ON A CERTAIN GROUP CONCERNING THE p-ADIC NUMBER FIELD.

By

Hideo Kuniyoshi.*)

In the local class field theory, we consider the norm group of a finite extension field of a *p*-adic number field *k*. An abelian extension *K* of *k* is uniquely determined by this subgroup of k^* , where k^* is the multiplicative group of all non zero elements of *k*. We denote this norm group of *K* by $N_{K/k}^*$. Then the galois group of K/k is isomorphic to the factor group $k^*/N_{K/k}^*$.

We may consider, in some sense dually to the above fact, a subgroup G(k/K) of K^* which consists of all the elements of K^* whose norms to k are unity. It is likely that G(k/K) has close connections with the subfield K. When K/k is cyclic, the structure of G(k/K) was determined by Hilbert. When K/k is abelian, a certain property of G(k/K) was given by Prof. T. Tannaka,¹⁾ who gave also another theorem which is analogous to the ordering theorem of local class field theory. The former property was extended to non-abelian cases, by Mr. T. Nakayama and Mr. Y. Matsushima.²⁾

In this paper, restricting to the abelian case, I shall give a detailed structure of G(k/K), and add a certain remark to a particular non-abelian case.

1. The structure of $G(k/\Omega)$.

Let k be a p-adic number field, and K be a finite extension of k. We denote the multiplicative groups of their non zero elements by k^* , K^* , respectively, and norm group of K/k, by $N_{K/k}^*$. The elements of K whose norm to k are unity, form a subgroup of K^* and we denote this by G(k/K). When K is a normal extension of k with its galois group G, we mean by a factor set of K/k a system of elements $a_{\sigma,\tau}$ ($\sigma, \tau \in G$) of K satisfying

(1)

$$a^{\rho}_{\sigma}, \tau a_{\sigma\tau}, \rho = a_{\sigma}, \tau \rho a_{\tau}, \rho.$$

^{*)} Received Aug. 1st, 1949.

¹⁾ T. Tannaka [8].

²⁾ T. Nakayama and Y. Matsushima (4), T. Nakayama (7).

Further, we shall denote by $K_G^{1-\lambda}$ the group generated by $\theta^{1-\sigma}$, $\theta \in K$, $\sigma \in G$.

One of Tannaka's results runs as follows:

Theorem 1.³⁾ Let Ω be a finite abelian extension field of k with its galois group A, and $(a_{\sigma,\tau})$ be a factor set of Ω/k whose exponent is equal to the degree of extension Ω/k . Then $G(k/\Omega)$ is generated by $\Omega_A^{1-\lambda}$ and $a_{\sigma,\tau}/a_{\tau,\sigma}$. where σ, τ run over A:

(2)

$$G(k/\Omega) = \left(\frac{a_{\sigma,\tau}}{a_{\tau,\sigma}}, \Omega^{1-\lambda}_{A}\right).$$

Let

 $(3) \qquad (n_1, \cdots, n_r) \qquad n_{i+1} | n_i$

be an invariant system of A, then A decomposes directly in cyclic groups Z_i of order n_i :

(4) $A = Z_1 \times Z_2 \times \cdots \times Z_r$. This decomposition is up to isomorphism unique. Let σ_i be a generator of Z_i , and we shall fix it throughout this section.

In the Theorem 1, it is not necessary to take all the elements of A, but sufficient to do with σ_i of (4). We show this fact in next

Lemma 1.

(5)
$$G(k/\Omega) = \left(\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}}, \ \Omega_A^{1-\lambda}\right)$$

We prove this by induction. Let $N = Z_1 \times \cdots \times Z_{r-1}$ and M be the corresponding intermediate field. We assume the lemma for the extension Ω/M . Then we take an element θ of $G(k/\Omega)$,

$$V_{\Omega/k} \theta = 1.$$

As N/k is cyclic, it follows from Hilbert's lemma that

$$(6) N_{\Omega/M} \theta = n^{1-\sigma_r}, \ n \in M$$

Furthermore, as Ω/M is abelian extension with its galois group N, there exists⁴⁾ an element σ of N such that

$$n \equiv a_{\sigma}, {}_{N} \mod N^{*}_{\Omega/M}, {}^{5)}$$
$$\sigma = \prod_{i} \sigma_{i} {}^{x_{i}}.$$

where Then

(7)
$$n \equiv \prod_{i} a_{\sigma_{i},N}^{r_{i}} \mod N_{\Omega/N}^{*}$$

3) We refer this theorem to [8].

- 4) T. Nakayama [6] and Y. Akizuki [1].
- 5) We denote a product $\prod_{\tau \in N} a_{\sigma, \tau}$ by $a_{\sigma, N}$, and in a similar way $\prod_{\tau \in N} a_{\sigma, \rho}^{\tau}$ by $a_{\sigma, \rho}^{N}$.

Next, we calculate $a_{\sigma_i,N}^{1-\sigma_r}$, using the relation (1),

(8)

$$a_{\sigma_i,N}^{1-\sigma_r} = \frac{a_{\sigma_i,N}}{a_{\sigma_i,N}^{\sigma_r}} = \frac{a_{\sigma_i,N}}{a_{\sigma_i,N\sigma_r}} \frac{a_{\sigma_i,N,\sigma_r}}{a_{N,\sigma_r}}$$
$$= \frac{a_{\sigma_i,N}}{a_{\sigma_i,\sigma_rN}} = \frac{a_{\sigma_r,\sigma_i}^N a_{\sigma_r\sigma_i,N}}{a_{\sigma_r,\sigma_iN}} = \frac{a_{\sigma_i,N}}{a_{\sigma_i,\sigma_r}^N} = N_{\Omega/M} \frac{a_{\sigma_r,\sigma_i}}{a_{\sigma_i,\sigma_r}^N}$$

It follows from (6), (7) and (8) that

 $N_{\Omega/M} \theta = (\prod_i a^{r_i}_{\sigma_i}, N \cdot N_{\Omega/M} \omega)^{1-\sigma_r}$

$$= \prod_{i} (a_{\sigma_{i},N}^{1-\sigma_{r}})^{x_{i}} N_{\Omega/M}(\omega^{1-\sigma_{r}}) = N_{\Omega/M} \Big(\prod_{i} \Big(\frac{a_{\sigma_{r},\sigma_{i}}}{a_{\sigma_{i},\sigma_{r}}} \Big)^{x_{i}} \omega^{1-\sigma_{r}} \Big).$$

therefore

$$N_{\Omega/M}\left[\theta/\prod_{i} \left(\frac{a_{\sigma_{r},\sigma_{i}}}{a_{\sigma_{i},\sigma_{r}}}\right)^{x_{i}} \omega^{1-\sigma_{r}} \right] = 1.$$

From the assumption of the induction, we obtain

$$G(k/\Omega) = \left(\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}}, \ \Omega_A^{1-\lambda}\right) \qquad \text{q.e.d.}$$

Let K be an abelian extension field of k, whose galois group H has invariant system

$$(n_1, n_2)$$
 $n_2 | n_1.$

Then (9)

$$H=H_1 imes H_2, \qquad \quad H_i=\{ au_i\}$$

where K_i are the cyclic groups of order n_i , and τ_i their fixed generaters. Let (b) be a factor set of K/k whose exponent is equal to the degree of K/k. From the lemma 1

$$G(k/K) = \left(\frac{b_{\tau_1, \tau_2}}{b_{\tau_2, \tau_1}}, K_H^{1-\lambda}\right).$$

Concerning the order of $b_{\tau_1, \tau_2}/b_{\tau_2; \tau_1} \mod K_{II}^{1-\lambda}$, we obtain next

Lemma 2. If $(b_{\tau_2, \tau_1}/b_{\tau_2, \tau_1})^x$ belongs to $K_H^{1-\lambda}$, then

$$n_2 | x$$

proof. Let K_i be the intermediate field which corresponds to H_i . From the assumption of the lemma and (9), we have

(10)
$$\left(\frac{b_{\tau_1, \tau_2}}{\bar{b}_{\tau_2, \tau_1}}\right)^x = \theta_1^{1-\tau_1} \theta_2^{1-\tau_2}, \ \theta_i \in K.$$

Taking the norm with respect to K_2 , the left-hand side of the equation (10) becomes

$$N_{K/K_2} \left(rac{b_{ au_1, au_2}}{b_{ au_2- au_1}}
ight)^x = (b_{ au_2, au_2}^{1- au_1})^x = (b_{ au_2}^{ au}, {}_{H_2})^{1- au_1} = (b_{ au_2}^{ au}, {}_{H_2}N_{K/K_2} heta^{\prime\prime})^{1- au_1},$$

and the right-hand side

$$N_{K/K_2} \theta_1^{1- au_1}$$
,

therefore,

$$b_{\tau_2 x, H_2}^{1-\tau_1} = (N_{K|K_2}\theta)^{1-\tau_1} \qquad \theta \in K.$$

In this relation, $b_{\tau_2^x, H_2}$ and $N_{K/K_2}\theta$ belong to the field $K_2^{(5)}$ and as the galois group H_1 of K_2/k is generated by τ_1 , it follows that

$$b_{ au_2^{x}}, {}_{H_2}=lpha_{ullet}N_{K/K_2} heta$$

where α belongs to the field k.

On the other hand we have

(12)

(11)

 $lpha\in N^*_{K|K_2}$ 7) where if we regard α as an element of K_2 , for

$$N_{K_2/k} lpha = lpha^{n_1} = ig(lpha rac{n_1}{n_2} ig)^{n_2} \in N^{st}_{K_1/k}$$

implies (12), owing to the "verschiebungssatz" of the local class field theory. From (11) and (12) follows

$$b_{ au_2^x}$$
, $_{H_2} \in N^*_{K/K_2}$

and from this using the Nakayama's theorem⁵) we get

hence

Again we return to the extension Ω/k , and use the same notations as in the Theorem 1 and the Lemma 1.

Lemma 3.

(13)
$$\left(\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}}\right)^{n_j} \in \Omega_A^{1-\lambda}.$$

Proof. Let L_i be an intermediate field which corresponds to the subgroup Z_j of A, then Ω/L_j is a cyclic extension with its galois group Z_j . From this and (8) we get

$$N_{\Omega/L_j} \left(\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}}\right)^{n_j} = (a_{\sigma_j, Z_j}^{n_j})^{1-\sigma_i} = (a_{\sigma_j, Z_j}^{n_j} N_{\Omega/L_j} \omega')^{1-\sigma_i} = N_{\Omega/L_j} \omega'^{1-\sigma_i}.$$

Hence.

$$\left(\frac{a_{\sigma_i,\sigma_j}}{a_{\sigma_j,\sigma_i}}\right)^{n_j} = \omega'^{1-\sigma_i} \, \omega''^{1-\sigma_j} \in \Omega_A^{1-\lambda} \bullet \qquad q.e.d.$$

Now, we point out a relation between the galois gloup A of Ω/k and the group $G(k/\Omega)$.

Theorem 2.

$$G(k/\Omega)/\Omega_A^{1-\lambda} = A_2 \times A_3 \times \cdots \times A_r$$

 $\tau_{a}^{x}=1,$ $n_2 \mid x$. q.e.d.

⁷⁾ This proof is given by prof. T. Tannaka. Our original proof was much longer and considerably complicated.

HIDEO KUNIYOSHI

where $A_i \cong Z_i \times Z_{i+1} \times \cdots \times Z_r$

and Z_i are the cyclic groups of (4).

Proof. We assume a relation between $\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}}$ and $\Omega_A^{1-\lambda}$, i.e.

(14)
$$\Pi\left(\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}}\right)^{x_{i,j}} \in \Omega_{\mathcal{A}}^{1-\gamma}.$$

We choose Z_i, Z_j , i < j arbitrary, and let N' be a direct factor excluding $Z_i \times Z_j$, and Z be the corresponding intermediate field, then Z/k is a normal extension with its galois group $Z_i \times Z_j$. We take norm of (14) with respect to Z, then a simple calculation will show that

$$N_{\Omega/Z} \frac{a_{\sigma_s, \sigma_t}}{a_{\sigma_t, \sigma_s}} = 1 \qquad \begin{pmatrix} t \neq i, j \\ s \neq i, j \end{pmatrix},$$
$$N_{\Omega/Z} \frac{a_{\sigma_t, \sigma_t}}{a_{\sigma_t, \sigma_t}} = a_{\sigma_t, N}^{1-\sigma_t} \qquad (t \neq i, j),$$

hence (14) changes to the form

(15)
$$\left(\frac{a_{\sigma_i,\sigma_i}^N}{a_{\sigma_j,\sigma_i}^N}\right)^{\epsilon_i,j} \in Z_{Z_i \times Z_j}^{1-\lambda}.$$

From Chevalley's lemma,⁸⁾ $(a_{\sigma_i,\sigma_j}^v)$ is also a factor set of Z/k whose exponent is equal to (Z:k). Thus we can regard $(a_{\sigma_i,\sigma_j}^v)$ and Z as $(b_{\sigma,\tau})$, and K respectively in the lemma 2, hence (16) $n_i | x^{i,j}$.

This shows that in the relation (14) no $\frac{a_{\sigma_i,\sigma_j}}{a_{\sigma_j,\sigma_i}}$ can really appear, and there exists essentially only relations of the form (15) with (16). It follows that $a_{\sigma_i,\sigma_j}/a_{\sigma_j,\sigma_i} \mod \Omega_A^{1-\lambda}$ forms a cyclic subgroup $Z_{j,i}$ of degree n_j , and

 $G(k/\Omega)/\Omega_A^{1-\lambda} = Z_{2,1} \times Z_{3,1} \times Z_{3,2} \times \cdots \times Z_{r,1} \times \cdots \times Z_{r,r-1}.$ Then putting

$$A_i = Z_{i+1,i} \times Z_{i+2,i} \times \cdots \times Z_r,$$

we obtain the desired theorem.

From this, as an immediate consequence, we obtain the Matsushima's result, namely:

Theorem 3. Let k be a p-adic number field and Ω be a finite abelian extension field. If

$$G(k/\Omega)=\Omega_A^{1-\lambda},$$

then Ω/k is a cyclic extension.

This theorem is not true for a nonabelian extension K/k. For example, let K/k be a nonabelian extension with galois group G. And we assume

8) C. Chevalley (3) or E. Witt (9).

190

q.e.d.

that G/G' and G' are both cyclic groups, G' being the commutator subgroup of G. Then after a slight calculation we get

$$G(k/K) = K_G^{1-\lambda}.$$

2. Connections with the class field theory.

Let Ω and k denote the local fields as in the section 1. There exists the maximum abelian extension field $\overline{\Omega}$ of k, and obiously $\overline{\Omega} > \Omega$. Let \overline{A} be an infinite abelian extension field of k and we put

(16) $H(\overline{A}/k) = \bigwedge N_{A/k}^*$ where A is any intermediate field of \overline{A}/k of finite degree over k. For the infinite abelian extension \overline{A} of k, we are able to constitute similar theory with finite abelian extension fields by using H(A/k) instead of N^* .

Now, we shall show that $G(k/\Omega)$ is closely connected with the maximum abelian extension field $\overline{\Omega}$ of k.

Lemma 4.

(17)

Proof. Let $\alpha \in H(\overline{\Omega}/k)$, and we put α in the from $\alpha = P^{\epsilon} \cdot e$

where P is a fixed prime element of k, and e an unit element. If $\mathcal{E} \neq 0$, we denote the group of all the units by E, and construct a subgroup H of k^* generated by E and P^3 , $|\beta| \equiv 0$ (2 $|\mathcal{E}|$). Then H_1 has finite index in k^* $(k^*:H_1) < \infty$,

hence from the existence theorem of the local class field theory, there exists a finite abelian extension A_1 of k such that

$$H_1 = N_{A_1/k}^*$$

Furthermore from (16)

(18)
$$\alpha \in H(\overline{\Omega}/k) < N_{A_1/k}^* = H_1.$$

On the other hand, from the construction of H_1 , it is obvious that

$$\alpha \in H_1$$
,

and this contradicts with (18). Therefore $\mathcal{E} = 0$, α is a unit.

If $\alpha \neq 1$, there exists a natural number *n* such that

(19)
$$\alpha \neq 1 \mod p^n$$
,

and we denote by E_n the group of all the element e_n of k^* congruent with unity modulus p^n :

$$e_n \equiv 1 \mod p^n$$
.

From E_n and P, we construct a subgroup of k^* which has a finite group index in k^* .

(20)

Analog usly to the above discussion, we get an abelian extension A_n of k such that

 $H_n = (P, E_n).$

$$H_n = N^*_{A_n/k},$$

And similarly

(21) $\alpha \in H(\overline{\Omega}/k) < N^*_{A_n/k} = H.$

From (19) and (20) obviously

$$\alpha \in H$$
.

Thus we lead to a contradiction, and the lemma is proved.

Theorem 4.

(22) Let K/k be any finite extension, then $G(k/K) = H(\overline{K\Omega}/K).$

Proof. Obviously

$$G(k/K) < H(K\overline{\Omega}/K).$$

Conversely, we take an element Θ from $H(K\overline{\Omega}/K)$ and put

$$\theta = N_{K/k} \Theta$$
.

We assume $\theta \neq 1$ and lead to a contradiction. If $\theta \neq 1$ there exists an abelian extension A of k such that

(23) $\theta \in N_{A/k}^*$

From (16) follows

$$\Theta \in N^*_{AK/K}$$

Therefore, using the Verschiebungssatz we get

$$N_{K|k} \Theta = \theta \in N_{A|k}^*$$
.

This contradicts with (23), hence we have

$$N_{K|k} \Theta = \theta = 1$$
, $\Theta \in G(k/K)$. q. e. d.

As an immediate consequence of this theorem, using the ordering theorem of the local class field theory, we get one of Chevalley's results (2):

Corollary. Let k be a p-adic number field and K be its finite extension field. When we take a finite abelian extension A of K, then A/k is abelian, if and only if

$$G(k/K) < N^*_{A/K}.$$

References

1. Y. AKIZUKI; Eine homomorphe Zuordnung der Elementen der galoisschen Gruppe zu den Elementen einer Untergruppe der Normklassengruppe, Math. Ann. 112 (1936)5 66-571.

2. C. CHEVALLEY; Sur la théorie du corps de classes dans les corps finis et

192

les corps locaux, Journ. Fac. Sci. Tokyo II (1933) 366-476.

- 3. C. CHEVALLEY; La théorie du symbole de restes normiques, Journ. für Math. 169 (1932) 141-157.
- Y. MATSUSHIMA; A remark on Tannaka's "Hauptgeschlechtssatz im minimalen" (in Japanese) Zenkoku-Shijô-Sûgaku-Danwakai, 252 (1943).
- 5. T. NAKAYAMA and Y. MATSUSHIMA; Uber die multiplikative Gruppe einer *p*-adischen Divisionsalgebra. Proz. Imp. Acad. Tokyo. vol. XIX (1934).
- 6. T. NAKAYAMA; Uber die Beziehungen Zweischen den Faktorensystemen und der Normklassengruppe eines galoisschen Erweiterungkörpers, Math. Ann. 112 (1935) 85-91.
- 7. T. NAKAYAMA; A remark on Tannaka's "Hauptgeschlechtssatz im Minimalen" (in Jap.) Zenkoku-Shijô-Sûgaku-Danwakai 247 (1942).
- 8. T. TANNAKA; Some remarks on *p*-adic number fields. (in Jap.) ibid. 236 (1942).
- 9. E. WITT; Zwei Regeln über verschränkte Produkte, Journ. für Math. 173 (1935) 191-192.

Mathematical Institute, Tôhoku University, Sendai.