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The purpose of this paper is to discuss some compactness problems in
uniform space and in a space of continuous functions whose domain and
range are both uniform spaces. It is known that a uniform structure in
uniform space may be represented by a family of pseudo-metrics. Using this
we shall prove a convex linear topological space can be imbedded into a direct
product of normed spaces (31). We shall next prove a compactness theorem
of the Kolmogoroff-Tulajkov type in uniform space (§2). We introduce
furthermore some topologies into the space of continuous functions and prove
a compactness theorem of the Ascoli-Arzelad type, and as an application we
shall prove similar theorem for character group of topological group.

§1. On the uniform structure. Let E be a uniform space defined by the

uniform structure {[/a)acy.  After A.Weil, for each /s we shall define
pseudo-metric 4, such that:

du(p) 9) Z 0, du (p, p) =0, du (p, ) = du (p, 7)+ da (1, )

and p = g <—du (p, g) =0 for all e

We define a structure by W = (ps @) du (p, q) < &) then (e}, ¢ > 0 is
equivalent to {I7,}. We can replace the triangle ‘condition of {ds} by the
following : for each «e?, there exists fs = fe¥ such that du (p, ) < ds(p, 1)
+ ds (7, q)-

The same consideration can be applied for linear topological space (1. t. s.).

Let I be a 1. t. s. defined by the neighbourhood (nbd.) system {Us)aenx
of the origin 9. D. H. Hyers [1] has proved that there exists a family of
pseudo-norms {|-|a} satisfying the following conditions :

(a) for every xeL and aed, [x]a=0.

(b) for every real A, xeL and ae¥, [Ax|e = |N] - |x]a

(c) for every ae, there exists fa = fe such that |x+ yla < |x[s + [yle
for all x, yeL.

*) Received April 3, 1950.
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(d) x=0<-|x]s =0 for all ae¥.
Then the topology of L is equivalent to the topology defined by {|-]»} L is
convex if and only-if

(c') for every ac¥, [x + ylo = |x|a + [}]a

Remaxk. We can introduce another equivalent family of the norms sa-
tisfying the conditions (a), (¢), (d) and the following: if A, -0 or Il x, la — 0,
then' Il Ay e =0 OF 1| Ax, le = O for all aeN. By this norm, L is convex if
and only if L satisfies (b).

Moreover, for a topological algebra .4, we can introduce a family of pseu
do-norms |- |« satisfying the conditions (a), (b), (c), (d) and the following:
for any ae¥ there exists feU such that [xyle < IxlIs-1y18.

After these preparations we shall prove the following theorem:

Tueorem 1.1. A4 convex [. - 5. can be imbedded into the closed linear mani-
fold of the direct product of normed linear spaces-

Paoor. Let Nu = {x; !l xlle =0}, then N. is a closed linear subspace of
L for each ae. Since, if y€ x + Na, then Il x s = | y ls, the quotient spaces
L« = L. — Nu are linear ‘and normed by the norm Il xu | = Il x la fOr xa = x +
Nz. Then the natural mapping from I. onto L. is hcmomorphic and iso-
metric.  Let TILs be the direct product of L., ae¥, and L’ be a set of
all the elements of L. such that x' = /xa} with xs = x + Na, xeLl. The
topology of TI1L. is defined by |x'| = I xal, ac¥, wherte x'elllLs, x' = x.
Then MLy is a 1. t. s. and I’ is a closed linear manifold of TIL. which is
topologically isomorphic with I by the natural mapping.

From the proof we can easily see the following corollary, when we remind
that N is a closed .ideal in our case:

CoroLLarY. A topological algebra A, satisfying the conditions (), (b), (¢'),
(d) and the condition (€): 1xyle =1 x a1y la, can be imbedded into the closed
subalgebra of the direct product of mormed algebras.

§ 2. A compactness theorem in the uniform space. In this section we
prove a theorem of the Kolmogoroff-Tulajkov type in uniform space, (proved
by in the case of B-space P. Phillips [2]). We shall now introduce the con-
cept of boundedness and complete continuity into the uniform space. It is
called that a subset §' of a uniform space E is precompact if the completion
S is compact (N. Bourbaki [3]).

DeriniTiON 1. A subset § of E is said to be bounded if, for any ae%
there exists a constant M, > 0 such that 4, (§) < M, where 4. (§) is the least
upper bound of 4. (p, ¢) for p, g€ S.
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This definition of boundedness is coincident in I. t. s. with that of Banach
and J. von Neumann. It is clear that any uniform space is uniformly ho-
meomorph with bounded uniform space, and any precompact set is bounded.

DerpiNiTioN 2. A transformation from E into E’ is said to be completely
continuous if it transforms every bounded set of E into a precompact set of
E’ (c. c. t. = completely continuous transformation).

We suppose that 11 = {z} has the Moore-Smith property with respect to the
order “~ ", and for every zel] thete corresponds a c. c. t. T from E into
E. Then it is easily seen that the uniform limit of T. is also c. c. t. More-
over the sequence !T.} satisfies the following conditions.

(1) Tap convergs to p for every pcE,

(2) for every ae and every € > 0, there exist [uc€ll, Pac = feA and Sae

> 0 such that

dﬁ (p: q) < 8098 "’dw (Tnp, Tﬂq) < € for 311 T > Tlase

TuEOREM 2. A set S in E is precompact if and only if

(1°) S is bounded,

(2°) {Txp} converges aniformly to p in S-

Proor. Suppose that § is precompact. For any «e2 and any ¢ > 0, there
exist feA and & >0 such that ds(p, g) <8 implies du(p, q) < €/3 and
du (T= p) < €/3 for all 7> 7. Since § is precompact, there exist ap;€ 5, 7 =1,
2,...,n,suchthat § < U7 Vs (ap;) that is, for any peS there exists g5, such that
dg (ag;, p) < 8z By the condition (2), there is mell such that dp (a;, Tx ag;) < Oe
for all 7 = =, and for all f;. Hence, du (Twapi, Txp) < €/3 and du (ap;, Txag)
< €/3 for all #=m, ne. Thus 4 (p» Tx p) = de (p; ag;) + du (agi, Trag) +
do (Tx ag;y T= p)< e for all # = =, wp and pes- Thus (2°) holds.

Conversely, suppose that the set § satisfies the conditions (1°) and (2°).
Then, for any «e? and any € > 0 there exists 7€l such that du (p, Ta p) < €/3
for all peS. Since T, () is precompact, there exist guieS, i=12, ..., n
such that T, (5) < U”, Ve (T'x0 aa,), that is, for any peS there is an aa; such
that du (T'rap, Treeas;) < €/3.  Consequently,

du (ﬂwi, p) =ds (ﬂd;'; Tﬂ¢ami) + dao (Taa-aai, anp) + du (Tﬂap, p) < €.
Thus the set S is precompact, and then the theorem is proved.

§3. Topology of the family of continuous transformations. We shall
generalizc the Ascoli-Arzela theorem. Let X be a topological space (particularly,
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when we consider the uniformity in X, we introduce a family of the pseudo-
metric {d,)s), end Y be a uniform space with topology defined by {du}y, and
further ke a family of all the continuous transformations from X into Y. We
define the uniform topology in C as follows: for any subset M of X, pam(f, g)
= supxem du (f(5), g(x)) (L + du (f(x), g(x)))- Denote the uniform topology in
C by 7y, ¢ or 75 according as M is a finite set, a compact set or the whole
space X respectively, and say weak, compact or strong topologies, respectively.
It is clear that v, > 75 = 7, where 7, = 7, denote that 7, is stronger than ,.
The topclogy 7, in C is admissible, if f(x) is continuous on (f, x) in the pro-
duct topology of 7, end X. If X is compact, 75 = 74 = 74. If Xis discrete,
g = Tw. Artens [4] and Myers [5] have proved that if X is locally compact,
7x = T4. While Arens has proved that always 7, = 7. We will now define
the equi-contiruity in C and prove the compactness theorem of Ascoli-Ariela
type in C.

Derinition 3. The set § in C is said to be equi-continuous if, for any
«e, and any € > 0 there exist ceX and § > 0 such that do (x, x’) < § implies
du (f(x), f(x")) < € for all fe§. The set § is said to be equi-continuous (K)
if, for any ae¥, any € > 0 and any compact set K < X, there exsit ceX and
8 >0 such that x, x' € K and du (x, x') < & imply du ( f(x), f(x")) < € for all
feS. The set S is said to ke equi-continuous (p) if, for any ae¥, any € >0
and any x.eX there exists a nbd. T7(x,) of xo such that xel/(x;) implies
ds (f(x0), f(x)) < € for all feS.

Turorem 3. (1) if C is cqui-continuous (p), then the topologies Tw and Tk
are equivalent and both admissible. (2) If X is precompact and C is equi-continnons,
then the topologies Tw, Tk and Ts are equivalent and all admissible.

Proor (1). It is sufficient to see that Ty is admissible, since the weak to-
pology which is admissible is compact open (this is clear by Arens {4], Theorem 2).
For any € >0, any x¢X and any foeC, let I/ (fo) denote the nbd. of f in the
Tw-topolegy as the set of all f €C such that du ( f5(x0), f(x0)) < €/2. Since C is
equi-ccntinuous (p), there exists a nkd. T7(x0) of x, in X such that gy ( f (o),
f(x))y< €/2 for all xel ' (x;) and feC. Hence, du(fo(x0), f(x)) < e for all
x€V (xo) and all fel’(f,). Thus f(x) = (f, x) is continuous in 7y x X.

(2). From (1) it is sufficient to see that Ty and =g are equivalent. Since C
is cqui-centinucus, for eny e and any € > 0 there exist o€ and & > 0 such
that do (x, y) < & implies du (f(x), f(1)) < €/3 for all feC. Since X is pre-
comp ct, there are finite points x4, , x, such that for any xeX do(x; x)
<8 holds for some x;.

Hence,
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du (f(5), g(5) = du (f (), [ (2) + e ( f (x2), g (4))
+du (g(x:), g(x)) < €

Thus, d.u(f, g) < €/3 implies du (f, g) < € where M = {x,, ..., xs}. This
proves the theorem.

Remark. From Theorem 3 and Arens [4] it follows that if Y is the (0, 1)-
interval and C is equi-continuous ( p), then X is locally compact.

Tueorem 4. If the set S in C is precompact on Ts, then S is equi-continuonus
(2)-

Proor. From the assumption, for any «e® and € >0 there exist f,, ...,
f#€S such that for any feS du (f, fi) < €/3 holds for some f;. Since f;(i =1,
2, ..., n) are continuous, for any xpeX there exists a nkd. 7(xo) of xo
satisfying du ( f; (x0), (x)) < €/3, i =1, 2, ..., n. Hence we have du (1 (x0), f(x))
=da (f (%0, fi(x0)) + da ( f; (xx0), Si () + da (f: (x), f(x)) <€ for all xel/ (xv),
that is, C is equi-continuous ( ) which is the required.

From this prcof it follows

Cororrary 4.1. (1) When X is compact or its uniform stracture is anique, if
a set S in C is precompact on s, then S is equi-continnous. (2) (Arens) If a set
S in C is precompact in Tk, then the set S is equi-continnons (k)-

Let us prove the converse of the preceding theorem.  For a set § in C,

we write S (x) = {f(x); feS -

Tuvoren 5. (1) If a set S in C is equi-continnons (p) and S (x) is precompact
for all xeX then S is precompact on v (2) A set S in C is precompact on Tk
if and only if the set S is equi-continnous (k) and S (x) is precompact for all
xeX.

Proor. It is sufficient to prove (1) cnly, sirce (2) follows from (i) and
Corollary 4. . If the set is not precompact on g, there exists a compact
set Kin X, ¢n index ac, a constant N, > 0 and a sequence {f;) <= .5 such that
pxx ( fio f3) > N. (7 #4)- Consequentely, there exists a sequence {x;;} < K
such that ds (f; (i), fi(xi)) > N (i = 7). Since K is compact, there exists a
cluster point xeK of fx;)- For any € >0 there exists a nbd. T7(x,) of
xo such that 4. (f (x), f(xs)) < €/3 for all xel” (xo) and for all feS. Since for
all xeX { fi(x)} is precompact, there exist f,, fuy - - . fomin S such that for
any fi, du (fi (x0), fuz (50)) < €/6 holds for some f,;. There exist 7, j such that
da ( fi (o), fi () = du ( fs (Xq), Sy, (%0)) + da (for (50), i (0)) < €/3. Hence,
du ([ (xii), [i(x5)) = da (fis)s fi(ox0) + da (f; (x0), £ (0)) + da (S (0), fi(xi)) < €.
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This is a conrtradiction.

Remark. (1) The Theorem 3 and 5 can be applied to the central group im
R. Godement’s sense [6]. That is, it is a necessery and sufficient condition
for a lecally compagt group G being a central group that the left and right
uniform structures in G are c¢oincide (or equivalently, the group of all inner
autcmorphisms of G is equi-continuos (p)) and for each element of G the
conjugate class is always precompact. (2) If X is countable compact, then a
set §in C is precompact in =, if and only if S is equi-continuous(p) and
S (x) is preccmpact for all xeX.

.When Y is compact, we write C = X* for 7. If X is compact, then X
X* is locally compact if and cnly if locally equi-continuous. We can prove
similar theorem for the dual group of discrete group.

THEOREM 6. If X is diserete, then X* is compact.

Proor. Since X* is ‘equi-ccntinvous (p) and Y is compact, X* is pre-
compact by “Theorem 5. Consequently, if we show that X* is complete, then.
X* is compact. For any Cauchy directed set { A)in X*, {£,(x)} is also in
Y for each xeX. Since Y is complete, { f, (x)} converges to f,(x) on each
xeX*.. Thus X* is complete.

Remars. On the completeness, more generally, when X is a topological
space and Y is a complete uniform spece, then 75 is complete, consequently T

and Ty are also.

THorREM 7. If X it compact, then X ccn be imbedded in a compact subset of
X**. In this case the range Y is real space or (0, 1)-intervel, and X** =(X**).

Proor. For any xeX* we put f(x) =u.(f). Since X is ccmpact and X*
‘is admissible, #; (f) is continuous on X*, that is #eX**. We consider the
correspondence x «— %, between X and X** and derote it by T. For ary dic-
tinct points x; and x, in X there exists feC such that f(x,)# f(x,). Hence
T is cne-to-one correspondence. We shall now show the continuity cf T'. Let
K* be any ccmpact set of X*. Frcm the Theorem 5, K* is equi-continuc us.
Hence, for any x.€X and 2ny € >0, there exists a nbd V(xo) of xo, such
that . lf(xo)~f(x)l <€ for xel/(x) and feK*, that is, laeo(f)— a:(f) <€
whence T''is contincous. Since X is ccmpact, it is bicontituous. Thus X
is homeomorphic with a. compaéft set T (x) of X**

We can state above thcorem in the followmg generalized form. Let £ be
a transformation from X to Y. For this f we define a relation [x; R x.}
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=[f(>1) =f(5)] in X and denote quotient space X;(= Xr) of X with respect
to the relation R (c. f. Bourbaki [3]). Then canonical mapping T from X onto
Xy is continuous. Hence, if X is compact, X** is also. If féX*, then for any
distinct points x,, x:€X;, f(x1) # f (x2). Thus we have the following Corollary :

CororLary 6. 1. If X z'fm;;zpac‘z‘ and Y is a topological space, then for any
JeX+, Xy can be imbedded on a compact subset in X.
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