NOTES ON FOURIER ANALYSIS (XX): ON THE RIESZ LOGARITHMIC SUMMABILITY OF THE DERIVED FOURIER SERIES.**

By

Noboru Matsuyama.

1. Let $f(x)$ be an integrable function with the period 2π and its Fourier series be

(1)
$$
f(x) \sim \frac{1}{2} c_0 + \sum_{n=1}^{\infty} (c_n \cos nx + b_n \sin nx).
$$

If we differentiate the series term by term, we get

(2)
$$
\sum_{1}^{\infty} n(-a_n \sin nx + b_n \cos nx),
$$

which is said the derived Fourier series of $f(x)$ and denote it by $S[f]$.

The object of the present paper is to treat the Riesz logarithmic $\text{mability of } \left(2 \right)$ summability of $\left(2\right)$.

Concerning the Fourier series Wang has proved the following theorems: Theorem A. If

lim $\varphi(t)=s$ (*R*, log *n*, α) ($\alpha > 0$),

t—>ΰ $\frac{1}{\sqrt{R}}$ is $\frac{1}{\sqrt{R}}$, $\frac{1}{\sqrt{R}}$, $\frac{1}{\sqrt{R}}$ of $\frac{1}{\sqrt{R}}$ of $\frac{1}{\sqrt{R}}$ of $\frac{1}{\sqrt{R}}$ or $\frac{1}{\sqrt{R}}$ or number.
For

Theorem B. $\mathbf{F}(\mathbf{r})$ is $\mathbf{F}(\mathbf{r})$ as $\mathbf{F}(\mathbf{r})$ summable to sum s at $t = x$, then lim_{$\varphi(t) = s(R, \log n, \alpha + 1 + \delta)$ *(* $\alpha > 0$ *).*}

We prove analogue theorems concenning derived Fourier series (2), which reads as follows:

Theorem 1. If

 $\psi(t)/t = s$ (*R*, log *n*, α) ($\alpha > 0$),

then (2) is (R, log n, $\alpha+1+\delta$)-summable to sum s at $t = x$, where δ is any positive number.

Theorem 2. If (2) is $(R, \log n, \alpha)$ -summable to sum s at $t = x (\alpha > 1)$, then

$$
\lim_{t \to 0} \psi(t)/t = s \ (R, \log n, \alpha + 1 + \delta)
$$

*> Received Nov. 1st, 1947.

S being any positive constant.

In these theorems we suppose that $\psi(i)/i$ is integrable in (0 2π).

2. Let $D_{\alpha}(\varphi)$ be the α -th mean of (2). We have

$$
D_{\alpha}(\omega)-s=-\frac{2}{\pi}\frac{\omega^2}{(\log \omega)^{\alpha}}\int_{0}^{\infty}L'_{\alpha}(\omega t)\psi(t)dt.
$$

If we put $\psi(t)/t = g(t)$, then the α -th mean of $g(t)$ is

$$
g_{\alpha}(t) = \frac{1}{\Gamma(\alpha)} \int_{t}^{1} \left(\log \frac{u}{t} \right)^{\alpha-1} \frac{g(u)}{u} du,
$$

for positive α . And we put

$$
g_{\alpha}^{2}(t)=\frac{1}{\Gamma(\beta)}\int_{0}^{t}g_{\alpha}(u) (t-u)^{\beta-1} du,
$$

for positive β . Then we have for positive α

(3)
$$
D_{\alpha}(\omega) - s = -\frac{2}{\pi} \left[\frac{\omega}{(\log \omega)^{\alpha}} \int_{0}^{\infty} g(t) \left\{ \alpha \ L_{\alpha-1}(\omega t) - L_{\alpha}(\omega t) \right\} \right] dt
$$

$$
= -\frac{\alpha}{\log \omega} R_{\alpha-1}(\omega) + R_{\alpha}(\omega),
$$

where R_{α} (ω) is the α -th Riesz logarithmic mean of the Fourier series of $g(t)$.

On the other hand

$$
-\frac{\pi}{2} \cdot (D_{\alpha}(\omega) - s) = \frac{\omega^2}{(\log \omega)^{\alpha}} \int_0^{\infty} t g(t) L'_{\alpha}(\omega t) dt
$$

$$
= \alpha \cdot \frac{\omega}{(\log \omega)^{\alpha}} \int_0^{\infty} g(t) L_{\alpha-1}(\omega t) dt - \frac{\omega}{(\log \omega)^{\alpha}} \int_0^{\infty} g(t) L_{\alpha}(\omega t) dt.
$$

Since $g(t)$ is periodic, it is equal to,

$$
= \alpha \frac{\omega}{(\log \omega)^{\alpha}} \int_{0}^{1} g(t) L_{\alpha-1}(\omega t) dt - \frac{\omega}{(\log \omega)^{\alpha}} \int_{0}^{1} g(t) L_{\alpha}(\omega t) dt
$$

+ $O\left(\frac{1}{\log \omega}\right) + o(1)$
= $\alpha \frac{\omega}{(\log \omega)^{\alpha}} \int_{0}^{1} g(t) L_{\alpha-1}(\omega t) dt - \frac{\omega}{(\log \omega)^{\alpha}} \left[g_1(t) t L_{\alpha}(\omega t) \right]_{0}^{1}$
+ $\frac{\omega}{(\log \omega)^{\alpha}} \int_{0}^{1} g_1(t) \frac{d}{dt} (t L_{\alpha}(\omega t)) dt + o(1)$
= $\alpha \frac{\omega}{(\log \omega)^{\alpha}} \int_{0}^{1} g(t) L_{\alpha-1}(\omega t) dt + \frac{\omega}{(\log \omega)^{\alpha}} \int_{0}^{1} g_1(t) L_{\alpha-1}(\omega t) dt + o(1)$
= $\alpha \Gamma(\alpha) \frac{\omega}{(\log \omega)^{\alpha}} \int_{0}^{1} g_{\alpha-1}(t) L_{0}(\omega t) dt$
+ $\alpha \Gamma(\alpha) \frac{\omega}{(\log \omega)^{\alpha}} \int_{0}^{1} g_{\alpha}(t) L_{0}(\omega t) dt$

$$
= \Gamma(\alpha+1) \frac{1}{(\log \omega)^{\alpha}} \int_0^1 (g_{\alpha-1}(t) + g_{\alpha}(t)) \frac{\sin \omega t}{t} dt + o(1),
$$

where $g(t)$ is continuated periodically. Thus we have proved

(4)
$$
D_{\alpha}(\omega)-s=-\frac{2}{\pi}\Gamma(\alpha+1)\frac{1}{(\log \omega)^{\alpha}}\int_{0}^{1}(g_{\alpha-1}(t)+g_{\alpha}(t))\frac{\sin \omega t}{t} dt.
$$

for any $\alpha \geq 1$.

We will state two lemmas due to Mr. Wang:

Lemma 1. If the partial sum s_n of the Fourier series of $f(x)$ is of order $o(\log n)^{\alpha}$ ($\alpha > 0$), then

$$
f(t) = o\left(t^{1+\delta} \left(\log \frac{1}{t}\right)^{\alpha}\right) \quad (C, 1+\delta)
$$

for any $\delta > 0$.

Lemma 2. If for any $\delta > 0$,

$$
f(t) = o \ (t^{1+\delta}(\log 1/t)^{\alpha}) \ (C, 1+\delta),
$$

then

$$
f(t) = o((\log 1/t)^{1+\alpha+\epsilon}) \quad (R, \log n, 1+\alpha+\epsilon)
$$

for any $\epsilon > \delta > 0$.

3. Proof of Theorem 1. By the hypothesis $S(g)$ is -summable to sum 0 at $t = \lambda$. Hence $R_{\alpha+\delta}(\omega) = o(1)$ and $R_{\alpha+\delta+1}(\omega) = o(1)$. From (3) we have $D_{1+\alpha+\delta}(\omega)-s = o(1)$, which is the required.

4. Proof of Theorem 2. By (3) and Lemma 1 we have

(5)
$$
\frac{1}{\Gamma(1+\delta)} \int_{0}^{1} (g_{\alpha-1}(u) + g_{\alpha}(u)) (t-u)^{\delta} du = o(t^{1+\delta} (\log 1/t)^{\alpha}).
$$

On the other hand we have

$$
g_{\alpha-1}^{\delta+1}(t) = \frac{1}{\Gamma(\delta+1)} \int_{0}^{t} g_{\alpha-1}(u) (t-u)^{\delta} du
$$

\n
$$
= \left[\frac{1}{\Gamma(\delta+1)} g_{\alpha}(u) u(t-u)^{\delta} \right]_{0}^{t}
$$

\n
$$
- \frac{1}{\Gamma(\delta+1)} \int_{0}^{t} g_{\alpha}(u) (t-u)^{\delta} du + \frac{\delta}{\Gamma(\delta+1)} \int_{0}^{t} g_{\alpha}(u) u(t-u)^{\delta-1} du
$$

\n
$$
= -g_{\alpha}^{\delta+1}(t) + \frac{\delta}{\Gamma(\delta+1)} t \int_{0}^{t} g_{\alpha}(u) (t-u)^{\delta-1} du - \frac{\delta}{\Gamma(\delta+1)} \int_{0}^{t} g_{\alpha}(u) (t-u)^{\delta} du
$$

\n
$$
= -g_{\alpha}^{\delta+1} + tg_{\alpha}^{\delta} - \delta g_{\alpha}^{\delta+1}.
$$

Hence by (5) we have

(6)
$$
o(t^{1+\delta} (\log \frac{1}{t})^{\alpha}) = t g_{\alpha}^{\delta} - \delta g_{\alpha}^{\delta+1}.
$$

We have also

$$
g_{\iota}^{\delta}(t) = \frac{1}{\Gamma(\delta)} \int_{0}^{t} g_{\alpha}(u) (t - u)^{\delta - 1} du
$$

$$
= \frac{1}{\Gamma(\delta)} \frac{1}{\delta} \frac{d}{dt} \int_{0}^{t} g_{\alpha}(u) (t - u)^{\delta} du
$$

$$
= \frac{d}{dt} g_{\alpha}^{\delta + 1}(t).
$$

By (6)

$$
t\frac{d}{dt} g_{\alpha}^{\delta+1}(t) - \delta g_{\alpha}^{\delta+1}(t) = o(t^{1+\delta}) (\log 1/t)^{\alpha}),
$$

or

$$
\frac{d}{dt} (t^{-\delta} g_{\alpha}^{\delta+1} (t)) = o(\log 1/t)^{\alpha},
$$
\n
$$
t^{-\delta} g_{\alpha}^{\delta+1} (t) = \frac{1}{\Gamma(\delta+1)} \frac{1}{t^{\delta}} \int_{0}^{t} g_{\alpha}(u) (t-u)^{\delta} du = o(\int_{0}^{t} |g_{\alpha}(u)| du) = o(1)
$$

Hence we have

$$
t^{-\delta} g_{\alpha}^{\delta+1}(t) = \int_{0}^{t} o(\log 1/t)^{\alpha} dt = o(t \log 1/t)^{\alpha},
$$

$$
g_{\alpha}^{\delta+1}(t) = o(t^{\delta+1} \log 1/t).
$$

By Lemma 2

$$
g_{a+\epsilon+1}(t) = o(\log 1/t)^{a+1+\epsilon}
$$
 for any $\epsilon > \delta > 0$.

Thus the theorem is proved.

Mathematical Institute,

Tôhoku University, Sendai.

References

- 1) F. T. Wang, Tohoku Math. Journ., 40 (1935).
- 2) cf. T. Takahashi, ibidem, 38 (1933).
- 3) cf. T. Wang, loc. cit, and N. Matsuyama, Notes on Fourier Analysis (X): On the Riesz logarithmic summability of Fourier series, under the press.

94