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1. Introduction. The object of this paper is to generalize Young's
convergence criterion for Fourier series. To simplify the writing, we
shall suppose that the Fourier series

oo

Φ(t) ~ ^r aQ + 2 Λ » cos nt
Δ »=i

in question is that of an even periodic function which is integrable in the
Lebesgue sense. Then Pollard [4H generalizes Young's test as follows.

THEOREM. The Fourier series of <P(t) converges at the point t = 0 to
the value zero, provided that

( 1) f <P(u)du = o(t), as t -> 0

Ό
and

/
C2) I \d{uφ(u)}\ = O(O, O^t^η.

ό
On the other hand Hardy and Littlewood [1] proposed the problem,

whether we can replace (1) and (2.) by
t

( 3 ) Γ <P(u)du = o (tjlog-j-) , as t -> 0

and

(4 ) f \d{u*φ(u)}\ - 0(0, O^t^η,

0

for some Δ > 1. Later Randels Γ5Ί proved that this is impossible. Concern-
ing this problem we shall prove the following theorem.

THEOREM. The Fourier series of Φ(t) converges at the point t = 0 to the
value zero, provided that there is a Δ 2̂  1 such that

( 5 ) I <P(ιU du = o(tA), as t -> 0,
o

and
t

(6) j \d{uA<P(u)}\ = O(t), OSfS^.

0

2. Proof of Theorem. It is sufficient to prove that
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l imf

0

Since <P(t) is Lebesgue integrable, we have

V

for any fixed η > 0. Let us now put
a = (A?/ω)1/Δ

where & is a constant taken sufficiently large and put

Φ 0 O = f <P(u)du= o(YΔ), as
oo

f <P(O s i n

t

ω t dt =

Then we have

ωt COS ωt — sin ωt »J
= Λ + Λ,

say, where
IΛI = oCa*-1) - o{CA/ω>Δ-1)/Δ} - o(l), asω->oo

and

2I = O (ω / t*-1) = oίfflΛ1) = 0

— o(l)τ a sω-> oo.
Hence it is sufficient to prove that

lim lim I <P(t) — n . ω dt = 0,
7l.._,oo ω->.co \ J t '

tvhere a = (k/ω)1^.
tί

Let us put θ(t) - t*Ψ(t) and Θ(O = Γ \dθ(u)\, then ΘCO = OC )̂ and

0

β(t) = O(f), since #C0) = 0 is an easy consequence of (5) and (6).
Our concerning integral is therefore

- - 1 θ(t)dA(tχ

where
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From the second mean value theorem, we get

A(O = -φrlsin ωt dt = 0{ω-H-<
t

Then

- / = I θ(t)dACO = W O Λ Ό ^ -t- /

say. We have now

= OC^"1) = oCl), as k -> oo,
and

Γ77 r

say, where
. /Γi = CXω-1) + O(ω-ιa~A) = 0(1) + Oiω-^k/ω)-1} = O'̂ -1) = o(l), as

and
1 Γ

Thus we get the theorem.
REMARK 1. The condition (5) does not imply the convergence of the

Fourier series of Φ(t). See Hsiang [2] or Izumi and Sunouchi £3H.
REMARK 2. If (5) and (6) is valid for 0 <Ξ t g η, then the analogous

estimation gives

Λ Λ = <P(t)
»/
0

provided that Δ > 1. Hence our test is closely connected with the test of
Wang[61
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