A CLASS OF SINGULAR INTEGRAL EQUATIONS

Gen-ichirô Sunouchi

(Received February 20, 1951)

Some years ago, Professor K. Kondô proposed to solve the following integral equation

(1)
$$f(y) = \frac{1}{\pi} (P) \int_{-1}^{1} \frac{u(x)}{x-y} dx - \frac{1}{\pi} \int_{-1}^{1} k(y,x) u(x) dx, \quad (-1 < y < 1)$$

where (P) indicates Cauchy's principal value. This equation is related to a problem of aerodynamics. The case $k(x, y) \equiv 0$ was first solved by Fuchs-Hopf-Seewald (cf. G. Hamel [1] p. 145) employing Fourier series expansions. Subsequently K. Schröder [3] gave a beautiful solution with the aid of conjugate functions. The author [4] have ever given a solution of (1) following to Schlöder's method. Recently we have been able to see some periodicals published during the war, and learned that Professor E. Reissner [2] has already solved an integral equation of the type (1). But his method seems to be analogous to Fuchs-Hopf-Seewald, and the solution is given by its Fourier series. In this paper we give a method to solve the equation (1), which is different from that of Reissner and gives an easier solution in some cases.

We shall begin with a reciprocal formula of conjugate functions. Let $H(\theta)$ be even and $G(\theta)$ be odd, then we have

(2)
$$G(\theta) = -\frac{1}{\pi} (P) \int_{0}^{\pi} H(\varphi) \frac{\sin \theta}{\cos \varphi - \cos \theta} d\varphi,$$

and

(3)
$$H(\theta) = -\frac{1}{\pi} (P) \int_{0}^{\pi} G(\varphi) \frac{\sin \varphi}{\cos \theta - \cos \varphi} \, d\varphi + c,$$

where

$$c=\frac{1}{\pi}\int_{0}^{\pi}H(\varphi)d\varphi$$

(see Schröder [3]). Especially, if $H(\varphi)$ and $G(\varphi)$ belong to $L^2(0, \pi)$, then reciprocal formula (2) and (3) is valid almost everywhere.

If we put, in (1),
(4)
$$y = \cos \theta (0 \le \theta \le \pi)$$
 and $x = \cos \varphi (0 \le \varphi \le \pi)$,
then we have

$$f(\cos\theta) = -\frac{1}{\pi} (P) \int_{\pi}^{\theta} \frac{u(\cos\varphi)\sin\varphi}{\cos\varphi - \cos\theta} d\varphi - \frac{1}{\pi} \int_{\pi}^{\theta} u(\cos\varphi) k(\cos\theta, \cos\varphi)\sin\varphi d\varphi,$$

that is

(5)
$$f(\cos\theta)\sin\theta = \frac{1}{\pi}(P)\int_{0}^{\pi} \frac{u(\cos\varphi)\sin\varphi\sin\theta}{\cos\varphi - \cos\theta}d\varphi + \frac{1}{\pi}\int_{0}^{\pi} u(\cos\varphi)\sin\varphi k(\cos\theta, \cos\varphi)\sin\theta\,d\varphi.$$

If we put

(6) $-f(\cos\theta)\sin\theta = F(\theta)$ and $k(\cos\theta, \cos\varphi)\sin\theta = K(\theta, \varphi)$ and suppose that $F(\theta)$ is odd in $(-\pi, \pi)$, and $K(\theta, \varphi)$ is odd for θ and even for φ , then

(7) $u(\cos \varphi) \sin \varphi \equiv U(\varphi) \quad (0 \le \varphi \le \pi)$ is even from the above reciprocal formula.

Then (5) becomes

$$F(\theta) = -\frac{1}{\pi} (P) \int_{0}^{\pi} \frac{U(\varphi) \sin \theta}{\cos \varphi - \cos \theta} d\varphi - \frac{1}{\pi} \int_{0}^{\pi} U(\varphi) K(\theta, \varphi) d\varphi.$$

On the other hand, if $f_1(x)$ and $f_2(x)$ belong to the class L^2 , then we have by the Parseval formula (see Zygmund [5] p.76)

$$(9) \qquad \frac{1}{\pi} \int_{0}^{2\pi} f_{1}(x) f_{2}(x) dx = \frac{a_{0}^{(1)} a_{0}^{(2)}}{2} + \frac{1}{\pi} \int_{0}^{2\pi} \widetilde{f}_{1}(x) \widetilde{f}_{2}(x) dx,$$

where \widetilde{f} is conjugate to f and $a_0 = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx$.

Let us write by $\widetilde{K}_{\varphi}(\theta, \varphi)$ the conjugate function of $K(\theta, \varphi)$ with regard to the argument φ , then (8) becomes, by (9),

(10)
$$F(\theta) = \widetilde{U}(\theta) - \frac{1}{\pi} \int_{0}^{\pi} \widetilde{U}(\varphi) \widetilde{K}_{\varphi}(\theta, \varphi) \, d\varphi - \frac{c}{\pi} \int_{0}^{\pi} K(\theta, \varphi) \, d\varphi,$$

where

(11)
$$c = -\frac{1}{\pi} \int_{0}^{\pi} U(\varphi) \, d\varphi$$

If we write

(12)
$$F^*(\theta) = F(\theta) + \frac{c}{\pi} \int_0^{\pi} K(\theta, \varphi) \, d\varphi,$$

then we have

(13)
$$\widetilde{U}(\theta) = F^*(\theta) + \frac{1}{\pi} \int_0^{\tau} \widetilde{K}_{\varphi}(\theta, \varphi) \widetilde{U}(\varphi) \, d\varphi,$$

and this is Frehdholm's equation of the second kind for unknown $\widetilde{U}(\theta)$.

Let the resolvent kernel of $\widetilde{K}_{\varphi}(\theta, \varphi)/\pi$ be $\Re(\theta, \varphi)$, then

(14)
$$\widetilde{U}(\theta) = F^*(\theta) - \int_0^x \Re(\theta, \varphi) F^*(\varphi) \, d\varphi.$$

Again from the reciprocal formula (3), we get

(15)
$$U(\theta) = -\frac{1}{\pi} (P) \int_{0}^{\pi} \widetilde{U}(\varphi) \frac{\sin \varphi}{\cos \theta - \cos \varphi} d\varphi + c$$
$$= -\frac{1}{\pi} (P) \int_{0}^{\pi} \left\{ F^{*}(\varphi) - \int_{0}^{\pi} \widehat{\Re}(\varphi, u) F^{*}(u) du \right\} \frac{\sin \varphi}{\cos \theta - \cos \varphi} d\varphi + c$$
$$= -\frac{1}{\pi} (P) \int_{0}^{\pi} \frac{F(\varphi) \sin \varphi}{\cos \theta - \cos \varphi} d\varphi$$
$$- \frac{c}{\pi^{2}} (P) \int_{0}^{\pi} \frac{\sin \varphi}{\cos \theta - \cos \varphi} d\varphi \int_{\theta}^{\pi} K(\varphi, u) du$$
$$+ \frac{1}{\pi} (P) \int_{0}^{\pi} \frac{\sin \varphi}{\cos \theta - \cos \varphi} d\varphi \int_{0}^{\pi} \widehat{\Re}(\varphi, u) F(u) du$$
$$+ \frac{c}{\pi^{2}} (P) \int_{0}^{\pi} \frac{\sin \varphi}{\cos \theta - \cos \varphi} d\varphi \int_{0}^{\pi} \widehat{\Re}(\varphi, u) \int_{0}^{\pi} K(u, t) dt + c,$$

where

$$c=\frac{1}{\pi}\int_{0}^{\pi}U(\theta)\,d\theta,$$

which may be taken arbitrarily. Since the right hand of (15) is given by $F(\theta)$ and $K(\theta, \varphi)$, this is a complete solution of (1), where

$$u(\cos \varphi) \sin \varphi = U(\varphi), \qquad -f(\cos \theta) \sin \theta = F(\theta),$$

$$k(\cos\theta,\cos\varphi) = K(\theta,\varphi), \quad \cos\theta = y \text{ and } \cos\varphi = x.$$

REMARK. For the calculation of conjugate function of f(x) we can use the formula

$$\widetilde{f}(x) = -\frac{1}{\pi} \int_{0}^{\infty} \frac{f(x+t) - f(x-t)}{t} dt$$

(see Zygmund [5], p. 164).

References

- [1] G. HAMEL, Integralgleichungen, Berlin, (1937).
- [2] E. REISSNER, Bull. Amer. Math. Soc., 51(1945), 922-924.
- [3] K. Schröder, Sitzungsb. preussischen Akad., (1938), 345-362.
- [4] G. SUNOUCHI, Monthly of real analysis, 2-8 (1948), 17-20 (in Japanese).

[5] A. ZYGMUND, Trigonometrical series, Warsawa, (1935).

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY, SENDAI.