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Let us consider the series

( 1) 2 an

of real numbers a,,. We shall say that the series (1) is asymptotically
absolutely convergent if there exists an increasing sequence of positive
integers {nk} such that kjnk -> 1 as k -> co and the subseries

converges absolutely.
We shall establish, in this note, a ineorem of Tauberian type and some

results for trigonometrical series.
1. Tauberian theorem.
THEOREM 1. Suppose that the series (1) is asymptotically absolutely

convergent, and one of the following three conditions is satisfied:
C i ) {I d n I} is a monotone sequence
(ϋ.) \an+ι\ < a +C/n)\an\ (n^nQ), where C and n0 jire positive con-

stants independent of n
Oii.) for some B which is independent of N = 1,2, ,

C3) +N\aN\

Then the series (1) converges absolutely.
PROOF. If (i) is satisfied, then the absolute convergence of the series

of type (2) implies the decreaseness of \au\ and (i) is included in (ϋ)
On the other hand, (ii.) implies the inequality ('3). For, Supposing n{) = 1,

-N\aN\

«f M + ί (i + ̂ ^r) (l + j^j) -(l + -f)' lβ.1
n=i

2
«=i n=ι n=\

Hence it is sufficient to prove the absolute convergence of Cl.) under
the condition (iii). Suppose that (2) converges absolutely and klnk -> 1 as
k -> oo. Let Sn = 1 if n =• nk, k = 1,2, , and ft. = 0 otherwise. Then, as
we see easily,
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( 4 ) 2 Sn\an\ < oo and sn = — 2 ^ -> 1 as n -> oo.

Now, by the Abel transformation

and if the series (1) does not converge absolutely, we see by (3) that the
Toeplitz condition is satisfied for the transform of {s)7}:

hence from the second relation of ('4) we must have 2^*1^1 " oo, which

contradicts our assumption.

2. Asymptotically absolute convergence of trigonometrical series.
THEOREM 2. If one of the series

OO CO

2 an sin nx, 2 a* c o s nx

n=l n=\

converges absolutely at a point incommensurable with π, then the series (1)
is asymptotically absolutely convergent.

PROOF. Let us consider only the sine series ("the consine case may be
treated similarly), and suppose that

(5 ) 2 \^n^nnπxo\=M< oo (χ0 irrational).

Let {Sm} be a positive decreasing null sequence. For every integer i, let
( 6 ) ni°, nψ, nψ, ••••
be the ris for which ]sinnπxo\ > δ«, then by the uniform distribution of
{nxo} we have

( 7 ) lim kjn^ = 1 — — —.

We put £ί = Care sin δi)/π, then £» -> 0 as z -> oo. By ('5) and the definition
of C6,) 0" = 1) there exists an integer iVΊ such that

2 ι«^ι
and by (7) there is an integer MΊ > iVΊ such that

"&
for all N > Mλ.

Next, by the similar reason there exist two positive integers iV2 and
M2>N2- such that
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ί$ - 1) + (Lτ - N,) -f ( W - JV2 + 1)
> 1 - 262 for all. AT >

where Ẑ  is the maximum of N for which n%\ > nty (hence LΎ 2: Mi).

Proceeding in this way we obtain an increasing sequence of integers
( 8 ) 12 - nV) — 1 - M^ ψ>Qϊ n&) f?(l)

which we denote newly by {mi}. For any integer / the following relations
are fulfilled:

CO

(<> - 1) + (L, -N,) + + (£,_, - M-,; + fJV- M + l ;
(10.) ^ 0 > 1 - 2f,

for all N>Mi.

For any integer £, if m,; > ŵ y w e s e e ^y ^ ^ that

2,ι«,»,ι ss -jr + γr+iY + ••• s f - i :

hence we have
oo

en; 2l«»,l<T O

On the other hand, for any k, if n$. <; ̂ f c g ^ } , then by (10) we have

k/m7c >l-28i
and if nty S ^A, ̂  îi}., then putting mλ; = n$ we have

* (n% - 1) + fZ, - iV,) + -f CZ -̂i - M-0 + Cî  - ΛΓ, - D

where /ί is the integer such that n<jfι) S «^ <

By (10; the last-hand side of (12) is

1) + • + (Li-. - Nt-2)

from which we see immediately that
(13) Km

From (ΊlJ and (13J the theorem is proved.
COROLLARY 1. If the series Σρn cos (nx -f an) (pn > 0J) converges absolutely

at two points x0, xτ and if x0 — xτ is incommensurable with n, then the series
Σp)ι is asymptotically absolutely convergent.

From the assumption and Salem's theorem [2~] we have

and by Theorem 2 we get the required.
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COROLLARY 2. If the series Σ<zw cos nx or Σanshιnx converges absolutely
at a point incommensurable with π, and if an= 0(1) as ?z-> oo, then we
have C|tf]| + \aA + •••. + \an\)/n->0 as n-> oo.

PROOF. By theorem 2, there is a sequence {mk} such that Σ|«WJ < °°,
and niitlk -> 1 as k -> oo. Let {wA;} be its complementary sequence, then
clearly kjn-k -> 0 as k -> oo. Hence

<; γ O ( Ί ) + -Tr- O(l) {number of «fc not greater than iV>.

Let n< ^N< nj+1, then the last hand side is <; 0(1/N) + 0(1)J/nj =
COROLLARY 3. If the series Xan cos nx or 2<2/Λ sin nx is a Fourier series

of a function of bounded variation, and if its derived series converges absolu-
tely at a point incommensurable with π, then the function is continuous
everywhere.

PROOF. From the assumption, we have aa — O(l/n) or'na —0(1).
Hence consider the derived series Σ rιan sin nx or Σ nan cos nx. and apply
Corollary 2. We have (I<Zi| -f- 2)^1 + •••• + n\an\)/n ->0 as n->oo, and
Wieners theorem CΓ3H, p. 221) yields the conclusion.

COROLLARY 4. If ~ψ a0 + 2 plk cos (nx -f a,) is a Fourier series of a

function of bounded variation, and if its derived series converges absolutely
at two points x0 and xΛ where x0 — xx is incommensurable with π, then the
function is continuous everywhere.

PROOF. An easy combination of the corollaries 1 and 3.
REMARKS (i). In Theorem 2, sin nx or cosnx may be replaced by any

function f(nx), where f(x) φQ is of period π and integrable in the Riemann
sense. In fact, the set (x; \f(x)\ > δ ) being Jordan measurable for any
δ > 0, the sequence {̂ , } of n's for which \Anxo)\ > δ, has the property:
i/nt tends to the measure of the set as z*-> oo, in virtue of the uniform
distribution of {nx0}. And clearly the Jordan measure of the sets (x; \f(x)\
> δ) tends to π as δ -> 0. Hence the same argument as Theorem 2

leads us to the conclusion.
Again, to assert the above remark, it is enough to suppose that there

exists a sequence {δ?} such that δ/ ψ 0 as i -> oo, and the sets (x; \f(x)\ > δ-)
are Jordan measurable. For an example we shall construct a function
with this property but not integrable in the Riemann sense. Let Eλ be a

non dense perfect set of Jordan measure ~^~ in (0,1); and in each of the

contiguous intervals of Eλ we construct a non-dense perfect set of relative

Jordan measure -™- [1 ό-), let the sum of them be Ey, and consider
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the contiguous intervals of E2, and so on; we get the sequence of Jordan

measurable set Eu E2, , of measure ^ , ( ^-J , respectively.

Let f(x) - 1/j if x = Ej (j = 1,2, O and /(*) = o elsewhere. Then f(x)
is not Riemann integrable, for the set Eτ U E> U is everywhere dense in

(0, lj) and of Lebesgue measure -w- + (~o~) + = ~o~ ^ 1' a n ( ^ f° r every

y > 0 the set Ej = CΛ:; |/C^)| < I/;) is Jordan measurable.
Cii.) By the above remark and Theorem 1 we get easily a theorem of

Szasz ('[1] Theorem 6.):
If fCΛDφO is a Riemann integrable function of period 1, if one of the

conditions of Theorem 1 holds, and if Σ\anf(nx)\ < oo for some irrational
x, then Σ|tfw| < °°
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