ON A CERTAIN GROUP CONCERNING THE p-ADIC NUMBER FIELD.

By

Hideo Kunίyoshi.*)

In the local class field theory, we consider the norm group of a finite extension field of a *p-adic* number field *k.* An abelian extension *K* of *k* is uniquely determined by this subgroup of k^* , where k^* is the multiplicative group of all non zero elements of *k.* We denote this norm group of *K* by $N_{K/k}^*$. Then the galois group of K/k is isomorphic to the factor group $k^*/N^*_{K/k}$.

We may consider, in some sense dually to the above fact, a subgroup $G(k/K)$ of K^* which consists of all the elements of K^* whose norms to *k* are unity. It is likely that $G(k/K)$ has close connections with the subfield K. When K/k is cyclic, the structure of $G(k/K)$ was determined by Hilbert. When K/k is abelian, a certain property of $G(k/K)$ was given by Prof. T. Tannaka,¹⁾ who gave also another theorem which is analogous to the ordering theorem of local class field theory. The former property was extended to non-abelian cases, by Mr.T. Nakayama and Mr. Y. Matsushima.²⁾

In this paper, restricting to the abelian case, I shall give a detailed structure of $G(k/K)$, and add a certain remark to a particular non-abelian case.

1. The structure of $G(k/\Omega)$.

Let k be a p-adic number field, and K be a finite extension of k . We denote the multiplicaitve groups of their non zero elements by $k^*, K^*,$ respectively, and norm group of K/k , by $N_{K/k}^*$. The elements of K whose norm to *k* are unity, form a subgroup of K^* and we denote this by $G(k/K)$. When *K* is a normal extension of *k* with its galois group *G,* we mean by a factor set of K/k a system of elements $a_{\sigma}, \tau \in G$ of K satisfying

 (1)

$$
a_{\sigma}^{\rho}, \tau a_{\sigma\tau}, \rho = a_{\sigma}, \tau_{\rho} a_{\tau}, \rho.
$$

^{*}) Received Aug. 1st, 1949.

¹⁾ T. Tannaka $[8]$.

²⁾ T. Nakayama and Y. Matsushima [4], T. Nakayama [7].

Further, we shall denote by $K_q^{\perp \rightarrow}$ the group generated by $\theta^{\perp - \sigma}$, $\theta \in K$, $\sigma \in G$.

One of Tannaka's results runs as follows:

Theorem 1.3) *Let Ω be a finite abelian extension field of k with its galois group A*, and (a_{σ},τ) be a factor set of Ω/k whose exponent is equal to the *degree of extension* Ω/k . Then $G(k/\Omega)$ is generated by $\Omega_A^{1-\lambda}$ and $a_{\sigma}, \sqrt{a_{\tau}}, \sigma$. *where σ, r run over A:*

(2)

$$
G(k/\Omega)=\Big(\frac{a_{\sigma,\tau}}{a_{\tau,\sigma}},\ \Omega^{1-\lambda}_A\Big).
$$

Let

(3) (n_1, \cdots, n_r) n_{i+1} | n_i

be an invariant system of *A,* then *A* decomposes directly in cyclic groups *Zi* of order *nι*:

(4) $A = Z_1 \times Z_2 \times \cdots \times Z_r$. This decomposition is up to isomorphism unique. Let σ_i be a generator of Z_i , and we shall fix it throughout this section.

In the Theorem 1, it is not necessary to take all the elements of *A,* but sufficient to do with σ_i of (4). We show this fact in next

Lemma 1.

(5)
$$
G(k/\Omega) = \left(\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}}, \Omega^{1-\lambda}_A\right)
$$

We prove this by induction. Let $N = Z_1 \times \cdots \times Z_{r-1}$ and M be the corresponding intermediate field. We assume the lemma for the extension *Ω/M.* Then we take an element *θ* of $G(k/\Omega)$,

$$
\mathsf{V}_{\Omega/k} \ \theta = 1.
$$

As *N/k* is cyclic, it follows from Hubert's lemma that

$$
(6) \t\t N_{\Omega/M} \theta = n^{1-\sigma_r}, \; n \in M
$$

Furthermore, as Ω/M is abelian extension with its galois group N, there exists⁴⁾ an element σ of N such that

$$
n \equiv a_{\sigma}, \, \text{mod } N_{\Omega/M}^*, \, \sigma^5
$$
\n
$$
\sigma = \prod_i \sigma_i^{a_i}.
$$

Then

$$
(7) \t n \equiv \prod_i a_{\sigma_i}^{r_i}, \qquad \text{mod } N_{\Omega/N}^*.
$$

3) We refer this theorem to *{%}.*

- 4) T. Nakayama $[6]$ and Y. Akizuki $[1]$.
- 5) We denote a product $\Pi(a_{\sigma}, \tau)$ by a_{σ}, N , and in a similar way $\Pi a_{\sigma}^{\tau}, \rho$ by a_{σ}^N, ρ

 $a^{1-\sigma}$ = $\frac{a_{\sigma_i,N}}{a}$ = $\frac{a_{\sigma_i,N}}{a_{\sigma_i,N}}$ $\frac{a_{\sigma_i,N}}{a_{\sigma_i,N}}$

Next, we calculate $a_{\sigma_i, K}^{1-\sigma_r}$, using the relation (1),

 (8)

$$
= \frac{a_{\sigma_i, N}}{a_{\sigma_i, \sigma_i, N}} = \frac{a_{\sigma_i, N}^N}{a_{\sigma_i, \sigma_i, \sigma_i, N}} = \frac{a_{\sigma_i, N}^N}{a_{\sigma_i, \sigma_i, \sigma_i, N}} = \frac{a_{\sigma_i, N}}{a_{\sigma_i, \sigma_i, \sigma_i, N}} = N_{\Omega/M} \frac{a_{\sigma_i, \sigma_i, \sigma_i, N}}{a_{\sigma_i, \sigma_i, \sigma_i, N}}
$$

It follows from (6) , (7) and (8) that

$$
N_{\Omega/M} \theta = (\Pi_i \, a_{\sigma_i}^{v_i},_{N} \cdot N_{\Omega/M} \omega)^{1-\sigma}
$$

$$
= \Pi_i \left(a_{\sigma_i, \, K}^{1-\sigma_r} \right)^{x_i} N_{\Omega/M} \left(\omega^{1-\sigma_r} \right) = N_{\Omega/M} \left(\Pi_i \left(\frac{a_{\sigma_r, \, \sigma_i}}{a_{\sigma_i, \, \sigma_r}} \right)^{x_i} \omega^{1-\sigma_r} \right).
$$

therefore

$$
N_{\Omega/M}\left[\theta/\Pi_i\left(\frac{a_{\sigma_r,\sigma_i}}{a_{\sigma_i,\sigma_r}}\right)^{x_i}\omega^{1-\sigma_r}\right]=1.
$$

From the assumption of the induction, we obtain

$$
G(k/\Omega) = \left(\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}}, \ \Omega^{1-\lambda}_A\right) \qquad \qquad \text{q.e.d.}
$$

Let *K* be an abelian extension field of *k,* whose galois group *H* has invariant system

$$
(n_1,n_2) \qquad \qquad n_2|n_1.
$$

Then

$$
(9) \hspace{1cm} H = H_1 \times H_2, \hspace{1cm} H_i = \{\tau_i\}
$$

where K_i are the cyclic groups of order n_i , and τ_i their fixed generaters. Let (b) be a factor set of K/k whose exponent is equal to the degree of *K/k.* From the lemma 1

$$
G(k/K) = \Big(\frac{b_{\tau_1,\tau_2}}{b_{\tau_2,\tau_1}}, K_H^{1-\lambda}\Big).
$$

Concerning the order of $b_{\tau_1}, \tau_2/b_{\tau_2, \tau_1} \text{ mod } K_H^{1-\lambda}$, we obtain next

Lemma 2. If $(b_{72}, \pi/b_{72}, \pi)^*$ belongs to $K_H^{1-\lambda}$, then

$$
n_{\scriptscriptstyle 2} \vert \, x
$$

proof. Let K_i be the intermediate field which corresponds to H_i . From the assumption of the lemma and (9), we have

(10)
$$
\left(\frac{b_{\tau_1,\;\tau_2}}{b_{\tau_2,\;\tau_1}}\right)^x = \theta_1^{1-\tau_1} \theta_2^{1-\tau_2}, \;\;\theta_i \in K.
$$

Taking the norm with respect to K_2 , the left-hand side of the equation (10) becomes

$$
N_{K|K2}\Big(\frac{b_{\tau_1,\;\tau_2}}{b_{\tau_2,\;\tau_1}}\Big)^x=(b_{\tau_2,\varPi_2}^{1-\tau_1})^x=(b_{\tau_2}^v,\varPi_2)^{1-\tau_1}=(b_{\tau_2}^v,\varPi_2N_{K|K_2}\theta'')^{1-\tau_1}\,,
$$

and the right-hand side

$$
N_{K|K_2}\theta_1^{1-\tau_1},
$$

therefore,

$$
b_{\tau_2x,\,H_2}^{1-\tau_1}=(N_{K|K_2}\theta)^{1-\tau_1}\qquad \quad \theta\in K.
$$

In this relation, $b_{r2}x, u_2$ and $N_{K|K_2}\theta$ belong to the field K_2 ⁵ and as the galois group H_1 of K_2/k is generated by τ_1 , it follows that

$$
(11) \t b_{r_2}x, H_2 = \alpha \cdot N_{K/K_2} \theta
$$

where α belongs to the field k .

On the other hand we have

(12) $\alpha \in N^*_{K/K_e}$ ⁷⁾

where if we regard α as an element of K_2 , for

$$
N_{K_2/k}\alpha=\alpha^n{}_1=\big(\alpha\,\tfrac{n_1}{n_2}\big)^{n_2}\in N_{K_1/k}^*
$$

implies (12), owing to the *"verschiebungssatz"* of the local class field theory. From (11) and (12) follows

$$
b_{\tau_2{}^x}, {_{H_2}}\in N^*_{K|K_2}
$$

and from this using the Nakayama's theorem⁵⁾ we get

hence n_2

Again we return to the extension Ω/k , and use the same notations as in the Theorem 1 and the Lemma 1.

Lemma 3-

$$
(13) \qquad \qquad \left(\frac{a_{\sigma_i,\,\sigma_j}}{a_{\sigma_j,\,\sigma_i}}\right)^{n_j} \in \Omega^{1-\lambda}_A.
$$

Proof. Let L_j be an intermediate field which corresponds to the subgroup Z_j of *A*, then Ω/L_j is a cyclic extension with its galois group Z_j . From this and (8) we *get*

$$
N_{\Omega/L_j}\Big(\frac{a_{\sigma_{ij},\sigma_j}}{a_{\sigma_{j},\sigma_i}}\Big)^{n_j}=(a_{\sigma_{j},\,Z_j}^{n_j})^{1-\sigma_i}=(a_{\sigma_{j},\,Z_j}^{n_j}\;N_{\Omega/L_j}\omega')^{1-\sigma_i}=N_{\Omega/L_j}\omega'^{1-\sigma_i}.
$$

Hence,

$$
\left(\frac{a_{\sigma_i}, \sigma_j}{a_{\sigma_j}, \sigma_i}\right)^{n_j} = \omega'^{1-\sigma_i} \omega''^{1-\sigma_j} \in \Omega^{\frac{1}{A}-\lambda}.
$$
 q.e.d.

Now, we point out a relation between the galois gloup *A* of *Ω/k* and the group $G(k/\Omega)$.

Theorem 2.

$$
G(k/\Omega)/\Omega^{1-\lambda}_A=A_2\times A_3\times\cdots\times A_r
$$

\x. q. e. d.

⁷⁾ This proof is given by prof. T. Tannaka. Our original proof was much longer and considerably complicated.

where $A_i \cong Z_i \times Z_{i+1} \times \cdots \times Z_r$

and Zι are the cyclic groups of (4).

Proof. We assume a relation between $\frac{a_{\sigma_i, \sigma_j}}{a}$ and $\Omega_A^{1-\lambda}$, i.e.

(14)
$$
\Pi \left(\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}} \right)^{x_{i,j}} \in \Omega^{1-\gamma}_{\Lambda}.
$$

We choose $Z_i, Z_j, i < j$ arbitrary, and let N' be a direct factor excluding $Z_i \times Z_j$, and *Z* be the corresponding intermediate field, then Z/k is a normal extension with its galois group $Z_i \times Z_j$. We take norm of (14) with respect to Z, then a simple calculation will show that

$$
N_{\Omega/Z} \frac{a_{\sigma_s, \sigma_t}}{a_{\sigma_t, \sigma_s}} = 1 \qquad \begin{pmatrix} t \neq i, j \\ s \neq i, j \end{pmatrix},
$$

$$
N_{\Omega/Z} \frac{a_{\sigma_t, \sigma_t}}{a_{\sigma_t, \sigma_s}} = a_{\sigma_t, N}^{1 - \sigma_s} \qquad (t \neq i, j),
$$

hence (14) changes to the form

$$
(15) \qquad \qquad \left(\frac{a_{\sigma_i,\sigma_i}^N}{a_{\sigma_j,\sigma_i}^N}\right)^{v_i,j} \in Z_{Z_i \times Z_j}^{1-\lambda}.
$$

From Chevalley's lemma, ^s) $(a_{\sigma_i,\sigma_j}^{\gamma})$ is also a factor set of Z/k whose exponent is equal to $(Z: k)$. Thus we can regard $(a_{\sigma_i, \sigma_j}^{\gamma})$ and Z as $(b_{\sigma, \tau})$ and K respectively in the lemma 2, hence (16) $n_{j}|x^{i,j}$.

This shows that in the relation (14) no $\frac{a_{\sigma_i, \sigma_j}}{a_{\sigma_j, \sigma_i}}$ can really appear, and there exists essentially only relations of the form (15) with (16). It follows that $a_{\sigma_i, \sigma_j}/a_{\sigma_j, \sigma_i}$ mod Ω_A^* forms a cyclic subgroup $\Omega_{j,i}$ of degree n_j , and

 $G (R/\Omega)/\Omega_A^{\gamma} = Z_{2,1} \times Z_{3,1} \times Z_{3,2} \times \cdots \times Z_{r,1} \times \cdots \times Z_r,$ Then putting

 $A_i = Z_{i+1, i} \times Z_{i+2, i} \times \cdots \times Z_r, i$

we obtain the desired theorem. $q.e.d.$

From this, as an immediate consequence, we obtain the Matsushima's result, namely:

Theorem 3. *Let k be a p-aίic number field and Ω be a finite abelian extension field. If*

$$
G(k/\Omega)=\Omega^{1-\lambda}_A,
$$

then Ω/k is a cyclic extension.

This theorem is not true for a nonabelian extension K/k . For example, let *K/k* be a nonabelian extension with galois group *G.* And we assume

8) C. Chevalley (3) or E. Witt (9) .

that *GjG^r* and *G^r* are both cyclic groups, *G'* being the commutator subgroup of *G.* Then after a slight calculation we get

$$
G(k/K)=K_{\alpha}^{1-\lambda}.
$$

2. Connections with the class field theory.

Let Ω and *k* denote the local fields as in the section 1. There exists the maximum abelian extension field $\overline{\Omega}$ of k, and obiously $\overline{\Omega} > \Omega$. Let \overline{A} be an infinite abelian extension field of *k* and we put

(16) $H(\overline{A}/k) = \wedge N_{A/k}^*$ where *A* is any intermediate field of \overline{A}/k of finite degree over *k*. For the infinite abelian extension \overline{A} of k, we are able to constitute similar theory with finite abelian extension fields by using $H(A/k)$ instead of N^* .

Now, we shall show that $G(k/\Omega)$ is closely connected with the maximum abelian extension field $\overline{\Omega}$ of *k*.

Lemma 4.

(17) $H(\overline{\Omega}/k) = 1.$ *Proof.* Let $\alpha \in H(\overline{\Omega}/k)$, and we put α in the from $\alpha = P^{\varepsilon} \cdot e$

where *P* is a fixed prime element of *k*, and *e* an unit element. If $\varepsilon \neq 0$, we denote the group of all the units by *E,* and construct a subgroup *H* of *k** generated by *E* and P^3 , $|\beta| \equiv 0$ (2 $|\xi|$). Then H_1 has finite index in k^* $(k^*:H_1)<\infty$,

hence from the existence theorem of the local class field theory, there exists a finite abelian extension A_1 of k such that

$$
H_1=N^{\ast}_{41/k}.
$$

Furthermore from (16)

$$
\alpha \in H(\overline{\Omega}/k) < N^*_{41/k} = H_1.
$$

On the other hand, from the construction of H_1 , it is obvious that

$$
\alpha \, \overline{\in} \, H_{\scriptscriptstyle 1},
$$

and this contradicts with (18). Therefore $\varepsilon = 0$, α is a unit.

If $\alpha \neq 1$, there exists a natural number *n* such that

(19)
$$
\alpha \neq 1 \quad \mod p^n,
$$

and we denote by E_n the group of all the element e_n of k^* congruent with unity modulus p^n :

$$
e_n\equiv 1 \hspace{1cm} \text{mod} \hspace{1cm} p^n.
$$

From E_n and P, we construct a subgroup of k^* which has a finite group index in k^* .

(20) $H_n = (P, E_n).$

Analogously to the above discussion, we get an abelian extension A_n of k such that

 $H_n = N_{A_n/\nu}^*$

And similarly

(21) $\alpha \in H(\overline{\Omega}/k) < N^*_{A_n/k} = H.$

From (19) and (20) obviously

$$
\alpha \in H.
$$

Thus we lead to a contradiction, and the lemma is proved.

Theorem 4.

Let K/k be any finite extension, then (22) $G(k/K) = H(K_1)(K)$.

Proof. Obviously

$G(k/K) < H(K\Omega/K)$.

Conversely, we take an element Θ from $H(K\overline{\Omega}/K)$ and put

$$
\theta = N_{K\!/\!k}\,\Theta.
$$

We assume $\theta \neq 1$ and lead to a contradiction. If $\theta \neq 1$ there exists an abelian extension A of k such that

(23) $\theta \in N^*_{A/k}$

From (16) follows

$$
\Theta \in N^*_{4K/K^*}
$$

Therefore, using the *Verεchiebungssatz* we get

$$
N_{K/k} \, \Theta = \theta \in N^*_{A/k^*}
$$

This contradicts with (23), hence we have

 $N_{K/k} \Theta = \theta = 1$, $\Theta \in G(k/K)$. q.e.d.

As an immediate consequence of this theorem, using the ordering theorem of the local class field theory, we get one of Chevalley's results $[2]$:

Corollary. *Let k be a p-adic number field and K be its finite extension field. When ive take a finite abelian extension A of K, then A/k is abelian*, *if and only if*

$$
G(k/K) < N_{A/K}^*.
$$

References

l.Y.AKIZUKI; Eine hcmomorphe Zuordnung der; Elementen der galoisschen Gruppe zu den Elementen einer Untergrυppe der Normklassengruppe, Math. Ann. 112 (1936)5 66-571.

2. C. CHEVALLEY; Sur la théorie du corps de classes dans les corps finis et

les corps locaux, Journ. Fac. Sci. Tokyo II (1933) 3ββ-476.

- 3. C. CHEVALLEY; La théorie du symbole de restes normiques, Journ. für Math. 169 (1932) 141-157.
- 4. Y. MAT3USHIMA; A remark on Tannaka's "Hauptgeschlechtssatz im mini malen" (in Japanese) Zenkoku-Shijό-Sύgaku-Danwakai, 252 (1943).
- 5.T. NAKAYAMA and Y. MAT3USHIMA; Uber die multiplikative Gruppe einer p -adischen Divisionsalgebra. Proc. Imp. Acad. Tokyo. vol. XIX (1934).
- 6. T. NAKAYAMA; Uber die Beziehungen Zweischen den Faktorensystemen und der Normklassengruppe eines galoisschen Erweiterungkϋrpers, Math. Ann. 112 (1935) 85-91.
- 7. T. NAKAYAMA; A remark on Tannaka's 'Ήauptgeschlechtssatz im Minima len" (in Jap.) Zenkoku-Shijo-Sάgaku-Danwakai 247 (1942).
- 8. T. TANNAKA; Some remarks on *p-aάic* number fields, (in Jap.) ibid. 236 (1942).
- 9. E. WITT; Zwei Regeln über verschränkte Produkte, Journ. für Math. 173 (1935) 191-192.

Mathematical Institute, Tόhoku University, Sendai.