ON AN APPROXIMATION PROBLEM IN THE
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1. Mr K.Ito has proposed the problem: When the series

o K
(1:1) Srer e
k=0 °
converges, does there exist a polynomial P(x) such that
bt n
.2 = Py — Sy <e,
n=0

& being any preassigned positive number? Answering this poblem, we prove
the following theorems.

THEOREM 1. If there is a constant w such that the series

VOIS
k=0
converges; then there is a polynomial P(x) such that

S Pm) — fm) Y

al <€
n=(0

& being a preassigned positive number.

THEOREM 2. If there is a positive number w such that the series

2 k) w"
k=0

converges, then there is a polynomial P(x) such that (1.2) holds.
2. We suppose that

o A
1) > AR G < oo
k=0
and that f(0) = 0 without any loss of generality. Let us put”
o (k+1/2)u m
@.2) Bav=¢""Spm > E"
¢ =0 m=(k—-1/2)u °

whose convergence will be justified easily, and may be seen also from the
following estimation. Consider the series

1) - This is the discrete analogue of the Bernstein’s polynomial, deduced from the
Szasz form.
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I= 3 |Bun) — fim)] Xy
n=0 /

Then
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—un un
IsXre 2l —sml X T +od)
n=0 k=0 M= (k~1/2)%
where o(1) is the term tending to zZero as # -> co. The right side sum is
oo X,” —un (k+1/2)u (un)
>Me (E SV vw-ron X r g,
n=0 k=n+1 m=(k—1/2)u °
say. Now
o m—1 o -1 (k+1/2)w
A" un)™
zzszﬂ— 2 e > *
n=0 k=0 n=0 k= m=(k-1/2)% °
oo n- (k+1/2)u
A" —un (un)™
nl If(")l 2 = I+ I,
2” m=(k~1/2)u m!
say. Changing the order of summation in I,
_un (k+1/2)u (un)m
Iy = 2 VCIDoE A P2
n=k+1 =(k- l/z)u
(k+1/2)u
-S> f Z (>
k=0 m=(k-1/2)u n=k+1

In the inner summation, the ratio of the consecutive terms is
(L n+l (n + l)m / (L)n nm (1 + 1 >m ”)L
e (n+ 1)! / et ) n! eXn+1) -
Since n=k+ 1, m=<(k+ 1/2u, and then
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hence
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> ( e“) Al = A(‘e‘"u ) ESYR

n=k+1
Thus we have
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S 1) (u(k + 1))e+unu
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= kzé kB! B+ 1)2m

which becomes small for large ». Now

o )‘” —un n-1/2)un (un)""'
= > |f(m)| 5 e > -
n=9 n m=0 m:
Since for large
v-u/2
Y
e’ _:)n' (v = un)

m=0

becomes small, I, is also.
Let us now estimate 7, by the similar argument.

o (k+1/2)u ( )m
un
3> - 2 T m X e
n=0 k=n+1 n=0 k=n+1 m=(k-1/2)%
(k+1/2)w ( )
un
2 n, emun 2 w2 S = I+ I,
n=0 k=n+1 m=k)=1/2)1 .
say. We have
oo k- 7\‘ (k+1/2)u ( )m
un
= Dl T S
k=0 =0 m=(k-1/2)u
In the inner sum, terms are monotone decreasing, and then the coefficient

of |/(k)] is less than

k-1 )
_ A 1 (wm)E-ydu wp®=1/Du n(k—xiz)u
J=u 2(; (F) nl ((k—1/2u)! — ((k—1/2)u)l 4 2 ( e ) '

Now

A n n(lc—]/:!)u
<?7 n!

becomes maximum when

(k—1/2)u
% + log ((k — 1/2)u)

where & tends to zero as k-» oo or % -» co. For such n,

SR e NEN
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_ \/E" _ nme (k=1/2)u ~§7,\_ n
n (k —1/2)u ) < nev >

= \/ ku ( el +¢é )(k—l/Z)u N
n \u+ log ((k — 1/2))

"= (1+¢é),
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(e)\)\1+E)E=1/2)u/(u+1og((k=1/2)u))
(k — 1/2)ne“ ) (1+6)(k=1/2) u/(u+1og) (k~1/2)u
(u + log((k — 1/2)u)

_ ~/ Fu 1+ )“'W’“
n (u + log (k — 1/2)u)

where >0 as # -» oo or k> o. Hence, if there is a w such that

X

2.3) 2B wk < o,
k=0
then 7, tends to zero as 7 - co.
Finally
w (k+1/2)u ( )m
e | 7(n)| an
2‘ n' kgﬂ m=(kz—1/2)u m!

A -un s m
=,,2=0‘f<")'n_.re > e
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For large #,
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!
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e

and hence I,; is o(1).
Thus we have proved that, for any & >0, there is a # such that

1= 3 |Bun) — fm)] p

n=0

3. We suppose that there is a w such that
3. > f(RYe[w* < oo
k=0

and consider the series

3.2) J= 2 I:Bu(n) - f(n)] l”T

where B,(x) is defined by (2.2) whose convergence may easily be verified.

By (2.2),
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n=0 ‘k=0 k=n+1 A=0 A=n+1
o n—-1n-1 o Nn-1 oo o co n-1 o o oo
=2 +22 2 22222 D 4D
n=0 k= (A=0 n=0 k=0 A=n+l n=0k=n+1A=0 n=0 k=n+1 A=n+1
=h+L+hE+]+ o(1),
say. Now
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L= 2 2 L/(®) = ILAN) — 1 (9] Sk, 5, ) SOv, 7, )
n=0 k= =0
where
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Let us consider a part of J;:
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which may be estimated similarly as I,;. Ji; is also similarly estimated.
The part of J; with factor f(k)f(n) is estimated similarly as I, and ;.. J,
J; and J, may be similarly estimated, and hence, for any & >0, there is a
# such that

S [Bun) — f)T 27 <&

n=0
4. Let us put
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—uz (kx"‘
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Then we can easily see that

2 1Bu(n) = Culm) Al <e
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> (B(n) = C(n))“,%; <e¢
n=0
for sufficiently large M and #, if the condition (2.3) and (3.1) are satisfied,

respectively. Thus we have proved that if (2.3) is satisfied, then there are
a constant ¢ and a polynomial P(x) such that

S 1Py - fin)] A <&
n=0

and that if (3.1) is satisfied, then

") — 1) Ny

n!
5. Let us put
N .M (k+1/2)u
( ! m
Du(x) = 2—]?@* 2k X J%?, .
Jj=0 ° k=0 m=(k—-1/2)u *
Then we have
n=0
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<A@ X o> @)
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For large
(k+1/2)u @)m o (kl)(f?ﬂ L
m=(k—1/2)u m! =7 ((k— 1/2)u)& 15w
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and for large N

o i
. 3
j=N+1 J:
becomes small. Hence, if there is a w such that
(65.1) 2 B wk < oo,
k=0
then

X (Cun) — ol - < &

for sufficiently large #, M and N. Similarly, if
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(5.2) 2_: SR wt < o

then
2 | Cum) —f(n)]z)‘T'; <&

n=0
Thus we have proved that, if (5.1) is satisfied for a w, then there is a
polynomial P(x) such that

> | Pn) — f(n)| AL <,

1
70 n.

and if (5.2) is satisfied, then
E(P(n) — f(n))* —27— < &
n=0

Thus Theorem 1 and 2 are proved.
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