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I. Introduction and summary
Recently E. Lukacs and O. Szasz [3] gave a necessary condition which

the reciprocal of a polynomial without multiple roots must satisfy in order
to be a charcteristic function. The assumption that the polynomial has no
multiple roots is, however, unnecessary, and moreover, if the degree of
the polynomial is less than 4, the condition is not only necessary but also
sufficient. The condition is not sufficient in case when the degree of the
polynomial is equal to 5. The proof and example will be given in § 3. The
principle of the proof is the same as one given by E. Lukacs and O. Szasz.

Let L be the probability law defined by the density function

l*e-», i f * > 0 ,
=\0, i f * < 0 ,

where oc is positive, then the characteristic function of L is given by

,«,-(!-

The probability law L has a curious property; starting from the law L,
one obtains the same symmetric law by X = X1 — X2} where X± and X2 are
independent random variables with the law Z,, or by X = εXly where £ and
Xι are independent random variables, £ taking on ± 1 with equal probabili-
ties, the law of XL being L. The identity of the two laws, which are in
general different, is expressed by the formula

(1.1) - | - \JP(t) + <P{- t)l = Ψit)φ{ - t).

Under the condition that <P(t) is a non-vanishing characteristic function, the
solution of (1.1) is given by

a-2> *(O = Ϊ T W
where ω(t) is a real valued function of t such that

(1.3) ω ( - t)^ -ω(t).
A question arises, if there is another characteristic function of this form
than those obtained by putting ω(t) = cL P. Levy [2] expressed himself that
this question did not seem to have been solved. We will give an answer to
this problem in the affirmative in § 4.

Professor T. Kawata has informed me the result of E. Lukacs and O. Szasz
[3], which has not been published as yet, and I have greatly profited from
his valuable remarks. I wish to express my sincere thanks to him.
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2. Auxiliary formulas and lemmas
FORMULAS. (See [3] § 3).
If 9ΐ (a) > 0, that is, a is a real positive number or a complex number

with positive real part, and λ is a positive integer,

( 2 Λ )

0, i f * < 0 ,

and
oo

/

/yλ / */• \—λ

** Yλ-lp-cύXgritxrfY _ / 1 _ g Γ 1
0

If 9ϊ(/6?) > 0 and λ i s a positive integer,

(2. 3) τ ± - 1 * ...»• Λ = '
( j (O, if*>0,

and

(2.4) f j ^ ( - Λ; γ-W*-dx = (l + -|-)".λ

— oo

In (2.1) and (2.3), if λ = 1, f means Km Γ .

- o o — T

LEMMA 1. (well-known). If a non-negative real valued almost periodic
function g(x) satisfies

= lim i Γ g(x)dx = 0,

= 0.

LEMMA 2.

(2. 5) g(χ) =

0 < bλ < b2 < — < bm, Bj =t= 0 (j = 1, 2, m), αwJ S" expresses the
conjugate complex number of a complex number B, then

lim inf g(x) < 0, lim inf g(x) < 0.

PROOF. It is evident that
(2.6) (̂ΛΓ) is a real valued almost periodic function,
(2.7) ΛΓ(0(*))=O, and



308 κ TANAKA

If g(x) is non-negative, from Lemma 1 and (2.7), it follows that §(x) = θ
which contradicts (2.8). Therefore there exists at least one value x0 such
that g(Xo) < 0. Using (2.6), we have

liminf g(x) < 0, liminf g(x) < 0.
X->oo iC->-oo

3. THEOREM 3.1. (Eugene Lukacs and Otto Szasz). In order that the
complex valued function of a real variable t

(3. l) φ(0 = {c0 + cιaty+ c2(ity +••••+ cxdf)"}-1, a = */~^T, cN * 0),
be the characteristic function of a probability distribution, it is necessary that
(3.2) c0 = 1 and all cj are real,
(3. 3) the polynomial with real coefficients

Q(z) = 1 + czz + c 2 z 2 + • • • • + cNzN

has no pure imaginary roots, and that
(3. 4) if adz ib (a =ί= 0, b Φ 0) is a pair of complex roots of the polynomial Q(z)
then* it has at least one real root c such that sign c = sign a and \c\ <; \a\.

PROOF. If the function φ{t) is the characteristic function of a destri-
bution then:
(3.5) 9»(0) = l,
(3.6) \<P(t)\ S I ,
(3.7) φ(-t)= φ(t).
From (3.5), we have c0 = 1. From (3.7), we have

1 + c,( - if) + c2( - ft)2 + + CJΛ - it)N

= 1 + ̂ - ft) + cz( - itγ + - - + cM - # Γ
for all real t Therefore all c5 must be real. (3.3) is derived from (3.6).
In the sequel (3.2) and (3.3) are considered to be satisfied.

Let the zeros of the polynomial Q(z) be

2 = α i ( ; = l , 2 , ,-m) and z = —βk (k=\2, ,ή)

where %t(ctj) > 0, 9ΐ(/3fc) > 0, and let their multiplicities be pj and qk. If a5

is not real, there exists aty, which is conjugate complex with oc5 and pj = ί̂ /.
The same is true for βk's and qk's.

The function (3.1) can then be written

[ ( £ )
if £>(0 is decomposed into partial fractions, it is seen that

nι Pj /Λ

(3.9; Ψ(t) = 2 Σ T - ^ ^ F +ΣΣ

where

13.10; if ctj is real then Ajj, is real, and if a5 = α i ? then Λ 3̂, = AyP and
the same is true for βk's and fi'^s.
If m = 0, i. e., if there are no roots with positive real part the first term
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of (3.9) is omitted, and if n = 0, the second term.
Let

(3.11) fix) = -^r I e-«*<P(t)dt,

then, we have from (2.1)-(2.4),

(3.12) /(*) =

and

CO CO

(3.13) <P(t)=- ί eίtxfix) dx, ί f{x)dx = ^(0) = 1.

loo ~

Using (3.10), fix) is seen to be real.

Since

\<Pit)\ ~\CNLN\-\ (f->±oo),
it follows that \Φit)\ is integrable over ( — oo, oo), assuming that
Therefore, if Ψit) is a characteristic function, then f(x) must be the proba-
bility density corresponding to φif) (Cramer [1U, p. 94). Since f(x) is con-
tinuous, it is necessary that f(x) > 0 for every x in order that fix) is a
probability density.

Conversely, if fix) >̂ 0, from (3.13) it follows that <Pif) is a characte-
ristic function (This fact is used for the proof of Theorem 3. 2).

To derive the condition (3. 4), it is sufficient to prove that if none of
ctj corresponding to the smallest Si(of;) are real, then there exists at least
one value x such that fix) < 0.

Let
a3 = a3 + ib3 ia3ib3 real) (j = 1,2, , m\

We may assume that

We can find m0 such that either

/ Q ΊA, « l = <*2 = = OHIO < β ^ o + i ^ * * S «/«> OΓ

(3.14) j
mo~m and #j = ^ = = am.

Let

max(ίmo+1, , pm) = f,

then the function (3.12) can be written
(3.15) /(*) = xs~ιe-axgix) + O(jcs-^-αaj) +
as x -> + oo, where
(3.16) a - Λj < βm β + 1,
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(3.17)

If s = 1 the second term of (3.15) is omitted, and if m0 = m, the third term.

Because of (3.15) and (3.16), we have
(3.18) f(x) = xs-ιe-a%g(x) + o(l)), (x -» oo).
We may assume that b/s which appear in the right hand side of (3.17) and
are positive are arranged as

0 < &χ < b2 < < bmι.
(3.17) can then be written

g(x) = 2

with β j Φ θ ( / = l , mi). From Lemma 2, it follows that
(3.19) lim inf g(x) < 0.

From (3.18) and (3.19), it follows that there exists at least one value x such
that f(x) < 0. Q. E. D.

COROLLARY. If the polynomial with real coefficients

Q(z) = 1 -f aλz + a^z1 + + an-2z
n~2 -f anz

n

of degree n without term of degree n—1 has only one value of real roots, then
1/Q(it) cannot be a characteristic function.

PROOF. If Q(z) is decomposed into real factors it is seen that

Q(z) - an(z - afH (*» - 2βμ + ΎJ), (k + 2/ = Λ).

As the coefficient of zn~ι in the right hand side is equal to zero,

- 2 2 f r - * α = 0, or, 2^aβj = - t o a < 0.

Therefore, there exists at least one y such that
ocβj < 0.

However, βj is the real part of a complex root of Q(z) and α: is the
only one value of real roots of Q{z). Therefore Q(z) does not satisfy (3.4).

Q. E. D.

THEOREM 3.2. If the polynomial of third degree with real coefficients
Q(z) = 1 + aλz -f aλz

ι + fi^23

tos a real root cc and complex roots β i t iy, and if
signtf = sign/3 and \a\ S \β\,

then

is a characteristic function.

PROOF. Since, if φ(t) is a characteristic function, <P( — t) is also one,
we may assume that 0 < a <; /8 and 7 > 0. If /(ΛΓ) is defined by (3.11), ther*
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we have (3.13). Therefore, it is sufficient to prove that f{x) > 0.
If

is decomposed into partial fractions it is seen that

where

α = Li1 ~ ~ 3 Γ + 7 J V1

and

We have
oo

Ax) = 2™/ <PV)e-itxdt

= l i m -s— / ae~fxt[l — ) 4- be~ixΐ ( 1 o•-?—=—
H « 2ff J L \ • a J \ β + 27

_ laae-** + 6(/8 + ry) e-&+wχ + (̂/3 - iγ) e-o-w» (^ > 0),
" • ( 0

If Λ : > 0 ,

= aae-«x + 29ί{̂ (/3 + 27) e-<β+w»}~

w I 1 — e-&-*)x I cos 7Λ:

where we have used that

— — sin

COROLLARY 1. If a polynomial of degree of 3n + m (n = 1,2, m = 0,
2, ) with real coefficients

Q(z) = 1 + aΎz + βaz2 + . . . . + «3M+m23w+w

tos « + m r^«/ roofs ocj (J = 1,2, , w + w) flwd ^ ^m>s 0/ conjugate complex
roots βjztiyj (J = 1,2, ,«) {multiple roots being enumerated by its multi-
plicity) and if

<Xjβj>0, \acj\^\βj\ (7 = 1 . 2 , •••-,«),

then,l/Q(it) is a characteristic function.
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COROLLARY 2. Under the condition that

in order that (3.1) be a characteristic function, it is necessary and sufficient
that (3.2)-(3.4) holds.

NOTICE : If Λ = 5, (3.2)—(3.4) is not sufficient in order that (3.1) be a
characteristic function.

Example. Let

where 0 < a < β, 7 l = (2n + -|-JTT - (9, 72 = fen + -|-J TΓ + 0,

0 < ( 9 < | and nn^~~ > 1 . (w = 1,2,3, •••)•

If /8 — α: is sufficiently small, then ^>(ί) cannot be a characteristic function.
In this case, (3.12) can be written

] Aae-«*ΐl - g(x; β - a)l, (x > 0),
/ W " (0, (x<0),

where

A = (l- ' a

V /8 + ίγ

- (S2 + ryl) (cos. 7 a s + —-sin72#)J .

Since

72 — 71

if /3 — α: is sufficiently small, then
g(l;β-a)>l

and we have
/(I) < 0.

Therefore, Ψ(t) cannot be a characteristic function.
4. In this § , we shall consider characteristic functions which satisfy

(1.1). Assuming ω(t) in (1.2) to be a polynomial of t, from (1.3), ω(t) con-
tains only terms of odd degree. Let

ω(t) = aj-azt3 + . . - . + ( - D^aβ+xί™-1,
then

^ίf) = (1 + Mt))'1 = Cl + βi(ί« + ^ ( W +-•-•+ βw+iW*"-1]-?,"
that is

(4.1) ^W
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where Q(z) is a polynomial of degree 2n -f 1 of real coefficients, without
terms of z2

} z*, , 22n,
(4.2) Q(z) = 1 -f aγz + azz

z + ••• + &2n+iZ2n+1.
As (4.1) satisfies (1.1), we will consider if (4.1) be a characteristic function.

If 2n + 1 roots ccua29 •*, #aw+i of the polynomial Q(z) are all real,
then φ(t) is rewritten

(4. 3) <P(t) = Π ( l - ~[~

which proves that <P{t) is a characteristic function, for the product of
characteristic functions is a characteristic function. Conversely, in order
that (4.3) satisfies (1.1), it is necessary that au a2, , a2n+ι are roots
of a polynomial of the form (4.2). We have proved the following

THEOREM 4.1. For any n real numbers au a2, , an such that cCj =*= 0
(j = 1, , n), in order that the characteristic function

J = l

satisfies (1.1), it is necessary and sufficient that n is odd and all the elementary
symmetric functions of even degree of aλ, ct2, , an vanish.

It seems to be interesting, if there is a characteristic function (4.1)
such that (4.2) has complex roots. If n <Ξ 2, however, there is no such
characteristic functions. Indeed, we have the following

THEOREM 4.2. In order that

(4.5) φ{t) = [1 + a{it) + b(itγ + c{itf3'1

where a, bf c are real numbers, be a characteristic function, it is necessary
and sufficient that the polynomial

Q(z) = 1 + az + bzz + C2Γ)

has no complex roots.

PROOF. Sufficiency : evident. Necessity . we shall prove that φ(t) cannot
be characteristic functions if Q (z) has complex roots. From Theorem 2.1
and its Corollary, it is sufficient to prove in case when c * 0 and Q(z) has
three real roots and a pair of complex roots which are not pure imaginary.
If φ(t) is a characteristic function, a being real number, <P(at) is also a
characteristic function. This shows that we can suppose that c = 1. Q{z)
has then the following form

Q(z) =(z~a)(z- β){z - y){z* + (a + β + y)z - •

Write

Si = a + β + 7, s2 = aβ •

a, β and y must satisfy the following conditions

(4.6) aβyipc -f- β + y) Φ 0, α, β, 7 are real,
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(4.7)
(4.8)

(4.7) is derived from the condition that the coefficient of z1 vanishes. From
(4.8), we have s3 = aβy < 0. We may suppose that a ^ & <; 7.

(a) Case when « S ^ γ < 0 . The real part - (a -f £ + γ)/2 of comp-
lex roots is positive. Q{z) does not satisfy (3.4).

(b) Case when

(4.9) a<Q<β^7.

In this case we have

(4.10) sτ > 0.

In fact, if a -h /8 > 0 then Si = α-J-# + 7 > 0 , and if α 4- /3 < 0 then s2 =
(α + β)y + aβ<0, s3<0 and so sΎ = sf/(l + s.β3) > 0. From (4.7) x (4.8),
we have

(4.11) s\< - 4 ( s 3 - s l 5 . 2 ) .

From (4.9), (4.10) and (4.11), we will prove that
(4.12) a < -(a + β + y)/2 < 0
which completes the proof. These relations are invariant when we devide
cc, β and 7 by a same positive number, hence we can suppose that

s1 = α + /8 + 7 = l .

Substituting 1 for sx in (4.11)

1 < - 4(s3 - s,).
We have

1/4 < s2 - s3 = a(β + 7) 4- £ 7 - Λ/37
- α) + /37(1 - a)
- a) + (1 - «)3/4

= (1/4X1 + « - ocz - α3).
α 3 -1- a2 — α < 0,
α a + α - 1 > 0.

being negative, we have

Since (3.4) is not satisfied, <P(f) cannot be a characteristic function.

COROLLARY. In order that

<p(t) = Cl + a{it) + δίΛ)3!-1, (α, * mi/, H O )

fs Λ characteristic function, it is necessary and sufficient that there exists a
real number a such that

(4.13) ^ X = ^ - α *

(4.14) a ^ v ' ϊ or α < 0.

/jf there is such a, φ(t) satisfies (1.1).
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