ON GENERALIZATIONS OF HOPF'S CLASSIFICATION THEOREMS

HIROSHI MIYAZAKAI

(Received December 24, 1952)

Hopf's brilliant results have been generalized to various general cases by H. Whitney [13]¹⁾, P. Alexandroff [1], S. Eilenberg [3]. C. H. Dowker [2] and S. T. Hu [4].

The purpose of this paper is to generalize the Hu's work [4] and to obtain Hopf's classification theorems which contain the results of Dowker [2] and Hu [4].

1. FUNDAMENTAL BRIDGE THEOREMS.

In this section we shall provide Hu's fundamental bridge theorems in more general forms which are the main tools of his paper [4]. Therefore the majority of his results in [4] will be generalized.

Let X be a normal space and X_0 be its closed subset. By a covering [finite covering] α of X we shall always means a locally finite [finite] open covering of X. The nerve of α with the weak topology (see [8, Definition 3.1]) is denoted by A. The nerve A_0 of the covering $\alpha \cap X_0^{(2)}$ may be regarded as a subcomplex of A. Let denote a canonical mapping (see [8, Definition 3.2]) of (X, X_0) into (A, A_0) . Since X is normal and coverings considered are locally finitet, here always exist canonical mappings [7, Lemma 2].

Let f be a given mapping of X_0 into an arbitrary space Y and α a covering of X. A mapping $\psi_{\alpha} : A_0 \to Y$ is called a bridge mapping for f, if the partial mapping $\psi_{\alpha}\phi_{\alpha}|_{X_0}$ is homotopic to f for each canonical mapping $\phi_{\alpha}: (X, X_0) \to (A, A_0)$. If such a bridge mapping exists, α is said to be a bridge for the mapping f. In particular, if Y is compact and α is a finite covering and $\psi_{\alpha}\phi_{\alpha}|_{X_0}$ is uniformly homotopic [references 7₁, §2, p.86] to f, then ψ_{α} and α are called a finite bridge mapping and a finite bridge for f respectively.

BRIDGE REFINEMENT THEOREM. For a given mapping $f: X_0 \rightarrow Y$, any locally finite refinement β of a bridge α is a bridge.

PROOF. Let $\psi_{\alpha} : A_{\upsilon} \to Y$ be a bridge mapping for f; $\phi_{\alpha} : (X, X_{0}) \to (A, A_{0})$ be an arbitrary canonical mapping. Since β is a refinement of α there exists a simplicial projection $p_{\beta\alpha} : (B, B_{0}) \to (A, A_{0})$ [8, §9]. By the first half of Corollary 9.3 [8], $\phi_{\alpha} \simeq p_{\beta\alpha}\phi_{\beta}$. Hence

 $f \simeq \psi_{\alpha} \phi_{\alpha} | X_0 \simeq \psi_{\alpha} p_{\beta \alpha} \phi_{\beta} | X_0.$

Thus β is a bridge and $\psi_{\alpha} p_{\beta\alpha} \colon B_0 \to Y$ is a brige mapping for f.

¹⁾ Numbers in square brackets refer to the references cited at the end of this paper.

²⁾ $\alpha \cap X_0$ means a covering of X_0 consisting of all intersections of X_0 and elements of α .

FINITE BRIDGE REFINEMENT THEOREM. Let Y be a compact space. For a given mapping : $X_0 \rightarrow Y$, any finite refinement β of a finite bridge α is a finite bridge.

PROOF. Let ψ_{α} , ϕ_{α} and $p_{\beta\alpha}$ be the same as in the preceding theorem. In the present case A and B are both finite complexes. By the second part of

Corollary 9.3[8], $\phi_{\alpha} \stackrel{u}{\simeq} p_{\beta\alpha}\phi_{\beta}$, hence we have

$$f \simeq \psi_{\alpha} \phi_{\alpha} | X_0, \simeq \psi_{\alpha} p_{\beta \alpha} \phi_{\beta} | X_0.$$

Thus β is a finite bridge with a bridge mapping $\psi_{\alpha}p_{\beta\alpha}$.

BRIDGE EXISTENCE THEOREM. If Y is dominated³) by a CW-complex⁴, every mapping $f: X_0 \rightarrow Y$ has a bridge.

FINITE BRIDGE EXISTENCE THEOREM. If Y is compact and is dominated by a CW-complex, then every mapping $f: X_0 \rightarrow Y$ has a finite bridge.

PROOF. Any CW-complex is of the same homotopy type as its singular complex [12, Theorem 23] and the singular complex of a space has a simplicial decomposition [5, (7.1), p.172]. Hence Y is dominated by a simplex. Furthermore, if Y is compact then, Y is dominated by a finite simplicial complex [12, Appendix A, p.107].

Let $\lambda: Y \to P$ and $\mu: P \to Y$ be mappings such that $\mu\lambda \simeq 1$, where P is a simplicial complex, and in the case where Y is compact, P is finite simplicial complex. Let $\{st \ p_j\}$ be the covering consisting of all open stars of vertices $p_j \in P$, and set $\alpha'_0 = \{(\lambda f)^{-1}(st \ p_j)\}$. Then α'_0 is a covering of A_0 and if Y is compact, then α'_0 is a finite covering. Let $\alpha = \{a_0, a_j\}$ be a family of open sets in X such that $a_0 = X - X_0$, $a_j \cap X = (\lambda f)^{-1}(st \ p_j)$. Let $\phi^{\alpha}: (X,$ $X_0) \to (A, A_0)$ be a canonical mapping and τ the simplicial mapping defined by the vertices correspondence $a_j \to p_j$. Since $\phi_{\alpha} \mid X_0$ is a canonical mapping of X_0 into the nerve A_0 of the covering $\alpha \cap X_0$, by Lemma 3.4 [8], $\lambda f \simeq$ $\tau \phi_{\alpha} \mid X_0$ and if A is finite then $\lambda f \stackrel{u}{\simeq} \tau \phi_{\alpha} \mid X_0$. Hence $f \simeq \mu \lambda f \simeq \mu \tau \phi_{\alpha} \mid X_0$, and if Y is compact and P is finite then $f \stackrel{u}{\simeq} \mu \lambda f \stackrel{u}{\simeq} \mu \tau \phi_{\alpha} \mid X_0$ because $\mu \lambda$ is uniformly continuous. Thus α and $\psi_{\alpha} = \mu \tau$ are a bridge and a bridge mapping for f and in the case where Y is compact, these are a finite bridge and a finite bridge mapping for f. Thus the above two theorems are established.

BRIDGE HOMOTOPY THEOREM. Let X be a normal space and X_0 its closed paracompact⁵) space. Let α and β be two bridges for a given mapping f of X_0 into a space Y which is dominated by a CW-complex, and let $\psi_{\alpha} \colon A_0 \to Y$, $\psi_{\beta} \colon B_0 \to Y$ be bridge mappings. Then there exists a common refinement

³⁾ See [11, p. 214].

⁴⁾ See [11, §5, p. 223].

^{- 5)} A topological space X_0 is said to be paracompact if any open covering (not necessary locally finite) of X has a locally finite refinement.

H. MIYAZAKI

 γ of α and β such that $\psi_{\alpha}p_{\gamma\alpha}|$ C_0 and $\psi_{\beta}p_{\gamma\beta}|C_0$ are homotopic, where $p_{\gamma\alpha}$: $(C, C_0) \rightarrow (A, A_0), p_{\gamma\beta}; (C, C_0) \rightarrow (B, B_0)$ are arbitrary projections.

Proof. By the hypothesis, there exist a simplicial complex P and mappings $\lambda: Y \to P$, $\mu: P \to Y$ such that $\mu \lambda \simeq 1$. Let us put $g = \lambda f$, $\psi'_{\alpha} = \lambda \psi_{\alpha}$, $\psi'_{\beta} = \lambda \psi_{\beta}$. Since $\psi_{\alpha}, \psi_{\beta}$ are bridge mappings for f, we have

$$\psi'_{\mathfrak{a}} \phi_{\mathfrak{a}} | X_0 \simeq g \simeq \psi'_{\mathfrak{b}} \phi_{\mathfrak{b}} X_0.$$

By the proof of the first half of Theorem 9.4 [8], it is easily seen that there exists a common refinement γ of α and β such that

$$|\psi'_{\alpha}p_{\gamma\alpha}| C_0 \simeq \psi'_{\beta}p_{\gamma\beta}| C_0.$$

Hence

$$\begin{split} \psi_{\alpha} p_{\gamma \alpha} | C_0 \simeq \mu \lambda \, \psi_{\alpha} p_{\gamma \alpha} | C_0 = \mu \psi'_{\alpha} p_{\gamma \alpha} | C_0 \\ \simeq \mu \psi'_{\beta} p_{\gamma \beta} | C_0 = \mu \lambda \psi_{\beta} p_{\gamma \beta} | C_0 \simeq \psi_{\beta} p_{\gamma \beta} | C_0. \end{split}$$

This completes the proof.

FINITE BRIDGE HOMOTOPY THEOREM. Let X be a normal space and X_0 its closed subset. Let α and β be two finite bridges for a given mapping f of X_0 into a compact normal space Y which is dominated by a CW-complex, and let $\psi_{\alpha}: A_0 \rightarrow Y, \ \psi_{\beta}: B_0 \rightarrow Y$, be finite bridge mappings. Then there exists a common finite refinement γ of α and β such that $\psi_{\alpha}p_{\gamma\alpha}|C_0$ and $\psi_{\beta}p_{\gamma\beta}|C_0$ are uniformly homotopic, where $p_{\gamma\alpha}: (C, C_0) \rightarrow (A, A_0), \ p_{\gamma\beta}: (C, C_0) \rightarrow (B, B_0)$ are arbitrary projections.

PROOF. By the hypothesis, there exist a finite simplicial complex P and mappings $\lambda: Y \to P$, $\mu: P \to Y$ such that $\mu \lambda \simeq 1$. Since P and Y are compact we know that $\mu \lambda \simeq 1$. Since $\psi_{\alpha}, \psi_{\beta}$ are finite bridge mappings for f, and λ is uniformly continuous, we have

$$\psi'_{\alpha}\phi_{\alpha}|X_{0} \cong g \cong \psi'_{\beta}\phi_{\beta}|X_{0}.$$

where $g = \lambda f$, $\psi'_{\alpha} = \lambda \psi_{\alpha}$, $\psi'_{\beta} = \lambda \psi_{\beta}$.

By the proof of the second half of Theorem 9.4 [8], there exists a common finite refinement γ of α and β such that

$$\psi'_{\alpha} p^{\gamma}_{\alpha} | C_0 \simeq \psi'_{\beta} p_{\gamma\beta} | C_0.$$

Hence we have

$$\psi_{\alpha}p_{\gamma\alpha}|C_{0}\simeq \psi_{\beta}p_{\gamma\beta}|C_{0}.$$

This completes the proof.

2. HOPF'S CLASSIFICATION THEOREMS.

In this section we shall assume that Y is a connected space dominated by a CW-complex and satisfying $\pi_r(Y) = 0$ for each $1 \leq r \leq n$, where $\pi_r(Y)$ denotes r^{th} homotpoy group of Y. If n > 1, the latter condition implies $\pi_1(Y) = 0$ and hence the *i*-simplicity of Y for all *i*. If n = 1 we assume the *i*-simplicity of Y for each $i \leq m$, where *m* is an integer to be specified in the sequel. Let α be an arbitrary bridge for $f: X \to Y$ with $\psi_{\alpha}: A \to Y$ as a bridge mapping. Since $\pi_r(Y) = 0$ for each r < n, we may assume that $\psi_{\alpha}(A^{n-1}) = y_0$, where A^q denotes the q-skeleton of A and y_0 is a fixed point in Y. For each oriented *n*-simplex $\sigma_i^n \in A$, the partial mapping $\psi_{\alpha} | \sigma_i^n$ determines an element $(\psi_{\alpha}, \sigma_i^n)$ of homotopy group $\pi_n(Y)$. Since ψ_{α} is defined throughout A, the *n*-cochain

$$k^n(\boldsymbol{\psi}_{\boldsymbol{\alpha}}) = \sum (\boldsymbol{\psi}_{\boldsymbol{\alpha}}, \sigma_i^n) \sigma_i^n$$

is clearly a cocyle of A.

By the same way as in the proof of (9.1) [4, p. 353], we know that all the possible cocycles $k^n(\psi_{\alpha})$ represent a unique element $\kappa^n(f)$ of $H^n(X, \pi_n(Y))^{6}$, where we assumed that X is paracompact.

If Y is a compact normal space we restrict ourself to all finite bridges α and finite bridge mappings ψ_{α} , then it is also seen that all the possible cocycles $k^n(\psi^{\alpha})$ represent a unique element $\kappa_F^n(f)$ of $H_F^n(X, \pi_n(Y))^{(1)}$. In this case we do not assume the paracompactness of X. The elements $\kappa^n(f)$ and $\kappa_F^n(f)$ are both called the characteristic elements of f.

Now we can state the following generalized Hopf's classification theorems.

THEOREM I. If X is a paracompact normal space with dim $X \leq m^{s_0}$ and $H^r(X, \pi_r(Y)) = 0 = H^{r+1}(X, \pi_r(Y))$ for each $n < r \leq m$, then the elements of $H^n(X, \pi_n(Y))$ are in a (1-1)-correspondence with the homotopy classes of the mappings $f: X \to Y$. The correspondence is determined by the operation $\kappa^n(f)$.

THEOREM II. If X is a normal space with dim $X \leq n$, and $H^{r}(X, \pi_{r}(Y)) = 0 = H^{r+1}(X, \pi_{r}(Y))$ for each $n < r \leq m$, then the elements of $H^{n}(X, \pi_{n}(Y))$ are in a (1-1)-correspondence with the uniform homotopy classes of the mapping $f: X \rightarrow Y$. The correspondence is determined by the operation $\kappa_{F}^{n}(f)$, where Y is compact.

If Y is paracompact and normal, then the characteristic element $\kappa^n(\tau) \in H^n(Y, \pi_n(Y))$ of the identity mapping $\tau : Y \to Y$ can be considered. And if Y is compact, $\kappa_{F(\tau)}^n(\tau)$ may be regarded as an element of $H^n_F(Y, \pi_n(Y))$ ($\approx H^n(Y, \pi_n(Y))$).

THEOREM I'. If X is a paracompact normal space with dim $X \leq n$ and $\pi_r(Y) = 0$ except n, then the homotopy classes of mappings $f: X \to Y$ are in a (1-1)-correspondence with the group $H^{\mathfrak{d}}(X, \pi_n(Y))$. The correspondence is determined by the operation $f \to f^*(\kappa^{\mathfrak{n}}(\tau))$, where $f^*: H^{\mathfrak{n}}(Y, \pi_n(Y))$ is the homomorphism induced by the mapping f.

⁶⁾ $H^{n}(X, G)$ denotes the n^{th} Cech cohomology group of X with coefficients in G based on all open cpverings (not necessary locally finite) of X. See [2, §4, p 213].

⁷⁾ $H_{k}^{n}(X, G)$ denotes the *n* th Cech cohomology group of X with coefficients in G based on all finite open coverings of X.

⁸⁾ For the definition on dim X see [2, 3, p. 206].

H. MIYAZAKI

THEOREM II'. If X is a normal space with dim $X \leq n$, Y is a compact normal space and $\pi_t(Y) = 0$ except n, then the uniform homootpy classes of mappings $f: X \rightarrow Y$ are in a (1-1)-correspondence with the group $H^n(X, \pi_n(Y))$. The correspondence is determined by the operation $f \rightarrow f^{*F}(\kappa^n(\tau))$, where f^{*F} : $H^n(Y, \pi_n(Y)) \rightarrow H^n(X, \pi_n(Y))$ is the homomorphism induced by the mapping f.

These Theorems I, II, I' and II' can be easily obtained by the same arguments as in [4] if we use our fundamental bridge and finite brige theorems instead of Hu's fundamental bridge theorems and using of Theorem 3.5 [2]. And so we shall omit the complete proof.

REMARK. Theorems I' and II' contain Theorem 7.5 and 9.3 [2] as special cases. It is immediately follows by a theorem proved in Appendix that our theorem I', II, I' and II' are generalizations of the Hu's results [4, p. 356]. We shall also notice that the majority of Hu's work [4] can be generalized in our general cases.

APPENDIX

A metric [separable metric] space Y is said to be a ANR [separable ANR] if for any metric [separable metric] space Z which contains Y as its closed subset, Y is a neighborhood retract⁹⁾ of Z. We shall prove the following theorem¹⁰⁾

THEOREM. If Y is a ANR or separable ANR then Y is dominated by a simplicial complex with the weak topology.

PROOF. According to a theorem due to Wojdyslawski [14, p.186], Y can be imbedded as a closed set of a convex subset Z of a Banach space W, and W is separable when Y is separable. Since Y is ANR [or separable ANR], there exist an open set V of Z containing Y and a retraction $\theta: V \to Y$. For each point $y \in Y$, let S(y) denote an open spherical neighborhood of y in Z such that $S(y) \subset V$. Since Z is convex, S(y) is also convex. Y is metric and hence paracompact¹¹). Therefore there exists a locally finite open covering $\{U_{\alpha}\}$ of Y which is a refinement of $\{S(y) \cap Y\}$. Let K be the nerve of the covering $\{U_{\alpha}\}$ and let u denote the vertex corresponding to a element U_{α} . For a finite points $y_0, \ldots, y_n \in Y$ let $[y_0, \ldots, y_n]$ denote the minimal convex set containing y_0, \ldots, y_n in W. Hence $[y_0, \ldots, y_n]$ consists of points $a_0y_0 + \ldots + a_n y_n$, where a_{0}, \ldots, a_n are non-negative real numbers such that $a_0 + \ldots + a_n = 1$.

For each vertex $u_{\alpha} \in K$, let us choose a point $y_{\alpha} \in Y$ such that $U_{\alpha} \subset S(y_{\alpha})$.

288

⁹⁾ See [6, § 5, p. 58].

¹⁰⁾ This theorem for compact separable ANR is well-known. See [6, Theorems 12.2, 16.2, pp. 93, 99].

¹¹⁾ See [9, Theorem 1] and [10, Theorem 8, 14, p. 53].

For each *n*-simplex $\sigma = (u_{\alpha_0}, \dots, u_{\alpha_n}) \subset K$ we define a mapping $\nu_{\sigma}: \overline{\sigma} \rightarrow \infty$ $[y_{\alpha_0}, \ldots, y_{\alpha_n}]$ by taking $\nu_{\sigma}(x) a_0 y_{\alpha_0} + \cdots + a_n y_{\alpha_n} (x \in \overline{\sigma})$, where a_0, \ldots, a_n are barycentric coordinates of x with respect to the vertices $u_{\alpha_0}, \ldots, u_{\alpha_n}$. Then ν_{σ} define a continuous mapping

 $\nu: K \rightarrow W.$

If $u_{\alpha_0}, \dots, u_{\alpha_n}$ are vertices of a simplex in K, then $U_{\alpha_0} \cap \dots \cap U_{\alpha_n} \neq 0$, hence $S(y_{\alpha_0}) \cap \cdots \cap S(y_{\alpha_n}) \neq 0$. Hence $S(y_{\alpha}) \cup \cdots \cup S(y_{\alpha_n}) \supset [y_{\alpha_0}, \cdots, y_{\alpha_n}]$. Therefore $\nu(K) \subset V$.

We put $\mu = \theta \nu$. Let $\lambda \colon Y \to K$ be a canonical mapping. It is remains to show that $\mu \lambda \simeq 1$.

For each point $y \in Y$ let $U_{\alpha_n}, \ldots, U_{\alpha_n}$ be all elements of $\{U_{\alpha}\}$ which contain the point y. Then $\lambda(y) \in (\overline{u_{\alpha_0}, \dots, u_{\alpha_n}})$. Hence $\nu \lambda(y) \in [y_{\alpha_0}, \dots, y_{\alpha_n}]$. On the other hand $y \in U_{\alpha_0} \cap \cdots \cap U_{\alpha_n} \subset S(y_{\alpha_0}) \cap \cdots \cap S(y_{\alpha_n})$. Hence a point $\rho_t(y)$ which divides the segment joining $\nu\lambda(y)$ and y into a ratio $1 - t \cdot t (0 \le t)$ ≤ 1) always belongs to som $S(y_{\alpha})$ and hence belongs to V. Hence

$$\xi_t = \theta \rho_t \colon Y \to Y$$

is a well-defined homotopy between $\xi_0(y) = \ell \rho_0(y) = \ell \nu \lambda(y)$ and $\xi_0(y) = \theta \rho_0(y)$ $= \theta(y) = y$. Hence $\mu \lambda \simeq 1$. This completes the proof.

REFERENCES

- 1 P. ALEXANDROFF, On the dimension of normal spaces, Proc. Royal Soc. Ser. A. vol. 189(1947), 11-39.
- 2 C. H. DOWKER, Mapping theorems for non-compact spaces, Amer. Journ. of Math., vol. 69(1947), 200-242.
- 3 S. EILENBERG, Cohomology and continuous mappings, Ann. of Math. vol. 41(1940), 231-252.
- 4 S.T.HU, Mappings of a normal space into an absolute neighborhood retract, Trans. Amer. Math. Soc., vol. 64(1948), 336-358.
- 5 S.T.Hu, Extensions and classifications of mappings, Osaka Math. Jour. vol. 2(1950), 165-209.
- 6 S. LEFSCHETZ, Topics in topology, Princeton, 1942.
- 71 H. MIYAZAKI, On the covering homotopy theorems, Tôhoku Math. Jour. Vol. 4(1952) 80-87.
- 72 H. MIYAZAKI, A note on paracompact spaces Tohoku Math. Jour. vol. 4(1952), 88–92. 8 H. MIYAZAKI, The cohomotopy and uniform cohomotopy groups, Tohoku Math. Jour. Vol 5.
- 9 A. H. STONE, Paracompactness and product spaces, Bull. Amer. Math. Soc., Vol. 54 (1948), 977-982.
- 10 J. W. TUKEY, Convergence and uniformity in topology, Princeton, (1940).
- 11 J. H. C. WHITEHEAD, Combinatorial homotopy I, Bull. Amer. Math. Soc. Vol. 55(1949), 213-245.
- 12 J. H. C. WHITEHEAD, A certain exact sequence, Ann. of Math. Vol. 52(1950), 51-108.
- 13 H. WHITNEY, The maps of an *n*-complex into an *n*-sphere, Duke Math, Journ. Vol. 3(1937), 51-55.
- 14 M. WOJODYSLAWSKI, Retractes absolus et hyperespaces des continus, Fund. Math. Vol. 32(1939), 184-192.

MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY.