SOME REMARKS ON THE RIEMANN SUMS
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1. Let f(x) be a function of period 1 and integrable in the Lebesgue
sense in the interval (0,1). Denote the #-th Riemann sum of f(x) by

n—1

(1 EUn=Fm= L Sz &),

n
k=0
If the sequence F,(x) converges to rf(u)du as n > oo for almost all

0
x, we shall say that f(x) has the property (R); and if the convergence is
in the Cesaro sense of order «, instead of ordinary convergence, the
function f(x) is called to have the property (R;C, «). The following
results are known:

THEOREM A. (J. MARCINKIEWICZ-A.ZYGMUND [ 3], p.157; H. URSELL [6]).
For any p, 1<p <2, there exists a function € L? (0,1), which has not the
property (R).

ToHEOREM B. (H.URSELL [6]). If a function < L*(0,1) is monotone in
(0,1), then it has the property (R).

THEOREM C. (J. MARCINKIEWICZ-R, SALEM [27). If the Fourier coefficients
a., b, of a function f(x) € L*(0,1) satisfy the condition

(2) %aﬁ+2<a§+b}i)k€<oo
k=1

for an & >0, then f(x) has the property (R); and if

(3) > (@i + b)) loglogk < oo,

k=3
then x> has the property (R; C, a) for a > 0.
THEOREM D, (A, RalcaMan [4]). There exists a bounded measurable
Sfunction f(x) such that the set of points, for which F,(f,x) does not tend to

1
f fwdu as n-> oo, forms an everywhere dense set in (0,1)P.
0
But it seems to be unknown whether we may weaken the additional

conditions of monotonity of the function or (2) or (3), for a function
cIL? (0.1) to have the property (R) or even (R; C, «). In this note we
shall discuss some related problems using the Fourier expansion of func-
tions.

2. If the function 7.(x) with the Fourier series

15 For Rajchman’s example, as we see immeliately, the required set contains all
the rational numbers.
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4) ; ay+ 2 Pu(t)(a, cos 27 nx + by sin 27 nx),

n=1
where ®,(t) are the Rademacher functions, has a property P for almost
all ¢, we shall say, following Paley and Zygmund (See [7] p. 125), that
almost all the functions with the Fourier series

oo

(5) -—;—ao + > = (@, €os 27 nx + b, sin 27 nx)

have the property P.
After this definition we shall aim to prove the following

n=1

THREOREM 1. Suppose that one of the following condiz’ions is satisfied :

1D b a2 (ak 4 b logk < oo
k=1
(1.2) > (ai+ b)) =o(l/logn) asn->o;

k=n

©o

(1.3) z (@i + by) < oo and the sequences |a,| and |b,| are non-increasing;

n=1

(1.4) D (ah+ bi) < o and ai > (1 — M/log k)ais, bi > (1 — M/log k) bis,
n=1
jor k=ky, where M js a non-negative constant independent of k, and k, is
an integer.
Then almost all the funclions with the Fourier series (5) have the
property (R).
If we suppose (instead of (1.1)) that

71— a; + > (ay + bi)logi*<k <
k=1

for an € >0, then almost all the functions with the Fourier series (5) are
continuous (See, [7] p.127), and the conclusion of Theorem 1 is evident.
For the proof of Theorem 1 we need the f ;llowing

THEOREM 2, Let us suppose, for the series

(6) 2 i),
k=1
that one of the following conditions is fulfilled :
(2.1) Slcclogk< oo;
k=1

(2.2) C.= 2 ci=o01/logn) as n-» o
k=n
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oo

(2.3) 2 ci < oo and |c.| is a non-increasing sequence ;
k=1
(2.4) Dici< oo and €< (1 — Mllogk)ci, (k=hy),

k=1

where M is a non-negative constant independent of k, and ky an integer.
Then, for almost all t, the series

¢n(t) = 2 an:g)nk(t)

k=1
conver ges for every n and ®,(1) >0 as n > .
Proor or THEOREM 2. The conditions (2.2) and (2.4) follow from

(2.1) and (2.3) respectively, and we prove the theorem under the condition
(2.2) and under (2.4). Let us denote, for o >0,

ECM and E = E[|®u®)| >8] (n=1,2 -\

k=1

By Khintchine’s inequality ( See,e. g., [7] p. 124 or [5]) we have

expOuS)| Enl = f exp (Ol @u(t) )t < 2 exp (5 NICL)

where A, > 0; putting A, = 8/C, we get
(7) [Esl =2 exp ( — 8/(2Cp)) (n=1,2,----).
If the condition (2.2) is satisfied, we see for sufficiently large =
( = n, say) that
(8) . C,<C,<8/(4logn),
and then from (7) |E,| <2exp( —2logn) = 2/n* (n = n;) which is a term
of a convergent series. Therefore, the series I |E,| being convergent for
any 8 >0, we complete the proof by the Borel-Cantelli lemma.
If the condition (2.4) is satisfied, we get for n = ki,

(9) Cn= 2 nk+ Zcuh—u R Ec/‘ika-(n—l;
k=1 k=1 k=1
o m=1n-1

-3

= li'[ <1 B Idg(%+ i) )]’ c?lk+n

k=1 J=0 i=j
n-1 n—j

= i Crican < (1 - F)Ilgl'—n-)

= Iolglln <1 - lolzc‘gln ) (11 - (1 Togn ) )2 Caen)

— ) for large n.
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On the other hand, for a given & >0, if n is large enough, we have
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-1

e> > gz X all 11 (1~ 5)

k=(n[2) L=(n|2) =k

n—k

o <4 M » log [n/2]
S _ S > 2 1081L%/5]
= cn,b-z(z,”z; 1 log [n/2] > =C"""opr
that is,
(10) ci=o0(1l/logn) as n-> .

From (9) and (10) we have easily C,=o0(1/log#n); hence by the same
arguments in the preceding case we complete the proof.

Proor orF THEOREM 1. It is sufficient to consider the case where one
of (1.2) and (1.4) is satisfied.

Since F.(f:,x) ~ ;— ay 4+ 2 Put) (@, cos 27 nkx 4 by, sin 277 nkx), if
k=1

(11) > (@i cos? 2z nkx + by sin? 27 nkx) = o(1/logn)  as n-> =
k=1
for almost all x, then by the result of Theorem 2 we may prove Theorem
1 using the argument of Paley and Zygmund ([7], p.125). If (1.2) is
satisfied, then (11) is evident.
We suppose that (1.4) is satisfied, and for the sake of simplicity we
consider the cosine series only, the sine series may be treated similarly.

We may suppose that x =0, =+ %(mod 1). For a given € >0, if n=k

is large enough. we have
oo n-—1
(12) £ > 2 @i cos: 2w kx = > > @ ;Cos* 27 (nk + f)x
k=n k=1 j=1
rR=1

iZaﬂkMZ{ (1— log(an+z‘) >} cos? 2z (nk +j7)x

Jj=0
n=-1 n—j

-5 Z alz(k+1)2 ( logn) (1+ cosdn (nk + j)x)

5 2 a/z(k+1) ‘{lzﬂln - Sn(x,)}r

where, putting (1 — M/logn) =a,=da,
n—1
S.u(x)= > a*cos 4m(nk + j)x
Jj=0
_ar sindz nkx—a”~1sindz(nk —1)x— sindznk+1)x+a-'sindz(nk+(n—1) x
1—2a-'cosdnx + a~* :

v

IIV

Since x =% 0, =t:% (mod 1), we have cosdz znx =1, and the denominator

of S,(x) is greater than a positive constant for large n. Since a” >0, as
n - oo, the numerator of S,(x) is, in absolute value, not greater than a” +
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a"! 4+ 1+ a-!<3 for large n. Hence S, (x) tends to zero with 1/n. Then
from (12) we conclude easily that

> gk = o(1/log n),

(ay, = o(1/log n) being deduced by the same argument as (10,), thus (11)
is obtained in the cosine case.

3. THEOREM 3. Let {a., b.} be the sequence of Fourier coefficients of a
function f(x). (i) If {a, -+ b} forms a non-increasing sequence and if the
series

(13) > (@ +bi)logk
fe=1

converges, then f(x) has the propertv (R). (ii) If {a; + by} is non-increasing
and if f(x) €L¥0,1), then f(x) has the property (R; C,a) (a >0).
Proor. (i) We may suppose that g, = 0. Clearly we have

co =1

2 (ak + bk) 2 2 (ank-a—] + bnk+})

k=1 k=1 j=0

= nz (.al;zkﬂz + bisz)

k=1
k=1

- and

n

1 3 » 2 2
g na+ b)) = X (a+ ).
k=(n]2)
Hence we have

(14 Saw+ b)) = ;3; > (@i +bD.

k=1 E=(n2)

Since F,(x)~ 2 (@uw: COS 27 nkx + by, sin 27 nkx), we deduce from (14) that

oo

fF:f(x)dx SIS GBS S 3 > @i
2=1

n=1k=1 n=1 k=(

Zk+1

gSZ(ah—}— bk)z - < const. > (@ + b)) logk < oo.

n=1 k=1
So that F,(x) >0 as n# > o almost everywhere.
(ii) We may put @, = 0. Similarly as in (i) we have

anude = > —51; . (@ + bjx) < const. > (@i + b)) < oo,
n= 1

n=1 k=1 n=1



202 T. TSUCHIKURA

from which we see that —}{ 2 Fi(x) > 0 and then easily

k=1

1 11’ (w b
im — @ er Fp(x) =
1}_)1’2 Agm E An k L( ) 0
for almost all x. q.e.d.
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