ON GENERALIZATIONS OF HOPFS CLASSIFICATION THEOREMS

HIROSHI MIYAZAKAI

(Received December 24, 1952)

Hopf's brilliant results have been generalized to various general cases *by* H. Whitney [13]¹, P. Alexandroff [1], S. Eilenberg [3]. C. H. Dowker [2] and S.T.Hu [4].

The purpose of this paper is to generalize the Hu's work [4] and to obtain Hopf's classification theorems which contain the results of Dowker Γ2] and Hu [4].

1. FUNDAMENTAL BRIDGE THEOREMS.

In this section we shall provide Hu's fundamental bridge theorems in more general forms which are the main tools of his paper [4]. Therefore the majority of his results in [4] will be generalized.

Let X be a normal space and X_0 be its closed subset. By a covering [finite covering] α of X we shall always means a locally finite [finite] open covering of X. The nerve of α with the weak topology (see [8, Definition 3.1]) is denoted by A. The nerve A_0 of the covering $\alpha \bigcap X_0^2$ may be regarded as a subcomplex of *A.* Let denote a canonical mapping (see [8, Definition 3.2]) of (X, X_0) into (A, A_0) . Since X is normal and coverings considered are locally finitet, here always exist canonical mappings [7₂, Lemma 2].

Let f be a given mapping of X_0 into an arbitrary space Y and α a covering of *X*. A mapping $\psi_{\alpha}: A_0 \to Y$ is called a bridge mapping for *f*, if the partial mapping $\psi_a \phi_a | X_{\mu}$ is homotopic to f for each canonical mapping $a: (X, X_0) \to (A, A_0)$. If such a bridge mapping exists, α is said to be a bridge for the mapping f. In particular, if Y is compact and α is a finite covering and $\psi_{\alpha}\phi_{\alpha}$ *X*₀ is uniformly homotopic [references 7_{*i*}, § 2, p.86] to f, then ψ_{α} and α are called a finite bridge mapping and a finite bridge for f respectively.

BRIDGE REFINEMENT THEOREM. For a given mapping $f: X_0 \to Y$, any locally *finite refinement β of a bridge a is a bridge.*

PROOF. Let $\psi_{\alpha}: A_0 \to Y$ be a bridge mapping for f ; $\phi_{\alpha}: (X, X_0) \to (A, A_0)$ be an arbitrary canonical mapping. Since β is a refinement of α there exists a simplicial projection $p_{\beta\alpha}$: $(B, B_0) \rightarrow (A, A_0)$ [8, § 9]. By the first half of Corollary 9.3 [8], $\phi_{\alpha} \simeq p_{\beta\alpha}\phi_{\beta}$. Hence

$$
f \simeq \psi_a \phi_a \, | \, X_0 \simeq \psi_a p_{\beta a} \phi_\beta \, | \, X_0.
$$

Thus β is a bridge and $\psi_{\alpha} p_{\beta}$: $B_0 \to Y$ is a brige mapping for f.

¹⁾ Numbers in square brackets refer to the references cited at the end of this paper.

²⁾ $\alpha \cap X_0$ means a covering of X_0 consisting of all intersections of X_0 and elements of α

FINITE BRIDGE REFINEMENT THEOREM. *Let Y be a compact space. For a* $given$ mapping : $X_0 \rightarrow Y$, any finite refinement β of a finite bridge α is a *finite bridge.*

PROOF. Let $\psi_{\alpha}, \phi_{\alpha}$ and $p_{\beta\alpha}$ be the same as in the preceding theorem. In the present case *A* and *B* are both finite complexes. By the second part of

Corollary 9.3 [8], $\phi_{\alpha} \stackrel{\sim}{\simeq} p_{\beta\alpha}\phi_{\beta}$, hence we have

$$
f \simeq \psi_{\alpha} \phi_{\alpha} | X_0, \simeq \psi_{\alpha} p_{\beta \alpha} \phi_{\beta} | X_0.
$$

Thus β is a finite bridge with a bridge mapping $\psi_{\alpha} p_{\beta \alpha}$.

BRIDGE EXISTENCE THEOREM. If Y is dominated³⁾ by a CW-complex⁴), every $mapping f: X_0 \rightarrow Y$ has a bridge.

FINITE BRIDGE EXISTENCE THEOREM. If Y is compact and is dominated by *a* CW-complex, then every mapping $f: X_0 \rightarrow Y$ has a finite bridge.

PROOF. Any CW-complex is of the same homotopy type as its singular complex [12, Theorem 23] and the singular complex of a space has a simp licial decomposition [5, (7.1), p. 172]. Hence *Y* is dominated by a simplex. Furthermore, if Y is compact then Y is dominated by a finite simplicial complex $[12,$ Appendix A, p. 107].

Let $\lambda: Y \rightarrow P$ and $\mu: P \rightarrow Y$ be mappings such that $\mu \lambda \simeq 1$, where *P* is a simplicial complex, and in the case where Y is compact, P is finite simplicial complex. Let $\{st\ p_j\}$ be the covering consisting of all open stars of vertices $p_j \in P$, and set $\alpha'_0 = {\{\lambda f)^{-1}(st\ p_j)\}}$. Then α'_0 is a covering of A_0 and if *Y* is compact, then α'_0 is a finite covering. Let $\alpha = \{a_0, a_j\}$ be a family of open sets in X such that $a_0 = X - X_0$, $a_j \cap X = (\lambda f)^{-1}(stp_j)$. Let $\phi^{\alpha}: (X,$ X_0 \rightarrow (A, A_0) be a canonical mapping and τ the simplicial mapping defined by the vertices correpsondence $a_j \rightarrow p_j$. Since $\phi_\alpha | X_0$ is a canonical mapping of X_0 into the nerve A_0 of the covering $\alpha \cap X_0$, by Lemma 3.4 [8], $\lambda f \simeq$ $\tau \phi_{\alpha} | X_0$ and if A is finite then $\lambda f \sim \tau \phi_{\alpha} | X_0$. Hence $f \sim \mu \lambda f \sim \mu \tau \phi_{\alpha} | X_0$, and if *F* is compact and *P* is finite then $f \simeq \mu\lambda f \simeq \mu\tau \phi_{\alpha} | X_0$ because $\mu\lambda$ is uniformly continuous. Thus α and $\psi_{\alpha} = \mu_{\tau}$ are a bridge and a bridge mapping for f and in the case where *Y* is compact, these are a finite bridge and a finite bridge mapping for f . Thus the above two theorems are established.

BRIDGE HOMOTOPY THEOREM. *Let X be α normal space and X^o its closed paracompact^ space. Let a and β be two bridges for a given mapping f of* X_0 into a space Y which is dominated by a CW-complex, and let $\psi_a: A_0 \to Y$, ψ_{β} : B_0 → *Y* be bridge mappings. Then there exists a common refinement

³⁾ See [11, p. 214].

⁴⁾ See [11, §5, p. 223].

⁵⁾ A topological space X_0 is said to be paracompact if any open covering (not **necessary locally finite) of** *X* **has a locally finite refinement.**

286 H.MIYAZAKI

γ of α and β such that $\psi_{\alpha} \psi_{\gamma \alpha}$ C₀ and $\psi_{\beta} \psi_{\gamma \beta}$ C₀ are homotopic, where $p_{\gamma \alpha}$. $(C, C_0) \rightarrow (A, A_0), \, p_{\gamma\beta}$; $(C, C_0) \rightarrow (B, B_0)$ are arbitrary projections.

Proof. By the hypothesis, there exist a simplicial complex P and mappings $\lambda: Y \rightarrow P$, *μ*: $P \rightarrow Y$ such that $\mu \lambda \simeq 1$. Let us put $g = \lambda f$, $\psi'_a = \lambda \psi_a$, $\psi'_{\beta} = \lambda \psi_{\beta}$. Since ψ_{α} , ψ_{β} are bridge mappings for *f*, we have

$$
\psi'_a\phi_a|X_0\simeq g\simeq \psi'_\beta\phi_\beta X_0.
$$

By the proof of the first half of Theorem 9.4 [8], it is easily seen that there exists a common refinement γ of α and β such that

$$
\psi'_a p_{\gamma a} | C_0 \simeq \psi'_a p_{\gamma 3} | C_0.
$$

Hence

$$
\psi_{\alpha}p_{\gamma\alpha}|C_0 \simeq \mu \lambda \psi_{\alpha}p_{\gamma\alpha}|C_0 = \mu \psi_{\alpha}'p_{\gamma\alpha}|C_0
$$

$$
\simeq \mu \psi_{\beta}'p_{\gamma\beta}|C_0 = \mu \lambda \psi_{\beta}p_{\gamma\beta}|C_0 \simeq \psi_{\beta}p_{\gamma\beta}|C_0.
$$

This completes the proof.

FINITE BRIDGE HOMOTOPY THEOREM. Let X be a normal space and X₀ its *closed subset. Let a and β be two finite bridges for a given mapping f of X^o into a compact normal space Y which is dominated by a CW~complex, and let* $\mathbf{r}_a: A_0 \to Y$, $\psi_\beta: B_0 \to Y$, be finite bridge mappings. Then there exists a \int *common finite refinement* γ of α and β such that $\psi_{\alpha}p_{\gamma\alpha}|C_0$ and $\psi_{\beta}p_{\gamma\beta}|C_0$ are $uniformly \quad homotopic, \quad where \quad p_{\gamma\alpha}: (C, C_0) \rightarrow (A, A_0), \quad p_{\gamma\beta}: (C, C_0) \rightarrow (B, B_0) \quad are$ *arbitrary projections.*

PROOF. By the hypothesis, there exist a finite simplicial complex *P* and mappings $\lambda: Y \to P$, $\mu: P \to Y$ such that $\mu \lambda \simeq 1$. Since P and Y are compact we know that $\mu\lambda \simeq 1$. Since ψ_{α} , ψ_{β} are finite bridge mappings for f, and λ is uniformly continuous, we have

$$
\psi_{\alpha}'\phi_{\alpha}|X_0\stackrel{.}{\simeq}g\simeq \psi_{\beta}'\phi_{\beta}|X_0.
$$

where $g = \lambda f$, $\psi_{\alpha} = \lambda \psi_{\alpha}$, ψ_{α}

By the proof of the second half of Theorem 9.4 [8], there exists a common finite refinement γ of α and β such that

$$
\psi_{\alpha}^{\prime}p_{\alpha}^{\gamma}\left|C_{0}\right\rangle \overset{a}{\simeq}\psi_{\beta}^{\prime}p_{\gamma\beta}\left|C_{0}\right\rangle
$$

Hence we have

$$
\psi_{\alpha} p_{\gamma\alpha} | C_0 \stackrel{u}{\simeq} \psi_{\beta} p_{\gamma\beta} | C_0.
$$

This completes the proof.

2. HOPF'S CLASSIFICATION THEOREMS.

In this section we shall assume that *Y* is a connected space dominated by a CW-complex and satisfying $\pi_r(Y) = 0$ for each $1 \leq r \leq n$, where $\pi_r(Y)$ denotes r^{th} homotpoy group of Y. If $n > 1$, the latter condition implies $\pi_1(Y) = 0$ and hence the *i*-simplicity of *Y* for all *i*. If $n = 1$ we assume the *i*-simplicity of Y for each $i \leq m$, where m is an integer to be specified in the sequel.

Let α be an arbitrary bridge for $f: X \rightarrow Y$ with $\psi_{\alpha}: A \rightarrow Y$ as a bridge mapping. Since $\pi_r(Y) = 0$ for each $r < n$, we may assume that $\psi_\alpha(A^{n-1}) = 0$ y_0 , where A^q denotes the *q*-skeleton of *A* and y_0 is a fixed point in *Y*. For each oriented *n*-simplex $\sigma_i^n \in A$, the partial mapping $\psi_{\alpha} | \sigma_i^n$ determines an element $(\psi_{\alpha}, \sigma_{\alpha}^{n})$ of homotopy group $\pi_{n}(Y)$. Since ψ_{α} is defined throughout A, the *n*-cochain

$$
k^n(\psi_\alpha)=\Sigma(\psi_\alpha,\ \sigma_i^n)\sigma_i^n
$$

is clearly a cocyle of A .

By the same way as in the proof of (9.1) [4, p. 353], we know that all the possible cocycles $k^n(\psi_\alpha)$ represent a unique element $\kappa^n(f)$ of $H^n(X, \pi_n(Y))^6$, where we assumed that *X* is paracompact.

If *Y* is a compact normal space we restrict ourself to all finite bridges α and finite bridge mappings ψ_{α} , then it is also seen that all the possible cocycles $k^n(\psi^a)$ represent a unique element $\kappa_F^n(f)$ of $H^n_F(X, \pi_n(Y))^{\tau}$. In this case we do not assume the paracompactness of X. The elements $\kappa^{n}(f)$ and $\kappa_{\mathbf{r}}^n(f)$ are both called the characteristic elements of f.

Now we can state the following generalized Hopf's classification theorems.

THEOREM I. If X is a paracompact normal space with dim $X \leq m^{s}$ and $H^{r}(X, \pi_{r}(Y)) = 0 = H^{r+1}(X, \pi_{r}(Y))$ for each $n < r \leq m$, then the elements of $Hⁿ(X, \pi_n(Y))$ are in a $(1 - 1)$ -correspondence with the homotopy classes of the *mappings f*: $X \rightarrow Y$. The correspondence is determined by the operation $\kappa^{n}(f)$.

THEOREM II. If X is a normal space with $\dim X \leq n$, and $H^r(X, \pi_r(Y)) =$ $0 = H^{r+1}(X, \pi_r(Y))$ for each $n < r \leq m$, then the elements of $H^n(X, \pi_n(Y))$ are *in a* $(1 - 1)$ -*correspondence with the uniform homotopy classes of the mapping* $f: X \rightarrow Y$. The correspondence is determined by the operation $\kappa_{\kappa}^n(f)$, where Y *is compact.*

If *Y* is paracompact and normal, then the characteristic element $\kappa^{n}(\tau) \in$ $H^n(Y, \pi_n(Y))$ of the identity mapping $\tau: Y \to Y$ can be considered. And if *Y* is compact, $\kappa_F^n(\tau)$ may be regarded as an element of $H_F^n(Y, \tau_n(Y))$

THEOREM I'. If X is a paracompact normal space with dim $X \leq n$ and $r_i(Y) = 0$ except n, then the homotopy classes of mappings $f: X \rightarrow Y$ are in a $(1 - 1)$ -correspondence with the group $H^0(X, \pi_n(Y))$. The correspondence is \mathcal{L} *determined by the operation* $f \rightarrow f^*(\kappa^n(\tau))$, where $f^*: H^n(Y, \pi_n(Y))$ is the homo*morphism induced by the mapping* /.

⁶⁾ $H^n(X, G)$ denotes the n^{th} Cech cohomology group of *X* with coefficients in G based on all open cpverings (not necessary locally finite) of X . See [2, §4, p. 213].

 $V(G)$ denotes the *n* th Cech cohomology group of *X* with coefficients in *G* finite open coverings of *X* based on all finite open coverings of X.

based on all finite open coverings of *X.* $\frac{3}{2}$, $\frac{3}{2}$,

288 H. MIYAZAKI

THEOREM II'. If X is a normal space with dim $X \leq n$, Y is a compact *normal space and π^f (Y)* = 0 *except n, then the uniform homootpy classes of mappings f:* $X \rightarrow Y$ are in a $(1 - 1)$ -correspondence with the group $H^n(X, \pi_n(Y))$ The correspondence is determined by the operation $f \rightarrow f^{*F}(\kappa^n(\tau))$, where f^{*F} . $Hⁿ(Y, \pi_n(Y)) \rightarrow Hⁿ(X, \pi_n(Y))$ is the homomorphism induced by the mapping *f*

These Theorems I, II, I' and II' can be easily obtained by the same arguments as in [4] if we use our fundamental bridge and finite brige the orems instead of Hu's fundamental bridge theorems and using of Theorem 3.5 [2]. And so we shall omit the complete proof.

REMARK. Theorems Γ and IF contain Theorem 7.5 and 9.3 [2] as special cases. It is immediately follows by a theorem proved in Appendix that our theorem \mathbf{I}' , \mathbf{II} , \mathbf{I}' and \mathbf{II}' are generalizations of the Hu's results $[4, p]$. 356]. We shall also notice that the majority of Hu's work [4] can be gene ralized in our general cases.

APPENDIX

A metric [separable metric] space *Y* is said to be a ANR [separable ANR] if for any metric [separable metric] space *Z* which contains *Y* as its closed subset, Y is a neighborhood retract⁹ of Z. We shall prove the following theorem¹⁰⁾

THEOREM. // *Y is a ANR or separable ANR then Y is dominated by a simplicial complex with the weak topology.*

PROOF. According to a theorem due to Wojdyslawski [14, p. 186], *Y* can be imbedded as a closed set of a convex subset *Z* of a Banach space *W,* and *W* is separable when *Y* is separable. Since *Y* is ANR [or separable ANR], there exist an open set *V* of *Z* containing *Y* and a retraction $\theta: V \rightarrow Y$. For each point $y \in Y$, let $S(y)$ denote an open spherical neighborhood of y in *Z* such that $S(y) \subset V$. Since *Z* is convex, $S(y)$ is also convex. *Y* is metric and hence paracompact¹¹). Therefore there exists a locally finite open co vering ${U_*}$ of *Y* which is a refinement of ${S(y) \cap Y}$. Let *K* be the nerve of the covering ${U_\alpha}$ and let *u* denote the vertex corresponding to a element *U_{*}*. For a finite points $y_0, \ldots, y_n \in Y$ let $[y_0, \ldots, y_n]$ denote the minimal convex set containing y_0, \ldots, y_n in W. Hence $[y_0, \ldots, y_n]$ consists of points $a_0y_0 + \ldots + a_ny_n$, where a_0, \ldots, a_n are non-negative real numbers such that $a_0 + \ldots + a_n$ $= 1$.

For each vertex $u_{\alpha} \in K$, let us choose a point $y_{\alpha} \in Y$ such that $U_{\alpha} \subset S(y_{\alpha})$.

⁹⁾ See [6, § 5, p. 58].

¹⁰⁾ This theorem for compact separable ANR is well-known. See [6, Theorems 12.2, 16.2, pp. 93,99].

¹¹⁾ See [9, Theorem 1] and [10, Theorem 8,14, p. 53].

For each *n*-simplex $\sigma = (u_{\alpha_0}, \dots, u_{\alpha_n}) \subset K$ we define a mapping $\nu_{\sigma} : \sigma \rightarrow$ $[y_{\alpha_0}, \ldots, y_{\alpha_n}]$ by taking $v_{\sigma}(x)$ $a_0y_{\alpha_0} + \ldots + a_ny_{\alpha_n}(x \in \sigma)$, where a_0, \ldots, a_n are barycentric coordinates of x with respect to the vertices $u_{\alpha_0}, \ldots, u_{\alpha_n}$. Then ν_{σ} define a continuous mapping

 $\nu: K \rightarrow W$.

If $u_{\alpha_0}, \ldots, u_{\alpha_n}$ are vertices of a simplex in *K*, then $U_{\alpha_0} \cap \cdots \cap U_{\alpha_n} = 0$, hence $S(y_{\alpha_0}) \cap \ldots \cap S(y_{\alpha_n}) \neq 0$. Hence $S(y_{\alpha}) \cup \ldots \cup S(y_{\alpha_n}) \supset [y_{\alpha_0}, \ldots, y_{\alpha_n}].$ Therefore $\nu(K) \subset V$.

We put $\mu = \theta \nu$. Let $\lambda: Y \rightarrow K$ be a canonical mapping. It is remains to show that $\mu\lambda \simeq 1$.

For each point $y \in Y$ let $U_{\alpha_0}, \ldots, U_{\alpha_n}$ be all elements of $\{U_\alpha\}$ which contain the point *y*. Then $\lambda(y) \in (u_{\alpha_0}, \dots, u_{\alpha_n})$. Hence $\nu \lambda(y) \in [y_{\alpha_0}, \dots, y_{\alpha_n}]$ On the other hand $y \in U_{\alpha_0} \cap \cdots \cap U_{\alpha_n} \subset S(y_{\alpha_0}) \cap \cdots \cap S(y_{\alpha_n})$. Hence a point $\rho_l(y)$ which divides the segment joining $\nu\lambda(y)$ and y into a ratio $1 - t \cdot i / 0 \le t$ \leq 1) always belongs to som $S(y_{\alpha_j})$ and hence belongs to *V*. Hence

$$
\xi_t = \theta \rho_t \colon Y \to Y
$$

is a well-defined homotcpy between $\xi_0(y) = \theta \rho_0(y) = \theta \nu \lambda(y)$ and $\xi_0(y) = \theta \rho_0(y)$ $= \theta(y) = y$. Hence $\mu \lambda \simeq 1$. This completes the proof.

REFERENCES

- 1 P. ALEXANDROFF, On the dimension of normal spaces, Proc Royal Soc. Ser. A. vol. 189(1947), 11-39.
- 2 C. H.DOWKER, Mapping theorems for non-compact spaces, Amer. Journ.of Math., vol. 69(1947), 200-242.
- 3 S. EILENBERG, Cohomology and continuous mappings, Ann. of Math. vol. 41(1940), 231-252.
- 4 S. T. Hu, Mappings of a normal space into an absolute neighborhood retract, Trans. Amer. Math. Soc, vol. 64(1948), 336-358.
- 5 S. T. Hu, Extensions and classifications of mappings, Osaka Math. Jour. vol. 2(1950), 165-209.
- 6 S. LEFSCHETZ, Topics in topology, Princeton, 1942.
- 71 H. MIYAZAKI, On the covering homotopy theorems, Tôhoku Math. Jour. Vol. 4(1952). 80-87.
- 72 H. MIYAZAKT, A note on paracompact spaces Tohoku Math. Jour. vol. 4(1952), 88-92.
- 8 H. MIYAZAKT, The cohomotopy and uniform cohomotopy groups, Tohoku Math. Jour. Vol 5.
- 9 A. H. STONE, Paracompactness and product spaces, Bull. Amer. Math. Soc, Vol.54 (1948), 977-982.
- 10 J. W. TUKEY, Convergence and uniformity in topology, Princeton, (1940).
- 11 J. H. C. WHITEHEAD, Combinatorial homotopy I, Bull. Amer. Math. Soc Vol. 55(1949), 213-245.
- 12 J. H. C. WHITEHEAD, A certain exact sequence, Ann. of Math. Vol. 52(1950), 51-108.
- 13 H. WHITNEY, The maps of an n -complex into an n -sphere, Duke Math, Journ. Vol. 3(1937), 51-55.
- 14 M. WOJODYSLAWSKI, Retractes absolus et hyperespaces des continus, Fund. Math. Vol. 32(1939), 184-192.

MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY.