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Hopf's brilliant results have been generalized to various general cases by
H.Whitney fl3J]>, P.Alexandroff [1], S. Eilenberg [3]. C. H.Dowker [2] and
S.T.Hu [4].

The purpose of this paper is to generalize the Hu's work [4] and to
obtain Hopf s classification theorems which contain the results of Dowker
Γ2] and Hu [4].

1. FUNDAMENTAL BRIDGE THEOREMS.

In this section we shall provide Hu's fundamental bridge theorems in
more general forms which are the main tools of his paper [4]. Therefore
the majority of his results in [4] will be generalized.

Let I b e a normal space and XQ be its closed subset. By a covering
[finite covering] a of X we shall always means a locally finite [finite] open
covering of X. The nerve of a with the weak topology (see [8, Definition
3.1]) is denoted by A. The nerve Λo of the covering a (] X^ may be regarded
as a subcomplex of A. Let denote a canonical mapping (see [8, Definition
3.2]) of (X, Xo) into (A, Ao). Since X is normal and coverings considered are
locally finitet, here always exist canonical mappings [7*., Lemma 2].

Let / be a given mapping of Xo into an arbitrary space Y and a a
covering of X. A mapping ψa: Ao -> Y is called a bridge mapping for /, if
the partial mapping ψaφa\Xu is homotopic to / for each canonical mapping
φa: (X, XQ) -> (A, Ao). If such a bridge mapping exists, a is said to be a
bridge for the mapping /. In particular, if Y is compact and a is a finite
covering and ψΛφa\ Xo is uniformly homotopic [references 7i} §2, p.86]
to /, then ψcc and a are called a finite bridge mapping and a finite bridge for/
respectively.

BRIDGE REFINEMENT THEOREM. For a given mapping/: Xo -> Y, any locally

finite refinement β of a bridge a is a bridge.

PROOF. Let ψΛ: Ao -> Y be a bridge mapping for f; φΛ : (X, Xo) -> (A, Ao}
be an arbitrary canonical mapping. Since β is a refinement of a there
exists a simplicial projection pβa : (B, Bo) -» (A, Ao) [8, § 9J. By the first half
of Corollary 9.3 [8], φΛc^pβcύφβ. Hence

Thus β is a bridge and ψa Pβ<* - Bo -> Y is a brige mapping for /.

1) Numbers in square brackets refer to the references cited at the end of this paper.
2) GC Π Xo means a covering of Xo consisting of all intersections of XQ and elements of α̂
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FINITE BRIDGE REFINEMENT THEOREM. Let Y be a compact space. For a

given mapping : Xo -> Y, any finite refinement β of a finite bridge a is a
finite bridge.

PROOF. Let ψΛ,φa and pβa, be the same as in the preceding theorem. In
the present case A and B are both finite complexes. By the second part of

Corollary 9.3 [8], φΛ~pβΛφβ, hence we have

Thus β is a finite bridge with a bridge mapping ψapβoc.

BRIDGE EXISTENCE THEOREM. If Y is dominated^ by a CW-comple^, every

mapping f: Xo -> Y has a bridge.

FINITE BRIDGE EXISTENCE THEOREM. // Y is compact and is dominated by
a CW-complex, then every mapping f\ Xo -> Y has a finite bridge.

PROOF. Any CW-complex is of the same homotopy type as its singular
complex [12, Theorem 23] and the singular complex of a space has a simp-
licial decomposition [5, (7.1), p. 172]. Hence Y is dominated by a simplex.
Furthermore, if Y is compact then^ Y is dominated by a finite simplicial
complex [12, Appendix A, ρ.lO7J.

Let λ : Y -> P and μ: P -> Y be mappings such that μ\ ~ 1, where P is
a simplicial complex, and in the case where Y is compact, P is finite simp-
licial complex. Let {st pj} be the covering consisting of all open stars of
vertices p5 <Ξ P, and set a'o = {{\f)~ι(stpj)y. Then a'o is a covering of Λo and
if Y is compact, then a'o is a finite covering. Let a = {a0, aj} be a family
of open sets in X such that a0 = X- Xΰf a3(\X= (\f)-\stpό). Let φ«: (X,
Xo) -> (A, AQ) be a canonical mapping and T the simplicial mapping defined
by the vertices correpsondence af->pj. Since φa\X0 is a canonical mapping
qf Xo into the nerve Ao of the covering a Π -X"o, by Lemma 3.4 [8], λ / ~

T 0*|̂ Γo 2nd if A is finite then λ /2^τφα|^Γ0- Hence /*2̂  μλf~ μτφΛ\X0, and if
F is compact and P is finite then f~μXf~ μτφa\Xo because μ\ is uniformly
continuous. Thus a and i/rα = μT are a bridge and a bridge mapping for /
and in the case where Y is compact, these are a finite bridge and a finite
bridge mapping for /. Thus the above two theorems are established.

BRIDGE HOMOTOPY THEOREM. Let X be α normal space and Xo its closed
paracompact^ space. Let a and β be two bridges for a given mapping f of
Xo into a space Y which is dominated by a CW-complex, and let ψΛ Ao -> Yr

ψβ: Bo-> Y be bridge mappings. Then there exists a common refinement

3) See [11, p. 214].
4) See [11, §5, p. 223].
5) A topological space XQ is said to be paracompact if any open covering (not

necessary locally finite) of X has a locally finite refinement.
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7 ofa and β such that ψapy*\ C() and ψβpyβ\Co are homotopίc, where pyΛ

(C, Co) -> (A, AQ), pyβ (C, Co) -> (B, Bo) are arbitrary projections.

Proof. By the hypothesis, there exist a simplicial complex P and map-
pings λ: Y -> P, μ P-» Γ such that μX^l. Let us put g = Xf, ψ'Λ = \ψΛ)

ψ'β = \ψβ. Since -ψΛ, ψβ are bridge mappings for /, we have

Ψaφa\ XQ ~ 9 — ψ'βφβXo.
By the proof of the first half of Theorem 9.4 [8], it is easily seen that

there exists a common refinement 7 of a and β such that

Hence

ψccP-iΛ I Co — μ\ Ψ«PΊ« I Co -

— μΨ'βPyβ I Co = μXψβPyβ I Co ~

This completes the proof.

FINITE BRIDGE HOMOTOPY THEOREM. Let X be a normal space and Xo its

closed subset. Let a and β be two finite bridges for a given mapping f of Xo

into a compact normal space Y which is dominated by a CW~complex, and let
ψa: A 0 ->F, ψβ: BQ-ΪY, be finite bridge mappings. Then there exists a
common finite refinement 7 of ct and β such that ψΛpya\Co and ψβPyβ\Co are
uniformly homotopic, where py* : (C, Co) •> (A, Ao), pyβ: (C, Co) -> (B, Bo) are
arbitrary projections.

PROOF. By the hypothesis, there exist a finite simplicial complex P and
mappings λ: Y -> P, μ' P-> Y such that μ\ ~ 1. Since P and Y are compact

we know that μ\~l. Since ψoc,ψβ are finite bridge mappings for/, and
λ is uniformly continuous, we have

where g = λ/, ^ α = λ-f Λ, ψβ

By the proof of the second half of Theorem 9.4 [8], there exists
common finite refinement 7 of α and β such that

Hence we have
n

ψccPy* I Co ^ ψβ pyβ I Co.

This completes the proof.

2. HOPF'S CLASSIFICATION THEOREMS.

In this section we shall assume that Y is a connected space dominated
by a CW-complex and satisfying πr(Y) = 0 for each i g r S w , where rr(Y)
denotes rth homotpoy group of Y. If n > 1, the latter condition implies
^ ( F ) = 0 and hence the/-simplicity of Y for all i. If n = 1 we assume the
/-simplicity of F for each / ̂  m, where m is an integer to be specified in the
sequel.
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Let a be an arbitrary bridge for / : X-> Y with ψΛ'• A .-> Y as a bridge
mapping. Since τrr{Y) •= 0 for each r < n, we may assume that ψ^A71"1) =
y0, where Aq denotes the ^-skeleton of A and y0 is a fixed point in Y. For
each oriented ^-simplex σf € A, the partial mapping ψ^ | σn determines an
element (ψΛ, σϊ) of homotopy group τrn(Y). Since ψΛ is defined throughout
A, the w-cochain

is clearly a cocyle of -A.
By the same way as in the proof of (9.1) [4, p. 353], we know that all the

possible cocycles kn(ψΛ) represent a unique element κn(f) of Hn(X, 7ΓW(Γ))6),
where we assumed that X is paracompact.

If Y is a compact normal space we restrict ourself to all finite bridges oi
and finite bridge mappings ψa, then it is also seen that all the possible
cocycles knW) represent a unique element κn

F(f) of Hξ(X, πn(Y))Ό- I n t h i s

case we do not assume the paracompactness of X. The elements κn(f)
and κp{f) are both called the characteristic elements of /.

Now we can state the following generalized Hopfs classification the-
orems.

THEOREM I. If X is a paracompact normal space with dim X^m^ and
Hr(X, πr{Y)) = 0 = Hr+1(X, πr(Y)) for each n<r^m, then the elements of
Hn(X, πn(Y)) are in a (1 — l)-correspondence with the homotopy classes of the
mappings f\ X->Y. The correspondence is determined by the operation tcHf).

THEOREM II. If X is a normal space with dimX^ n, and Hr(X, πt(Y)) =
0 = Hr+1(X, τrr{Y)) for each n<r^ m, then the elements of H%X, πn(Y)) are
in a (1 — 1)-correspondence with the uniform homotopy classes of the mapping
f: X-ϊY. The correspondence is determined by the operation /c]?(f), where Y
is compact.

If Y is paracompact and normal, then the characteristic element *5i(τ)€
Hn(Y, πn(Y)) of the identity mapping r ' Y -> Y can ba considered. And if
Y is compact, κψsτ) may be regarded as an element of H%Y, πn(Y))

THEOREM Γ. // X is a paracompact normal space with dim X^n and
πr(Y) = 0 except n, then the homotopy classes of mappings f .X-^Y are in a
(1 — ̂ -correspondence with the group H'ι(X, πn(Y)) The correspondence is
determined by the operation f-*'f*{ιcn(τ))1 where f*:Hn(Y, πn(Y)) is the homo-
morphism induced by the mapping /.

V

6) H\Xf G) denotes the nth Cech cohomology group of X with coefficients in G
based on all open cpverings (not necessary locally finite) of X See [2, §4, p. 213].

V

7) Hn(Xy G) denotes the n th Cech cohomology group of X with coefficients in G
based on all finite open coverings of X.

8) For the definition on dim X see [2, §3, p. 206].
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THEOREM IF. If X is a normal space with dim X<zn, Y is a compact
normal space and πf(Y) = 0 except n, then the uniform homootpy classes of
mappings f: X-> Y are in a (I — 1)-correspondenee with the group Hn(X, πn(Y))
The correspondence is determined by the operation f->f*F{tcn{τ)), where f*F'
Hn(Y, 7tn(Y)) -» Hn{X, 7ΐn{Y))isthe homomorphism induced by the mapping
f

These Theorems I, II, Γ and IΓ can be easily obtained by the same
arguments as in [4] if we use our fundamental bridge and finite brige the-
orems instead of Hu's fundamental bridge theorems and using of Theorem
3.5 [2]. And so we shall omit the complete proof.

REMARK. Theorems Γ and IF contain Theorem 7.5 and 9.3 [2] as special
cases. It is immediately follows by a theorem proved in Appendix that
our theorem F, II, F and IF are generalizations of the Hu's results [4, p.
356]. We shall also notice that the majority of Hu's work [4] can be gene-
ralized in our general cases.

APPENDIX

A metric [separable metric] space Y is said to be a ANR [separable
ANR] if for any metric [separable metric] space Z which contains Y as its
closed subset, Y is a neighborhood retract9> of Z. We shall prove the
following theorem10)

THEOREM. // Y is a ANR or separable ANR then Y is dominated by a
simplicial complex with the weak topology.

PROOF. According to a theorem due to Wojdyslawski [14, p. 186], Y
can be imbedded as a closed set of a convex subset Z of a Banach space
W, and W is separable when Y is separable. Since Y is ANR [or separable
ANR], there exist an open set V of Z containing Y and a retraction θ: V -> Y.
For each point y £ Y} let S (y) denote an open spherical neighborhood of y
in Z such that S(y)a V. Since Z is convex, S(y) is also convex. Y is metric
and hence paracompactn>. Therefore there exists a locally finite open co-
vering {£/*} of Y which is a refinement of {S(y) f| Y}. Let K be the nerve
of the covering {£/«} and let u denote the vertex corresponding to a element
U*. For a finite points y0, .. ,yn € Y let [y0, ..,yn] denote the minimal convex
set containing^, J » in W. Hence [yQ, .. ,yn] consists of points aoyQ+ .. Λ-anyn,
where a0, . . , an are non-negative real numbers such that a0 + + an

-I

For each vertex iia € K, let us choose a point j>* € Y such that UΛ cz: S(y«).

9) See [6, § 5, p. 58].
10) This theorem for compact separable ANR is well-known. See [6, Theorems 12.2,

16.2, pp. 93,99].
11) See [9, Theorem 1] and [10, Theorem 8,14, p. 53].
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For each w-simplex σ = (uat, -. , uΛn) a K we define a mapping vσ: σ ->

O*0, , #»J by taking vσ{x) aoyΛo + . . . . + anyΛn(x £ ί ) , where ob, ffw are

barycentric coordinates of # with respect to the vertices uΛo, . . . . , uΛn. Then

vσ define a continuous mapping

If Ucco, - - , Uccn are vertices of a simplex in K, then t/*0 Π ' Π U an =*= 0,

hence S(^Λo) Π Π SCy«n) * 0. Hence S(y«) U U S(^Λ7J) ID [yaQ, . . . . ^ J .

Therefore i;(ΛΓ) c: F.

We put μ~θv. Let λ: F ->iΓ be a canonical mapping. It is remains

to show that μ λ ^ l .

Foί each point y € Y let t/"^,....., ί/Λn be all elements of {C/Λ} which

contain the point y. Then \(y) € («β0, - ,»«Λ). Hence i/λϋθ € r̂ βιM •••••,ΛJ

On the other hand y <Z U«o [} . . . . f l ί / β Λ c S(^αo) Π Π S(^^ J . Hence a point

PίW which divides the segment joining v\(y) and jv into a ratio 1 —ti(O<^t

<; 1) always belongs to som S(yaj) and hence belongs to V. Hence

ξt^θpt: Y->Y
is a well-defined homotcpy between ξb(y) = fpG^) = 6vk{y) and f0W = ̂ PoCv
= θ(y) = ̂ . Hence μλ 2̂  1. This completes the proof.
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