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1. L e t / 0 0 be a function of period 1 and integrable in the Lebesgue
sense in the interval CO, 1). Denote the n-th Riemann sum of Kx) by

n -1

( 1 ) Fn(f, *) - FnW - * 2

If the sequence Fn(x) converges to I f(u)du as w->oo for almost all
o

x, we shall say that /(#) has the property (R) and if the convergence is
in the Cesaro sense of order ay instead of ordinary convergence, the
function / (*) is called to have the property (R;C,(X). The following
results are known:

THEOREM A. (J. MARCTNKIEWICZ-A.ZYGMUND [3], p. 157 H. URSELL L6H).
For any p, 1 <:p < 2, there exists a function € Lp (0,1), which has not the
property (i?).

THEOREM B. (H. URSELL [6]). If a function €L2(0,1) AS monotone in
(0,1), then it has the property (/?).

THEOREM C. (J. MARCINKIEWICZ-R. SALEM [2]). If the Fourier coefficients
a/ύ, bn of a function f(x) €L-(0,1) satisfy the condition

CO

( 2 ) \-al + 2 (al + 6l)kζ < oo

for an £ > 0, then fix) has the property (R) and if

( 3 ) 2 (flit + &A) log log k < oo,

then fix) has the property (R; C, a) for a > 0.

THEOREM D. (A, RAJCHMAN [4]). There exists a bounded measurable
function /(*) swdz /fotf £/*£ s#ί of points, for which Fn(f,x) does not tend to

J f(u)du as n -> oo, forms an everywhere dense set in (0,1)9.

But it seems to be unknown whether we may weaken the additional
conditions of monotonity of the function or (2) or (3), for a function
<̂ Z- (0.1.) to have the property (/?) or even CR; C, a). In this note we
shall discuss some related problems using tire Fourier expansion of func-
tions.

2. If the function ft.(x) with the Fourier series

O For Kajchman's example, as we see immeliately, the required set contains all
the rational numbers.
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C 4 ) o βo -+ 2 Φn(ΐ)(an cos 2π nx + bn sin 2π nx),
Δ n = \

where Ψn(t) are the Rademacher functions, has a property P for almost
all t, we shall say, following Paley and Zygmund (See [7] p. 125), that
almost all the functions with the Fourier series

CO

(, 5 ) -7y-a$ + 2 ± ^a n c o s 2τr nx + bn sin 2π nx)
Δ n = l

have the property P.
After this definition we shall aim to prove the following

THEOREM 1. Suppose that one of the following conditions is satisfied:

(1.1) - ~ 4 + 2 Ofc + bl) log k < oo ;

(1.2) 2(°* + ̂ )=
k = n

oo

(1.3) 2 Ĉ rt + bn) < °° /̂2<i /^^ sequences \au\ and \bn\ are non-increasing;
•n = ι

Cl. 4) 2 fβ« + bl) < oo and άί>(l — M/log k)άLι, b'ί > ( 1 - M/log /?.) ftLi,

/or ^ ̂  ^o, where M is a non-negative constant independent of k, and k0 is
an integer.

Then almost all the functions with the Fourier series (5) have the
property (R).

If we suppose (instead of (1.1)) that

\ al + 2

for an «? > 0, then almost all the functions with the Fourier series (5) are
continuous (See, [72 P 127), and the conclusion of Theorem 1 is evident.

For the proof of Theorem 1 we need the f Λlowing

THEOREM 2. Let us suppose, for the series

( 6 ) *Σ>

that one of the following conditions is fulfilled:

(2.1) 2

(Γ2.2J) Cn = 2 r f c = o (I/log n) as n -> oo
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C2. 3) 2 c* < °° and I ck I ^s β non-increasing sequence

(2.4) 2 <5 < °° β W ί * c* < Cl - Λf/log ft) cLi C* ̂  *oλ
A : = l

where M is a non-negative constant independent of k, and k0 an integer.
Then, for almost all t, the series

Φn(t) =
fc = l

converges for every n and, Φn(t) -> 0 as n -> oo.

PROOF OF THEOREM 2. The conditions (2.2) and C2.4) follow from
(2.1) and (2. 3) respectively, and we prove the theorem under the condition
(2.2) and under (2. 4). Let us denote, for δ > 0,

2 |and E =
t

By Khintchine's inequality (See, e. g., [7H p. 124 or [53) we have

Γ1 ' /I N

exp(\n8)\En\ <i I exp 0w|Φ«(2) !>#<Ξ2 exp ί-^ \ίCn)

o

where λ» > 0 putting \ n = δ/C» we get

C7) | £ n | < 2 expC -δVC2C;).) fw = 1,2, ••••)•
If the condition (2.2) is satisfied, we see for sufficiently large n

(i> n0 say) that
(8) • Cή^Cn^ δ'J/(4 log n),

and then from (7) |isw | <Ξ 2 exp (' — 2 log w) = 2/wy (n ί> w0) which is a term
of a convergent series. Therefore, the series Σ\En\ being convergent for
any δ > 0, we complete the proof by the Borel-Cantelli lemma.

If the condition (2. 4) is satisfied, we get for n £: k0,
oo oo oo

fc=l fc=l fc=l

^ ί™f w Λ + w ^ ! \ l o g n /

log w ^ _ M
logw

for large n.

On the other hand, for a given £ > 0, if n is large enough, we have
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± ά

that is,

CIO) cl = o (I/logw) as ^ -> oo.

F r o m (9) and (10) we have easily CL = o (I/log n) hence by the same
arguments in the preceding case we complete the proof.

PROOF OF THEOREM 1. It is sufficient to consider the case where one
of (1.2) and (1.4) is satisfied.

Since Fn(fe, x) ~ -s- a0 + (<*»* c o s 2 7 Γ bnΊc sin 2τr , if

Σ ^fc c o s 2 ^π nkx + &L sin2 2π nkx) = o (I/log w) as /? -> oo

for almost all ΛΓ, then by the result of Theorem 2 we may prove Theorem
1 using the argument of Paley and Zygmund ([71, p. 125). If Cl. 2) is
satisfied, then (11) is evident.

We suppose that (1.4) is satisfied, and for the sake of simplicity we
consider the cosine series only, the sine series may be treated similarly.

We may suppose that I Φ O , Φ -~- (mod 1). For a given £ > 0, if n ^ k0

is large enough, we have

(12) ^ c o s 2 + > cos2 2π (nk + y>

^ I ̂ » I {π (i -

where, putting (1 — M/logw) = an =

l o g

+ cos 4 r̂ (nk + j)x)

Since x Φ 0, Φ y C m o d l ) , we have cos 4τr ^Λ: Φ 1, and the denominator

of Sn(x) is greater than a positive constant for large n. Since <xn -> 0, as
n -> oo, the numerator of Sn(x) is, in absolute value, not greater than <xn +
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a"-1 -f 1 -f or 1 <g 3 for large n. Hence Sn (x) tends to zero with 1/n. Then
from (12) we conclude easily that

2ύ&fc = oil/log n),
/,: = 1

('#,;; = o(l/logw) being deduced by the same argument as ilO)), thus (11)
is obtained in the cosine case.

3. THEOREM 3. Let {an, bn} be the sequence of Fourier coefficients of a
function fix). (i) If {a\ + bl} forms a non-increasing sequence and if the
series

(13) ^Σ(d +b'ί) log k

converges, then f(x) has the property (R). Cϋ.) If {μnΛ-bn} is non-increasing
and if f(x) €£-(0,1), then fix) has the property (R; C,oC) {a > 0).

PROOF, (i) We may suppose that a0 = 0. Clearly we have
σo oo ft — 1

Cώ + «̂O — (al + f̂t)r

and

1
-o- wC f̂t -f bl) ^

•fc = 0

Hence we have
co

(14) 2 CoL + b'L) g ?

Since FΛCΛ) ^ 2 C *̂* c o s 2 7 r w * * + ^ sin 2τr Λ*ΛΓ), we deduce from (14 )̂ that
fc = l

CO I CO CO CO CO

2 / fit*) dx = 2 2 (βϊ* + **) s 2 - - 2 («'• + bi)

oo 2A;+1 co

S 3 2 C'βfc + ^D 2 ~~ S const. 2 «̂fc + &fc) log ^ < oo.

So that Fnix) -> 0 as ^ -> co almost everywhere.
(ii) We may put Λ0 = 0. Similarly as in (i) we have

1oo 1 co co^

2 -ΣΓ \ Fn(x)dx = 2 IT 2 ( ^ + bM) S const. 2 (4 + &£
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from which we see that — 2 -RtOΰ "> ° a n d t h e n easily

1

lim -w5τ 2 -^-* 1 } fib(*) - 0

for almost all x. q. e. d.
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