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oo

1. The series 2 β " * s s a ^ (#i)-summable to zero if the series

(1) F(t) = 2 — s i n vt>
n

where sn = 2 ^ ' converges in some interval 0 < t < t0, and if F(t) tends

to zero as t tends to zero.
CO

The series 2 a-> ^ s s a ^ (/?, l)-summable to zero if the series

/o\ r*(±\ "^.' Λ sin vt
(Z) U{t) = > av —

converges in some interval 0< t< to, and if G(0 tends to zero as t tends
to zero.

Recently, one of the present authors [2] proves the following theorem;

THEOREM A. Suppose that

where 0 < a < 1. T/tetf £/te series^ av is {Rλ)-summable to zero.

THEOREM B. Under the assumptions, of Theorem A, the series

(R,l)-surnmable to zero.

The object of this paper is to generalize the above theorems.

no

THEOREM 1. Let sfz be the (C,β)-sum o / 2 a»- Then, if

(3) si =

and

(4)
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where 0 < a < 1,0 < β, the series 2 #» is (Rλ)-summable to zero.

THEOREM 2. Under the assumptions of Theorem 1, the series^ an is (/?, 1)-

summable to zero.

2. Proof of Theorem 1.
Firstly, we shall show that the series (1) is convergent for all /. If we

put rn = 2 ^^- 7 then

Since, by (4),

we have
(5)
Hence

(6)

Furthermore, by (4), (6),

»

= O(n-*).

Using the AbeΓs lemma, we have
m m

where

Since

Tn(ί) = {cost - coŝ w + ~\t 1/2 sin y ί.

2 — s i n rf sv
V m n

if /Φθ, by (5), (7), the series (1) is convergent. If t = 0, this fact is evident,.
Thus the series (1) is convergent for all t.

Given a positive number £, put M = [(££)"" 1/Λ1 and

Σ^.inrf=(2+Σ) =
v = l V 1 3ί+l/

say. Then we have
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' ^ + 1 M
(9) = Ott-1 M-«) + 0(t-χ M-«) = O{t-ιtS)

S Oίθ),
by (5), (7), (8).

Nextly, we show that U(t) = o(l). Putting [/3j = 7, by repeated use of
Abel's transformation 7 times, we have

M-y

U(t) = 2 slΔl(t) + s3r-γ+lΔ&-γ+l(£) +

(10) . . + A-lΔif-1 «) + s]fA°M(t)
y

say, where
ΔS(ί) =« sin/

and

Since

(11, a) Δf tf) = ( ~ D fc+122fcJ (sin - | ~ ) a f c cos(w + *)f dt,
o

t

(11, b) Δf+1 (#)=(- lf+ι2»+* J (sin I-)2**' sin(« + ^-^jtdt,
0

for A? = 0, 1,2, , w e have

(12) An(t) = O(t«/n)
by the second mean value theorem. From (3), (5), using the Riesz convexity
theorem [1], we have

(13) sZ = O{(nl-")l-vV(nP«ylfi} = Oίw"1-*^
(^=1,2,3, ).

Hence by (11, a), (12),

for Ϊ/ = 1,\2, 3, . . . . 7 . Thus

(14) X

Nextly} we shall prove that W(t) = o(l). By the well-known formula
V

(15) sϊ=2(-:
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w h e r e
M-y

mo = 2

Here, we consider the two case, that is, i) y is even; ii) 7 is odd.
i). By (11, a), we have

= 2 ε{( - D*+1^/ 2 (- «- (f Γj)cos(" + ΐ>( s i n 2-H

2-ί{ / ~
Since

•{(f+
we write W(t) in the form

= 2

say. By second mean value theorem

c o s ( ( | - + »)ί

If 7=0, we pnt U(t)=W(t).
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and then

(18)

Now we have
M-y

= o(Σ« -2,-«-
*l=0 v = M-v-n+l

iίf-V+1

(19) (

Thus, from (14), (18;, (19)

Therefore, given arbitrarily fixed £ > 0, from (9)

\F(t)\ ̂  \U(t) + V(t)l ^S

Since £ is arbitrarily small,
F(ί)->0 as

Thus, if 7 is even, the proof is complete.
ii) Nextly, we consider the 2nd case, i.e., 7 is odd. The proof is

similar to the former case. In this case, if we. replace (11, a) by (11, b), we
get

M-y -1

w(t) = 2 s»

-and similar as (17)

Therefore, we can proceed the proof similarly as in former caise.
Thus, the proof of theorem is complete.
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3. Proof of Theorem 2.
The method of proof is similar to the former section. We first show the
series (2) is convergent for all positive t < t0.

Since, by (4),

1 n=l

the series (2) is convergent for all such t.

Nextly, choose ^ Ξ Γ ( ^ ~ ) ^ J a n < 1 write

say. Then, by (4),
CO

I V(t)\ < / - 1 2 ^- = Oit-1 te)<e.
31+1 V

Putting \β\ = y, by repeated use of Abel's transformation (7 + 1) times,,
we have

Γf= ί"1 Γ f s? Δ^1 (ί) +

say, where Δί (ί) is same in § 2.
In the same method in § 2 we obtain, by (12), (13),

M
* = 1 , 2, 3, . . . . ,7)

and

Now, we shall prove that W(t) == β(f). Using (15),
J f ^ " 1 ^ M ^ 1

 v_n ίβ - 7\ Ί+ι

Dividing the method into two case as in § 2, we shall prove the case im
which 7 is odd;.. Using (17),

W(t) = 2 ^ { ί - l)^+i>/22V+
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J (sin-§.)-cos[(-£ + n)t

therefore, similarly as (18), (19), we obtain

W(t) = off).

If we use the same method as in § 2, we obtain

G(£)->0 as *->0

The case in which y is even is similar.
Thus, the theorem is proved.
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