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1. It is well known that, if ®(«) is integrable, then
1.1) f' P(u) du = o(1) as >0,
0

and that this can not be improved, that is, for any given function &)
tending to zero with ¢/, there exists an integrable function ®(«) such that
the relation

1.2) [ f t Pw) du | Z (1)

holds for infinitely many values of { tending to zero.

We shall show by example that (1.1) cannot be improved even when
the Fourier series of ®(u), supposed even, converges at # = 0. More
precisely we shall prove the following

THEOREM 1. For any given function &(t) lending lo zero with t, there
exists an integrable function f(1) such that the Fourier series of f(t) converges
at t = x and

t
(1.3) If D(u) dv| = &(t)
0

for infinitely many values of t tending lo zero, where
Po(u) = f(x +u) + f(x —u) — 2f(x).
On the other hand it is known [3] that:
(x) If we denote by o8(x) the n-th Cesaro mean of the (B-th order of the
Fourier series of an integrable function (), and if

1.4) aB(x) — f(x) = o(n¥~B) as 1 -» o,
where 3 >y > —1, then we have
1.5) D,(t) = o(i*+F-Y) as t->0

for & > 1+, where ®.(t) is the a-th integral of P(2).
As a special case of this result we have the following theorem, and we
shall give its simple proof.

THEOREM 2. Let f(x) be an integrable funclion and let s,(x) be the n-th
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Dpartial sum of the Fourier series of f(x). If

(1.6) su(x) — f(x) = o(1/n") as n-» o
Jor 0< v <1, then we have

1.7) f Pou) du = o(1'+) as n -y oo.
0

Further we shall show that Theorem 2 is best possible, that is,

THEOREM 3. Let &(t) be given such that &1)/t'+Y >0 as t >0, and let
0< y<1 Then, there exists an integrable function f(t) such that (1.6) holds
for t = x and that

(1.8 = &)

;)[ Po(2e)du

holds for infinitely many t tending to zero.

Finally we prove the Theorem (*) is best possible, that is,

THEOREM 4. Let B >y > —1 and let &(t) be given such that &@i)[1*+5-Y—>»
0 as t50. Then there exists an integrable function f(t) such that (1.4) holds
for t = x and that
(1.9) [Da ()] = E(2)
holds for infinitely many t, tending to zero, where & >1 + 1.

2. Proof of Theorem 1. Without loss of generality we can suppose
that x = 0, and we shall find an even function f(£) = P.(¢).

Let us take a monotone vanishing sequence {t,},f, >0 (n=1,2, ....)
and two sequences of positive numbers {#,}, {v,} such that

2.1) D E(ta) < 0, Valttn ¥ O, %alty >0 as 7> o

n=1
and that the intervals
(tn — Uny tn + Vn) n=12....)
are mutually disjoint and contained in (0, 7).
Consider the sequence of sets

2.2) An = (Bn — Bny tn — Un)U(En + Un, By + o) n=12-...)
which are mutually disjoint. Let us define an even function f(¢) as follows:
(2.3) fit) = iffT if t €A, n=12-....)

and f(¢) = 0 elsewhere in (0, =), where {c,} is a sequence of positive numbers
which will be determined later.
We have

) S
f [f(t)]dt = Ec,.f P dt
0 n=1 Ap
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=2 cu ta log Xn
n=1 Un

Hence if
Un
2.4 nz:c tn log " < oo,

the function /(¢) defined above is integrable.
Now, we have

T
sin mt < sin mt
.5 — = = m | ———
@.5) ff(t) e a chtn_tdt
0 = An
. . . dt
= 2 ¢u | {sinmt, cos m(t — t,) + cos mt, sinm(t — t,)} Y

n=1 Ap

— zc"cosmt"fmzidl
- i, —1

An

o Un

sin mt
= 22 Cn, COS mily f Jnt dt.

n=1

Up

If we suppose that

(2.6) > cn < o,
n=1

then the last sum of (2.5) tends to zero as m-> oc, by the uniform conver-
gence of the sum and the Riemann-Lebesgue theorem. Hence the Fourier
series of f(f) converges to zero at ¢ = 0 under the condition (2. 6).

On the other hand we have

fn—"n t oty .
ff(t) dt = Cn‘[ iré’t" dt — cnf 1, — t‘ dt = zcn(un — Un),
Ap ty—Uy tp+Vy
and
‘n tn=Yn ¢
= LA
U f(t)dt‘ cf P
Tn—tn tn=1n
= c,.{f,. log Un _ (%n — v,,)}
n

= Culy log Z—” .
n

Hence, if
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o 1 "
2 7) igl ci(ui - 7){) < _4‘ Cilyn log v—
and if

2.8 “;‘ Caln lOg Un = &(tn)

then we have

lff(u) du
0

I

Eff(t)dt+ f f(t)dt!

i= n+1

In=uUp

—_ vi)

=€y Iy
i=n+1

1 u
> = bn
= 5 Cn t, log v,

= E(tn).
After the sequences {t,} and {c,} are determined such that I &(,) < oo
and that (2.6) holds, we may suppose that the sequences {u,} and {v.}
satify the additional relations (2.7) and

—;‘ Cn tn = e(tn),
that is,

Un 2€(ta)

=e (T )

Then the conditions (2.1), (2.4), (2.6), (2.7) and (2.8) are satisfied. The
theorem is thus completely proved.

3. Proof of theorem 2. We may suppose that f(¢) is even and x = 0.
Then f(f) = @(¢) and put s, = s.(0). Let the Fourier series of f(?) be

2 a, cosnt

n=1

supposing a, = 0. Then we have

(3.1) D) = f () du = 3 a, E‘“ n 2 sinnt
0 n=1 =1
Now,
sin nt _ (n+1)sinnt — nsin(n + 1)t
(3.2) A n - n(n + 1)
sin nt — sin(n + 1)t 4 sin nt
n+1 nn+1) °

therefore we have easily
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3.3) A —Sl—r;ﬂl =<Citn? (C: constant)
for all £ in (0, z) and for all z.
T

On the other hand, forO0=nt < ] << %) we have

|(n+ 1)sinnt — nsin (n + 1)¢|
= |nsinnt + sin nt — nsinnt cost — n cos nt sin |
= |nsinnt(1 — cost) + (sin nt — nsint) + nsin (1 — cos nt)|
<CH{n-ut - + (Wt + nt®) + nt - n**}
= C.nit3,
where C; and C, are constants independent of #» and {. It holds then

' sin nt 3 ( 7T\
(3.4) \ATlgc,m osm=<7).
Dividing the last sum of (3.1) we write
(/471 ” .
D(t) = (2 + > ) S A SE‘,{—’—‘EH].
n=1 n={x[4]+]

Then we have by (3.4)

I=o0 ( 2 Z‘hﬁ) = o(t3- t—(Z—u)) = O(tl"'“),
and by (3.3)

co

J= 0< > nlm %) = o(t'+®).

n=|m/4t]+1

Combining these results we get
D(t) = o(t'**)
which is the required.

4. Proof of Theorem 3. Let {&} be a positive monotone vanishing
sequence such that the relations

&n L) i
“.1) sanivy =E(5) &ns 35

hold for infinitely many integers #z. This definition may be conceived by
the condition on the given function &(f).

Let
< kt
(4.2) fit) = kz & orey 0 <y<1).
k=1
The series (4.2) converges uniformly, and then we have
<« &
SO =10 = 2 g =0 & as nyoo
=n+1

which is one of the required condition.
On the other hand we have, substituting (4. 1),
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(4.3) f Po(u)du =2 f {f(u) — £(0)} du

= 22 k‘*’ (sin kt — kt)

k=1
nm o

=2<2+ 2 )EI+]

k=1 E=[1/t]+1

say. In the sum 7, since k¢ — sin kt = F33/12,
)

(1/t]
(4.4) L _22& t;,i;nk‘ > %- > ey
k=1

1 1 1 1
= gltuny v <1z

By |sinkt — kt| < 2kt in the sum J, we get

S 26 5
4.5) 2 2 %ﬁ-f_ = & ettt ™.

k=[1/t1+1
Hence if [1/t] is an integer which fulfills the conditions (4.1), we have
from (4.3),(4.4) and (4.5)

Epj Y.

A

' 1 5 .
f ou)du= [I|— |]| = (ﬁemn oy Etllt}+1) pry
0

214 Eqett*Y = &)

Thus the condition (1.8) holds for infinitely many ¢ with £ - 0.

5. Proof of Theorem 4. We shall begin by the case 8=0. Let %) =
&t)/t*+F-v, and we may suppose without loss of generality that 5(¢)4 0 as
t >0, and that x =0. By the inequality 8 — ¢ =0, there is an integer M
not smaller than 8 —+v. Put 8 —v = & and :

M +1 -3+ M+ 2)

6.1) 7(t) = Tats )
(5.2) wi=* (5.

Since 7% > 0 as #->» o, wecan find a sequence of integers {m,} such
that
adl(a)[(M + 2)

¢.3) m=L vwn S i Na+M+2) T
(k=12....).
Let {5} be a sequence such that
5.4) 7,,’,=1;;;k for i< v=m (k=12 ....),.

then obviously 7, ¥ 0 (v > o).
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We shall define a function f(¢) by -

(5.5) f =220 0nE

v=1{

and we shall prove that this function is the required.
We have

(6.6 (0= 50 = §+: v ke =920(%)=0(L)
as > oo, and hence immediately
J(0) — 0) = o(n=?) = o(n'~F)
as > oo, which is one of the required conditions.
Now we get

oo

Bbut) = F(?a_)f (t — u)y! (z V?js (cos vu — 1)) du

v=1

2 2“’ .
= i;(a) v=1 vl+.s f (t — u)*~' (cos vt — 1) du.
For » <¢-! we have

5.7) — f (t —u)*'(cosvu — 1) du

3
= Zf (t — u)*~! sin® —gﬁdu

t
> Zf t — M)w—l(}%) M+l gy
0

t
M+1
0
- 2l (a)(M + 2) Wl par M1
£ + M + 2) ’

and we have also
t

(5.8) f(t——u)"‘ ‘(cosmt—l)dul <2 fv’”"’dv= it‘”.
0

If we put
f1/t1

2 o —
D) = f‘(a)(z + 2 1+af(t——u) “Itcosru—1)du=K+ L,

v=1/t|+1

49
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then by (6.7) we get for small ¢

[1/e /

21N a)I (M + 2) p+Ipe+ =1
(5. 9) ]Kl = I‘(a) 2 1+a 44+ N + M + 2) 4 ?
[1/¢}
(M + 2) I -
= yMie M+ 2y Tt 2

(M 4+ 2)

¢ b
= L1 — S+ M2y Tt
and by (5.8) we get for small ¢
2 < 17"’ &
(5.10) LI < T 2 e a 4o

v=[1]t)+1

IA

4 1
P Sevialty BN o —Tis
ala) [1[1+1 u=§+l pi+o
8 ’
= JSF(E) E Lty 2¥F8
If we put ¢ = 1/, we have, by (6.1)—(6.4),
"7,'1153 = 1’:% =y = n*(1/mg) = n*(¢)

4" M+ 1 =Y + M+ 2)

TG + 2) (),

’ o, ™
Nua+1 = Mng+1 = Mgy

- adT(@I(M + 2)
S0 M+ 1= )l + M+ 2) T

= ’@g(*av) 7(®),

and hence we get easily from (6.9) and (6. 10)
| K| = 2x(2) 2240
and
IZ] < n(t)t+?
for sufficiently small #. Thus we conclude that
|Dat)] = |K| — |L] = n(t) %" = &(t)

for ¢ =1/n,, k being sufficiently large.
In the case 8 =0 Theorem was thus proved.
We shall now consider the case 8< 0. We have 0< B — ¢ =8< 1.
As in the former case we get easily
S(0) — (0) = 73.41(0) == 7341 = o((k + 1)7°).
Remembering r, = f(0), we have
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n ,

#8(0) — 1(0) = jﬂ. {2 g, —A,;r]}
o Lg=1

n)2]
Aﬁ {2 An k k1+8 Aﬁrl} n, . %H.lAn -k k1+5
=P+Q
say. Then
1 [nl’”
P= AP {2 An 75— Ves1) — AB?’n}
1
1 f nf2] 1
:4 2 Al — AR 1n/2|r[n/‘.’]+1jv
[1"//"” )
|P| = <n3 2%5 'y 5+nﬁn“8}>
= O(n-B{nB- ]n"8 + 1378} = O(n?),
and
(m/2]-1
1Q] = Ot 18 S AD
k=1

= O(n—B—l-s 78+Y) = O(n“s).
From these estimations we get
a8(0) — f(0) = O(n=%) = O(n"-#).

The estimation of d.(#) is the same as in the former case.
Thus the theorem was completey proved.

6. Remarks. The theorems 1 and 3 will be shown by using examples
of the type used by one of the authors [2,3]. An example of the Paley
type [1] may be also used for the proof of Theorem 3.
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