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Introduction

As closed systems of orthonormal step functions, the Haar’s system, and
the Walsh’s system are well known, [1], [2], [3]. In this paper, we shall see
a rather general system of orthonormal step functions, including the above two
systems.

In § 1, we define a system of orthogonal step functions, as well as other
definitions, and shall see the completeness in C and in L2

In § 2, an estimation of Fourier coefficients (with respect to the above
system) of a continuous function is studied.

In § 3, the Lebesgue functiors of this system are estimated, and as its
corollary, some convergence properties of the Fourier expansion of a function
are studied.

In § 4, some summability properties of the Fourier expansion of continuous
functions are studied, and finally we shall show some examples of the above
system,from which it is seen that the Fourier expansion of a continuous function
is not necessarily C-summable at some point.

Finally, the author should be grateful to Prof. T.Kawata for his kind
assistance and instructive suggestions for this article.

§ 1. Construction of a system of orthonormal step functions.

In this papar, the treated space is a bounded closed interval of real
numbers. Without loss of generality, we may assume that the interval is the
closed interval [0, 1].

DEFINITION 1. A division system D is a infinite sequence of divisions
D.. of the interval [0, 1], with the following properties.

1. If n>m, then Dn is a subdivision of Dn.

2. The length of the longest piece in the division D. decreases to zero
as n increases.

For convenience, we regard that the notation D-. denotes the set of all
pieces which appear by all divisions up to the #z-th division, as well as the
n-th division itself. There will be no confusion. Each piece in D. is assumed
to be a half closed interval including the left end point except the most right
piece which is closed.

The length of the longest interval in D-. is denoted by |D.|, and the length
of the shortest interval in D. is denoted by (D-.). The number of intervals in
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D, is denoted by Ex. The interval in D. is denoted by a® or simply by «,
and when we have to show that the interval contains a point %, it is denoted
by a®(x) or a(x). The length of a®™(x) is denoted by I|a“(x)|. The
notation a:“> may also be usad to denote an interval in D., where the suffix
shows the number of an interval in D., which is properly numbered, for
instance, numbered from left.

The set of all step functions which have constant values in each interval
in D. is naturally regarded as an E.-dimensional vector space. We denote the
set of all those step functions by D

2. Now we shall construct a system of orthogonal step functions. Let
¢1(x) be any normal function (e.g. the L*-norm of ¢i(x) is equal to 1) in
D.. When for any ¢ such that 7 < k< Ey, ¢i(x) is defined in D: we choose
a function ¢« (arbitrary, if there are many) in 51, in such a way that ¢« is
normal and is orthogonal to every gi.

After these processes, we shall get a set of Ei functions ¢, ¢s,'--¢,,, which
form a complete coordinate system in the vector space Di. These functions @k
are also regarded as the functions in D.. We choose a normal function as
Cry,, from 5,, which is orthogonal to every ¢.

Continuing this process, if ¢;(x) is defined, for any 7 <k, E. ~1 <k<En,
then we choose a normal functions ¢,(x) from 5”, which is orthogonal to
every preceding function ¢;(x), and after every ¢,(x), k=E:, is defined, @x,y, is
chosen from T)/,m as before.

After such inductive choice of ¢,(x), we shall get an infinite sequence of
functions

@1, Ogy @iy Py,

We denote this sequence by 7.

Every ¢,(x) is normal, and is orthogonal to another. If E..1<k<FE., then
= 5,,, and the set of all ¢,(x), whose index number is equal to or less than
E., makes a complete coordinate system of E.-dimensional vector space D..

3. Examples. Let D) be the set which consists of only the undivided
whole interval [0,1], and D. be the (z—I)-th diadic division, namely, the
division by the dividing points p/2""!, where p’s are positive integers less than
271,—1.

If we construct ¥ on this divjsion system with a restrictive condition that
the absolute value of every function is constantly 1, we shall get the Walsh’s
system of step functions, disregarding some unessential change of the order of
functions, and the change of signs of functions.

We arrange all proper irreducible diadic fractions in the ascending order
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of the magnitudes of their denominators, and in the case when their denomin-
ators are equal, in th= ascending order of the magnitudes of their numerator.
That is, put

Ai=2-ni—1)/2m i=1, 2, 3,-,
where 27 is the least powar of 2, which is egual to or greater than Z, and
ni={—2m"D41,

Then for any integer £, there corresponds a proper irreducible diadic
fraction Ai=(2-n:—1)/2™, with the following condition ;

If 7<j then mi<mj

or mi=mj and n:<#nj.

Let D. be the same division as the previous example, and D. be the
division by the dividing points A, A,,:+, As-1. The Haar’s system is a system
¥ coastructed on this division system. About this system, it is remarkable
that every E» is equal to #,

4. Let f be an integrable function (not necessarily in L?). The #n-th mean
function 7"0 of f is defined as
~ 1
f(n)(x) = m Ka(n)(x)f(t)dt (1)

that is, the value of f(#) is the mean value of f(x) in the interval a‘(x).

Let o
e = So Fo@) er(®)dt, E<E.

then
En ~.
o= gp=1 .[a RS2 F(@) ee(t)dt .

But then, since in each interval a,, the integrand is constant,
Ey ~
ar = >, .0, 0™
p=1 fp kap | 4 | F}

where 'f;(”), and ¢np deonte the constant value of £, and ¢, respectively in
the interval o™ .
Now by the equation (1),

Ey 1
ar = Zp=1 Cpyp O™ « Ta) gap(n) f(@adt
" 1dt
> e, s

1
[, e e,
which shows that the %-th Fourier coefficient of f(x) is equal to that of

It

I

1) By the terms, Fourier coefficients, a Fourier expansion, etc. we mean those with
respect to the sysem W. In the case when we say about the usual Fourier series, we
particularly call it the trigonometric Fouries series.
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F(x), where k<Enw, that is, if k<FEn
1T ~ 1
@ = & T er()at = fo (B er(t)dt.
Now, since the set of the functions ¢i,¢2,+, ¥£, makes a complete coordinate

system of the vector space Da, and since f™ & Dn, f can be represented as a
linear sum of the functions @i, ¢z, ,¢#,, that is

Fo0= 31" beo (o).
But, multiplying ¢, to the both terms and integrating from 0 to 1, we get
b= [, Foeat= [ fOebat.
Hence b« is the k-th Fourier coefficient of f(x), and the Ex-th partial sum of

Fourier expansion of f(x) is equal to the z-th mean value function.
Especially when f(x) is continuous, sup If(%)—f(x)™| becomes to zero
O=sz=1

uniformly as #» increases. Hence

THEOREM 1. The E.th partial sum of the Fourier expansion of a
continuous function f(x) uniformly converges to f(x) as n increases.

Hence the whole Fourier expansion of a continuous function f(x)
converges to f(x¥) by L*-norm. Since the set of continuous functions is dense
in L3,

THEOREM 2. The system ¥ is complete in L2

By the way, it is a direct corollary that the Fourier expansion of a
continuous function f(x) by the Haar’s system uniformly converges to f(x).

§ 2. Fourier coefficients of a continuous function,

1. First we notice the following: ——

If k> FE=x, then ¢, is orthogonal to every ¢, A=FE.. But since the set of
functions ©1,%s,--, ¢£, makes a complete coordinate system of the vector space
5n, ¢r 1S orthogonal to every function in Du. Especially, the characteristic
function 2. of an interval in Dn is contained in D». Hence ¢ is orthogonal
to it, and hence

(o it = [ outymemcyat=o. @)

2. From this fact, we can get some estimation of the absolute value of
Fourier coefficients of a continuous function.
Let f(x) be a continuous function with the modulus

o(9,f) =_sup 5|f(x+h)~f(x)l. €))

O=z=1, |/a[<

Assume that E~=k<FEn., and put
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a= [ fDenat
= 1/2X (sup f(x) + inf f(x)),
%p “p

then

lae| = } S; (D (D)dt }Z}Z::l Sw

which, by the equation (2),
= |37 oo CO-CRetrat| = 2UBLD S L ool at

UDLD S e )
D,
< ﬁz—‘ﬁ—«/ S ekl i 3 ")
_o(1Dal, f).
=D

Hence
[ S;f(t)(ﬂlc(f)dl i = ﬂ%@

§ 3. Lebesgue functions and some convergence properties.

1. In this chapter, first we shall ses the following estimation.
THEOREM 4.  If En_y+m = Ex then, ’

1+Va a‘”) 1(:c)

Lp, n(®) = gl DIERTEIO EESAS @
S Il Z:ﬂ‘/’ Ep_ytk (x)wﬁ:n_luc @ { dt
0
< %{2 —2a™ (1) oo O+ a™™ (x)— a‘"‘l’_l(x)] . Q)

The proof of these two estimations will be established by quitely
similar methods, and so, we shall prove the second inequality only.

The proof of the inequality (5). For the convenience’s sake, put
Cp, e(O=a,, whentEad®,
loty ™| =y, 1" =Bs,  En=1l, Eaa=1, 6)
and let
xEapC P (D

l m
L

E :aq 2 |a/.'q Qrkp
q=1 L=1

Then
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is to be estimated under constant «,’s and variable ax,’s.

First we fix constants &=+1, where &=1, and determine the maximum
value of the expression

14 m
E Ny 67 E Qleq Akeq (8)
=1 k=1

then, by suitable choice of the signs of &,’s, we find an &,-free estimation.
There are restrictive conditions on the domain of the variables ax,;

l
Zaq Qrq Ang = Okn, ©))
g=1
Zaq arg = 0, - (10)

VS
(We use the expression ge¢ s, instead of o, C a,*V, for simplicity.)
Hence the domain of the variable vector (all, ais---,ar,---) is compact, and
the Lagrange’s method to determine maximum value is applicable.
Now we are to find the maximum value of the expression,

l
F = Zl a, & Z/ﬂ @k Aty + An (ZO&, Qig Ahg — 5%) + 77/0,.(20{7 am,) an
7=1 v 9=1 7€s
under variable ar, and variable parameters Aex und eq.
Differentiate (11) by aw,, then
i
Fopg = 67,,] Zr=1 orlrar, + Ay Cqakp

+ Z::l AknOlq@hg + AckQlyarg + Yrstly = 0. (12)

Summing up with respect to g &s, we have by (10),
1

831 Z orErarr + Qkp Z aq&, -+ Bs')?k’s = O,

r=1 2€s

from which

- W —?
wia= = B (a2 + Bu >, ). (13)
Now, multiplying aj, to (12), and summing up about whole ¢, we have

— y
aAjp e arErarr + E : Ao EqQrq Qjq
= 2=1

—m l Al
“+ él Arn E: gQjqhg + Ak El Uy Qjo Qg
h=1 q=1 7=1

! 2z
s S = a0
Putting j = &
4
Aet = — Qrp 2r=1 arErakr. as
Putting j =1

l l
i = — (dlcp Zr=1 orErair + (lIc',;E:q:1 angqu). ) (16)
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Put (13), (15), and (16) into (12). Then we have
67"1 Ziﬂ arErarr + ApCpaip

n z
= Oy Zh:x QlpQhg Zr=1 QrErQier -
m 11
+ Oy arg Zh=1 Qnrp Zr=1 ArEranr (]_7)
z
-1
+ Ba (a/cp Zres arEr + 05t Zr=largralﬂ').

Now let us set

l m
E : Olq&, E : QkqQkq = X, (18)
r=1

g=1
which is to be estimated, and put

Z azl,;q = A. (19)
B=1

In (17), putting p=g, multiplying a,r and, summing up about &, then, by
the expression (18) and (19), we get

X+ apA =20y AX + ctp B A ;]a,e, ranB7 X,
which is,
(' = B) X=A @X+ 57 >, arkr— 1. (20)
On the other hand, multiply &asp to (17) and sum up about g and k. Then

X+d=x+43" (3 ata)+a>S 5 (2 as)

+ ﬁ‘—l Zthang'X. (21)

l
"m 9 . - .
To calculate 4 Zn=1 (%laqeqauq> , we put p = ¢ in (17) and put in order
then
z
Zr—'l OrErQrr (a;l - ;1 —A) = Qkp (X -+ ﬁ;l Zret arEr — 1)

which is, by (20),
= arX ((a;' — B A7 —1).
Hence
4
AZT=1ar8rdkr = a/ch.

Squaring both sides, and summing up about &, we have

A- Z:=1 (Z;=laqggakq)2 = X2 @

(We may assume that A 3 Q, since otherwise X = 0).
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Put (22) into (21). Then
X+Aa=2x+4 > B (S s+t S ants X. (23)

QEs q€t

That is
(1= 5 (e ) = X (2X+ 67 it~ 1)4
which is, by (20), equal to
(' — B:‘) Xz ©))
Eliminating A from (20) and (24), we get »
@ = = 3, A (Zenf = (2X -1+ 6 Dt ).

V=Y
Hence

1X=172[ = B S, + vt — Bt J I B (e

7€r qu
or, since >la,& = —(B: — 2ap), we have
(=13
X=<1/2[2-28; oz,,+‘/a~l - B

which is the proposition of the inequality (5). Q. E. D.

2, Now if a continuous function f(x) has the modulus of continuity (8, f),
that is,

',|1<st2< If (x+7h) — f(0)| = (0, /)

and if |Da| = & < 0, then
1 Eptm
[, roXm aw-ow da

= [FWre@>"™" awawa,
0 K:En+l

where &(%) is a function of x such that

lE@ = o N.

Since
1~ wm)
[f - e () dt = 0 for k> En,
we have S:f O S ) elx) dt
1 E +m
0@ [ w® el

= o0& NI202+ Va5,

where it is assumed that x Ea, C @D,
Especially if w(&, f) = K&¢, then
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=

g; O "o e () dt gK/z[ gt 2ea]. @25)

Now, we define an additional condition of the division system D={Dn}

Definition 2. A division system is moderate at x, if
L 1Dl /la®(x) | < M(x)
2. lam)l/la™D(x) |<N(x),
where M(x) and N(x) are finite functions of * independent on .
If there exist x-free constants M which satisfy 1 and 2, for every x (or for
%’s in a set), then we say that the division system is wniformly moderate.
As easily seen, a division system is moderate at x if and only if
[Dal/| ™ () | < M*(x),
and it is uniformly moderate if and only if
| D) /(D) < M*, where (Dx) =aiEan la| .

Now since €= |Dx|, in the inequality (25), if the division system is moderate

at x, & &

w i < NOMx) + M(x).

Hence the inequality (25) shows that if the division system is moderate at
x and a>1/2, then the left side of (26) converges to 0 as # increases. Since
Fooun = [ 03 e alXoat
converges to f(x) uniformly, we get,
THEOREM 5. If the division system is moderate at x, and if f(x) satisfies
the Lipschitz condition for an index o such that 1/2<a<1, then the Fourier

expansion of f(x) by ¥ converges to f(x) at x. If the division system is also
uniformly moderate, the convergence of the expansion is uniform.

§ 4. Some summability property.
The following theorem is known.

Let ¢1, @3, -+ be any complete system of orthogonal functions in L2*(0, 1),
(not necessarily the system ¥ ). If

. —2"
71:3: Zk=la/c(ok(x)

converges almost everywhere, then Z:_lawka) is C-1 summable almost
everywhere.

The following lemma and its proof are slight modifications of the above
theorem and its proof mentioned in [1] p.190.

LEMMA Let {¢,} be any complete system of orthogonal functions in L?
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(0, 1. If, for some sequence of integers Ei, Ey, -+, En, -+ such that Ena<MEn
for some constant M, the series

Eq
SEn(x) =Zk=lawk(x)
converges to f(x) almost everywhere, then the series
S(x) =Zk=ldk(pk(x)
is C-1 summable to f(x) almost everywhere.
PROOF. We take out a sub-sequence Fi, Fy, ---, Fu, -, from the sequence
Ey, E,, -+, En, -, in such a way that
Mr << Fn < M.
First we prove that the sequence

Tra(x) = 1 /Fan_"lsk(x),
where
Se(x) = Z:_lai ¢i(x),

converges to f(x) almost everywhere,

Since
m

Su(8)— 0, ()= 1/m > (b~ Dew(x),
k=1

F,

S:{an(x)—an(x) Fde=1/F3 > " aiCk~1).

S@G-1r2  YF.
k=1

ﬂ=Tlnng:|—1
) 1 ®_ )
n 2 Sn [Sr(®)—or()Pdx = Dja(k—1)">] 1/M
k=1

- > -2
m=—1 Ib_(logM 1]

gé_“{az(k—l)?M—ﬁ‘fT M -1 3T g,
Hence the series
S Srm —cr @]
converges almost e:;rywhere, and so the sequence
S () —0cp, (1)
converges to zero almost everywhere. Hence

lim o,,(x) = li_)m S, (2) = f(x)

almost everywhere,
Next we shall show that the sequence
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Ry, ry=0n - 05, (X)

converges to zero.
Let Fr=N< F#u;1, then

y-1 .
oy =om (0= [ 2, (el —oux) |

k=Fn
N-1 N1
=) Morn(®) —a®))>] ~ 1/k
T=Fp, Sm
i 3 ity
< Mi_i‘! +1 5 E(ora(x) —or(2))?
M k=Fn
N_—l
= (M1, howa(n) —ar(D) 6
k=Fg

But since the series
S (oen () —au(£))?

converges almost everywhere (cf.[1], p. 188), the expression of (26) converges
to zero almost eveywhere, and the proof of the Lemma is established.

If the system {¢r} is the system ¥, and its division system is uniformly
moderate, that is

Dn
Doy < M

then obviously E., < ME», and the partial sum of the expansion of a conti-
nuous function f(x),

F ’ 1
> awn(e),  where as = | (Do) dt,
converges to f(x) uniformly as #z increases, we can state

THEOREM 6. For a system¥,if Eny < M-En,or especially its division system
is uniformly moderate, then the Fourier expansion of a continuous function
f(x) is C-1 summable to f (x) abmost everywhere.

But the everywhere summability theorem, as in the cases of the trigonometric
Fourier expansion, or the Walsh’s Fourier expansion, does not hold in general.
We shall show an example, in which the everywhere summability theorem false.

Let D be the diadic division system as that for the Walsh’s system (cf. the
example in§ 1). Let {x+(x)} be Haar’s system and {¢: (x)}be the Walsh’s system
mentioned in the example in § 1. Now put

n(x)=1
e2(x)=1for 0 <x<1/2
=—1forl2=x=<1

and if 0k <20, =2,
¥ (%) = 2" (21) for 0=x<1/2
= Bm-1,, Cx — 1) for 12=x=1,
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and if 2" <A< 2"
@y (X)) = 2n1,, 22) for 0 <x<1/2
=P, (2x—1) for 12=x=1.
Then ¢ (x) makes the system ¥, as easily seen.
Now let f(x) be a continuous function such that,

f@x=0 for 0=<x<1/2
=Z Cen (x)- 5™ |sin 27+ 7x|) for12=x=1
n=2

where b is a positive constant less than I,and ¢(x) = + 1is the following function.
Let x be a point between 0 and 1/2. There is a ¢ ;,; (x); 0=k < 2" which is
not zero at xv. We choose the sign as the following way;
cn(x) = sign (@anii(X0) @ansr (1) ).
Then, as easily calculated,
[ remu G du=1trym,

S(l, ) @2 (x)da = —0"/n
and
S: F Q) o™ (x)dx =0,
where h£ kb, h£2n—1+k 0<h< 2"
Hence
S: () ¢ i () ©amyr, (00) dx = (2D)"/2m.

And we have +1

Pt

1 +h=1
SIS W@ e@ el ds
s=2"+k
= 1 L@ e
Frrrh-1  2n
__._>__ 2n—5 . bn

Hence if b is greater than 1/2,then the Cesiro means of the Fourier expansion
of f (x) are not bounded. Hence it does not converge.

This example also shows that the localization theorem does not hold for a
general system ¥.

By a slight modification of this system {¢*}, we can get a system ¥’, such
that for any 0 <X x0 < 1, there exists a continueus function whose Fourier expansion
by ¥’ is not summable at xo.
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