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§1. Subprojective space admitting a parallel vector field.
A Riemannian space V,, which has Christoffe]l symbols of the form

a.1) {7‘

uv
for a suitable coordinate system, was called the subprojective space by

B. Kagan [37, [4].
P. Rachevsky [5] proved that %, is a gradient vector and by a trans-
formation of coordinates

(1.2) P=ent  (P,=

} = P8 + P+ Pt (P = P,

o
| o)
the Christoffel symbols take the form
A

a3 {,uv}
Furthermore, making use of (1.3), he introduced three conditions for the
subprojective space, that is to say,

A4y R, = T\ — Thguo + T8 — Tuad)
1.4) (A) Two— Twur =0,

(B) Trae= pgru + paoy,

= UX.

where
-1 _ R
Tw=5"—3 (R"'* 2n —1) 9“‘)’
5 3 .
Pu= g Ou= g 7= )

Now since the covariant derivatives of the vector x* with respect to
(1.3) are
x)\;“ = 8:1 -+ uvﬂ.xvx)\’
the vector #* is a concircular or concurrent vector field [1], [10]. This result
is also obtained from (1.4), since we have by virtue of (A") and (B)

Tap = Yap T KGN .
Therefore the case when the subprojective space admits a parallel vector
field did not be treated by P. Rachevsky, H. Shapiro [6] and other

authors [7], [81.
On the other hand, by covariant differentiation with respect to (1.1),

we have
(1.5) 2, =1+ P8, + (Pu + Pua’)xh
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Therefore if the vector a* is a parallel vector field, we must have

(1.6) 1+ o2 =0.
However, by the transformation of coordinates (1.2), we have
Y
a%f—; = e/ (Pux™ + 81),
from which follows
ox*

2% = (1 + Px)x*.

ox®

Consequently components of the vector x* may be transformed to (1 + ®.x")x*
by (1.2). Moreover, the determinant of the transformation (1.2) becomes
o ™| Puxt + 83| = (1 + P.x")

ox® @ (3 2 .

From these results, we find that, if (1.1) may be reducible to (1.3) by
the transformation (1.2), we must have 1+ #,2* %+ 0 and consequently by
virtue of (1.6), if the vector x* is a parallel vector field, (1.1) can not be
transformable to (1. 3).

In this paper, we shall seek conditions for the subprojective space
admitting a parallel vector field and relations which distinguish from it
the subprojective space admitting a concircular or concurrent vector field.

§ 2. Rachevsky’s condition (A), (A).

Let us assume that £' is a parallel vector field satisfying
2.0 ENu = Bug?
and, for a suitable coordinate system, Christoffel symbols of the second
kind take the form

(A
l/ul
where @, and ®,, are certain covariant vector and symmetric tensor respec-
tively. Then we have readily the curvature tensor

2.2) } = 28} + 28} + Pk,

(2.3) R = 20,083 4 2U o + 200,082
where

2.4 Upr = — (P + PuPe + E°PoPrus),

(2 5) ZUMV@ = <pp.u;w - wuw;v - Ea(¢/~ll‘¢du) - wnm¢av)

+ ¢P-I‘Bw - ¢uw3v-
From (2.3) we can obtain the following equations by the same method
in the previous paper [17]. Namely
¢(F-;VJ = 0: B(‘L;vl = 0;
2.6 ’
2.6) Upr = 2PYuy + uE,E.,

(2. 7) U}I-l/w = ungl’Em)y
(2.8) R, = 2u,.,8) + 2U o8
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2.9 Ty = p g + uEiEp.
Thus we have Rachevsky’s condition
(2.10y (A) R = Togp — Thguo + 83 T0w — 83T .

Moreover, from (2.6) and (2.7) we have

— Uppio + Upoy = — Q)UR';'IJ’(D + 2§”¢0Ufwm
+ (u;w(pw - u;u.,¢v) - Ed(¢m'uam - ¢Mmuo‘v)~
Substituting (2.8), we have

2.11)

(2. 12) . — Upviw -+ Upoyy = — Ea(¢p.vu¢nu - ¢[qua’l’).
In consequence of (2.6), we obtain
2.13) Z(ngm' — P uw) + E}L{(um + 21!3«.)«,&:/ — (uy + ZMBv)Ew}

= (2p + ug°E;) (E.Pu, — qu’#w)-
On the other hand, substituting (2.1) and (2.8) in the Ricci identities
E v T E Moy = T E «rR.‘f,.m.
we have
2p + uE°E,) (Euur — E9p0) =0,

from which follows
(2.14) 2p + uE°€, = 0.

Substituting (2. 14) in (2.13), we have
(2.15) 2(Puduy — Pripw) + Eul(tte + 2uB.)E, — (4, + 2uB)E,)} = 0.
Multiplying any vector »* orthogonal to & and contracting for x, we have

Puny — PN = 0,
from which we find that

(2.16) p. =0, that is, p = c¢= const.,
and (2.14) becomes

@2.17) 2c + uE°E, =0,
Consequently from (2.15) we have

(2.18) up + 2uB. = q&,,

where ¢ is a scalar.

Thus from (2.9) we have

T = MVE)\EM + uEI\;VEM + MEAE,'L;V
= (u, + 2uB3,)E\E .

Because of (2.17), we obtain
(2. 19) T;\p.;v = qf)\E}LEw
from which follows Rachevsky’s condition
(2 20) (AI) TM‘«FV - T)W;IJ, = 0

§ 3. Rachevsky’s condition (B).
Differentiating (2. 17) covariantly, we have
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E°Es + 2uEE, = 0.
Substituting (2.1), we have

(un + 2uB)EEs = 0.
If we assume £°, %+ 0, we obtain

(3 1) u) + 2“/3)\ = 0,
from which follows
3.2) ue* = k = const. (,8;\ = gf;) .
Now if we put
(3.3) = e 8E,,
we can easily find that
e =0
and by virtue of (2.9) and (3.2)
3.4) T = e + knpp.
Moreover, from (2, 18), (2.19) and (3.1), we have
T)\“,;p =0.
Thus we obtain the next three conditions:
(A) Rvo = T — TAGpo + Twb) — Tuad)
(3.5) 0:9) Tpw — Taw =0  (or Tayw = 0),
(B) Tow = Ccgru + R

where 7)) is a gradient vector and »*; = const, =+ 0.
Coversely, let us assume that (A’) and (B’) hold. Then

T/\#;v - TAv:;A = k(’)/\;l"')# - ")A;M-"?v) =0,
from which we have
M) e = Nty = 9 Nuany -
However, since 7"z, = const.,, we have 7*5,, = 0 and consequently #y. = 0,
which follows that 7, is a parallel vector field.

Especially, when £°€, = 0, from (2.14) we have
p=0.
" Therefore T\, = u&\E., from which we have, substituting (3.3),
T = ue®Pnany.
However, since from (2.18) we find that ue* is a function of », we can
obtain the equation of the form

3.6) T = v(m)mnp.
Thus we have [8]

(A) R-)\u.vm = T-Awgl’-v - Tf\pgil»w + T!'-Vsl).\: - TM-“’S;)'\ )
(3 7) (A’) T)\[I-;V - Ta\v;p. = 0;

(B") T = v(n)mapy,
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—,2”7 and g5’ = 0.
Conversely, if (A’) and (B”) are satisfied, we have

where oz =

Ty — T = Uy — "7/\;#77v) =0.
Multiplying by ¢*, where {#n, 0, and contracting for u, we have the
equation of form
(3.8) Ny = KNy,
which follows that z, is a parallel vector field. Furthermore, when (4)
holds, we have
Dxww — Nawn = KT — Kuty)

= - n“R?)\p_v

=0.
Thus we find that « is a function of » and consequently (3. 8) is transformable
to the form '

my = 0.
Finally we shall introduce some relations, From (2.6) and (2.17) we can

readily obtain

(3.9 Eupy = (2c + uEEHE, =0
and consequently, by virtue of #u, = Tu, + €9u,
E#Trw = —c&, ,
Upvio = Tusa
that is,
(3.10) Upso — Upww = 0.

§$4. 'Transtormation to the form / )“} = P + 9.8\ + puat
{.uau ®

Let us assume that (3.5) holds and consequently 7y, = 0. From (3.3) we
have (2.1) and
4.1) Ty = cgap + uENE,,
which follows (3. 1).

Moreover, we have, by virtue of Ricci identities

Euvo — s = — EGRY,L.M ’
EoT?ng-v - fuT?vgmu + Tﬂ-ufw - Tp.wfv = 0.
Substituting (4.1), we obtain
(ZC + uE"Eﬂ) (Ewguv - Evgum) = 0,

from which we have
“4.2) 2¢c + uk°t, = 0.

We consider now differential equations
“. 3) Zyp = — ZnPu — wPa — of”‘/”m B
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where ®, is a gradient vector and ®,, a symmetric tensor. We shall first
calculate the integrability conditions

(4 4) Z‘\;p.w‘ - Z)\;V}L = — ZUR.G)W.,, .
Substituting (4. 3) in the left-hand member, we have
(4.5) Zniwe — L = — Zot4u87 — 87 + 2Un.E”),

where #,, and U,,, are defined by (2.4) and (2.5) respectively. On the other
hand, from (3.5) (A) and (4.1) we have
— Z,R3,, = — ZLT%9n. — Togn + Tand? — Thu8Y)
(4 6) = — Zo’{(zcg/\u + uf)\fu)sg - (20 + uEAE;')SZ
: + w(gan&y — g,\uf#)f"}.
- Let us assume that @, is an arbitrary gradient vector satisfying £°®,%+0.
Then we can define a symmetric tensor @, by the equation
“4.7) Uy = 20040 + UELE,.
From (3.5) (A’) we have (3.10). Furthermore, from (4.2) we have (3.9) and
from (3.5) (A)
PoRZ,, = MuPo — WPy + W€ — G )P
Substituting these results in (2, 11), we obtain
(4 8) 2Up.vw = u(.”p.vEm - !11LmEv)~
Therefore substituting (4.7) and (4.8) in (4.5) and comparing with (4.6), we
find that (4.4) is satisfied identically and consequently (4.3) is completely
integrable.
If we represent # linearly independent solutions of (4.3) by Z%(a = 1,2,
....n), then we have

“_ OX®
Zi= e
where x* are independent functions of x*, that is,
2% = x%(xN).

We consider now the above equations as a transformation of coordinates.

Then
{a}_ ox* ox” ({M ox® O )
Byl = ox® ox¥ \lwrf ox ox*ox”

ox* ox* .
- —axﬁ SxY v

Substituting (4. 3)

o ox* ox”
(8} = o5 55 @+ Z20 4 Z3EoP),

that is,

4.9) {5} = Pod; + 225" + Tinge,
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where g%, $g and Pp, are respectively components of the vectors &%, #g
and the tensor @g, in the x s.
Thus, when (3.5) holds, the Christoffel symbols may by expressible in

the form (2.2) for a suitable coordinate system.
Now, if &%p, + 0, we may assume that

(4.10) Eop, = —1,
replacing ¥, (or &°) by — N/ELT‘;;_ (or — %} Then differentiating
" (3

with respect to x#, we have
ESPq+ EPoy = 0,
that is to say,
BLEP, + EPgy = 0.
Substituting (4.10), we have
(4.11) B, = EPg.
Moreover
EUy, = — EPoyp + EPoPu + EPuE Poy) = 0,
from which we have, by virtue of (4.10),
EPo — Pu — EPap = 0.
Substituting (4.11), we obtain
B — P, —EP,. = 0.
Therefore
(EUZG);V- = E?“Zo' + EUZU;;L
= B#EGZU —EZopu — EPoZy — EpEeZ,
= (BH - q)u - Ew¢wM)EUZV + Zu
) = Z,.
Thus we find
E°Zs = x*

and consequently (4.9) becomes

{8, = P87 + P83 + Pourt,
from which follows the

THEOREM 4.1. A Riemannian space "whose Christoffel symbols take the
form

A .
{1} = w8y + 08y + Pt
where E* is a parallel vector field, for a suitable coordinate system, is a
subprojective space in the sense of Kagan.

Especially, when £°€, = 0, we can prove the theorem by the analogous
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method. Thus we have the

THEOREM 4.2. A subprojective space which admits a parallel vector field
may be characterized by the conditions (3.5) or (3.7).

Furthermore comparing with the results in the previous paper [1], we
have the

THEOREM 4.3. In order that a Riemannian space is a subprojective one,
it is necessary and sufficient that the next relations hold :

(A> Rf‘p,,,w = Tf‘wgﬂ-v - Tﬁ,g po + T[J.vsﬁ, - Tp.wsf,‘ s
(4" Taww — Tawsn = 0,
(B) T)\M = P(G').’Lw + K(O’)G’,\O’m

where
_ 1 R ) _ 9o
Ty= n—-2<R"" T2m—=D M) T o
In this case, if p = const.,, we can prove that o, is a parallel vector field
and consequently the space is a subprojective space admitting a parallel
vector field.

§5. Some theorems on a subprojective space admitting a parallel

vector field.
The fundamental quadratic differential form of a Riemannian space

which admits a parallel vector field £* satisfying £°€, = 0, may be written
in the form [97,[10]

5.1) dst = gu(x)dx'dx" + (dx")?, (4, ,k=1,2,..,m—1)
for a suitable coordinate system. From it we can readily obtain the following
equations [1]

(5 2) sz = le, Rin = Rmt = Oy
(5. 3) R = R7
- 1 R .
Ti5 = n_ 2"<Rtj — 2(7_—1‘)*0:1) )
6.4 o _ R
nn 2(n—-1)(n—2)"
Tim =0,
(p 1 oR
w Trm,i Tm,n 2(” _ 1) (” _ 2) axt )
1. 1 9R
5.5) ER . T o )

1
| 1 1 oR

l ——;z_—z(st— ma—ﬁ‘gm),

Tisn — Tin;j = Toisi — Taga = 0,

where R and R;; are respectively Riemann curvature and Ricci tensor of
the hypersurfaces ¥* = const. and R;;; is a covariant derivative of R;, with
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respect to gij.
From (5.2) we have the

THEOREM 5.1. In a Riemannian space V, admitting a parallel wvector
field, there exists a family of o' totally geodesic hypersurfaces and the vector
field are defined as the normals to these hypersurfaces. In this case, in order
that tangential directions to these hypersurfaces are Ricci principal directions,
it is necessary and sufficient that these hypersurfaces are all Einsein spaces
(n > 3).

Calculating Cf‘“m and making use of (5.5), we have [1] the

THEOREM 5.2. In a Riemannian space V, admitting a parallel vector
field, in order that the hypersurfaces in the above theorm are of constant
curvatur, it is necessary and sufficient that V, is a conformally flat space.

When z# >3, if the above-mentioned hypersurfaces " = const, are
. Einstein spaces, from (5.5) we have
TA;L;v - T)\,,;,,, = 0.
Thus we have the
THEOREM 5.3. In a Riemannian space V, admitting a parallel vector
field, if the above-mentioned totally geodesic hypersurfaces are all Einstein
spaces, then we have
Triw — To =0 (n>3).
When the hypersurfaces x” = const. are Einstein spaces, we have,
from (5.2) and (5. 3),

Rig= g0
Consequently (5.4) becomes
_ R
Tiy= m_—z) 9iss
(5.6) S /S
Ton 2n — 1D (n—2)°
Ttn = 0

Now let us assume that 7, is a parallel vector field, where 7, = —g;’T,

and the totally geodesic hypersurfaces » = const. are Einstein spaces. Then,
since tangential directions to these hypersurfaces are Ricci directions by
virtue of the Theorem 5.1, the tensor T,. may be written in the form

(5.7 Tyu = Prn + K17y
Comparing with (5.6), we have, because 7, corresponds to &7,

R
®.8) P=Bmn—Dm—2)
(5.9) PR S

' n—1Dn—-2) "



352 T. ADATI

However, when # > 3, ‘from (5.3) we find R = const.. Thus we obtain
p = c¢= const. * 0,
which follows
R=R=2n—1)(n— 2.
Moreover, from (5.7) we have
TAH.;V = Ko + Emunu + KN\ -
Therefore, by virtue of the Theorem 5.3, we have
Ty — T = m(emu — rcun) + e(mnme — napmn)
= 0.
Since 7, is a parallel vector field, we find that
Kyu — Ky = 07
that is, « is a function of 7.
Thus, when # >3, if s, is a parallel vector field and (5.7) holds, then
we have
p = ¢ = const.,, x = x(n),
(5.10) R=R=2n—1)(n—2),
(5. 11) T)\p.;v - T)\v;pL = 07
that is to say, we get the

. . o
THEOREM 5.4. If n, is a parallel vector field, where n. = gg— , and

tangential directions to the hypersurfaces » = const. are Ricci directions. then
we have

Trp. = Corp + £)an,

R=R=2n—1)(n-—2),
where c is a constant and R is the Riemann curvature of the hypersurfaces
n = const. (n > 3).

Moreover, if »'y, =1, from (5.8) and (5.9) we have
{5.12) Ty = c(gae — 29pmp)-
When #n = 3, if 5, is a parallel vector field and
Ty = Coan + &7y
from (5.8) and (5,9) we obtain (5. 10) and (5.12). Cosequently the hypersurfaces
n = const. are of constant curvature and from (5.5) we have (5.11), namely

V, is conformally flat. Therefore « is a function of » and V3 is subprojective.
Furthermore, we can find the next fundamental theorems [1].

THEOREM 5.5. A conformally flat space which admits a parallel vector
field is a subprojective space of Kagan.

THEOREM 5.6. A Riemannian space which contains a family of o' totally
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Zeodesic hypersurfaces, whose Riemann curvatures are all constant and orthogo-
nal trajectories are geodesics, is a subprojective space of Kagan.

Finally, we can easily find that the fundamental quadratic differential
form of the subprojective space admitting a parallel vector field takes the
form [2]

dst = (@F) 4+ (@de)P + ...+ (d:xn—l‘)z

n—1

:tK{i z(x‘)z il}

+ (dx")?,

= R = ¢ > fy? 3 > :
where K= CESCET ) N const. # 0 and ‘+’ takes ‘+’ or ‘—’ according

as R is positive or negative.
§ 6. Subprojective space admitting a concircular vector field.

Let us assume that a tensor 7), of a space admitting a concircular vector
field &, takes the form

6.1) Tow = pgan. + uErEn
and

(6 2) /\:u = a8ﬁ+ BME)\:
(6.3) aB, — a, = DE. .

From these equations, we shall introduce some relations which hold in the
subprojective space.

From (6.2) and (6.3) we have
E)\:p.v - EA;W. = (C(BH’ - a,u)gz\v - (an - av)g)\u
Hp(évg)\u - Sl\l-g)\v)~

Making use of Ricci identities, we have
EGRS\,,,V = p(Ev.un - E,,.,(],\u),

il

from which follows

(6.4) E.R%, = (n — 1)PE, .
‘Therefore from (6.1) we have
; 1 R
£.Tr = 5 (- Db — 525 ) &
= (p + uE’E)E, .
Hence we have
(6.5) - R + 22 o ot ug, .
2n—1)(n—2) n—2

On the other hand, calculating y*+T,,, we have

R _ .
. 21y = EE
Eliminating  £°€, from these two equations, we obtain
R

6.6 0 p= g
Eliminating R from (6.5) and (6.6), we have
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6.7 2p + uE°E, = p.
From (6.7) we have
_p—2 _ —2p b
“EUEE, T FE TEE
and consequently (6.1) becomes
(6.8) Top = p(9ru — 2mmu) + D,

where 7, = £,/ A/EE,, that is, map = 1.
If we put « = ,/g°€,, we have

&

= P

and by virtue of (6.2)

[24 Ky
Nusy = P Jur + (Bv - ’){) N -

However
o= 1 (ade . BENE, =y, + B3,
N/EVEG K ’
that is,
(6.9) “ o= St B

Thus we have

o
Ny = ICV (gfw - "hﬂ)u) )

. o a . . . .
where, if 7, = # v, s a function of », because 7, is a concircular
vector field.

Furthermore if we assume that &, = fo, and

o Jo
Oxp = ?QML + oo, o= W) ’

then (6.1) becomes
Ty = pgau + ubc 0,

and we can prove [2] that, when # >3, p, = 1462%z o, that is,

(6.10) pu = auk,,
(6. 11) T}\F,;v - T)\v;lu. = 0
Hence we have
ap —2

P = pr)m,

that is,
P _ & )
p—2p  « Mo *

1> We assume that £%; + O and consequently p — 2p £ 0. If {9, =0, (¢%¢);u = 2{o¢4;,
= 2aé, = 0 which follows @ = 0. Hence é is a parallel vector field.
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Therefore p and p —2p are a function of -5 and consequently p is also a
function of 7.
Especially when # = 3, if V; is a subprojective space, it is evident that
(6.10) and (6.11) hold and consequently we have the same results.
From these results we find that Rachevsky's conditions for the subpro-
jective space may be written as
A) Rf‘,,,,,‘., = T.)}.,gp.v - Tf",g,m + Ty.v8$ - T,u.,S,'; ,
(6 12) (AI) T}\p.;v - T)\v;u = 0;
®) Ty = P(0) (gre — 2mpmp) + P,

o
where 7 =8—A?'\ and 17"77;\ =1
Conversely let us assume that (A’) and (B) hold. Then we have from (B)

Tlu;v = Pv(gm - 277A7);L) - 2P(")A;V"?u + ’7A77M;v)
+ Dot + Pl + M),
from which follows

Tnw — Thuiw = (Pvine. — Pudne) + (D — 20) (masm — mauy)

(6.13) + (D — Dump)
=0.
Multiplying by »* and summing for A, we have
pv")ﬂ. - p;ﬂ)v = 0'

because p is a function of » and »*;, = 0. Thus we find that p is a func-
tion of 5. Consequently from (6.13) we have
(Pvgre — Pugrv) + (@ — 2p) (mxmu — M) = 0.
Multiplying by »* and summing for ¢, we have
Pvnx = 7Pudre + (B — 2p)nn = 0,
from which we have
— _1"Pu _ _Pm
7’/\}V“p_2pg)\v p_zp
Consequently putting 5 f FZP = fln)n., we have
M = f(’])(gkv - 7)A77u)-
Thus we find that if (6.12) (A’) and (B) hold, then p is a function of » and
g is a concircular vector field.

§ 7. Subprojective space admitting a concurrent vector field.
When £* is a concurrent vector field, (6.3) becomes [1]

(7.1) aB, — a,=0,

that is, p=0. Therefore (6.6) and (6.7) reduce to
_ R

(7.2) P2 =D —2)

(7.3) 2p + uE’E, = 0.

Consequently if we put
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m=E k= VFE,,

we have
Tre = p(grn — 2mamp),

_a
Nuw = P (G — ’7;4771').

Now eliminating B, from (6.9) and (7.1), we have

in,u—- ilcﬂ-i‘ Cltaﬂ=0,
from which follows
_ Ory — KOy, _ O K
nl‘- - a'.*!ﬁm‘# - “é—a:_'; a *

Therefore we have 7 =r§~ + const.,, Hence putting 2 = 5, we obtain

1
(7.4) Nuw = n'(guv — ) -
Furthermore, when z >3, from (6.10) we have
2a 2
(7.5) p/un = — /CP 7]”: — _77&77'“
from which follows
P N
e+ =0,
20 " 9

that is,
pn* = const. = 0.

When z# = 3, for the subprojective space the above equation holds.
Hence we can conclude that a subprojective space admitting a concurrent
vector field satisfies the next three conditions

(A) Rf\p.vw = Ti\mgl"" - T{\"gl’-"’ + TI‘-"S:'.\) - TF“’S'; ’
(7' 6) (A/) T)\y.;v - T/\: w = 0,
B) T = p(gan = 2mm),
where 7'y, =1, g\ = —g%— and pz»* = const. =+ 0.
Conversely, if (A’) and (B) hold, we have
Toww = PAIn — 2mamu) — 20(0xm + DA7usw).
Consequently we have
T)\H.;v - TAv;p- = (Pngu - Pug)\v) - ZP(”])\;v"?p - "7/\;u77v)
= 0.
Since we have 7'y, = 0 from 7' =1, multiplying by »* and contracting
for u, we obtain

Py — ﬂ“ppg)\v - 2P77A;v = 0;
from which follows
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= 7"Pu APy
MAsv 2P In + 2P .

v (g Av 77)\’7!/)
i

and, in consequence of
1 =m 2 1_,
n 9 oxt 9 T
we find that if (7.6) (A’) and (B) are satisfied, then 5, is a concurrent vector
field.
If 5. is a parallel vector field and #»*)\ =1, we can easily obtain
Trw = €(gr, — 2amu), Where ¢ = const. ,
Thus from (3.5), (6.12), (7.6) and the above result, we find the

THEOREM. A subprojective Riemannian space is characterized as follows:
(1) The space is conformally flat.
D I pm=1 and m =22,
(1) when » is a concircular vector field,
Taw = P() (9an — 2mpmu) + DAy,
(2) when n. is a concurrent vector field,
Tow = P(9au — 2mmu),  pn* = const. * 0,
(3) when n* is a parallel vector field,
Tre = €(gre — 2amu), € = comst. =+ 0,
where

__ 1 _ R
T = =g (R 2n —1) o)

Finally we shall note on the fundamental quadratic differential form
of the subprojective space admitting a concurrent vector field. According

to the previous paper [2], it takes the next form, for a suitable coordinate
system,

PG X A

=1 " + (dx") (k> 0),
{i > (xy = 1}

from which follows

K= R _ *xk
T (r—1)(n—2) (x™)2
where Riemann curvatures R of the hypersurfaces x" = const. are positive
or negative according as the sign ‘%’ takes ‘+’ or ‘~’. Consequently we
have

Ry = Ry — —(}}W(gmstz — 9560
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= Eé@%(gm& — 918%)

and the other components are zero. It follows

R=m-1@m-2)Efst
Hence when K = (Tc%')é" that is,
ds? = (x")? (dx')* + (dx"‘?‘*1 + ... +2(dx"-1)2 + (e,
{;}gl} &) + 1}
the space is flat.
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