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Actual determination of cohomology groups is very difficult owing to
complicated definition of cohomology. Our aim here is to reduce the condition
to conditions on the generators, which corresponds in 2-dimensional case
to the work of O. Schreier [4] on group extensions. Our method of proof
is not constructive as in Schreier but uses axiomatic cohomology theory
recently developed by H. Cartan [_lj and S. Eilenberg [2~]. As applications
we insert a section on galois cohomology and a short proof of R. C. Lyndon's
formula [3] for trivial coefficient groups.

1. From axiomatic eohomology theory. We shall summalize here
some results due to H. Cartan and S. Eilenberg which are necessary in the
sequel.

Let G be a group. By a G-complex we shall mean an exact sequence:
£ dι d'i dι

0-* Z** CQ** Cι*+— C ί* -.-*. Cq*—" * •

of free G-modules Cβ, here Z is the additive group of rational integers and
to which G operates trivially. For any G module A we shall consider the
module of all G-homomorphisms of Cq into A:

This is a group, under addition, with differential operator δ:

We shall finally put

H\G, A) = H« ( 2 Hom^C*, A)

and call the cohomology group of G with coefficients in A defined by the
G-cόmplex C.

It may be true that G has many G-complexes but Cartan-EΠenberg's
fundamental result is that any of such G-complexes gives the same
cohomology group. Therefore, we can omit the adjective word "defined by
the G-complex C" in the definition of cohomology group.

As an existence proof, they gave the usual non-homogeneous G-complex
defind as follows. Let CS(G) be the free G-module with

ZXΊ, , XqJ, Xu — , X q G z G

as a G-basis (for C0(G) the symbol C 1) and define
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as the G-homomorphism Cq(G)->Cq-j(G) (for £ :C0(G)-»Z by £[ H = 1).
They also remarked that for special groups one can finds more simple

G-complexes. For example, let G be a finite cyclic group with a generator
sΊ is?1 = 1, A the group-ring of G over Z, then

q = yj-

is a G-complex. If G and G' have G-complex C and G'-complex O then the
tensor product complex:

d(cP ® c;) = dcP

is a G x G-complex.

2. Incidence matrices for a finite groups. Let G be a finite group
and {CΊy be a G-complex such that each CΊ is a free G-module with finite
basis. We now fix one of its basis as

Cq = A e\ + . . . . + A e%

where A is the group-ring of G over Z. Then the G-homomorphism dq+ι is
represented by a matrix with elements in A:

dj+-ι eι

q+1 - vn e\+ . . . . + V1Q ef,

: : : {vι5 € Λ).
dΊ+1 e*+1 = VRje)+ + VRQ el

We shall call this matrix η{q + 1) an incidence matrix of G. Then Cartan-
Eilenberg's results can be translated into the

THEOREM 1. Let G be a finite group, η(q), q = 1,2, , one of its
incidence matrices and A any G-module, then

where fa = (aλ, ,aR) are vectors with elements in A such

η(q + l)a = 0

while *b = (bi, . . - ,bQ) are arbitrary vectors in A.
The proof is immediate and merely put

at = / « + 1 ) / € Homβ(Cβ+ll A) f =
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h = g(4) g € Homβ{Cq, A) j=it....tQ,
Let G be another finite group with incidence matrices η'{q), then ̂ a

system of incidence matrices of G x G' is given by

v'(q +1)

0

- v'(q)

- v'(q)

η ( 2 m , i

I

1

0
1

0

,'θrςi)

0

- - —

( - DV(i)

( - DV(i)

where l'p is the unit matrix of degree equal to the rank of C'p.
This is immediate from the definition (2) of tensor product complex, if

we arrange for columns

and rows

conveniently.

3. Incidence matrices of finite abelian groups. Actual computation
of incidence matrices for a finite group is in general very tedious; but for
abelian groups this is very systematically done by the formula (3).

Let G be a finite abelian group with m-generators sίf .. >,sm, s^ = 1
(i = 1, . . . , m) and put for simplicity's sake

Δ« = 1 — Si
1
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We now define a system of incidence matrices, common to all abelian
groups with same number of generators, which we shall write in the sequel
as

η(Q m)

For m = 1 we can take by (1)

(4)

For m = 2, using the formula (3), we define

q= 1,2,

« = 1,2......

η(2n~l;2) =

(5) »=1,2, -

And inductively, if we know v(q;m-l), # = 1,2, , we put

(6) <

rβn — l\m) =

Δ,"

0

0

- Nm

η(2;m - 1)

0

0

~ ^ Δ m

v(2n - 2;
m — 1)

0

Δm

m -• 1 )
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η(2n m) =

Nm

ΔΪ

V

0

- Δ ,

η{2',m — 1
ΊNm

η(2n-l;
m — 1)

— Δm

η(2n m — 1)

For the computation of 2-cohomology group it is necessary to consider
vectors in A with length equal to the column number #η(q + l;m) of
η(q + 1 m). Now, for any q = 1,2,

# v{q + 1 1) = 1

and # ?;(2 + 1 m) is defined inductively, in virtue of formula (6), by

#97(2 + 1 m) = 2 # viPW - U

hence

(7) # ^(^ + 1 m) = ( — ]

4. A generalization of Schreier's condition. We shall now want to
write incidence matrices of the preceding section explicitly at least for low
dimensional cases.

For this purpose we shall use for ^-dimensional vector a the following
arrangement of indices:

a = (aiq- .£,), Oiq i! € A

where iq^i ;> ίx are taken from 1,2, .., m. The total number of elements
is in fact

i. e., by (7), the column number of τj{q + 1 rn).

It is convenient to write

Then, from table (6), we have the following recurrence formula:



(8)
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' δ ^ . . . . ; i = S(q, 0 ) ^ - 1 . . . . ^

if iq = = fj,

<V . . f l = * t V . ι V + 1 δa,r.. •.i 1 + £ (q, r)aiq-ι..

if lg = = /r+l >ir^ ^ ί"i.

Here we use the notations

£(#,*-) = ( - l)rΔιq if q-r is odd

= ( — I f Nlq if q — r is even,

and ί/7 ιr+1 is an operator on a^ 3 with ir+1 > /, > > /I? com-

mutative with Δ/, Nf, such that

For example

δ an = N,at

δ β«ί =

δ Λ«J = Δ O/i - iVίffo (ί > j)

δ βijj == iVjβίj + Δtajj (i > j)

δ a!jk = Δfc«u — Δjβiib + ΔίβΛ. (ί > i > *).

The equation δa = 0 for the case of q = 3 is precisely the Schreier's
condition ([fl Satz III), under which the module A can be extended to a
group B with B/A^G. Therefore, above formulas give a generalization of
Schreier's condition.

5. Application to galois cchcmolcgy. Let K/k be an abelian extension
with galois group G which has two generators s1} s2. The invariant subfields of
Si, s2 be Kj, K>.

K We want to determine the cohomology groups
/ \ of G with coefficients in K*, the multiplicative

sy \ S i group of non-zero elements of K.
K/ \K2 ^ u t ̂ i s seems very difficult and we have

\ / only the following

\ / THEOREM 2. Odd-dimensional cohomology
* group JFPn+\G,K*) contains H\G,K*) for any

72= 1,2, , and

(9) H%G, K*) s* (iVΊ^: n N*Kl)INiNτK*.

REMARK. The structure of IP was also obtained by Prof. T. Tannaka.
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PROOF. We shall write additively. Let ra = (aha2, ) be a vector in
K* with length # >η(2n + 2; 2) such that aΎ = α4 = a5 = . . . . = 0. In order
that a be a cocycle:

v (2n + 2 2)a = 0

it is necessary and sufficient that

a = N2a2 = - Mέ% € Λfx/q Π ΛΓ2KΊ.
If it is cohomologous to 0: a^O, then

a - NM* = - Nτa3 € NχN2K*.

Conversely, if a = ΛΓjiVΆ with £2 € #* we put

a] =
Then Λ 2̂«2 = N2a\7 NΊa3 = MβJ, therefore by Hubert's lemma, there exist

bu bd €ϋΓ* such that

a2 = iViδa + Δ2&i, Δiδi = 0,

aδ = - ^ 2 ^ 2 + Δ A , Δ 2^ 3 = 0

i.e., a~0.
We have thus proved, that H*n+1(G,K*) contains a subgroup consists of

cocycles

(10) f a = (0,θ2,βs,0f0, ..-.)

isomorphic to (N,K*2 f] N2Kl)/N,N2K*. But if 72 = 1, by Hubert's lemma,
each cohomology class contains an element of the form (10). Therefore

THEOREM 3. For any n = 1,2, ., we have

01) EPn'\G, K*) 2 H%G,K*)+ -... +H3(G, K*\

n

(12) Hin+\G,K*) a ^ 5 ( G , ϋC*) + H\G,K*)+ .... + H*(G, K*).

The proof of (11) is based upon (9). For the proof of (12), it is necessary
to write iί5(G,i^*) in similar but somewhat complicated form. These
verifications are however easy, therefore we omit the proof.

REMARKS. If K is a p-adic field, then the right hand side of (9) is 1.
On the other hand, Mr. H. Kuniyoshi has remarked that for algebraic number
fields this is identical with

total norm-residues/norms.

Therefore, it is always a finite group and not necessarily 1.
Combined with (11), (12) it follows that, for algebraic number fields,

odd-dimensional cohomology groups of dimension > 7 are not necessarily
isomorphic to 3-dimensional one.

6. Application to Lyndon's formula. Let G be a finite abelian group
with m-generators each of which has order nt such that
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ni+1\ni ί = 1, — , m — 1.

We now compute cohomology groups HΊ(G, Z) of G with coefficients in
the additive group of rational integers Z considered as a trivial G-module.

We treat only the even-dimensional case: q = 2n odd-dimensional case
can be treated similarly. Let a be a vector of length # η(2n + l\m) and write
it as

a =

where each a£ is a vector of length #77 (i; m — 1). Then the condition

η(2n + 1 m)a = 0

•decomposes into

η(2i — l m— l)a2i_i — nm a^ = 0

7j(2i m — l)a.a = 0 = = >

(14) v(2n + 1 m - l)a2 W +i = 0.

The conditions (13) are equivalent to

a2ί-i arbitrary (1 ^ i g w)

1

(13)

_ M — 1 m — I)a2i-i.

While condition (14) is that αm+ι be acocycle for the subgroup Gi generated
in G by first m — 1 generators.

Similarly, if we write the general vector b of length # ??(2?z: m) as

r b , Ί

b =

•i is of length # 77(1, m— 1), the condition a =v(2n;m) b can be written as

( a2t_! = v(2i - 2 ,m - l)b2 ί-2 + ^ b . ^ j

{ a2ί = τ;(22 — 1 W2 — I)b2ί_i
{15)

From w ĵ/ίi (/ = 1, .. .., m — 1) it follows that

η(2i — 2\m — l)b^__, £ ww b2ί-

Therefore, the factor groups of (13) by (15) are

1 /

- l)a2(J
/ = 1,....,»,

where Z/(nm) denotes the cyclic group of order nm, and multiplication by
.natural number # η(2i — 1 m — 1) means repeated direct sum.
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Since the factor group of (14) by (16) is

EP\Gι,Z)

we have

H*»{G, Z) ̂  ff«(G,, Z) + [ 2 # 77(2/ - l m -

For odd-dimensional cases we can show

H**+\G,Z) s H**+KGuZ) + ( 2 # «K2f;m -

If we insert the value of

# (̂f m - 1) = ( -

into these equations, we get immediately the following formula of Lyndon
([3] Theorem 6)

(17) H'(G, Z) = (
J

In paticular:
m = 1

H*n(G,Z)
»2 = 2

, Z) ̂  Z/(Λ!) + Λ ZAna), ^ ^ + 1 ( G , Z) s «
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