains its supremum

f(x+) in the interval (0, /) . Since the existence of a functional g taking

supremum value in the interval follows from Theorem 1, it needs to

prove thas f(x) takes the value f(x+) in the interval. This can be

proved similarly as the proof of the Hahn-Banach extension theorem

appealing with Zorn's lemma, for the positiveness and boundedness of linear

functionals are of finite restrictions.

We will now put

7 # - V J P | Λ | I xel \

for an ideal / in E, and we call the correspondences 7->i6, /->/ as derived

correspondences. Then we have the following duality theorem due to

T. Ogasawara:

Theorem 5. The structure lattices of the conjugate space and the

complete Banach lattice which satisfies the Condition F ^are isomorphic

under the derived correspondences.

To prove this we need a lemma:

Lemma 2. If a positive element % belongs to ft, then there exists at

least one positive liner functional / in / with/Cτ)>0.

Proof. By the hypothesis χtfb, it is evidently excluded by some null

ideal Nf for fel. If we assume that / is positive, it is / ( Λ ) > 0 by the

definition of the positive ideal.

Proof of Theorem 6. Since it is obvious /'#;>/, we can assume that

there exists a linear functional / in / 6 # , orthogonal to all gεl. HeflCe by

Lemma 1 />0 implies the existence of a positive element x in Ib with

/(*)>0. On the other hand,/Λ# = 0 for all gel implies P/ΓlPg^O, from

which it may be seen Pf f) Γ'~0 easily. This is a contradiction.
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In order to give an alternative form of Theorem 6, we introduce a

notion due to H. FreudenthalC^J:

Definition 3. An element 1 is a principal unit of E if lΛ#>0 for any

x>0. If a principal unit exists and E is complete lattice, then the set of all

e with eΛ(l —0) = O is called unit-lattice of E.

If a principal unit exists in a complete Banach lattice, then the structure

lattice is isomorphic to the unit-lattice. In this case Theorem 6 may be

stated as follows:

Theorem 7. If the principal units exist for the conjugate space and the

complete Banach lattice satisfying Condition C, then the unit-lattices are

isomorphic.

Following H. Freudenthal C4J, every complete Banach lattice E with a

principal unit is a metrically closed hull of linear combinations of the unit-

lattice B. Hence if we term this fact by UE is constructed on a complete

Boolean algebra B", then Theorem 6 can be restated in such a way that E

and E* can be constructed on the same Boolean algebra up to isomorphism.

This point gives a possibility to construct a representation theory of E and

E* in the same time, as similar manner as the abstract (L)-space in S,

Kakutani £6D But since this problem do not concern to the below

considerations, we do not go to further.

For the later use, we prove the following two lemmas.

Lemma 3. If an element x of the second conjugate space of a complete

Banach lattice, not belonging to the original lattice, is dominated by an

element of the original space, then the unit lattice with respect to x

contains at least one element wich is not contained in the given space.

Proof. By the spectral theorem due to H. Freudenthal C4X every

element in E**, dominated by lεE, can be approximated uniformly by finite

linear combinations of the unit-lattice of E** with respect to 1. Therefore,

the lemma follows from Theorem 7. 21 of C2D and from the metrically

closedness of E as a subspace of E**.

Lemma 4. If a complete Banach lattice satisfies the conditions of

Theorem 5, then it is closed normal subspace in the second conjugate

space.

Proof. By Lemma 3, it suffices to prove, that every element e of the

unit lattice of E** with respect to any element 1 in E belongs to E. Since e

is order-continuous on E* by Corollary 1, it has non-zero positive ideal P in

E*. Hence,|by^Theoremi6, there exists non-zero ideal Pb, and Pb is contained
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in the principal ideal of 1 in E. Since E is complete, Ph is a principal ideal

by some element e of the unit lattice of E with e Λ (1—0 = 0, and we have

£_£<0 in E**. Since e~e is order-continuous, it has positive ideal different

from zero, and by (e-e) Λβ=O it also differs from Ph. This is a contradiction.

As a consequence of Lemma 4, we get a theorem due to T. Ogasawara

Corollary 2. If a complete Banach lattice sasίsfies Condition F, then

its intervals are weakly compact.

For, since every interval in E** is closed with respect to the weak'

topology as fu'nctionals2> on E* and the unit sphere of E'** is weakly

compact with respect to that topology, Lemma 4 gives the above statement.

3. We conclude this paper by proving some results due to T. Ogasawara

ζlΌ "without use* of the representation theory. We will now introduce the

following definitions:

Definition 4. A (complete) Banach lattice with Condition F is called a

K-space if it satisfies the following condition:

Condition L: 0<^<Ξ#,ι+1 and the norm boundedness of χ]h imply the

existence of y tί xn.

As T. Ogasawara CUD pointed out, Conditions F and L are equivalent

to

Condition K: Og#,tfS*»+i- and norm boundedness imply the strong

convergence of xn to its supremum \J it xn.

Moreover, we can prove the following theorem similarly as Theorem 7.

23 of G. Birkhoff £2", which he proved for the strictly monotone normed

Banach lattices:

Theorem 8. A Banach lattice is a K-space if and only if it satisfies

the following

Condition B: Every metrically bounded Moore-Smith set converges

strongly to its bound.

Proof. Since the sufficiency is obvious, it remains to prove the

necessity. Let S be a Moore-Smith set in the K-space E, and suppose sup

! M«M x«ε3 j =1 and xΛ^0. Let .S' be the set of all supremums of enumerable

set of S, then -S' has also the Moore-Smith property. If A is a linearly

. ordered subset of S', then A converges its supremum in s\ for, if otherwise,

there exists enumerable infinite sequence .rΛ(0 *A with UΛ(;+J)—xΛk >| >£

2) On the weak topologies of the Banach spaces, cf. S. Kakutani Co}.



VlTALI-HAIIS-SAKS' THEOREM AND K-SPACES 107

which leads to a contradiction. Therefore, S' is inductively ordered and then

by Zorn's lemma it has maximal element a: But since Sf has the Moore-

Smith property, a becomes its maximum. The strong convergence follows

from Condi ton K.

From Theorem 8 and Lemma 4 it follows as a generalization of the

well-known theorem of Radon-Nikodym.

Theorem 9., K-space is an ideal in the second conjugate space.

Proofs By the last footnote in G. Birkhoff's book Chap. VII, it suffices

to show that every order-bounded set of E has a least upper bound in E.

But, this is an obvious consequence of Theorem 8, since the set S with

bo und x £** converges its supremum and E is metrically closed.

From this and Theorem 2 we can prove a sort of duality theorem due

to, T. Ogasawara:

Theorem 10. A Banach lattice is a K-space, if and only if, it coincides

with all order-continuous linear functionals on the conjugate space.

Proof. If the theorem does not hold, then by Theorem 8 there is an

order-continuous linear functional x with χ/\χ-Q in E** for all positive x of

E. Hence by Theorem 1 x has a non-zero ideal P in E*, and fe I implies

/O) = 0 for all positive x in E. This is a contradiction.

Conversely, if the condition is satisfied by a Banach lattice, then Condi-

tion F holds by Theorem 5. If 0 < ^ < ^ i + i and its norm is bounded, then xn

converges weakly on E* to a functional x in E**. But x, as a consequence of

Theorem 2, is order-coutinuous, and by hypothesis it belongs to E. This

proves Condition L and then the proof is completed.

In the similar manner, Theorem 2 is also applicable to prove the follo-

wing theorem due to T. Ogasawara.

Theorem 11. If the conjugate space of a Banach lattice is separable,

then it is a K-space.

Proof. By a theorem due to S. Banachflj, E** is weakly separable by

the assumption, and then it is possible to approximate every element of E**

by an enumerable sequence of element of E. Hence, by a theorem due to

Kantorovitch C8D and Theorem 2, every element of E** is order-continuous

on E*. Therefore, by Theorem 5, E* satisfies Condition F. On the other

hand, Condition L holds for any Banach lattice which is conjugate to a some

Banach lattice. Hence the lemma is proved.

Theorem 12. A Banach lattice is a K-space if and only if it is weakly

complete.
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Proof. Since the sufficiency is obvious, we prove only the necessity. If

a sequence of a K-space converges weakly, then its limit belongs to the

second conjugate space in general. But it is order-continuous by Theorem 2,

and then it belongs to the given lattice by Theorem 10. This completes the

proof.

Math. Inst., Tohoku Univ., Sendai.
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