ARITHMETIC MEANS OF SUBSEQUENCES®
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Introduction. Let {s,) be a sequence of real numbers which is summable
(C,1)Ytos: (si+ 52+ - +s,)n—>s5as g—>w. Let {r,(x) be the Rademacher
system. If the limit of

(1) 2u(3) = (B0 2 0) (314 )

for # — 0, exists for almost all x, we shall say that a/most all the subsequences
of {s,} are summable (C,1); if the limit of (1) does not exist for almost all x,
we say that a/most all the subsequences of {s,} are not summable (C,1) (cf. [2])-
These two cases are the all whi¢ch may occur, since the existence set of the
limit of (1) is homogeneous. If the limit of (1) exists only for x belonging
to a set of the first category, it is called that nearly all the subsequences of {s}
are not summable (C,?).

R. C.Buck and H. Pollard [2] proved the following theorem.

TueoreM. If {sx} is summable (C,1) to 5, then in order that almost all the
subsequences of {s,) are summable (C, 1}, it is sufficient that

(2) Sk <,
and it is necessary that
”
(3) kzlsz=o(n‘~’) as n—>o.

In §1 of this paper we shall give another sufficient condition, and in §2
we shall construct an example which shows not only that this condition is
the best possible one in a sense but also give a negative answer for the Buck-
Pollard problem [2] whether the condition (3) is a sufficient one. In the
last § we shall concern ourselves the summability (C,1) of nearly all the
subsequences.

*) Received May 20, 1950.
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§1. By easy consideration, we may see that the existence almost every-
where of the limit of (1) is equivalent to :

(4) limlz.fkrk(x)=0
# k=1

7>

almost everywhere, provided that ’s,} is summable (C,1) (See [2]).

TurorEM 1. If (sa} is summable (C,1) to s, and if

(5) Zn:.v‘

= o (n2/loglog ) as n—> o,

then a/;;zox-t all the subsequences of {s,} ars summable (C,1) to s.

Proor, Let us put

By = 2t Sulx) = 2am(x) and S (x) = Max |5, (x)]
(R =1,2,.).

For & > 0, we denote, by E, (k= 1,2, .-) the set of all x such that |.§,(x)| > 7
for at least one value of #, 2+ < <2k, If we put

Gi = [ x5 55 (x) > 28] (k=1,2,-)
we have evidently F, = G(£=1,2,-). Hence if the inequality

(6) gmmw

\~
holds for every 8 >0 we can deduce that |5,(x)!/z—0 as z—> o almost
everywhere, and by the remark at the beginning of this § we may complete
the proof. To prove (6), we use the Marcinkiewicz-Zygmund inequelity ([4];
[5] Remark 1 §3)

(7)

PSS

exp (a 5} (x))dx =32 exp (5 * B, ). a=a,>0.
From this we have

|Gy exp (azk—l d) = S exp (a5 (x)) dx = 32 exp <% a? sz>,

0

and if we take g = 2%—1§/Bs, we have
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82 é2 k—l{ _ 8" (2k)2
(8) Gil s3exp (- G Ep ) = exp(- & sz>

On the other hand, from (5) it follows that
B:#/(2%)° < 8%/(16 loglog 2*)
for large &(> k, say). Consequently we have from (8)
|G| < 32exp (- 2 log log 2F) = 32/(k log 2)° for & > ky,

which is a term of a convergent series, and { 6) is proved, q.e. d.

§2. THEOREM 2. There exists a sequence {s,} summable (C,1), which satisfies
the condition

(9) ’Z_.;:,f = O (n*/log log n) as n—> o,

and such that almost all the subsequences of this sequence are not summable (C,1).

This theorem gives us a negetive answer for the Buck-Pollard problem,
and comparing Theorem 1 and 2, we may say that the condition (5) is the
best possible one of this form.

For the proof we will construct an example.

Let us put , = 0 and 1, = (- 1)* v//loglog # (# = 1,2, ), then, as easily
be seen, {s,} is summable (C,1) to 0. We have

Z k/loglog k£~ n/loglog » as #—> b,

and (9) is satisfied. Since B, - » and s, = o(VB,lloglog B,) 8 n—>®, t4
conditions of the law of the iterated logarithm are fulfilled [3]. Henc
hm qupS (x)V'2B, loglog B, =1, that is, lim 1sup S, {(x)/n = constant == 0 al-
most. everywhere. Thus the example was established.

§3. Tueorem 3. If {s,} is summable (C.1) but not convergent, then nearly
all the subsequences of (5.} are not summable (C.1).

Proor. If all the subsequences of {s,} are summable (C,1), then {s,} must
be convergent (See.e. g. [1]), hence from the assumption of the theorem there
exists a subsequence {s, } which is not summable (C,1). Let {s,;} = { Itn "(x")

1) P, ~Q, means that P, and @, are of the same order as n-»©, P, ~ @, means that
Pn/Qy —1 as n— o,
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0 < x,< 1, where tke tetms with indices # such that%{l +r, (x‘,)} =0, are

regarded to be omitted; evidently x, belongs to the set R of all dyadic irrationals.
Since [@, (x,)} is divergent, there exists a positive integer p, and a sequence
of positive integers m < m < my, < ny < -+ > %, such that
| | 1 .
(]O) ‘}(Dml(xo) - Pn, (xo)l' > ;; (l =1,2, )

If we put Epo=RNI[x; lgn(x)—@,(x) =1p(mn>q)] (pg=1,2,-),
then the set of x € R for which the limit of (1) exists, may be represented as

E = ﬁ G Epq.
p=1¢q=1

If we suppose that the set E is of the second category in R, so is the set
G Ezpy.q and then for some ¢,, the set Fap,,q, is still of the second category
‘{SIR. The function @, (x) being continuous in R, the set Ez, ¢, is closed in
R, and hence it contains an interval J< R. Since there is a point x,€]
such that the difference !x, — x| is dyadically rational, we have

n n "
1 1 1 -
;E ri (%) —_ﬂ_kgl 7x (x1)s w ; Si 1 (0) = }1 Elk 7x (1)
as # > . Hence from (10) we have
qu)mz (xl) =~ Pa; (xl)ll > 2—;*0

for large 7, which contradicts the fact x, € I < Ezpq g0
Consequently the set E is of the first category in R. The complement
of R, (0,1) — R being enumerable, the set E is of the second category in

(0,1), gq.e.d
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