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§1. Subprojeetive space admitting a parallel vector field.
A Riemannian space Vn, which has Christoffel symbols of the form

α
for a suitable coordinate system, was called the subprojeetive space by
B. Kagan [3], [4].

P. Rachevsky [5] proved that φμ is a gradient vector and by a trans-
formation of coordinates

α.2) *

the Christoffel symbols take the form

(1.3) O
Furthermore, making use of (1.3), he introduced three conditions for the
subprojeetive space, that is to say,

<1.4) {A) Tμv;ω-Tμω;v= 0,
(B) TKμ =

where

T 2 {** R

i λ μ ~ n-2
n - W

Now since the covariant derivatives of the vector xλ with respect to
(1. 3) are

the vector xλ is a concircular or concurrent vector field Qlϋ, PΌU This result
is also obtained from (1.4), since we have by virtue of (A) and (B)

crΛ;μ = gTλμ + tcσ\σμ.

Therefore the case when the subprojeetive space admits a parallel vector
field did not be treated by P. Rachevsky, H. Shapiro [6] and other
authors [7], [81

On the other hand, by covariant differentiation with respect to (1.1),
we have

(1. 5) x)μ = (1 + <
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Therefore if the vector xκ is a parallel vector field, we must have

(1.6) 1 + Ψvocv = 0.

However, by the transformation of coordinates (1.2), we have

dx*

from which follows

e\ΨΛx
κ 4- δi),

-f̂ -*" = (1 + Φvxryϊ*.

Consequently components of the vector xΛ may be transformed to (1 + Ψvx
v)xκ

by (1.2). Moreover, the determinant of the transformation (1.2) becomes

dxk

<Pvx
v).dx06

From these results, we find that, if (1.1) may be reducible to (1.3) by
the transformation (1.2), we must have 1 + Ψvx

v =*= 0 and consequently by
virtue of (1.6), if the vector xk is a parallel vector field, (1.1) can not be
transformable to (1.3).

In this paper, we shall seek conditions for the subprojective space
admitting a parallel vector field and relations which distinguish from it
the subprojective space admitting a concircular or concurrent vector field.

§ 2. Rachevsky's condition (A), (A).
Let us assume that ξλ is a parallel vector field satisfying

(2. 1) ξk

;i, = βμξk

and, for a suitable coordinate system, Christoffel symbols of the second
kind take the form

(2.2)

where φμ. and φμv axe certain covariant vector and symmetric tensor respec-
tively. Then we have readily the curvature tensor

where

(2. 4) Uμv = — (φμ;v + ΦμΦv + ξσ(PσΦμ.V),

From (2. 3) we can obtain the following equations by the same method
in the previous paper [1]. Namely

<PCμiι0 = 0 , βCμ.;v) = 0 ,
(2.6) r

(2.7) Uμn.=
(2 8; Λ* =
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(2.9) Γλμ

Thus we have Rachevsky's condition

(2.10) (A) R^vω = T^v - Ί\gμ(a +

Moreover, from (2.6) and (2.7; we have

- *W. + μ̂ω;, = - φσR.%ω +

Substituting (2. 8), we have

(2. 12) — W ^ + Uμω v == — ξ^Φμt&m*

In consequence of (2.6), we obtain

On the other hand, substituting (2.1) and (2.8) in the Ricci identities

we have

(2p + ^ σ ?σ) (f «gr̂  - f ,<W - 0 ,

from which follows

(2.14) 2p + uξ°ξσ - 0.

Substituting (2.14) in (2.13), we have

(2.15) 2(Pωgμv - pvgμM) + £μ{(wω + 2wβω)£, - («„ + 2uβv)ξω} - 0.

Multiplying any vector rf orthogonal to ξ* and contracting for μ, we have

PωVv — PvVω = 0,

from which we find that

(2.16) pω = 0, that is, p = c = const.,

and (2.14) becomes

(2.17) 2 r + Λ f " ? σ = 0,

Consequently from (2.15) we have

(2.18) Uμ. +

where q is a scalar.
Thus from (2. 9) we have

Because of (2.17), we obtain

(2.19) Tw

from which follows Rachevsky's condition

(2.20) (A') Tλ μ ;, - T V = 0.

§ 3. Rachev.sky'8 condition (B')
Differentiating (2.17) covariantly, we have
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uκξ°ξσ + 2uξ^λξσ = 0.

Substituting (2.1), we have

(fix + 2uβk)ξ°ξ σ = 0.

If we assume f σξσ Φ 0, we obtain

(3.1) wλ + 2uβλ = 0,

from which follows

(3.2) κβ»β = k = const.

Now if we put

(3.3) v*=e-'

we can easily find that

W = 0
and by virtue of (2.9) and (3.2)
(3. 4) T λ μ = C#λμ +

Moreover, from (2.18), (2.19) and (3.1), we have

? W = 0.

Thus we obtain the next three conditions:

(A) R^vω = 'Tijff^ - T^μω 4- T^

(3.5) (A') Tλμ v - Tkv;μ. = 0 (or T λ μ ; , = 0),
(B') Tλ μ = cgKμ -f ^λ^μ

where ?7λ is a gradient vector and ηxη\ = const. Φ 0.

Coversely, let us assume that (A') and (#') hold. Then

T\μ. )V — T λ v ; μ

from which we have

However, since rfημ. = const., we have ?;μ

μ̂;λ = 0 and consequently η\;v = 0,
which follows that T Λ is a parallel vector field.

Especially, when ξσξσ = 0, from (2.14) we have

Therefore T λ μ = ttξxξμ., from which we have, substituting (3.3),

However, since from (2.18) we find that ue2β is a function of η, we can
obtain the equation of the form

(3.6) Γλμ =

Thus we have [8]

(3.7) (A') Tλ μ ;, - TKv ,μ = 0,
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where rj\ = —^ and ηληκ = 0.

Conversely, if (Ar) and (25") are satisfied, we have

TKμ.;v — T'λv μ = v(ηKvημ — η\;μ,ηv) = 0.

Multiplying by ζ>, where fμ*?μ =t= 0, and contracting f or μ., we have the
equation of form

( 3 . 8 ) ηλ;v = Λ:?7λ^,

which follows that ηk is a parallel vector field. Furthermore, when (A)
holds, we have

= 0.

Thus we find that A: is a function of 77 and consequently (3.8) is transformable
to the form

V** = 0.

Finally we shall introduce some relations. From (2.6) and (2.17) we can
readily obtain

(3.9) p i ^ = (2c + Wfσf σ)f „ = 0

and consequently, by virtue of Uμ,v = Tμ v + Cflrμi/,

ζ J μv ^ζV )

Ίlμ.v\vo = = •* μv,ω 5

that is,

( 3 . 10 ) Uμ.vVΛ — Wμα,;, = 0.

§ 4. Transformation to the form { λ }̂ = Φ^ϊ + ̂  + ?wκλ.

Let us assume that (3.5) holds and consequently VKfJL = 0. From (3. ,3) we
have (2.1) and

(4.1) T λ μ = cgλμ + uξλξμi

which follows (3.1).
Moreover, we have, by virtue of Ricci identities

ζμ vω ζμ- ωi/ = f Λ p ω ,

ς σ i »(ύQμ.v b σ-* 'v9μλa \ •*• μ.vζω — -* μ.uiζv = = v).

Substituting (4.1), we obtain

(2c + uξ°ξσ) {ξω9μ.v - f vgμω) = 0,

from which we have

(4.2) 2c + uξ"ξσ = 0.

We consider now differential equations

(4. 3) Zλ;μ = - Z λ ^ μ - Zμψλ
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where <pμ. is a gradient vector and φKμ, a symmetric tensor. We shall first
calculate the integrability conditions

(4.4) ZKμ.v - ZKm = - Zσi?.V .

Substituting (4. 3) in the left-hand member, we have

(4.5) ZK[1Λ, - ZKvμ, = - Zσ{u^v - uKvδ« + ZUxμJξσ),

where uλμ. and Ukμ.v are defined by (2.4) and (2.5) respectively. On the other
hand, from (3. 5) (A) and (4.1) we have

(4.6) = - Zσ{(?cgkμ. + «?,£*)δ? - (2c J

+ Kfoψlv - ^λ^^f σ } .
Let us assume that ψμ, is an arbitrary gradient vector satisfying ξσ<PσΦθ.

Then we can define a symmetric tensor φ^v by the equation

(4.7) u^v = 2cgrr + «f ^ , .

From (3.5) (A') we have (3.10). Furthermore, from (4.2) we have (3. 9) and
from (3.5) (A)

Substituting these results in (2.11), we obtain

(4. 8) 2Uμ.VM = U((J^vξω — ί/μωf v ) .

Therefore substituting (4.7) and (4.8) in (4. 5) and comparing with (4.6), we
find that (4.4) is satisfied identically and consequently (4.3) is completely
integrable.

If we represent n linearly independent solutions of (4.3) by Z°l (cc = 1,2,

. . . . n), then we have

where x06 are independent functions of xΛ, that is,

x" = x*(xκ).'

We consider now the above equations as a transformation of coordinates.

Then

βy) dx? dxy

dxβ dxy

Substituting (4.3)

\βj)

that is,

(4.9)
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where ξ*} φ& and <pβy are respectively components of the vectors ξ*t φβ

and the tensor φβy in the x s.

Thus, when (3.5) holds, the Christoffel symbols may by expressible in
the form (2.2) for a suitable coordinate system.

Now, if ξσφσ =*= 0, we may assume that

(4.10) ξσ<P* = - 1,

replacing ψσ (or ξσ) by ,fσ (or — ,% —-Λ. Then differentiating

with respect to x*, we have

that is to say,

βμζ'Φ* + ξ σ<P<r;μ = 0.

Substituting (4.10), we have

(4.11) βμ = ξ'φ«p.

Moreover

ξσUσμ. = - (f ̂ σ ; μ + f σ^σ9>μ + ξω<Po£σ<P<rμ) = 0,

from which we have, by virtue of (4.10),

? ^ σ ; μ ~ Ψμ. - ξσ(P<yμ = 0.

Substituting (4.11), we obtain

βμ. - V* ~ f ̂ σ ^ - 0.

Therefore

Thus we find

and consequently (4.9) becomes

from which follows the

THEOREM 4.1. A Riemannian space nwhose Christoffel symbols take the
form

where ξλ is a parallel vector field, for a suitable coordinate system, is a
subprojective space in the sense of Kagan.

Especially, when ξσξσ = 0, we can prove the theorem by the analogous
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method. Thus we have the

THEOREM 4.2. A subprojective space which admits a parallel vector field
may be characterized by the conditions (3.5) or (3.7).

Furthermore comparing with the results in the previous paper £1], we
have the

THEOREM 4.3. In order that a Riemannian space is a subprojective one,
it is necessary and sufficient that the next relations hold:

where

(A')
(B)

T -

n μ ; v - τκv;μ = o,

R
• ) -

In this case, if p = const., we can prove that σλ is a parallel vector field
and consequently the space is a subprojective space admitting a parallel
vector field.

§ 5. Some theorems on a subprojective space admittinir a parallel
vector field.

The fundamental quadratic differential form of a Riemannian space
which admits a parallel vector field ξλ satisfying ξσξσ Φ 0, may be written
in the form [9], [10]

{5.1) dsι = gstfjxfyWdtf + (dxll)\ (i,j,k = 1,2, ..,n- 1)

for a suitable coordinate system. From it we can readily obtain the following
equations [Ίj
(5.2) Rij = Z&j, /?£„ = /?mι = 0,

(5.3) R=R,

(5.4) Tl

MM — ~

Γ ί Λ = 0,

— Tni n = ~

n

R
2(n ~

(5.5)

2(n ~ 1) in - 2) '

1 3R
2(n -l)in — 2) 'dxi

1 . ( r, 1
- 1)

where R and Rtj are respectively Riemann curvature and Ricci tensor of

the hypersurfaces xn = const, and Rij{jc is a covariant derivative of Rij with
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respect to gi5.
From (5.2) we have the

THEOREM 5.1. In a Riemannian space Vn admitting a parallel vector
field, there exists a family of oo1 totally geodesic hypersurfaces and the vector
field are defined as the normals to these hypersurfaces. In this case, in order
that tangential directions to these hypersurfaces are Ricci principal directions,
it is necessary and sufficient that these hypersurfaces are all Einsein spaces
{n > 3).

Calculating C)μvω and making use of (5.5), we have Q1Ί the
THEOREM 5.2. In a Riemannian space Vn admitting a parallel vector

field, in order that the hypersurfaces in the above theorm are of constant
curvatur, it is necessary and sufficient that Vn is a conformally flat space.

When n > 3, if the above-mentioned hypersurfaces ^ = const, are

# Einstein spaces, from (5.5) we have
/7"1 T1 Π
•* \fί',v -L \v',μ ~~~ v/

Thus we have the

THEOREM 5.3. In a Riemannian space Vn admitting a parallel vector
field, if the above-mentioned totally geodesic hypersurfaces are all Einstein
spaces, then we have

When the hypersurfaces xn = const, are Einstein spaces, we have,
from (5.2) and (5.3),

R R

Consequently (5.4) becomes

(5.6)
Tnn = ~~ 2(w -

Tin = 0.

r>

Now let us assume that ηλ is a parallel vector field, where ηλ = -~j^,

and the totally geodesic hypersurfaces η = const, are Einstein spaces. Then,
since tangential directions to these hypersurfaces are Ricci directions by
virtue of the Theorem 5.1, the tensor TKμ may be written in the form

(5.7) T λ μ = pgλμ -f κηλΎ)μ.

Comparing with (5.6), we have, because ηx corresponds to δ£?

R
(5.8)

(5.9)

2 ( Λ - 1 ) ( Λ - 2 )

R
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However, when n > 3, from (5,3) we find R = const.. Thus we obtain

p = c = const. Φ 0,

which follows

R = R = 2(n - 1) (n - 2)c.

Moreover, from (5.7) we have

Therefore, by virtue of the Theorem 5.3, we have

^λμ^ ~~ ^λv μ = Vk&vVμ- — K^Vv) + KiVKvVμ- ~~ VKμ-Vv)

= 0.

Since ?;λ is a parallel vector field, we find that

that is, K is a function of η.

Thus, when ^ > 3, if Vk is a parallel vector field and (5.7) holds, then
we. have

p = c = const., Λ; = ΛΓ(̂ ),

(5.10) R= R = 2(n- 1) (w - 2)c,
(5- M) Tλ μ ;, - Tλv;μ - 0,
that is to say, we get the

THEOREM 5A. If Vλ is a parallel vector field, where yx = ^Jf , and

tangential directions to the hypersurfaces η = const, are Ricci directions: then
we have

R = i? = 2(Λ - 1) (n - 2)c,

where c is a constant and R is the Riemann curvature of the hypersurfaces

η = const. (n > 3).

Moreover, if ηx

Vλ = 1, from (5.8) and (5.9) we have

<5.12) T λ μ = c(gKμ - 2VκVμ).

When n = 3, if ??Λ is a parallel vector field and

from (5.8) and (5,9) we obtain (5.10) and (5.12). Cosequently the hypersurfaces
η - const, are of constant curvature and from (5.5) we have (5.11), namely
V3 is conformally flat. Therefore K is a function of η and V3 is subprojective.

Furthermore, we can find the next fundamental theorems p. j .

THEOREM 5. 5. A conformally flat space which admits a parallel vector
field is a subprojective space of Kagan.

THEOREM 5.6. A Riemannian space which contains a family of oo1 totally
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geodesic hyper surfaces, whose Riemann curvatures are all constant and orthogo-
nal trajectories are geodesies, is a subprojective space of Kagan.

Finally, we can easily find that the fundamental quadratic differential
form of the subprojective space admitting a parallel vector field takes the
form [2]

± A U £
where K~ η—ZΓTYT—_ %) ~ c o n s t * 0 a n c * ' ± } t akes ' + ' o r ' - ' according

as R is positive or negative.

§ 6. Subprojective space admitting a concircular vector field.
Let us assume that a tensor Tλμ of a space admitting a concircular vector

field ξk takes the form

<6.1) Tλμ = pgKμ + uξ kξμ

and
(6.2)

(6.3)

From these equations, we shall introduce some relations which hold in the
subprojective space.

From (6.2) and (6.3) we have

- ajgλ* — (<xβv — &v)g^

Making use of Ricci identities, we have

BσR7hμv = P(ξvgκμ —

from which follows
(6.4) fσΛ?,= (n-ΐ)pξ¥

Therefore from (6.1) we have

Hence we have

On the other hand, calculating <jλμTλμ, we have

(
Eliminating / ξ"ξ? from these two equations, we obtain

{ b b ) p " 2(n-l)(n-2) n-2'
Eliminating R from (6.5) and (6.6), we have
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(6.7) 2p + uξ°ξσ =

From (6*7) we have

, , - P-2P - " 2 P

and consequently (6.1) becomes

(6- 8) 7V = p(gκμ — 277^ +

where τ;λ = fλ / \/pf7, that is, ^ ^ = 1.
If we put K = \/ξσξσ> we have

and by virtue of (6.2)

However

that is,

(6.9)

Thus we have

where, if ημ = -g—-, - is a function of ?;, because ^ is a concircular

vector field.
Furthermore if we assume that ξκ = θσκ and

a ( 9 ^

then (6.1) becomes
uffzσκσμ

and we can prove [2] that, when n > 3, ρμ = u^^ °>> t n a t * s >

(6.10) pμ = α ^ μ ,

Hence we have

_ a(p — 2p)
p μ - - v*>

that is,

P~2p

1) We assume that lσ£σ Φ 0 and consequently p — 2p Φ 0. If | » | σ = 0, Clσίσ) M =
= 2αlμ = 0 which follows a = 0. Hence l λ is a parallel vector field.
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Therefore p and p —2p are a function of η and consequently p is also a
function of η.

Especially when n = 3, if V3 is a subprojective space, it is evident that
(6.10) and (6.11) hold and consequently we have the same results.

From these results we find that Rachevsky's conditions for the subpro-
jective space may be written as

(A) Rϊμvω

(6.12) (A') Γ λ μ ; , -
(B) Tχμ = p(η) (gλμ —

where ?;λ =-gJc a n ( * W = 1.

Conversely let us assume that (A') and (B) hold. Then we have from (B)

) )

from which follows

Tλfi v — Tλr μ = (P^ί/λμ — PμJdλv) + (P ~ μ

(6. 13) + VλiPvVμ — PμVv)

= 0.

Multiplying by ηλ and summing for λ, we have

PvVμ. — Pμ?}V = 0 ,

because p is a function of ?; and vκη\,v = 0. Thus we find that /> is a func-
tion of ?;. Consequently from (6.13) we have

(Pu9λμ — PμJ9kv) + (P — 2p) ( ί 7 λ ; ^ μ — ̂ λ μ^L) = 0.

Multiplying by 7?̂  and summing for μ, we have

PvV\ — V*P^λi, + (P — 2/9)77̂  = 0,
from which we have

λ̂;, ~ p_2p
 gλv p-2p'

Consequently putting •. ̂ μ

o =f(η)Vμi we have
p — £p

Thus we find that if (6.12) (A') and (B) hold, then p is a function of 77 and
η\ is a concircular vector field.

§ 7. Subprojective space admitting a concurrent vector field.
When ξκ is a concurrent vector field, (6.3) becomes [1]

(7.1) *βμ-*μ=0,

that is, £=0. Therefore (6.6) and (6.7) reduce to

( 7 ' 2 ) p = '2(n-lK»-2) '
(7.3) 2p 4- «?σf σ = 0.

Consequently if we put
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we have

a
AC

Now eliminating £„ from (6.9) and (7.1), we have

from which follows

a* dx» a

Therefore we have η = — + const., Hence putting ~- = 77, we obtain

(7 .4) ημ;v = ( ^ ^ — 77̂ 77,/) .

Furthermore, when w > 3, from (6.10) we have

2a 9 2p
(7.5)

from which follows

that is,
pη2 = const. Φ 0.

When w = 3, for the subprojective space the above equation holds.
Hence we can conclude that a subprojective space admitting a concurrent

vector field satisfies the next three conditions

(7.6)
(B)

where T7λτ;λ = 1, ηκ = ^ ^ and p ^ = const. =t= 0.

Conversely, if (A') and (B) hold, we have

Tλμ.-)V = pXflfλμ — 2?7λ?7μ) — 2p{ηKvημ -f

Consequently we have

= 0.
Since we have VV μ = 0 from τ;λ?7λ = 1, multiplying by 77̂  and contracting
for /A, we obtain

PvVk ~ η^pμΰKv — 2p?7λ;v = 0,

from which follows



ON SUBPROJECTIVE SPACES III 357

Substituting (7.5), we have

= 1
η

and, in consequence of

o
v v 3χκ v

we find that if (7.6) (A') and (B) are satisfied, then ηλ is a concurrent vector
field.

If Ύ)K is a parallel vector field and ηλη\ = 1, we can easily obtain
Tλ μ = c(#λμ — 2VλVμ,), where c = const..

Thus from (3.5), (6.12), (7.6) and the above result, we find the
THEOREM. A subprojective Riemannian space is characterized as follows:
( I ) The space is conformally flat.
(II) // ^ λ = l ^

( 1 ) when ηκ is a concircular vector field,

( 2 ) when η\ is a concurrent vector field,
T λ μ = p(g\μ, — 2ηkτjμ), prf = const. Φ 0,

( 3 ) when ηκ is a parallel vector field,

where

T λ α = — -

Finally we shall note on the fundamental quadratic differential form
of the subprojective space admitting a concurrent vector field. According
to the previous paper [2], it takes the next form, for a suitable coordinate
system,

ds* = sγ~ (<&? + {&&+ • • • • + ^ y + ( ^ . ) 2 { k > 0 ) j

1 ^ i=l

from which follows

K =
(n — 1) (« — 2)

where Riemann curvatures R of the hypersurfaces xu = const, are positive
or negative according as the sign ' i t ' takes ' + ' or ' - ' , Consequently we
have
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and the other components are zero. It follows

R = (n - 1) (n - 2)— * ~

Hence when K = -j-^, that is,

the space is flat.
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