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Let us consider the series

(1) > a.,

n=1
of real numbers a,. We shall say that the series (1) is asymptotically
absolutely convergent if there exists an increasing sequence of positive
integers {#,} such that k/n, > 1 as k-> co and the subseries

(2) > an,
k=1

converges absolutely.

We shall establish, in this note, a tneorem of Tauberian type and some
results for trigonometrical series.

1. Tauberian theorem.

THEOREM 1. Suppose that the series (1) is asymptotically absolutely
convergent, and one of the following three conditions is satisfied :

(i) A{laul} is a monotone sequence ;

(i) |@ws| <1+ C/n)la.| (n=mny), where C and n, dre positive con-
stants independent of n;

(iii) for some B which is independent of N =1,2, ----,

N1 N
3) ZnJanl — |@ns1 || + Nlaw| §_BZ la.].
n=1

n=1
Then the series (1) converges absolutely.
Proor. If (i) is satisfied, then the absolute convergence of the series
of type (2) implies the decreaseness of |a.|; and (i) is included in (Gi).
On the other hand, (ii) implies the inequality (3). For, Supposing n, = 1,

N-1
>
n=1

N-1 C N C C C .
=2 lal +§<l+ N—1><1+ N—2>"<1+7)'a”|

n=1

|
Ianl - Ian+1” + NIdNI

N-1 N N
<CX laul + e 2lad < (C+ e X al.
n=1 n=1

n=1
Hence it is sufficient to prove the absolute convergence of (1) under
the condition (iii). Suppose that (2) converges absolutely and k/m; > 1 as
k>, Let&=1ifn=m, k=12, ----,and & = 0 otherwise. Then, as
we see easily,
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"

(4 28,;[a,.|<oo and s,,s»—}[ZE;G-)l as n-> .

n=1 k=1
Now, by the Abel transformation
N-1

N
28n|an| = 2 n(lay] — |@u+1])8n — N swvlax],

n=1 n=1
and if the series (1) does not converge absolutely, we see by (3) that the
Toeplitz condition is satisfied for the transform of {s,}:

(2 en|anl)/<éla1|) :

hence from the second relation of (4) we must have zénlanl = oo, which

n=1
contradicts our assumption.
2. Asymptotically absolute convergence of trigonometrical series.
THEOREM 2. If one of the series

o o

2 a, sin nx, Z a, COS nx
n=1 n=1

conver ges absolutely at a point incommensurable with =, then the series (1)
is asymptotically absolutely convergent.

Proor. Let us consider only the sine series (the consine case may be
treated similarly), and suppose that

(5) 2 la,sin nzx)| =M < o (x, irrational).
n=1

Let {8} be a positive decreasing null sequence. For every integer i, let
(6) n{?, n®, nP,

be the #’s for which |sin#nzx,| >8;, then by the uniform distribution of
{nx%} we have

(7) lim k/nf’ =1 —

koo

arc sin o;

We put & = (arcsind;)/z, then & >0 as i > oo. By (5) and the definition
of (6) (i = 1) there exists an integer N, such that

> law] < M/1%,

i =N
and by (7) there is an integer M, > N, such that
(P —1D+ WN—N;+1)
n
Next, by the similar reason there exist two positive integers N, and
M, > N, such that

>1-—2¢&, for all N > M,.

> lawn| < M2z,

j=ng
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mQ =1+ (Li—Ny)+ (N— N, + D
ns)
where Z, is the maximum of N for which n) > »{ (hence L, = M,).
Proceeding in this way we obtain an increasing sequence of integers
(8) 1,2, oo W) =15 05, nG, e, B, oo, ng)
NG, e, MY, e, AN, e )

which we denote newly by {m;}. For any integer i the following relations
are fulfilled :

>1-—2&, for all N > M,,

(9) > lan| < MJ¢,
j=N :
(n) — 1)+ (L, —N,)+ -+ +(Liey — Nioy)) + (N—N; + 1)
(10) M - ! ! ns\;’) - : >1-—2¢&
for all N > M,.

For any integer k&, if m;, >n{), we see by (9) that

o M M M
Elﬂ:r)jl = 7_,— =+ (l':*— 1)3’ + _S_Z_ly

hence we have

(11) D laun,l < .
j=1

On the other hand, for any k, if () <, <), then by (10) we have
klmy, >1 — 2&;;
and if #{) =m, = n{), then putting my, = n{) we have
B =D+ (L —~NI+ -+ (Licy = Nie) + (K= Ni — 1)
my; n@
o MR- DAL= N)+ -+ (Lieg = Nie) + (H—Liny + D

= (i=1)
NH+1

where H is the integer such that n{i~» < »n{) < n{7).
By (10) the last-hand side of (12) is

Q=1+ -+ + (Lico — Niy)+ (H+1— Ni_y)
= T > 1= 28— poen

(12)

(=1
n(l}+1)

from which we see immediately that
(13) lim k/my, = 1.

koo
From (11) and (13) the theorem is proved.

COROLLARY 1. If the series Sp,cos (nx + &) (pa = 0) conver ges absolutely
at two points xy, x, and if %y — x, is incommensurable with =, then the series
Sp. is asymptotically absolutely conver gent.

From the assumption and Salem’s theorem [2] we have

. Epnlsinn('xo—xl)l < ©;
and by Theorem 2 we get the required.
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COROLLARY 2. If the series Sa,cosnx or Xa,sinnx converges absolutely
at a point incommensurable with =, and if a,= O(1) as n-> o, then we
have (|a)| + la,l + -+ + |a.])/n >0 as n> .

Proor. By theorem 2, there is a sequence {m;,} such that 3|a,| < o,
and m,/k>1 as k> . Let {m} be its complementary sequence, then
clearly k/n. >0 as k> oo. Hence

,]il],glal;l ]]\}. {2 lamkl + 2 la’kl}

mE=N =N

=< 1{/ o) + —1%/7 O(1) {number of n, not greater than N}.

Let n; < N < nj+,, then the last hand side is < O(1/N) + O(1)j/n; = o(1).

COROLLARY 3, If the series 3a,cosnx or Sa,sinznx is a Fourier servies
of a function of bounded variation, and if its derived series converges absolu-
tely at a point incommensurable with =, then the function is cOntinuous
everywhere,

Proor., From the assumption, we have @, = O(1/n) or' na = O(1).
Hence consider the derived series 3 na,sinznx or 3 na,cos#nx. and apply
Corollary 2. We have (la\| + 2|a,| + ---- + nla,|)/n >0 as n > o, and
Wiener's theorem ([3], p. 221) yields the conclusion.

i

COROLLARY 4. If é- ay + Z p. cos (nx+ «,) is a Fourier series Of a

n=1
Junction of bounded variation, and if its derived series converges absolutely
at two points xy and x, where xy, — x, iS incommensurable with =, then the
Junction is continuous everywhere.

PrOOF. An easy combination of the corollaries 1 and 3.

REMARKS (i). In Theorem 2, sinxnx or cosnr may be replaced by any
function f(nx), where f(x) ==0 is of period = and integrable in the Riemann
sense. In fact, the set (x;|f(x)| > &) being Jordan measurable for any
8 > 0. the sequence {#;} of #n’'s for which |finx,)| > 8, has the property:
i/n; tends to the measure of the set as 7> oo, in virtue of the uniform
distribution of {nx}. And clearly the Jordan measure of the sets (x; |f{x)]

>4) tends to # as 8 >0. Hence the same argument as Theorem 2
leads us to the conclusion,

Again, to assert the above remark, it is enough to suppose that there
exists a sequence {0;} such that &; 4 0 as 7 > oo, and the sets (x; |f{x)] >3,
are Jordan measurable. For an example we shall construct a function
with this property but not integrable in the Riemann sense. Let E, be a
non dense perfect set of Jordan measure ~13- in (0,1); and in each of the
contiguous intervals of E, we construct a non-dense perfect set of relative

Jordan measure 5}—5 / ( 1— —;)—) let the sum of them be E,; and consider
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the contiguous intervals of E,, and so on; we get the sequence of Jordan

measurable set E,, E,, ----, of measure —%— , (%)z, ---+ respectively.
Let (x)=1/jif x=E; (j=1,2, ----) and f(x) = 0 elsewhere. Then f(x)
is not Riemann integrable, for the set E,JE,| ---- is everywhere dense in
(0,1) and of Lebesgue measure —%; + (-é—y 4o = -;A < 1: and for every

j >0 the set E; = (x; |f(x)] < 1/j) is Jordan measurable.

(ii) By the above remark and Theorem 1 we get easily a theorem of
Szasz ([1] Theorem 6) :

If f(x)==0 is @ Riemann integrable function of period 1, if one of the
conditions of Theorem 1 holds, and if 3|a,f(nx)| < o for some irrational
x, then S|a,] < .
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