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S. Sasaki studied the spaces with normal conformal connexions whose
groups of holonomy fix a point or a hypersphere and derived the following
fundamental theorem : If the group of holonomy of a space C, with a normal
conformal connexion is a subgroup of the Mdobius group which fixes a point
(or a hypersphere), the C, is a space corresponding to the conformal class
of Riemann spaces including an Einstein space with a vanishing (or non-
vanishing) scalar curvature [1, I]. He also generalized the Poincaré’s
representation for non-Euclidean geometry to any Einstein space with
non-vanishing scalar curvature [1, III7 and studied the spaces with normal
conformal connexions whose groups of holonomy fix two bdoints or hyper-
spheres [1,II7]. Concerning these results K. Yano showed that these spaces
are closely related to Einstein spaces which admit a concircular trans-
formation and studied the relations between conformal and concircular
geometries in these spaces [3]. In this paper we shall define in §3 a
space with a certain conformal connexion which corresponds to a class
of concircularly related Riemann spaces. And making use of such a space
we shall generalize in §6 the Poincaré’s representation to any Riemann
space with non vanishing constant scalar curvature. In §8 by considering
spaces whose groups of holonomy fix two points or hyperspheres we shall
obtain some results which are natural generalizations of those obtained
by K. Yano [2, V], Most of the results obtained in this paper will be
found their analogues in the papers by S. Sasaki [1,1. II. III] and K. Yano
[[2, V2, [[3]. Therefore we shall not state in detail the proofs.

§1. Concircular geometry".

Let V, be a Riemann space with a positive definite metric tensor g;s2.
In V, consider a curve x'(s), where s is the arc length and x'’s represent
local coordinates. We denote by §/8s the covariant derivation with respect
to {]2} along the curve. Then a curve x'(s) is called a Riemann circle
if its first curvature is const, and its second one is 0. The differential
equations are

dy’

Sni Tk —
(1.1 55 T ImmAT o =0,

where

1) See K. Yano [2]. 7
20 i Jikey e run from 1 to n.
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b dr
~os ds
Now we take a conformal transformation
1.2) gis = p*gis,
then the Christoffel’s symbols are transformed by
1.3) Uit = (e} + o8+ pudl = oo,

where
o . X
pr=5logp,  ph=glps
Let us put also
1 .
1.4 Pix==pyx — Pipx + > P'Pig s »
]

where semi-colon denotes the covariant derivative with respect to { ]-Zkf. In

order that any Riemann circle is transformed into a Riemann circle by
(1.2), it is necessary and sufficient that p satisfies the following differential
equations :

(1.5 P = DYix,

where ¢ is a scalar function. A conformal transformation satisfying (1.5)

and the geometry which deals with properties invariant under such trans-
formations are called the concircular transformation and the concircular
geometry respectively.

The curvature tensor Riw of ¥, with the metric tensor j,; is given by

(1.6) R;u = Rjikl — pjkﬁi + Pﬂ&i — f/ncpi =+ ,4/_71,0;;; ,
where

ooy o) B (i B (i
1D R =5 s et ) — {0 ik

and p;==¢"pj.

If the conformal transformation (1.2) is a concircular one, 'we obtain
from (1.5) and (1.7)
Riu = Rju — 2¢(gmdi — 75:88),

1.8 N

Ry =Ry —2(n—1) ¢y ,
and

PPR=R—-2n(n—1)¢,

that is

_ 1 i p
Substituting the last equation in (1.8), we see that the tensor

R . )

(1.10) Zhu=R — m(ﬂﬂcsi — gady)

is invariant under concircular transformations. Zi; is the so-called concir-

cular curvature tensor.
In the next place we consider integrability conditions of (1.5). From
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(1.5) we have

(1.11, Pz = V9w + piPu
where
(1.12) V=¢— 5 pip.

Differentiating (1.11) covariantly, we get

Piwsr = ¥yagm + ey + pip) + p;(Yrgw + pepr) .
Exchange % and !, and subtracting the equation thus obtained from the
original one, we have

(1.13) PiRYw = w9 — ¥, 195 + ¥ (Pgs — Peds) .
If we contract p’ to (1.13), then the relation
4
(1.14) Vo= g,
holds good. By virtue of (1.13), we have
R — . 1#‘7 JP)‘ .
1.15) piR;, (n—1) <T o \If)pu

(1.15) shows that any curve (we shall call it p-curve) which belongs to
the congruence of curves determined by the vector field p; is a Ricci-curve.
It is known that p curves are geodesics and any hypersurface determined
by an equation p = const. (we shall call it p-hypersurface) is totally
umbilical, furthermore the orthogonal trajectories of p-hypersurfaces are
p-curves [2,1I7]. The following theorem is obtained easily.

THEOREM 1.1 Amny conformal transformation which makes Z'y, invariant
is a concircular one.

2. Spaces with conformal connexions.

In a space with conformal connexion C,, take a Veblen’s repére R4»,
then the defining equations of the connexion are given by

dR, = dx'R;,
2.1) dR; = T%dx'R, + {j’}e}dxwei + gd%* R,
dR. = TLwdx'R;
where
@.2) RRy= RoR.= RRi = RoRi =0,  RiR.= —1.

RiR; = g5, ITL, = g/11%.
By a transformation (1.2) of the metric tensor the parameters of con-
nexion are transformed as follows [4]:
% = H?I-: + Pk,

(2.3) il _ (1 : i i

{]k} = {]k} + pj6; + Pksj P9 ks

Py = Tk + phe
The conformal curvature tensor of C, is given by

1y 4.B,C, ... run over 0,1, , n, oo.
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’ ol olly - AT
(2.4) Fpy = “oxl . T T ogb + s — Malls,
where ’ ' .
o = 8z, Oy =8, Y= 5= Mo =T =0,

; i -
I, = {]k }r I3 = g
C, is not determined uniquely by a given Riemann space V,. But if we
assume that
2.5) Eu = ngm,
where
i i 1 v ; i

Wi =R — 7 —5 (Rindt — R; & + gkl — yaR)
R
(n—1)n—2)
is the conformal curvature tensor given by H, Weyl, then the space C, in
consideration becomes a space with normal conformal connexion C,. Be-
tween the set of spaces with normal conformal connexions and the set of
classes each of which consists of Riemann spaces conformal to each other,

there exists one to one correspondence. From (2.4) and (2.5), we obtain

= L1 (R~

+ (y k51i — .‘leBIf:,)

R )
2n—1) 9%/,
and by virtue of the property of Wi, we have Fj; = 0.0

§3. Spates with conformal connexions which are in one {0 one
correspondence with concircular classes of Riemann spaces.

We shall denote by ), spaces with conformal connexions which satisfy
the condition
3.D Fi = Zha-
Now consider two Riemann spaces V., V. which correspond concircularly
to each other. Making use of Veblen’s rep3re we construct Q, and (.
from V, and V, respectively, then F}, = Z}, = Zj, = Fj;. From the last
equation we obtain (2.2), after some computation.

Therefore Q, coincides with (.. Conversely if (. corresponding to Va
coincides with , corresponding to V, which is conformal to V,, we have

Ziww = Fiy = Fj. = Zjn

Hence, on account of Theorem 1.1, v, is concircular to V,. Therefore

we obtain the following

THEOREM 2.1 The spaces (), with conformal connexions such that the
assumption (3.1) is satisfied are in one to one correspondence with classes each
of which consists of Riemann spaces which are concircular to each other.

1> In order to define C}, it may be used Fj,=0 instead of (2.5). See (4.
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It may be worth to notice that some one of the classes in consi-
deration may consist of all Riemann spaces which relates trivially? to
each other.

If we put A =4 B=j  in (2.4), then

Fiu = Ry + 811 — SI15 + g™[Tug s, — g™ Ilog .
Substituting the last equation and (1.10) in (3.1), we get
SIS — B,Z:II% + gy o — o " Miwgn = — hr(n—R—lg)ﬁ (G581 — J58%)-
Contracting i and /, we obtain

3.2 (n = 2T g Mgy = — X

Contracting ¢/ with the last equation and substituting it in (3.2), we
get

(3.3 I = cgp, 1l = cdis
where

- R___
34 N TR D

On the other hand we have from (1.10) ¢*Zi; = 0, hence by virtue of
(3.1) we get

(3.5) 9" Fj = 0.

It is easy to verify that in order to define ), (3.5) may be used instead
of (3.1).

§4. Theories of curves and hypersurfaces in Q..

As Q, is a special case of C,, the properties of C, hold good in (,.
Therefore for example, the Frenet's formulas of curves in Q, i. e. the
concircular Frenet’'s formulas of curves in V, [2,III] are obtained from
those in C, [4, p. 131] with (3.3). The Gauss, Codazzi and Ricci’s equa-
tions of subspaces of (), are also obtained from corresponding ones of C,
by substituting (3.3) in these equations [4, p. 144], but the computation is
complicated. In analogous way we may obtain another results, but we
shall restrict ourselves to state a few results which are easily deducible.

THEOREM 4.1 In order that a hypersurface X,-, in Q. is proper®
umbilieal one, it is mecessary and sufficient that any hypersphere which is
tangent to X,,-; is invariant by the connexion of ), along X, .

THEOREM 4. 2 In order that the induced conformal connexion on a
hypersurface X,-,: x = x(x*) in C, makes X, a Q,_, it is necessary and
sufficient that X,-, is umbilical and the equation

15 It means that p in (l.2) is constant.
2> The word “proper” means that the mean curvature of the hypersurface is constant.
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4.1) Zpoa = -—WijIX})ﬁXéva D

holds good, where Zy.. is the concircular curvature tensor of X.-, and X
ox' .

= o Xi = 9790k
§5. Q. whose group of holonomy fixes a point or a hypersphere.

Now we take an arbitrary Veblen's repére R, in order to represent
Q, analytically. In order that the group of holonomy of £, in considera-
tion fixes a point or a hypersphere it is necessary and sufficient that there
exists a function p* satisfying the following equation:
d(p'Ry) =1 (p'R4),
where 7 is a Pfaffian [1,I]. If we put = = 7,dx*, the above equation can
be written also as follows:

a 4
(5.1 phe= af;z: + II§0% = 7p.
If we put
o 0 —1
(948) = 0 gi; O
-1 0 0
and
(5.2) ps = gaspt, .
(5.1) can be written in the following covariant form:
2
(5.3) poi = 2o —Thps = Tps.
If we write the last equation explicitly we get
(5 3% Posk — Px = TrPu,
(5.3), Pik — CIikPo — JjkPeo = TkPJ,
(5.3); Poorts — CPx = TrPoo,

where commas denote the partial derivatives with respect to the coordinate
(x%). In the same way as spaces with normal conformal connexion C, we
can prove that if there exist points where p, =0, their locus is an
umbilical hypersurface [1,II], [3]. In the following discussion we restrict
ourselves to the domain in Q, where these points do not exist, Then we

can put py = —1. Substituting it into (5.3),, we get 7, = pr and (5.3),,s
become

(5.4, Piw + CYie — YPe = PiPrs

(5.4), Poorc — CPt = PoofPi-

In (5.4), pj» are symmetric with respect to j and %, so p; is a gradient
vector, Therefore there exists a scalar function such that

ologp

Now if we define ¢ by

T 1D See [7;;;‘144 (. 1D). a,b,c, ran over I, ...... , n—1.
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(5.6) P = Cp* — %n"’pim,

C is a constant on account of (5.4). Substituting (5.6) in (5.4),, we get
-, 1
Pix + €Ijr — (CP' — QIIPiPl> Jix = PiPr »
ie .
(5.7) Pix = (épz — ) 9 ix-

(5.7) shows that the conformal transformation y;; = p?g:; in consideration
is concircular. Hence from (1.9) we get

_— 1 -
cpt—cCc= — omin =17 (p*R — R).
By virtue of the definition of ¢, (3.4), it follows that
_ R
©.8 VIR T

As c is a constant, so is R. If we choose the Veblen's repére with respect
to §:;, the invariant point or hypersphere in consideration is represented
by A =R. —cR,. As A*=2c¢, A is a point or a hypersphere according
to ¢ =0 or =0. Therefore we have the following

THEOREM 5.1. Any space Qn whose group of holonomy is a subgroup of
the Mobius group which fixes a point or a hypersphere corresponds to a
concircular class of Riemann spaces including one with non vanishing or
vanishing constant scalar curvature respectively. The converse is also true.

In the following we shall denote, for brevity, the spaces with non-
vanishing or vanishing constant scalar curvature by @} or ®32 respectively.
If we do not need to distinguish them, we denote them simply by Ou.

§ 6. A generalization of the Poincare’s representation.

S.Sasaki proved that the Poincaré’s representations of non-Euclidean
geometries can be generalized to any Einstein spaces with ¢ = 0 making
use of C, whose group of holonomy fix a hypersphere [1,III]. Quite analo-
gously the representations can be generalized to any @, replacing Einstein
spaces, C, and confomal circles by &2, Q, and Riemann circles respecti-
vely. Therefore we obtain the following theorems.

THEOREM 6.1. If the group of holonomy of Q. fixes a hypersphere (or
a point) A, any Riemann circle, having a circle orthogonal to (or a circle
passing through) A as its image,is a geodesic of the ®, (or ®n) corresponding
to A. The converse is also true.

THEOREM 6. 2. Suppose that the group of holonomy of Qn fixes a
hypersphere (or a point) A. Then any totally umbilical hypersurface,
having a hypersphere orthogonal to A as its image, s a totally geodesic
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hypersurface 0f ®, corresponding to A.

THEOREM 6.3. The distance s between two points Pyand P; 0n a geodesic
g of an O, is equal to \// — ﬁ%
double ratio determined by points P,, P., P a»d P’, where P and P’ are the
points at which the development 4 of y in a tangent Mobius space of the
space Qn corrvesponding to the concircular class of Riemann spaces and con-
taining the given ®, cut the invariant hypersphere A, and P,, P: are the
imagz of P,, P; respectively.

If @), is the complete space with ¢ > 0 the above representation holds good
not only in a tangent space of Q,, but also in the given O

In the previous paper [5] the author obtained the differential equations of
pseudo-parallelism in Einstein spaces and computed parallel angles. These
results can be also generalized to ®&,-

times the natural logarithm of the

§ 7. Concircular transformations of a ®» to another ¢, .

In this section we shall state theorems concerning concircular trans-
formations of a ®. to another .. These results are obtained from
Theorem 5 1 in the same way as the theorems 3, 4, 5,6 in [1,I] are
obtained from the Fundamental Theorem. [1,I]

THEOREM 7.1 If a Riemann space V, is concircular to @. in r >1

ways, then V. in consideration is concircular to a ®,-

THEOREM 7.2 If @ ©®, can be inapped concircularly and non trivially on
a @k it can be mapped on a A°.

THEOREM 7.3. If a @, (or O)) can be concircularly mapped on a
O, (07 @), it can be mapped concircularly and non trivially on a ?)—}, (or
D).

THEOREM 7.4, If a O} is wiot irivially concivcular to another @2, it
is concircular to a O,

Summarizing these theorems, we can state the following theorem [3].

THEOREM 7.5, If @ ®, wilh a constan: ¢ is non trivially concircular to
another ., with a constant c, then the @, is also non trivially concircular
to a ®, with any preassigned constant c.

Proor. If ©, is non trivially concircular to @, the partial differen-
tial equations

P = (Cp* — ) Y

must be completely integrable. The nccessary and sufficient condition for
this is that the space ®, admits a family of oo! totally umbilical hyper-
surfaces whose orthogonal trajectories are geodesic Ricci curves. But

this condition does not depend on the constant c,
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§S. On the line element of ©. which is non trivially
concircular to another @..
Suppose that @, is non trivially concircular. to another @,. Let ¢ and
¢ be constants corresponding to ®, and @. respectively. As ©, admits

a concircular transformation, if we choose a suitable coordinate system,
its line element takes the following form [2,V:

(8.1 ds? = f2(x%) g (x¢)dxodx’ 4 (dx™)2 (a,b,c=1, ..., n—1.
Therefore after some calculations we obtain
(8.2) Ru =Ry —Ln—2)f%+ff "o »
Rnb = 0,
f//

le = —(n— 1)'”,- ,

where R, is the Ricci's tensor constructed from ¢. and dashes denote
derivatives with respect to x*. From (1.9). (1.12) we get
V= pic— c— %- pipi.
Differentiating the last equation with respect to &/, we have
¥, ;= 2p%p; — (p; + plpips),
whence we get
pY. ;= 2o~ — p'p) pip;.
Substituting the last equation in (1.15), we obtain
(8.3) piRl= — 2 (n — Lycp-.
If we remember that in our coordinate system p-curves are x"-curves,
we can put p' = «ad,. Hence from (8.3) we have
Ry, = —2c(n — 1.
From (8.2); and the above equation, we get
7 = 2.
Integrating the last equation we obtain the following theorem[2, V],
THEOREM 8.1. The line element of @, which is non lrivially concircular
to another O, can be reduced to the followi}zg canonical form :
(1) ds*= (Acosa/ —2cx® + Bsin / — 2¢ ") gudx'dx’ + (dx™)?, if ¢ <0,
(I1) ds* = (Ax" + B)*qudx'dx’ + (dx")*, if ¢ =0,
(I dst = (AeY™ " + Be ¥ Yyl dyidx” + (dx")?, if ¢ >0,
where gu(x°) dx'dx’ is a line element of ®._, whose scalar curvature is

Il

¢ II) R = (n— 1)(n — 2_>Az’
"y — D
CTID) R = 4( ﬂﬁ u_)<AB.

Finally, I express my hearty thanks to Prof. S Sasaki for his kind
guidance and suggestion during the preparation of this paper.
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