NOTES ON FOURIER ANALYSIS (XXXVII):
ON THE CONVERGENCE FACTOR OF THE FOURIER SERIES
AT A POINT®

By

Nosoru MaTsuvama

1. Let f(x) be an L-integrable function, and denote its Fourier series by
(1) F () ~;— ag + Z;(an cos nx + b, sin nx) = ZOAn ().
n= n=

Hardy? has proved the following theorem.
(1. 1) i
t
2) gl(p(ﬂ)ldu=a(t)
0

then the series = An(x)logn comverges at the point x, where
1, ,
@)= 5| fix+ D+ floc = 51— 2},
On the other hand Wang® has proved the following theorems.

(L2 If
(3) gtw(u)du=o(z‘)

0
then the series Z An(x)[n'2 converges at the point x.

(1. 3) Comvercely if for 0 < p <1 the series

% An (x)/n®

converges, then

*) Received August 10, 1949,
1) G.H.Hardy, Proc. London Math. Soc,, 13 (1912).
2) F.T.Wang, Tohoku Science Report, 24 (1935).
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@ (2) = Stdu ftp(v) dn = O(s-v).

The object of this paper is to prove the following theorems concerning (1. 2)
and (1. 3).

TueoreM 1. There exists a function such that

(4) gw(u)u‘(“f’) du

0

exists by the Canchy sense, but 3 An(x)n® is not comvergent, where r >0,
0<8 <12+ 7). :

Tueorenm 2. If for any r =0

(5)  (ewd=0@m),

0
then the ceries % An (x)/ 2P0 converges.

Turorem 3. There exists a fanction f(x) such that
(6) gAAmw

converges, and
(7) @1 (#) * O (%)

where 0= p’ < p.

2. In Theorem 2 if r =0 then we have Wang’s result (1. 2).

Lemva.  There exists an even function @(x) such that for any 8, (2+ r)=* >
8>0, lim s, (0, @)/n® =, and
n—x

S @ () (w7 dy

0

converges by the Canchy sense, where r > 0.

Proor. Let {p,}, {¢;} and {«,} be three increasing sequences and

Po'—‘%:l» Dr = qr My

Then the even function @ (#) is defined by
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¢’(t) = ¢k Sin Pk z,
if #is a point of the interval [ = (z/qs, 7/qs-1), where {¢4} is some positive
sequence determined later.
1°. The condition for which @ (¢) is integrable.

[lo@ndr= Zan | Isinpe sl df < = X crlgn-s.
0 Jr

Hence if this last series is convergent, then @(#) is integrable.

2°. The condition for which the condition (5)is satisfied. Let /i< e < m/qi-1,
ﬂ,/qk =0 < m/qh-1 and £ < /.

i <" S
—{1+r |
,ngp(f)f dtfé l\; l +i=l—1(i,q. l ! !;g’qk[

-1 I
S (gt 3 gt e gft ) = g, iyt

Hence if this last series is 0 (1) as &— w0, then the condition (4) is satisfied.
3°. The condition for which

lim s, (0, @)/n® = oo.
H->o
If we consider especially the sequence {sp (0, @)/p},

Tq Mgy

§¢(t)(sinpkt/t)dt=<§ +§ +S >ES,+S._,+53,

0 0 gy, zlgp—1
say.
® q; -1
15, = L%I_gig Hcos(ps ~ pr) # — cos (pi + pk)t}/t]dt}
= nlg;
1 - e S IR I
=5 i=zk+1 ¢ 4; 2p; (P — PP = i§+1 6 4 pit= izzki_lfi/“i’
t‘ %/qp—1 -
S, = 71&5 | (1 — cos2pr #)/2 ] dt
41

T qr—1
¢
= G loglgr'ge-) — G| [cos2pusit ] ar.
T qp

Hence
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Sz {’f log{gr'qs-1) — ¢/ -

&

By the similar way as |.f,/,
B-1
|Sal = 2 el
=

Consequently

L3

H(p(l}sinpk H df} =8, |51] — |84l

0

v

kel
Ck
—2-— log \qu,'lqk— 1) - 21 [n‘/;tn.
n=

That is, it is sufficient to prove that

(a) Em’q&-1< o,
(v) cr oy 8 log g 'gp—1—> (0<d<1/2+ 7)),
(¢) ’gifkq;/u,,<oo.

If we put

pr=1:3-5-..-(2k+ 1), = pErH®AEn .,

gr=pp-vaio ks, and o= gy Tog@ET ),

then the left hand side of (p) is

_____ P; 1 1-—8 k_ll
Vlog(zk+ 1) 72—{7_+—Tl°g(2/e+ 1+ log 2= — o0, (k).

Thus the condition () is satisfied.
Now, we have

PAmDIHD s

= 3 (log (2 + 1)~% A=+ < w0,
=1

This is the condition (¢). Lastly the left hand side of (a)

©® b
v g = L B & B —
Eé‘qu/ﬂk—z‘/log(:zk_,_ 1) p;’+8)(7+1),€

129
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.2} (log (2k + 1)~ (b — 1) pr B

é 10g (2/6 + 1))—}5 k(z+r—8)/(1+1)p; 1—=(r+2 8} /(r+1),

M e

Since

1—(r+2)8> 1 _r+2 1 _
r+1 r+1 r+1 r+2

and the inequality

24+7r=8 _, 1-(r+2)3
r+1 r+ 1
has a solution, that is
2+ 7r—38 1
_eTr—-0o 2 _ 1 0,
¥ T (r¥2)8 ><+r r+2>> tr=

the condition (z) is satisfied, and thus the Lemma is proved.

3. We prove Theorem 1.
If ¢(z‘) satisfies (4) we can easily prove on = 0 (1),

Z A (0)/k = Z: (& + 1) 0 (0) A2 (1/&)) + 7.0 1(0) A1(n - 1))
— 0 (0) + 5, (0)/n® — 5,(0)

>, (0)/n® — O(1).

Since there exists a function satisfying (4) such as

1?11 Sn (O)I/ﬂs = 00
7”@

for 0 < & < 1/(r + 2), our theorem is proved.
Proof of Theorem 2 is similar as that of Wang’s.

4. We will pass to the proof of Theorem 3. Without loss of generality
we can suppose that f(#) is even and x =0. As the theorem is proved by
the same way as the following theorem, we prove only

Tueorem 3. There exists an even and integrable function f(x) such that the
series
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2 A (/&
is convergent for 0 < p <1, and

fo(8) = g‘du §f(1/) dv = O (22).

]

Let f(x) be an even, periodic and integrable function with g, =0. Generally*

a

S Aok =21 £ (Z” cos kslke) dt

k=1

?
=

£ ( 2 Ds (t) A(1//e»)) dt + = n"’ g f#)Du(H)dt =P+ 0,

Ol A Ot

say. If su(0) = O(n?) for p> ¢ >0, then Q = 0(1), and
2 151 (0) A (ke)| = 2 ket < o0,

k=1

Thus the series = s (0) A ('/°) is absolutely convergent, and
n—1
P =,§1;k (0) A (1/&°) = 0(1) (n— ).

Consequently it is sufficient to prove Theorem 3 that there exists an even
function f(x} such that,

(8) Sf2() = O ()
and for any ¢ > 0
(9) sn (0, f) = o (n%).

Let {px} and {gs} be two increasing sequences such as pe > g4, {uz} be de-
creasing tending to 1, and if ¢ € [, =(7/qr, mur/qs)

f(t) = 2¢, sin prt + 4"kpkf COS pyt — Cr PR fzSinpk t t € ]k;
=0, elsewhere.
1° The condition that f (x) e L. If ¢, =0, then

TRk !k
glf(t\l d1<2¢‘kS {2 Isinpy #| + 4 |pr £OS pu #] + |} £25in py ]

=l g

égm{brq Yur — 1) + 2p (g P (w2 — 1) + p2 (,,q 19 42 (up — 1)}
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<const. kz: cr (e — 1) pf 457>
=1

If the last series converges then f(x)e L.
2° The condition for which (8) is satisfied.
We consider the integral of f(x) in J.

Tk, qk
Sf(u) dn = [2:,, #sinpy £+ ¢y Py #2COS pr t]

Jr /qh

= ¢, o, {(mup'qe)® — (/qr)?} = cp pr (W2 — 1) %/q2,
where we suppose that g, is a common divisor of p, and wuy py, and
(10) Pr'qr = even,  p, up/q, = even.
ConsequentIy if #€ Jx, then

f () du

qr

fi(f)= (u)du—- S [ flydu+

=kt1y,

A ey ™

=i_2k+1¢-,. pi (u2 = 1) 2°%/g% — ¢p pr 7z‘~’/q§ + (Pcp #sinpy 2+ ¢p pr 12COS Py 1)
= A — Br + (¢, ¢5in py 2 + ¢4 pr 12 COS Py, 2), say.

[ fiddu= (4 - By (wi = V) 7lgs.
Ti
Hence if #€ Ji, then

©

¢
falt)= gfl(u)du—_z gfl(u)dquS i) du
0 n z/gr ‘
= ,-=Z;,.:;_1 (Ai - Bi) (Mi - 1) zq;l -+ (z‘ — 7zqk—1) (Ak — Bk) + ooy 22 Sinpk £
172 fo () = 7wt ;§;.1(Mi ~1)(A; — Bi)g;y* + #2(¢ — mq;Y) (A — By) T £ SID By 7.

| Ay = Bl = 30 i pi (ud = 1)/g5+ cx prlghe

(*) 12(t —wq;) | A — Byl

©

= (mq; ) (mg5 ") (wy— 1){,.}“% Pi 4% (s = VD + cxpr %{2} |

< cx pr (e — Vg + 7" g (e — 1) ‘.§+1 ¢i pi (g = 1)/q%,
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©

**) } 1* ¢=Zk:+1(”'i - 1) (A; - B)/g; }

= ()72, 2 (s ‘”QZ 0 47 =D+ eipg z\q,

© ©

= 3 e pe gt = Dt 3 (-0 g 3 g0 - )
Here if we put

pi =4 (éi)g» g; =2°, u; =141 and ¢; = 0(1),

()= =2 ¢ g eapu g+ 120 - ) 2 eipi gt (=)
= =2t — 7w gy e pr 452+ g (e — 1)”551“ piq;(wi—1)

©

= -t -mg;Verprgp?+ O (2F k‘1i=zk+1z"’ 2-i% j-1)

==t — wqY) chpr gyt + O @2¥- 12 k1)
==t —mwg;Y)erprgp?+ o(l)

(**)<O(2k22 22’)+O<42k22911“2 >
=0 (zzkz 2-2;k+1,2) +0 <22k2 EZk:Hz —i29—it1? ,'—1) =0(1).
Consequently

lim 72 f; (t)—llm{ (V) =22t — wqe)cx pr g% + fksmpkt}

-0

=0(1) - limO@#2(t—=g¢;Y) R = — o,
t-0

3° The condition by which (9) is satisfied.
We must prove that

(11) ne 1§ [f(#)sinnt/#] dzf =0(1).
If # = ps. then
z ® k-1
g [f(t)sinpﬂ/t]dt-—(tg:.ﬂ + =5+ S+ Sy

0 Ji =1 ]1 k
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say.
1023 o | pipur+pipnt + s £
=kl
= i§+1€i P 12p; (w; — 1) w; (w7 + p2 (i — 1) (mgq;Y)*}

=pr 20 6w = VPl SORg 3 7 g)

i=ht1

©

=0k g 3, #2) = Ok 2-0w1f) = o ().

k

[ S égla-pk“ (g m=1 + 2p; + ¢; pimwi ;%)

=O<Pilgﬂp§m 951>'= O<P;1§kli‘q,~ >=k.+ o(1).

Sy = ‘ cp (L —cos ‘ppo)tdr + \ 2¢y, pr SIn2py td t — g ¢, pResinp, rdt
Tk Tr Tx

= ¢ 10g g + O (¢ g ;) + O (cx) + O (1 p2) ( (#+ #cos2p, 2)dt
Jr

= cploguy + O(1) + O (%) + O (F?) = O (£°)-

Hence

g [f (?)sin p, 2/£] dt = O (&),
0
and
S, (O)pg = O (kslk2-%) = 0 (1),
If =+ p, then for some &, pr < 1 < pry1.
(@snmnd=3 (+0 +{+ jf
0 G2 O P L
and by the similar calculation we have
sn = 0 (n%).
Thus Theorem 3’ is proved.
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