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Introduction. G.Vranceanu® introduced the concept of a non-holonomic
space which is more general than a Riemannian space and generalized
the parallelism of Levi-Civita and geodesic curves in that space. From
another standpoint Z. Horak® considered a non-holonomic region as a space
with a non-holonomic dynamical system. These spaces were afterwards
discussed by several authors. The non-holonomic system in a space of
line-elements with an affine connection was first discussed by T. Hosokawa®.

We now suppose that at each point x of an n-dimensional space z
independent differential forms

B a,B=1,2,~---,n;>
0.1) ds* = A%(x*, dx?) ( 412
are given for a displacement dx, where A%, dx) are homogeneous of degree
one in the dx. If we write (0.1) in the form

0.2 ds® = A, (%, dx)dx™ <7\.g(x, dx) = g ),

Aa(x, dx) depend on the direction of dx only and have a non-vanishing deter-
minant. As easily seen, A is covariant in «. Hence we can define in the
space. of line-elements (x,x") a special non-holonomic? system by

(0.3a) . ds® = 3, (x,x')dx®,

which determines the displacement of a point in this system. ds* coincides
with the original A" (x, dx) when and only when the displacement lies in
the direction of the line-element :

7Q.3b) §% = 0%, )X = A%, x).

In this paper we treat such non-holonomic systems and derive some
fundamental quantities. We find that by use of our system the well known
Cartan connection of a Finsler-space can be- expressed far more neatly
than by general non-holonomic systems.

The author wishes to express her sincere thanks to Prof.A. Kawagu-
chi for his kind guidance.

1> G. Veaxceanu, Sur les espaces non Tolonomes; Sur le caleul différentiel absilu pyur
les variétés non holonomes, C.R., 183(1926), p. 852 and 1083.

2) Z. Horax, Sur une généralisition de lu notion de variété, Publ. Fac. Sc. Univ.
Masaryk, Brno, 86 (1927), pp.1-20.

3) T.Hosoxawa, Ueber nicht-holonome Uebertragung in allgemeiner Mannigfultigkeit
T, Jour. Fac. Sci. Hokkaido Imp. Univ., I, 2C1934), pp. 1-11. )

4) We use Greek indices in holonomic systems and Latin indices in non-holonomic
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1 1. Fundamental properties of non-holonomic systems.

141

From the

given field of the n independent covariant vectors A\’(x,x’) we first derive

that of the reciprocal contravariant vactors A% (x,x’) as follows.

If we

solve the equations (0.1) for dx*, the solutions may be of the form

(1.1) dx® = B*(x,ds)

with homogeneous function B® of degree one; we then put
oB~

(1.2) SCdsy A(x,ds) or = A%(x,dx).

(In general, when we substitute ds in ¥ (x, ds) by (0.1) we write f (x, dx)
and vice versa; further, in case x' replaces dx we write s’ in place of

ds. ) If we differentiate (1.1) with respect to dx?, we get
(1.3) Az (x, xONG(x, &) = 85

Similarly differentiating (0.1) we get

(1.4) o(x, XINI(x, 8 ) = §,

(1.3) and (1.4) show the reciprocity of the two fields A\ and \%-

also by the above convention

(1.5) N NY(x ) = 8, N ) A 8D = 8,

we write

We now introduce the following fundamental operation formally called

the partial differentiation
1.6 of _oF.

ost T ox®

o

of o\
o= (ot ot B

ox P Oz

+ s”') A

the differentiation symbol ©/2s* has only a formal meaning.

note the obvious fact that of/ox® and o f/ox* are differerent:
_ of 9% | 9 oas
(1~7.) oxw - ox® oS8’ ox®
Applying 9/@s” on (1.6) and permuting the indices @ and b,
obtain

x'F.

_ 9 @f o
(1.8) osost T Ustose T P st
where
: o {ONT DNE ) e s
(19) w _<E;)\-ﬂ e S > )\,‘f/’ 7\,.,.
On the other hand, since
OS(x,s") _ Of(x X)) o
o5’ oxe v
Ffx,s) _ Ofx,x) o \E of O"\%
ostos™ T OxleoxB T T ox'e oslh
we get
: P, S) T X) s e OF
(110) 'O‘S’uas'; 'Oxfaax’p /\‘r, 7\"; - slal) as/'
where
e
(1.11) Q, = 200N

oS’y

We must

we easily
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The quantities wf, and Qf, will play an important réle in the non-holono-
mic system (0. 3).

We shall proceed to find the relations between these quantities w7,’s
and Q;’s under transformations of non-holonomic system. If two systems
are determined by the functions A%s and ’A”s,then we have
(1.12) s ="AlCx, %), d’s’ = "N(x, 2 )dx>.

By . (0.3b), (1.12) s will directly be transformed into ‘s by the equations
of the form

(1.13) s = C%(x,’s"), A = C(x," A7),

where C' are mutually independent in ‘s” and homogeneous of degree one,
From (0.1), (1.12), (1.13) we obtain by differentiation

(1.14) AL = CP'AL, A\ = C/AY,
where
oC*
v —
Ci - a’s’i‘
Hence ds* are transformed as
(1.15) ds" = C¥(x,’s')d’s’;

this is nothing but the non-holonomic transformation of our systems. The
inverse equations of (1.13), (1.14), (1.15) run as

(1.13") A ="C(x, AT,

(1.14) Ny ="Cxg Ag= O (’C,’, = 'Cagf * )>:
(1.15) d's ='Cids".

Obviously we have

(1.16) ‘C.C =38, GCP =38

Now, differentiating the second equation of (1.14) with respect to ’s”
and noticing the homogeneity of C; we get the transformation formula of
the quantity Q¢, in the form

(1.17) 0= 250 ¢+ cocy o,

On the other hand, in V1rtue of (1.14’) we see the quantity f, is trans-
formed as follows

. ) a*’C‘ 2% Ch k¢
(118) wl] = 10}‘{( os" asa ) + chab}'
aCl v, aC{ a Vs 7 a'C/e ’
+ ( a /s; Ci - I C ) I( as/,‘ C}Qw)

Next we shall derive the covarlant derivative of tensors with respect
to s’ in our non-holonomic systems, The components of a vector v* or a
tensor 7T%1—%» .‘,a(, in a non-holnomic system are defined by
(1.19) =A% T = G A A T g
where v*and T‘”"'é,_m are components in the holononnc coordmate system
x. In holonomic systems the partial derivatives of a vector »%(x,x’) with
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respect to ¥’ are components of a tensor of degree two, but in a non-
holonomic system the partial derivatives are not generally those of a
tensor. Nevertheless the modified derivatives

(1.20) o = T QLY =, + O
are components of a tensor of degree.two, where “;” denotes partial diffe-

rentiation with respect to s'. This can be easily seen in help of (1.17)
or by the following. Indeed (1.20) are written by the definition of Q}, as
. . . avoa
(1. 21) va;y; - 7\,:7\5 Zx,—p.
By this reason, we call the tensor v%, the covariant derivative of the
vector field »* with respect to s'.

Generally for components of a tensor field 7% _, =~ we consider

likewise
»
b

, o . Ay ! a; Ta TG PR 73 B
(1.22.) T! 0y bgibgar = 1 "'1)-»-04/;0,14.1 + ZQ“"I!H-] rrm L P
=1

q

h Talr )
2 :ij"q-»-l by---0j—q0 Ot p--Dite
i=1

It can be shown that 7T ’s are non-holonomic components of

the ordinary covariant derivative with respect to x/, that is
g ) tp-fp = XN 1..0N OB NB B @y P
(1.23) Tk igivgey = Nade AN NSOAPra T o gl g g L

Accordingly we call them the covariant derivative of the tensor field T
with respect to ',

R ES

2. Fundamental quantities in the Finsler space. The arc length
of a curve x* = x%(t) in a Finsler space is given by an integral

2.1) s = f eCx, ¥ dt,

where ¥ (x, x’') is homogeneous of degree one in the x’. To introduce an
invariant connection we usually consider the manifold of line-elements
(x,%"), each of which is composed of a point x and a direction %’ in this
point. As is well known, E. Cartan established the euclidean connection
by setting four postulates”. This is the space with which we shall concern
here.

In the Finsler space we consider a non-holonomic system defined by
(0.3) and represent ¥ (x,x') in x and s’ :
(2.2) L(x,2)="8(x,s")
which is homogeneous of degree one in the s’. By differentiation we get
(2.3) JB:(EC/,SQ _ o8 (x )

7
oS I xn'

Putting the vector

5 I CanraN,  Les espces de Finsler, Actualités sci. et ind., 79 (1934).
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_ 22
l"ﬂ - ox®
we obtain
_ 2%
(2.4) L=
If we put
= 1 g - O®
T =5 ¥ and g = =omor,

the tensor g,s serves as the fundamental metric tensor in the manifold
of line-elements. By virtue of (2.3) we see that

(2.5) §="3 T = A2 D

a2 ax'w ’
*%;'1,:/1 = kﬁhﬁgm, *%;u:h:c = ZXOEXfXZCNByv

where we put Cugy = ~—;—ag,3/ax’7 following Cartan. Thus the metric tensor

s and Cyg, are given in the non-holonomic system by

g n = %%;/v;h - 15&:( Q’:,)
(2.6) v ] \
Cape = 9 e = 9~ (g,w;c - Q‘lcg(w — &27(7g1d).

As can be seen by (2.5), these components are symmetric in their indices
and it holds

2.7 Capes'® = 0.

3. Parameters of connection. In our non-holonomic system we can
introduce the covariant differential of a contravariant vector field » in the
form

(3.1 v = A 8v* = £\, (dv* + Pgvidx” + CgvPéx™)
and put
(3.2) Sv*t = dv' + I'j)v*dx® + C)lv"ds™.

If we put I'@aPx’Y =2G* 8§x* = dx'* + (9G*/ox'¥)dx" following Cartan,
then we have at once

(33) j b= {Xm - By Ix ox° oxv Ao,

1 ( ;'ll = "X;ng - g}i 7\}?)7\1 = g"’Cbcc + Q;:o = C‘l}z: -+ &231(:"
where g is the contravariant tensor defined by gu as usual: gug' = 0.
Further we get by (3.3)
*a s o a 3 /

G G = Tus® = b ,(aﬁﬁ — 87;3 xPNT.

In holonomic systems the parameters of the euclidean connection of
Cartan are given by the following formulas :
1 (8gms OQw  Ogws
28\ T T o ax>>’

Yo =
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(3.5) ¥ = oy ox®,
- 96> °G! 563\ .
l,,,};;—; =g+ (was =xe — Cocs—g 5 - C,Qe& X’ >g" -

The parameters C;' are determined already by (3.3). We shall write in
the following the parameters 17
Burs g , Cane, W) and Q7.

=

Differentiating gus = gur \j and using (1.5), (1.11), (2.6), we get

" in terms of the fundamental quantities

Das trm,
oxY

b
AN+ (run(iil‘ﬁx + Az g As + 2Cwe— ”’“ X NN

® oxY

and consequently

: ) { 0" Yae 2 e ﬁ) !/a/ b By y ¥ DN ?J'(7\,'r'3
- = Joe "N\ =N "v( ) A8
Ya: P " ( 35 + S5t )M)\B YT ./an)\,,\ o “x

) ~ D
N R ACRY _d?w. RV o?\g)L ,ax.,
3.6) + YIS !/ab7\,3< =X 520 ) Ay P 28 /| + A

/( XE NG D Xs P r _ i\’xs x’;xg>x €
. T —~
. . (J)\,'w J )\,
Noticing o X% = ax: x® we get further
. 1. ./ D e c’ft/m) .
/‘ ‘o /5 - vl o * o of . e . Slas "
(3.7) Vask X XJ{ 2 T\ e + st os”

1 ... ; . orw . , O, ,
+ —2—( 07T acwey + 07 Gocwen — wu)SOS" + ———ax‘; xox'Br .
On the other hand we have from the first equations of (3.3)
N A
1«1 ., / — (J)\,w I8 o/,
l. ¢ X;yﬁyv ‘xY ,(,}—Fxﬁx“.

From the two last equations we arrive at

(3.8 1es’s'e = oltes's'e,
where we put
j N ') q, o7 o (; \ .
" ,,. 4 d Uee he e % o * e ¥ A
3.9 Yoo = l W — S5 / N7 Tpa®’ o+ 9% " Jeaw)y (D/’c} .

These correspond to the Christoffel’s symbols { gy}
From (2.5), (2.6), (3.4) we obtain

€
'/N/S(Cwﬂs %2;5> = MAns o Cang ( G; —

by virtue of which we can derive from (3.5), (3.6)

,EX/>7

CRYS

an’:!?&jl?%é = 'y}fc + o CpraGyr — {/""C;,,,,,C — 4"Ce G+ oxs “ Ay 7\43
Using (1.6), (3.4) we calculate
?)Xl_ oG? G).Y:] _a Ao 8 ’) 7\3 o i 2"\3 B~y
(ax% T ax") AS chTs,T oAb — S A= — O5G? B AobAc-

From these equations and (3.3) we get finally
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(3.10) Iy = o, 4 79 (CoeeGE — ConsGyg — CraeGE) — Q3G
However G, =17 s7, hence we must find the formula of G written in
terms of the fundamental quantities, This can be easily done.
From (3.10) we have successively
G? = vy8" — "¢ CeaGys™,

(3~ 11.) G‘zs’c = ')Ig'cs,l'slc — 2G_/l.
and hence
(3.12) GY = s’ — 27" CoaeG°.

Thus the formulas : the second of (3.3), (3.9)-(3.12) completely deter-
mine the parameters of connection of Cartan in our non-holonomic system.
We remark, however, the fact that G%' = GY but G} does not coincide
with 9G"/2s” in general, and seek their relation. From the first of (3.3)
we have

(3.13) * = M’Z{G“ + —;— %Zw—x'vx’ﬂ},
and, differentiating this,
OG ¢ BG _ o) )\,‘y O 7\,5) 8 " /J)\‘b /3
(3.14) F =Ny St 2—( o e XN axy LG ar o
Hence we obtam from (3.4), (3.14)
3 oG* 1 /¢ ¢
@.15) s 26 L onGe

By use of this formula the connection parameters (3.10) may be written
in the form

- 2 oG* oG
1 I){Ll: = 'YI)C <CUCG ’“G'u Ceas :)({/; — Chae C\) s'c ) Q;Ll as’r

3.1 ,
( 3 6) + .—;‘ {!/ml( chcw:’;f CL(Z« Cb(l('wq) (-’btt . f S )

=+ {{Iad(chcQz_T —_ Ccdeﬂﬁf - Clumﬂ,’.j) —_ \(Zﬁdﬂllf} G’

At last we notice that the extremal curves are given in the non-
holonomic system by the equations

(3.17) 1 +26(, ‘fjs?”’_):. 0.

4. Curvature and torsion tensors. If we denote the basis vectors
of the natural reference system defined at each line-element (x,x") by es

(a=1,....,n), we have the displacement of the centre M (x)

(4.1) dM = dx%e,,

which can be written in a non-holonomic system as

4.2) € = \%ey,

(4.3) dM = ds"A\%., = ds"ea.

The n vectors es (¢ =1,...., n) are the basis vectors of the non-holono-

mic system. Using the symbol o! = I"¢ds” + C;:8s", des = wie, and denoting
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two infinitesimal displacements with d; ana d;, we have

4.4) d.d,M — d,d,M = (d.d\s* — did,s)ea + (dis°0], — d:s*®))e..

From the first equations of (0.3a) it follows that

4.5 dodis*—d.d. sa_m,,cdlsbd:s%2(2"(,],,1,Gi?)dls'»dzsc—Qgc(SZs'cdls"—S,s’cdzsb).
Thus, if we put

(4.6) d,d,\M — dd.M = Q"ea

we have

4.7) 0= (0l + 20, G + 20 )das dys® + (Cf — Q3)[d1s°8.57].

If our space is a general space of line-elements, not necessarily Finslerian
but with an affine connection, we obtain the torsion tensors of two kinds
as follows:

(4.8) Ty, = wh + 200, Gh + 2%, " The = Cos — Qie
if the space is Finslerian, we get from (3.9), ¢3.10)

4.9 Ay = —whs — 2004 GY

and from the second equation of (8.3) C;2 — Qf. = C;.,, hence
(4.10) 08 = CY[ds"s5""]

C5. being the only torsion tensor.
On the other hand, if we put the covariant differential &¢* in the

form

(4.11) Sv* = vhds® + V%08,
we get the covariant derivatives of two kinds by virtue of (1.20), (3.2):
(4.12) (@) vt = %S”—a — Gy + T,

B v =" + Qyer.
As Ci=0%+C% and C% 1is a tensor, we obtain from (8) another
covariant derivative
(4.13) vy = v + CHv.
We shall have therefore many tensors by combination of these deriva-

tives.
After a complicated calculation, we get

4.14) Viweny = K + "K',
where
Ko = It ey Pu(arjv by — 41_7‘ Km,
4.15) Km = —"G[l),c) + G(I);[g;G B + r (bc)Gri,
e = Tk — TGl 4+ TR, — Dol — Tl (Dot . = oL!/as").
Further we have the following results
(4.16) Vlys — v = L0 + 'Ly,
where
Liye = Qi — F;?a + Qale — it 'Lie,
1.17) 'Ly, = =% + G& — QLG
Qs = Qe — Q’?n,ch + I'HQh — ThiQi. — Ces,



148 Y. KATSURADA

and

(4. 18) U’E‘:I);ﬁ] = {QE’;‘H};C] + Q}(GQﬁll"')}vd =0,
because

4.19) Qg + Qege1y = 0.

To the end we obtain
1)% hee v:t";:h = Mg')(-?)" -+ ’M':c”/-zﬂ + "M,v!.
(4. 20) 1):»7.;6 - v’ic:b = M’;bc”" -+ ’M: V:: . CGibge — 02’;4:'[}'3,

82830 = {Si-88'Onys” + Pldos 88" + R,?iu-d(xsbdg]sn} v,

where
Mo = Lape — Ca,'Lic + Ciinec, "M = Cie, "My ="Li.,
N(lllbc = —C&‘,:c, ’N;:c = —C;;c = —’M;c s O(:M,‘ = C;,L[I):t‘] + C;;’[f:clt""lj P
Sie = Oy Pae = Mo, Ry = Ko — Ciy'Ki, -
Such tensors can be also represented by the fundamental quantities g,
Car, ®},, QF and their derivatives with respect to the s and s'.

ReEMARK. This paper was read at the meeting of the Mathematical
Society of Japan in Nov., 1948. Recently the present author could read
a paper of V. Wagner® sent to Prof. A. Kawaguchi, which, had many
connections with mine and in some respects was more general. Especially
V. Wager considered m-dimensional non-holonomic referring manifolds.
(March, 1949).
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