ON THE CENTRAL LIMIT THEOREM

SHIGERU TAKAHASHI

(Received June 24, 1951)

§ 1. Let $\{X_k(t)\}\ (k=0,1,2,\cdots)$ be a sequence of random variables defined in a probability space (T.F.P). The so-called central limit theorem (Cramér [1]) states that when a sequence $\{X_k(t)\}$ satisfies some appropriate conditions, then we have

$$\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n}}\sum_{k=0}^nX_k(t)\leq a\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^ae^{-u^2/2}\,du$$

where $\frac{1}{\sqrt{n}}\sum_{k=0}^{n}X_{k}(t)$ denotes a suitably normalized variable. About this

theorem we will consider the following two generalizations:

- 1°. Replacing the constant upper limit a of summation by a measurable function g(t) defined in T.
- 2°. Replacing the number n of random variables of summation by a random function $N_n(t)$ defined in T.

On these generalizations J. C. Smith [2] has proved some theorems in the case where $\{X_k(t)\}$ is the system of Rademacher's functions. On the other hand

M. Kac [3] has discussed the limit distribution of the type of $\frac{1}{\sqrt{n}} \sum_{k=0}^{n} f(2^k t)$,

where f(t) is a measurable function with period 1. In this note we consider the above generalizations in the case $X_k(t) = f(2^k t)$. Throughout this note

we assume that $\frac{1}{\sqrt{n}} \sum_{k=0}^{m} f(2^k t)$ converges in law to the normal distribution G(u).

§2. In this paragraph we prove a lemma.

Lemma 1. If E is a measurable set in [0,1] then

$$\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n}}\sum_{k=0}^nf(2^kt)\leq a,\ E\right)=P(E)\,G\left(a\right)$$

where P is the Lebesgue measure.

PROOF. Devide [0,1] into 2^i equal parts and denote by Δ_i^j the set $[t; j/2^i \le t \le (j+1)/2^i]$ $j=0,1,2,\cdots 2^i-1$, and $i=1,2,\cdots$. Then for any i and j

$$G(a) = \lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}} \sum_{k=0}^{n} f(2^k t) \le a\right)$$

$$\begin{split} &=\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n}}\sum_{k=0}^nf(2^kt)\leqq a,\, \bigcup_{j=0}^{2^{i-1}}\Delta_i^j\right)\\ &=\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n}}\left(\sum_{k=0}^{i-1}+\sum_{k=i}^n\right)f(2^kt)\leqq a,\, \bigcup_{j=0}^{2^{i-1}}\Delta_i^j\right)\\ &=\lim_{n\to\infty}\sum_{j=0}^{2^{i-1}}P\left(\frac{1}{\sqrt{n}}\sum_{k=i}^nf(2^kt)\leqq a,\Delta_i^j\right)\\ &=2^i\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n}}\sum_{k=i}^nf(2^kt)\leqq a,\, \Delta_i^j\right)\\ &=2^i\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n}}\sum_{k=0}^nf(2^kt)\leqq a,\, \Delta_i^j\right). \end{split}$$

Therefore

$$\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n}}\sum_{k=0}^n f(2^kt)\leq a, \ \Delta_i^j\right)=P(\Delta_i^j)G(a).$$

Now, let M be the family of sets E which satisfy the following relation

$$\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n}}\sum_{k=0}^n f(2^kt)\leq a, E\right) = P(E)G(a).$$

Then we can easily conclude the following properties:

1° M includes [0,1] and Δ_i^j for any i and j.

2° If $E \subset E'$, and E', $E \in M$, then $E' - E \in M$. For

$$\lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}}\sum_{k=0}^n f(2^k t) \le a, \quad E'-E\right)$$

$$= \lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}}\sum_{k=0}^n f(2^k t) \le a, \quad E'\right) - \lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}}\sum_{k=0}^n f(2^k t) \le a, \quad E\right)$$

$$= P(E')G(a) - P(E)G(a) = P(E'-E)G(a).$$

3° If $E = \bigcup_{j=1}^{\infty} \Delta_j$, $\Delta_j \in M$ and Δ_j , $\Delta_{j'}$ $(j \neq j')$ are non-overlapping, then $E \in M$. For

$$\lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \sum_{k=0}^{n} f(2^k t) \le a, E\right)$$

$$= \lim_{n\to\infty} \sum_{j=1}^{\infty} P\left(\frac{1}{\sqrt{n}} \sum_{k=0}^{n} f(2^k t) \le a, \Delta_j\right), \tag{1}$$

and for every n we have

$$0 < P\left(\frac{1}{\sqrt{n}} \sum_{k=0}^{n} f(2^{k}t) \le a, \Delta_{j}\right) \le P(\Delta_{j})$$

and

$$\sum_{j=0}^{\infty} P(\Delta_j) = P(E).$$

So the convergence of $\sum_{j=0}^{\infty} P\left(\frac{1}{n}\sum_{k=0}^{n}f(2^{k}t)\leq a, \Delta_{j}\right)$ is uniform with res-

pect to n. Hence we can exchange the order of limit and summation of (1). Thus the right hand side of (1) is

$$\sum_{j=0}^{\infty} \lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \sum_{k=0}^{n} f(2^k t) \leq a, \Delta_j\right)$$
$$= \sum_{j=0}^{\infty} P(\Delta_j) G(a) = P(E) G(a),$$

which is the required result.

Since M includes any closed interval and any open interval, any open set and any closed set are also included in M by 1°-3°. Here, P is the Lebesgue measure, so M includes any L-measurable set.

Using the above lemma we shall consider the generalizations mentioned in §1.

§3. THEOREM 1. Let g(t) be a non-negative measurable function defined in [0,1], then

$$\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n}}\left|\sum_{k=0}^n f(2^kt)\right|\leq g(t)\right)=\int_0^1 dt\int_{-g(t)}^{g(t)} dG(u),$$

where G(u) denotes the normal distribution.

PROOF. It is sufficient to prove this theorem for the case where g(t) is a simple function. Let g(t) be a simple function such that $\{a_i, E_i\}$ $(i = 1, 2, \dots)$. Then we have

$$\lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{n} f(2^k t) \right| \le g(t) \right)$$

$$= \lim_{n\to\infty} \sum_{i=1}^{\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{n} f(2^k t) \right| \le a_i, \ g(t) = a_i \right).$$
(2)

The exchange of limit and summation of (2) is shown by the same way as in 3° of the preceding lemma. Hence, using Lemma 1, we have

$$\sum_{i=1}^{\infty} \lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{n} f(2^k t) \right| \le a_i, \ g(t) = a_i \right)$$

$$= \sum_{i=1}^{\infty} \left[G(a_i) - G(-a_i) \right] P(g(t) = a_i)$$

$$= \sum_{i=1}^{\infty} P(g(t) = a_i) \int_{-a_i}^{a_i} dG(u)$$
$$= \int_{0}^{1} dt \int_{-g(t)}^{g(t)} dG(u).$$

Thus we get the theorem.

If two measurable functions $g_1(t)$ and $g_2(t)$ have the distribution functions $G_1(u)$ and $G_2(u)$ respectively and if $G_1(u) = G_2(u)$ for the continuity points of $G_1(u)$ and $G_2(u)$, then it is said that $g_1(t)$ and $g_2(t)$ have the same distribution function $G_1(u)$ (or $G_2(u)$).

COROLLARY 1. Let $g_1(t)$ and $g_2(t)$ be non-negative and measurable functions having the same distribution function $\overline{G}(u)$. Then

$$\lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{n} f(2^k t) \right| \leq g_1(t) \right)$$

$$= \lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{n} f(2^k t) \right| \leq g_2(t) \right)$$

$$= \int_{0}^{\infty} d\bar{G}(v) \int_{-v}^{v} dG(u).$$

PROOF. From Theorem 1, we have

$$\lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{n} f(2^k t) \right| \leq g_1(t) \right) = \int_0^1 dt \int_{-g_1(t)}^{g_1(t)} dG(u) = \int_0^{\infty} d\overline{G}(v) \int_{-v}^{v} dG(u)$$

$$= \int_0^1 dt \int_{-g_2(t)}^{g_2(t)} dG(u) = \lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{n} f(2^k t) \right| \leq g_2(t) \right).$$

§ 4. Next, we consider the second generalization.

THEOREM 2. Let $N_n(t) = nN(t) + Q_n(t)$, where $N_n(t)$ and N(t) are measurable functions which take only non-negative integers, and $Q_n(t) = o(n^{1/2})$. Then

$$\lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{N_n(t)} f(2^k t) \right| \le a\right)$$

$$= \sum_{M=0}^{\infty} P(N(t) = M) \int_{-aM^{-1/2}}^{aM^{-1/2}} dG(u)$$

$$= \int_{0}^{1} dt \int_{-aN(t)^{-1/2}}^{aN(t)^{-1/2}} dG(u).$$

Proof. Put

$$\frac{1}{\sqrt{n}}\sum_{k=0}^{N_n(t)}f(2^kt)=\frac{1}{\sqrt{n}}\sum_{k=0}^{nN(t)}f(2^kt)+S_n(t),$$

then

$$\lim_{n\to\infty} P(|S_n(t)| > \varepsilon)$$

$$= \lim_{n\to\infty} \left(P|S_n(t)| > \varepsilon, \bigcup_{M=0}^{\infty} (N(t) = M, \bigcup_{k=-\infty}^{\infty} Q_n(t) = k) \right)$$

$$= \sum_{M=0}^{\infty} \lim_{n\to\infty} P\left(|S_n(t)| > \varepsilon, N(t) = M, \bigcup_{k=-\infty}^{\infty} Q_n(t) = k \right)$$

$$= \sum_{M=0}^{\infty} \lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{\infty} f(2^k t) \right| > \varepsilon \right)$$

where Σ' denotes the summation from nM to $nM + |Q_n(t)|$ or from $nM - |Q_n(t)|$ to nM according to $Q_n(t) \ge 0$ or $Q_n(t) < 0$. But from our assump-

tion $\frac{1}{\sqrt{n}}\sum_{k=0}^n f(2^kt)$ converges in law to G(u) and $Q_n(t)=o(n^{1/2})$. Hence

$$\lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}}\left|\sum' f(2^k t)\right| > \varepsilon\right) = 0.$$

So we have

$$\lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{N_n(t)} f(2^k t) \right| \le a\right)$$

$$= \lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{nN(t)} f(2^k t) \right| \le a\right)$$

$$= \lim_{n\to\infty} \sum_{M=0}^{\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{nM} f(2^k t) \right| \le a, \quad N(t) = M\right)$$

$$= \lim_{n\to\infty} \sum_{M=0}^{\infty} P\left(\frac{1}{\sqrt{nM}} \left| \sum_{k=0}^{nM} f(2^k t) \right| \le aM^{-1/2}, \quad N(t) = M\right)$$

$$= \sum_{M=0}^{\infty} \lim_{n\to\infty} P\left(\frac{1}{\sqrt{nM}} \left| \sum_{k=0}^{nM} f(2^k t) \right| \le aM^{-1/2}, \quad N(t) = M\right).$$
(3)

By Lemma 1, the last hand side of (3) equals to

$$\sum_{M=0}^{\infty} P(N(t) = M) \int_{-aM^{-1/2}}^{aM^{-1/2}} dG(u) = \int_{0}^{1} dt \int_{-aN(t)^{-1/2}}^{aN(t)^{-1/2}} dG(u).$$

In Theorem 2, when M = N(t) = 0 then we interprete that $aM^{-1/2} = aN(t)^{-1/2}$ denotes ∞ .

COROLLARY 2. Let

$$N_n'(t) = nN'(t) + Q_n'(t)$$

and

$$N_n^{\prime\prime}(t) = nN^{\prime\prime}(t) + Q_n^{\prime\prime}(t)$$

satisfy the conditions of $N_n(t)$, N(t) and $Q_n(t)$ of Theorem 2. If N'(t) and N''(t) have the same distribution function $\widetilde{G}(u)$, then

$$\lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{N_n'(t)} f(2^k t) \right| \le a \right)$$

$$= \lim_{n\to\infty} P\left(\frac{1}{\sqrt{n}} \left| \sum_{k=0}^{N_n'(t)} f(2^k t) \right| \le a \right)$$

$$= \int_0^\infty d\overline{G}(u) \int_{-an^{-1/2}}^{av^{-1/2}} dG(u).$$

PROOF. It is evident from Theorem 2.

The theorems of J. C. Smith [2] are obtained when we put

$$f(t) = \text{sign } (\sin 2\pi t)$$

in Theorem 1 and Theorem 2.

LITERATURE

- H. CRAMER, Random variable and its probability distribution, Cambridge (1937).
 J. C. SMITH, On the asymptotic distribution of the sum of Rademacher's functions, Bull. Amer. Math. Soc, 51 (1945).
- [3] M. KAC, On the limiting distribution of the type of $\frac{1}{\sqrt{n}} \sum_{k=0}^{n} f(2^k t)$, Annals of Math. 47 (1946).

MATHEMATICAL INSTITUTE, HIROSAKI UNIVERSITY, HIROSAKI, JAPAN.