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Hopf’s brilliant results have been generalized to various general cases by
H. Whitney [13]", P.Alexandroff [1], S. Eilenberg [3]. C. H.Dowker [2] and
S.T.Hu [4].

The purpose of this paper is to generalize the Hu's work [4] and to
obtain Hopf’s classification theorems which contain the results of Dowker
[2] and Hy [4]. '

1. FUNDAMENTAL BRIDGE THEOREMS. '

In this section we shall provide Hu's fundamental bridge theorems in
more general forms which are the main tools of his paper [4]. Therefore
the majority of his results in [4] will be generalized.

Let X be a normal space and X, be its closed subset. By a covering
[finite covering] & of X we shall always means a locally finite [finite] open
covering of X. The nerve of @ with the weak topology (see [8, Definitian
3.1]) is denoted by A. The nerve A, of the covering a N X may be regarded
as a subcomplex of A. Let denote a canonical mapping (see [8, Definition
3.2]) of (X, X;) into (A, A,). Since X is normal and coverings considered are
locally finitet, here always exist canonical mappings [7,, Lemma 2].

Let f be a given mapping of X, into an arbitrary space Y and « a
covering of X. A mapping ¥,: A;> Y is called a bridge mapping for f, if
the partial mapping Vaa| X, is homotopic to f for each canonical mapping
du: (X, Xy) > (A, Ay). If such a bridge mapping exists, « is said to be a
bridge for the mapping f. In particular, if Y is compact and « is a finite
covering and Yr«¢ps| X, is uniformly homotopic [references 7,, §2, p.86]
to f, then vYr, and « are called a finite bridge mapping and a finite bridge for
respectively.

BrRIDGE REFINEMENT THEOREM. For a given mapping f: Xy > Y, any locally
finite refinement 3 of a bridge « is a bridge.

Proor. Let ¥o: Ay-> Y be a bridge mapping for f; ¢s: (X, Xo) > (4, Ap)
be an arbitrary canonical mapping. Since @ is a refinement of a there
exists a simplicial projection pgs: (B, By) > (4, Ap) [8, §9]. By the first half
of Corollary 9.3 [8], ¢uw = peaps. Hence

F = Yradba| Xo = Yapaads| Xo.
Thus B is a bridge and VY4 pps: By > Y is a brige mapping for f.

1) Numbers in square brackets refer to the references cited at the end of this paper.
2) a1 X, means a covering of X consisting of all intersections of X, and elements of e
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FINITE BRIDGE REFINEMENT THEOREM. Let Y be a compact space. For a
given mapping : Xo-> Y, any finite refinement B of a finite bridge a is a
finite bridge.

ProoOF. Let Vs, o and pgs be the same as in the preceding theorem.In
the present case A and B are both finite complexes. By the second part of

Corollary 9.3[8], ¢u ~ Prachs, hence we have

f=Vabal Xo, = Vappatpsl Xo.
Thus @ is a finite bridge with a bridge mapping YuPs«.
BRIDGE EXiSTENCE THEOREM. If Y is dominated® by a CW-complex?, every
mapping - Xo > Y has a bridge.

FINITE BRIDGE EXISTENCE THEOREM. If Y is compact and is dominated by
a CW-complex, then every mapping - Xy > Y has-a finite bridge.

Proor. Any CW-complex is of the same homotopy type as its singular
complex [12, Theorem 23] and the singular complex of a space has a simp-
licial decomposition [5, (7.1), p.172]. Hence Y is dominated by a simplex.
Furthermore, if Y is compact then, Y is dominated by a finite simplicial
complex [12, Appendix A, p.107].

Let »: Y-> P and u: P-» Y be mappings such that pgx ~1, where P is
a simplicial complex, and in the case where Y is compact, P is finite simp-
licial complex. Let {st p,} be the covering consisting of all open stars of
vertices b€ P, and set a; = {(7f)" (st p;)}. Then «; is a covering of A, and
if YV is compact, then «; is'a finite covering. Let a = {ay, a;} be a family
of open sets in X such that @)= X — X, a; N X = (Af)"(stp;). Let ¢*: (X,
X,y) > (A, A,) be a canonical mapping and + the simplicial mapping defined
by the vertices correpsondence a; > p;. Since ¢«| X, is a canonical mapping
of X, into the nerve A; of the covering « N X,, by Lemma 3.4 [8], Af =

w

7 ¢ulXpand if A is finite then ) f ~7¢,|X;. Hence f =~ prf = urp,] X,, and if
Y is compact and P is finite then f ~ o f é urda| Xy because pa is uniformly
continuous. Thus « and v, = ur are a bridge and a bridge mapping for f

_ahd in the case where Y is compact, these are a finite bridge and a finite
bridge mapping for f. Thus the above two theorems are established. .

BrRiDGE HomoTOPY THEOREM. ZLet X be a normal space and X, its closed
baracompact” space. Let o and B be two bridges for a given mapping f of
Xy into a space Y which is dominated by a CW-complex, aid let Va: Ag> Y,
Ys: By> Y be bridge mappings. Then there exists a common refinement

3) See [11, p.214].

4) See [11, §5, p.223].
- 5) A topological space X is said to be paracompact if any open covering (not
necessary locally finite) of X has a locally finite refinement.



286 H. MIYAZAKI

v of & and B such that Yupya|l Co-and Yghys|Cy are homotopic, where pya
(C,Cp) > (4, Ay), Pya; (C,Co) > (B, By) are arbitrary projections.

Proof. By the hypothesis, there exist a simplicial complex P and map-
pings A Y > P, u: P->Y such that uan~1. Let us put g = A7/, ¥, = Ay,
Yy = AYp. Since V4, g are bridge mappings for f, we have

Vabul Xo = g = YadpXo.
By the proof of the first half of Theorem 9.4 [8],it is easily seen that
there exists a common refinement v of & and 3 such that
Vubyal Co 22 Vghys| Co.
Hence
Vabyal Co = pA VaPya|Co = prPyval Co
~ prapys|Co = unrghys| Co = Ybys| Co.
This completes the proof.

FiniTE BrRiDGE HoMoToPY THEOREM. Let X be a normal space and X, its
closed subset. Let o and (3 be two finite bridges for a given mapping f of X,
into a compact normal space Y which is dominated by a CW-complex, and let
Yyt Ag DY, Yg: By> Y, be finite brtdge mappings. Then there exists a
common finite refinement v of a and B such that Yupye|Co and Yrepys|C, are
uniformly homotopic, where pya: (C,Co) > (A, Ay), byg: (C,Cy) > (B, By) are
arbitrary projections.

Proor. By the hypothesis, there exist a finite simplicial complex P and
mappings A: Y > P, u: P-> Y such that pgx ~ 1. Since P and Y are compact
we know that ux ’1‘_“ 1. Since Y, g are finite bridge mappings for f; and
A is uniformly continuous, we have

Vioudbal Xo = g = Yrpdal Xo.
where g = )\‘f, \l";, = )\f\l’m '\l’;; = )\.'\l"ﬁ.
By the proof of the second half of Theorem 9.4 [8], there exists a

common finite refinement v of @ and B such that

V031 Co = Yrghys| Co.
Hence we have

‘l"uz’wlcﬂ ‘P’ﬁ pyﬁlcu
This completes the proof.

2. Hopr’s CLASSIFICATION THEOREMS.

In this section we shall assume that Y is a connected space dominated
by a CW-complex and satisfying #{Y) = 0 for each 1< <n, where z«(Y)
denotes 7** homotpoy group of Y. If n > 1, the latter condition implies
7z)(Y) =0 and hence the i-simplicity of Y for all ;. If n =1 we assume the
i-simplicity of Y for each i << m, where m is an integer to be specified in the
sequel,
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Let a be an arbitrary bridge for f: X > Y with ¥ : A > Y as a bridge
mapping. Since 7z (Y)= 0 for each < #, we may assume that J,(A""!) =
30, where A? denotes the g-skeleton of A and y, is a fixed point in Y. For
each oriented zn-simplex ¢? € A, the partial mapping VY.|o? determines an
element (Y, , o) of homotopy group =,(Y). Since vy, is defined throughout
A, the n-cochain

k'(Ya) = S (Yu, 0})o}
is clearly a cocyle of A.

By the same way as in the proof of (9.1) [4, p.353], we know that all the
possible cocycles k*(yr,) represent a unique element «*(f) of HYX, wma(Y))®,
where we assumed that X is paracompact. '

If Y is a compact normal space we restrict ourself to all finite bridges «
and finite bridge mappings 5, then it is also seen that all the possible
cocycles k%Y%) represent a unique element «%(f) of HXX, n.(Y))”. In this
case we do not assume the paracompactness of X. The elements «"(f)
and «}(f) are both called the characteristic elements of f.

Now we can state the following generalized Hopf's classification the-
orems.

THEOREM 1. If X is a paracompact normal space with dim X < m® and
H (X, 7 (Y)) = 0= H* (X, zY)) for each n < r <m, then the elements of
HYX, 7,(Y)) are in-a (1 — 1)-correspondence with the homotopy classes of the
mappings £ X>Y. The correspondence is determined by the operation «f).

THEOREM II. If X is a normal space with dim X < n, and H'(X, nY)) =
0= H™*Y(X, n{Y)) for each n < r < m, then the elements of H* (X, n.(Y)) are
in a (1 — 1)-correspondence with the uniform homotopy classes of the mapping
f: X>Y. The correspondenceis determined by the operation «(f), where Y
is compact.

If Y is paracompact and normal, then the characteristic element «*(7)&
HYNY,nY)) of the identity mapping 7: Y > Y can bz considered. And if
Y is compact, «rt) may be regarded as an element of HXY, =z«(Y))
(= HXY, mu(Y))).

THEOREM I'. If X is a paracompact normal space with dim X <n and
7Y) = 0 except n, then the homotopy classes of mappings f: X > Y are in a
(1 — 1)correspondence with the group HYX,n.Y)). The correspondence is
determined by the operation f-»f*(«x'(7)), where f*H¥Y,z.Y)) is the homo-
morphism induced by the mapping f.

v
6) H X, G) denotes the n'® Cech cohomology group of X with coefficients in G
based on all open cpverings (not necessary locally finite) of X. See [2, §4, p.213].
v
7) HY X, G) denotes the » th Cech cohomology group of X with coefficients in G
based on all finite open coverings of X.
8) For the definition on dim X see [2, §3, p.206].
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TrEOREM II'.  If X is a normal space with dim X<mn, Y is a compact
normal space and ={Y)= 0 except n, then the uniform homootpy classes of
mappings [+ X> Y are ina (1 — 1)-correspondence with the group HY(X, mu(Y')).
The correspondence is determined by the operation f->f*F(k*(r)), where f*%:
HYY, m(Y))> H(X, 7nY))is the homomorphism induced by the mapping
.

These Theorems I, II, I and II' can be easily obtained by the same
arguments as in [4] if we use our fundamental bridge and finite brige the-
orems instead of Hu's fundamental bridge theorems and using of Theorem
3.5[2]. And so we shall omit the complete proof.

ReMARk. Theorems I' and II’ contain Theorem 7.5 and 9.3 [2] as special
cases. It is immediately follows by a theorem proved in Appendix that
our theorem I’, II, I’ and II’ are generalizations of the Hu's results [4, p.
356]. We shall also notice that the majority of Hu's work [4] can be gene-
ralized in our general cases.

APPENDIX

A metric [separable metric] space Y is said to be a ANR [separable
ANR] if for any metric [separable metric] space Z which contains Y as its
closed subset, Y is a neighborhood retract® of Z. We shall prove the
following theoremi®

THEOREM. If Y is a ANR or separable ANR then Y is dominated by a
simplicial complex with the weak topology.

ProoF. According to a theorem due to Wojdyslawski [14, p.186], ¥
can be imbedded as a closed set of a convex subset Z of a Banach space
W, and W is separable when Y is separable. Since ¥ is ANR [or separable
ANR], there exist an open set V of Z containing Y and a retraction §: V> Y.
For each point y € Y, let S(y) denote an open spherical neighborhood of y
in Z such that S(y)< V.Since Z is convex, S(y) is also convex. Y is metric
and hence paracompact!®). Therefore there exists a locally finite open co-
vering {U,} of 'Y which is a refinement of {S(¥)NY}. Let K be the nerve
of the covering {U,} and let # denote the vertex corresponding to a element
U.. For afinite points y,, ..,¥, € Y let [¥, -.,¥.] denote the minimal convex
set containing ¥, - -,¥» in W. Hence [y, - -, s consists of points ayy;+ ..+ an ¥n,
where ay, .-, a, are non-negative real numbers such that @)+ .... + aa
= 1.

For each vertex #, € K, letus choose a point y, € Y such that U, << S(¥a).

9) See [6, § 5, p.58].

10) This theorem for compact separable ANR is well-known. See [6, Theorems 12.2,
16.2, pp.93,99].

11) See [9, Theorem 1] and [10, Theorem 8,14, p.53].
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For each z-simplex o = (Ug, --, #s,) < K we define a mapping v,: o >
[Yaor - -» Ya,] by taking vo(x) @Y, + - - - + @nYa, (¥ € ¢), Where ay, .. ..a, are
barycentric coordinates of x with respect to the vertices %, -- - -, #4,. Then
v, define a continuous mapping

v: K>W.

If #u,, -, #a, are vertices of a simplexin K then Uy N ---- N U@, %0,
hence S(ys) N ---- N S(¥w,) 0. Hence S(ys) U---- U S(Pa,) D [Yao, - - -, Yl
Therefore v(K) V.

We put pu=fv. Let A: Y -> K be a canonical mapping. It is remains
to show that ux ~1.

Fot each point y € Y let Uy, ----, Us, be all elements of {U,} which

contain the point y. Then M%) € (Uay, - -, Ua,). Hence vA(Y) € [Yag, - -+ Yanl-
On the other hand ¥ € Uy, N -+ - N Us, < S¥ao) N -+ -- NS(¥s,). Hence a point
p«y) which divides the segment joining »A(y) andyinto a ratio 1 — L0t
=1) always belongs to som S(¥,,) and hence belongs to V. Hence

E; =6p;: Y > Y )
is a well-defined homotcpy between £/(y) = €p(y) = Eva(y) and Ey(y) = Gpo(¥y
= @(y)=y. Hence ux =~ 1. This completes the proof.
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