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1. Introduction.
An R-surface in a Euclidean 4-space, R4, is characterized by the pro-

perty that its tangent planes are all isocline to one another. As a consequence,
any curve on an /^-surface admits a field of isocline tangent planes. The
Cauchy problem in the determination of j?-surfaces requires an answer to
the question whether an arbitrary curve in R4 has this property ( § 3). In
the present note this question is answered in the affirmative ( § 4) and some
properties of the fields of isocline tangent planes along a curve are given
( § 5). It is further shown ( § 6) that the planes in a one-parameter family
of isocline planes in R4 either are tangent to a curve or have a common
fixed point. The note ends with a complete classification of one-parameter
families of planes in R4 ( § 7).

2. Preliminary formulas.
Two planes ξ, ξ* in R4 are said to be isocline to each other if the angle

between a vector in ξ and its projection in ξ* is independent of the posi-
tion of the vector in ξ. Two planes can be isocline in either one of two
senses and the property of pairs of planes being isocline in one and the
same sense is transitive. (See, for example, Manning £7], pp. 114-125,
180-198.)

A frame A-h (/, j , k, = 1, 2, 3, 4) in R4 consists of 4 orientated
mutually orthogonal unit vectors h attached to a point A. A nearby or
consecutive frame A*-I\ of A-h is determined when the infinitesimals ω' s
in the equations (Cartan C2D)

(2.1) dA = A* - A = ωJi, dh = 7 - h =. ωtjl3

are given. Here repeated indices imply summation, and the ωi} are skew-
symmetric in the indices i, j . Neglecting infinitesimals of the second and
higher orders, equations (2.1) are equivalent to

(2.1') dA* = A - A* = -ω-Jl dl\ = It - ti = -ωtjΓj.

Let us now find the condition for the plane ξ: A-IxIλ of the frame A-h
and the plane ξ*: A*-I\ϊ\ of the consecutive frame A*-II defined by (2.1) to
be isocline to each other. Consider in ξ the unit vector

I = /icos θ + 72 sin θ = θ£ + dlΐ) cos θ + (ll + dll) sin θ.

Its component orthogonal to f* is, by (2. Γ),

— {(̂ 13/3 + ^ H / I ) cos θ + f«2s/ϊ + <t>2ill) sin θ}.
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Therefore the angle dψ between /and its projection in ξ* is given by

(sin dψy = (ω13 cos θ + ω23 sin θ)2 + (ω14 cos 0 + ωM sin 0)'J

Hence Jψr is independent of 0 if and only if

which are easily seen to be equivalent to

(2. 2) ω24 = #»i3 , ω u = —βω23 (β = d= 1),

that is,

(2.2') h dl, - ^/3 dIΛ, I4.dlt= - el3 <//2 (β = ± 1).

These are the conditions for the consecutive planes A-IJ^ and i4*-Λ/a to be
isocline to each other. The bivaluedness of e confirms our previous state-
ment that two planes may be isocline to each other in one sense or the other.

•ίt JS-surface. Cauchy probem (cf. Cartan [3H).

It is not without interest to say a few words about R-surfaces in R4,
of which each of the following properties is characteristic:

PROPERTY 1. The tangent planes of the surface are all isocline to one
another.

PROPERTY 2. The surface is given in rectanglular coordinates x, y, u, v
by the equations u = u (x,y), v = v(x, y), where u (x, y), v(x, y) are the real
and imaginary parts of an analytic function:

Ax + lS/~-ίy) = u (x, y) + S/^Λ v (x, y\

PROPERTY 3. The curvature ellipse at every point A of the surface is
a circle with center at A.

It was Kwietniewski [~6D who first started the study of /^-surface by
proving that Property 1 implies Property 2. Kommerell [5U, to whom the
name /^-surface is due, then showed that Property 2 implies Property 3.
The converse that Property 3 implies Property 2 was later established by
Eisenhart [4H. Finally, Borύvka [1], using Cartan's method of moving
frames, proved that a surface with Property 3 depends on 2 arbitrary
functions of 1 variable. For more properties of /?-surface, the reader is
referred to Wong [9].

By means of (2.2) it is very easy for us to prove directly that a surface
in R4 with Property 1 depends on 2 arbitrary functions of 1 variable. In fact,
let us attach to each point A of a surface in R± a frame A-h so that the
plane A-1Ύ1Z is tangent to the surface at A, then a surface with Property
1 is characterized by the equations

(3.1; ω3 = ω 4 = 0, ω 2 4 = eωl3f ωu = — ω23 (e = 3zl).

The ωif cύij are linear differential forms in the two parameters on which
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the surface depends, and must satisfy the equations of structure for R4

(3.2) d(oi = Ovo*], dωi5 = Eωffcωfc,Ί,

where a d before a differential form indicates exterior differentiation.
On account of (3.2) and the equations (3.1) themselves, exterior differen-

tiation of the first two equations in (3.1) gives

(3. 3) L^l^lΔ + 1>2«23] = 0 , — [fc^lsH + Olω23H = 0 ,'
while that of the last two equations in (3.1) gives two equations which are
identically satisfied.

Now the determinant of the polar matrix of (3.3) whose columns corres-
pond to the forms ωι3, ω23 is

and is therefore of rank 2. Hence the system of equations (3.1) and (3.3) is
in involution, and the surface in question exists and depends on 2 arbitrary
functions of 1 variable. The characteristics of the system are the minimal
curves (ωτ)

2 -j- (ω2)
2 = 0.

Any one-dimensional solution of (3.1), i. e. a one-parameter family of
frames Ah satisfying (3.1), such that {ωxf -+- {ω.2f Φ 0, will determine one
and only one /^-surface. Such a one-dimensional solution is obtained if we
can define, along any given curve (A), a field of frames A-It so that the
plane A-IΎIZ is tangent to (A) at A and is isocline to its consecutive planes.
Therefore, the Cauchy problem in this case is to find out: What curves
admit a field of isocline tangent plane ? And, for such a curve, how far can
this field of planes be determined? Although we can more or less guess
the answer to these questions from the fact that the i?-surface depends on
2 arbitrary functions of 1 variable, an explicit answer will be given in the
next section.

4. Existence theorem.
An isocline field of tangent planes along a curve in Rti is a family of planes

tangent to the curve, one plane at each point, such that any two planes in
the family are isocline to each other in one and the same sense. The field
is of one type or the other according as its planes are isocline to one
another in one sense or the other.

We now proceed to prove the following existence theorem.

THEOREM 4. 1. Given any curve (A(s)) in RA, which is not a straight
line, and any plane ξa tangent to the curve at the point A(s0). Then there
exist along the curve two and only two isocline fields (ξ(s)) of tangent planes,
one of each type, such that ξ(s0) = ξ0.

PROOF. The curve (A(s)) is described by the point A(s), the parameter
being the arc length s. The curvatures κ\, κ2, κ3 and the Frenet frame

of (A) are connected by the Frenet formulas (Schouten-Struik £8]), which
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will be written here as

(4.1) dsA = /, , dsji = κtjdjj (A = d/ds),

where

Kj2 = — /Cai = Kι , Λ:2S = ~tf 3 2 = ^ , #34 = — #43 = Λ:3 ,

(4 2)
' } all other κtί are zero.

Any field of planes tangent to the curve (A), one plane at each point,
may be considered as generated by the plane A-Iιl2 of a one-parameter
family of frames A-h defined by
(4.3) /, = /„ Ip = amjq (P, ί , f = 2 , 3, 4),

where the aPl, which are functions of s, are the elements of a direct
orthogonal matrix so that

(4.4) aplapr - aqparp = 8qr = | 0 ! f ^ ~ ^

(4.5) {Cofactor of αP Q in the determinant (ocpq)} = cκM,

(4.6) a2Pda2P = 0.

We shall now show that the α's can be so chosen that the conditions
(2.2) for A-IJj to generate an isocline field are satisfied. Substituting in
(2.2) the values of It from (4. 3) and then using (4.1), the result is

oc4Pdsa2P -4- a2Pa4qκm = ^QΛΓKΪ,

a3Pdsa2P -f a2PanκPι = — ea4qtclq,

which, on account of (4.2) and (4.5), can be written as

* }

Now if we multiply the three equations in (4.7) and (4.6) by α47, acsq, a2q,
respectively, and add, we have

After simplification by use of (4. 5) and (4.2), the above equation can be
written out as

d,oc22 = /c2a23,

(4.8)

We observe that equations contain only the unknowns a2q but not all
the ap(1. This is what we hoped would happen; for, from the nature of
our problem, we are interested only in the am which determine the plane
A-IJ2 completely. Equations (4.8) are our fundamental equations, which
will, among other things, enable us to prove the existence theorem.

If (A) is not a plane curve, its Frenet frame A-Jι is uniquely determined
(except for the senses of /,:, which are not important here). In this case,
let us take ξ0 to be the A-IJZ at A(s0), and determine the initial values
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ot a.ιp from the second equation in (4.3). Equations (4.8) for each
value of e will then give a unique solution for cc2P whose initial values at
A(sQ) are (oc^p)0m With this solution α2Pi the first two equations in (4.3) will
determine a unique isocline field of planes tangent to (A).

If (A) is a plane curve but not a straight line, then κλ =t= 0, κz = 0, and
κ-ό is indeterminate. In this case, the Frenet frame for (A) is not unique;
in fact, formulas (4.1) and (4.2) show that /i, Jz and κγ are uniquely de-
termined by dsA=Ju dsji = κj2, dsj2 = — κ: Jlf but /3, / 4 and κ3 have merely
to satisfy the following two equations

(4.9) dsj3 = K3J4, dsji = — κ3j3.
Suppose first that ξ0 is not the plane of (A), i. e. the plane in which the
curve (A) lies. Then it follows from (4.9) that there exists a unique Frenet
frame for (A) satisfying

(4.10) κz = - eκτ,

and the initial condition that at A (s0), / 4 is orthogonal to ξ0 and Jz. When
this Frenet frame is used, equations (4. 8) reduce to dsα2P = 0, and have
the unique solution

#23 = (#22)0, #23 = (#23)0, #24 = (#24)0 = 0.

If £0 is the plane of (A), let us use in (4.8) any Frenet frame A-Jt satisfying
(4.9) and (4.10). Then the soution of (4.8) is

#22 - (#22)0 = ± 1, #23 = (#23)0 = 0, α 2 4 = (#3 4)o = 0,

and the isocline field of tangent planes required is the (single) plane of (A).
Hence our theorem is completely proved.

REMARK. It is obvious that if the planes A-/i/2 in a family of frames
A-L form an isocline family, then the planes A-/3/4 also form an isocline
family. Therefore, Theorem 4.1 with the words "tangent" replaced by
"normal" still holds and constitutes the existence theorem for isocline fields
of normal planes along a curve in R4.

5 Some properties.

Suppose that A-/2/2 and A-JΎI\ are two isocline fields of tangent planes
of the same type along a curve (A). Then the corresponding functions ct2P,
α*p will satisfy equations (4.8) with the same value of e. Now the angle ψ
between the planes A-JJ2 and A-Jjl, which intersect at the tangent A-/i,
is given by

cos ψ = Iλ i\ = a2PalP.

If we differentiate the last member with respect to s and make use of (4.8),
the result is found to be zero. From this and the linearity of the equations
(4.8), we have

THEOREM 5.1. Let (fen), (£(*)) be two fields of isocline tangent planes of
the same type along a curve (A(s)), then the corresponding planes ff(u(s),
f ( ) make a constant angle at the tangent along the curve. Let (ξ^)
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(a = 1,2,-3) be three independent fields of isocline tangent planes of the same
type along a curve (A(s)), then a tangent plane ξ(s) of (A) will generate a 4th
isocline field along-the curve if and only if ξ(s) is rigidly attached to the
three planes ξ(a)(s).

Here the words "independent" and "rigidly attached" are used in an
obvious sense.

We shall now prove the following theorem.

THEOREM 5.2. Let (ξ) be an isocline field of tangent planes along a curve
{A), then any vector in ξ making a constant anφe with the tangent A-fλ will

rotate along (A) at the same rate as the tangent A-Jι.

PROOF. Let A-IJZ generate the isocline field of tangent planes and let
/ = βlί + yl2, where I1} 72 are defined by (4. 3) and β, y are constants such
that β1 + yz = 1. Differentiating /with respect to 5 and making use of (4. 3),
(4.1) and (4.8), we have after simplification

dj = fdiβj, •+ y( - QCzJj -f eac24j3 ~ eoc2j4)}.

Therefore, (dj)2 = [/cj* = (djλ)'z, which proves the theorem. It is to be pointed
out that the property stated in Theorem 5.2 is not sufficient to characterize,
an isocline field of tangent planes along a curve.

The following theorem is an easy consequence of (4.8).

THEOREM 5.3. There does not exist any non-plane curve along which
the plane containing the tangent and the first or second principal normal
generates an isocline field. The plane containing the tangent and the last
principal normal of a non-plane curve generates an isocline field if and only
if the first and third curvatures of the curve are numerically equal.

Without going into details we mention that further consequences of (4.8)
can be obtained by considering the cases where a22 = const, or a2i = const,
and by observing that (4.8) contains the curvatures of (A) only in the combi-
nations /c2, (eκλ + /c3).

6. One-parameter family of isocline planes in R4.
In R4 a one-parameter family of planes in which any pair of consecutive

planes are isocline, but not parallel, to each other is called a one-parameter
family of isocline planes. Any such family may be considered as generated
by the plane A-IJZ of a one-parameter family of frames Alt satisfying
the conditions

(6.1) ω.M = eω13t ωu = — £ ω 2 3 (e = i t 1),

where the ω's are of the form f(t)dt, t being the parameter on which the
family of frames depends. Since no consecutive planes in the family are
parallel, the, ω's in (6.1) cannot all vanish at the same time, and therefore
by continuity the e in (6.1) is always + 1 or always — 1. Hence, any pair
of planes in a one-parameter family of isocline planes are isocline to each
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other in one and the same sense.
We shall now prove the following theorem.

THEOREM 6.1. The planes of a one-parameter isocline family in R4 either
have a common point or are tangent to a curve.

PROOF. Consider the point B = A + pala (a, b = 1,2) in the plane A-IΛI2y

where pa are functions of t. We have by (2.1)

dB = (ωa + dpa + Pb&ba) la + (<*>p + Pb^bp) Ip (P, Q = 3, 4).
For the plane AΊλI2 to be tangent to the curve (B), or as a special case,
passing through a common fixed point Z?, it is necessary and sufficient that
ωp -f p6ω&p = 0, i. e. by (6.1),

piω 1 3 + p2»23 "t- ω 3 = 0,

Since (e>i3)
3 + f&W^ =t 0, these equations determine p ] ? pif and consequently

also the point B, uniquely as functions of t. Now let this point B take
the place of A. Then pa = 07 ω p = 0 and di? = &>«/«. The point B is fixed
or describes a curve according as ωfl = 0 or Φ 0. Thus our theorem is proved.

7. One parameter family of planes in R4.
By means of Cartan's [2~\ method of moving frames, it is not difficult

to arrive at a complete classification of the one-parameter families of
planes in R4. We shall state the results without proof in the following
theorem.

THEOREM 7.1. In RA there are 6 categories of one-parameter families of
planes. A family of Category I depends on 5 arbitrary functions of 1 variable
and is the most general of such families. A family of Category II depends
on 4 arbitrary functions of 1 variable, and every pair of consecutive planes

in the family are ~ -parallel. A family of Category III depends on 3 arbitrary

functions of 1 variable, and the planes of the family are all parallel to a
common fixed straiφt line. A family of Category IV depends on 3 arbitrary
functions of 1 variable, and consists of isocline planes tangent to a curve. A
family of Category V depends on 1 arbitrary function of 1 variable, and
consists of isocline planes passing through a common fixed point the family
admits oo1 groups of oo1 displacements in R4, each displacement leaving the
planes of the family individually invariant. A family of Category VI depends
on 1 arbitrary function of 1 variable, and consists of planes all parallel to
a common fixed plane.
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