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1. Introduction. In the study of homotopy groups of sphere there are
very few methods for determining whether a mapping of one sphere on
another is essential or not. One such method is furnished by Brouwer
degree of a mapping of Sr on itself. Another is furnished by the Hopf
invariant of a mapping of S2 r - 1 on S'[3,4]. These methods are used only
for mappings of Sn on Sr with n = r or n ~ 2r — 1. FreudenthaΓs results
f2J are applied for the case r < n < 2r — 1 but almost nothing are known
about τrn(Sr) for n > 2r ~ 1. L. Pontrjagin [6] succeeded in the enumeration of
the homotopy classes of maps of a 3-comρIex K3 on S2 and obtained the
result that Hopf s invariant determines completely homotopic classes of the
maps of S3 on S2 Whitney [8J reformulated another Hopf's theorem [5] and
introduced two deformation theorems. In this paper we shall at first attempt
to generalize both Hopf s invariant and Brouwer degree. Such quantity will
be used for mappings of Sn on Sr with n = (k + l)r — k (k = 0,1,2,3, ).
Secondly for this quantity we shall attempt to generalize Pontrjagin's and
some other theorems.

2. Hopf [3] studied many interesting properties of maps of S3 on S2 and
he stated [4] the generalization of these results for the maps of S2*'1 on Sr

but he omitted these proofs.
We now consider maps / of Sm on Sn (m > n) and denote by Tn any n~

dimensional simplex on Sm, by τn a fined ^-dimensional simplex on Sn. Let
ξ be an interior point of τn. When ξ has only one interior point x in Tn as
inverse image of /, we denote φτ

n{ξ) = ±x. The signs of x will be + or —
according to whether Tn is mapped on τn positively or negatively. If ξ does
not have inverse image of / in T», we define <Pτn(ξ) = 0 . We consider any
integral complex Cn = Σβ<7γ and define by <Pcn(ξ) = Σ ^ Φτ"(ζ) t n e inverse
image for Cn. This integral complex is clearly 0-dimensional. From the
definition the following relations are introduced:

(1) **?+c5(£) - Ψdl(S) + φd&ξ)

(2) Ψ-c^ζ) = -<Pc<ξ)

(3) Φo(ξ)^O
Secondly we consider any r-dimensional simplex (m > r > n -\-1) Tr and
denote by <Pτr(ξ) the intersection of the inverse image of ξ and T9'. From
the definition the following relations are introduced:
(!') Φ<h+ύ if) = Wl (f) + <Pdί (ξ)
<2') φ-<? (ξ) = -φcr(ξ)
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(30 fάξ) = 0
(40 Ψcr{ξ)

From the property Sm = 0 and (30, (40, we know ψgm{ξ) = 0. On the
other hand S™ Is a manifold and Ψs™{ξ) consists of finite numbers of
closed manifolds Mf", Mφ~n, ....M fc-

niΛ which are disjoint each other. If
we apply the FreudenthaΓs Lemma [2] for our mappings, we may assume
k = 1 without any loss of generality. We consider r -f 1 points ξ0, ξι, ξr

on Sn and denote by Mf"n the inverse image of ξ(. Let Km, Kn be simplicial
subdivision of Sm, Sn respectively. We introduce the standard map which
has at first been introduced by Whitney and which the author has defined
for more general casefl]. The following Lemma is the immediate result
from the definition. Its proof is similar to the one of the preceding paper [1].

LEMMA 2.1 Let f be a map of Sm into Sn, then there exists a standard map
which is homotopic to f.

As Mγ-^Oin Sm, there exists a complex K^"n+l bounded by Mf~n. We
shall take useful one as K™~n+ι and following Lemma is used in studing
the special one of Kim~n+ι.

LEMMA 2.2. Let Zp

} Zq be any manifold of Euclidean space Rm which are
fremed each other. The regular connected complexes which are bounded by Zp,
Zq respectively can be deformed so as to hold at most p -f q — m 4- 2 dimensionάl-
simplexes in common.

PROOF. We can assume p > q without any loss of generality. Let Kp+1,
jζQ+ι foe regularly connected complexes bounded by Zp, Zq respectively and
holding in common (q 4- l)-dimensional simplex (a0, βi, tfQ+i). If Q + 1 S
p + q — m + 2, then this Lemma is evident. Thus we assume q + 1 > p + q

— m + 2 and consider (q + 2) — simplex (a0, au , aQ+?) and its interior point
b. We replace the simplex (a0, au , aQ+1) of Kq+1 by

[(baι aq+x) — (baoaΔ aq+λ) + + (~l)q+1(b aQax aq)l
If this process is done for every common (q -f 1) — simplex of Kp+1 and

K*+1, then they have common simplexes which are at most ^-dimensional.
If q = p + q — m -f 2, this Lemma was completely proved. Thus we assume
q >P + q — m~ 2. Let (aQaι aQ) be any common simplex of Kp+1 and (aoai

aqaq+ι), (aoa: aqάq+ι) be a pair of (q + 1) — simplexes of Kq+1 which
have the common ^-simplex (ao0i aq). We consider their interior points
b, b respectively. At first we replace (a^a^ aqaq+ι), (aoai o q a Q + 1 ) b y

Cl+\ = [(baΛ. . a q σ q + ϊ ) - (ba0a2 . - . a q a q + 1 ) + . . . . + {-

a l ^ l ) ,

= [ψax. -.. aqaq+1) - (Va^ ... aqa'q+1) + . . . . + ( - l)q(baϋat....
aq-^a'q+i)]

respectively. As q >p + q-{- 2 — m, we can construct regularly connected
complex Cq+1 bounded by

[{b aτ — aq) — (b a{)a* aq) + + ( — l)q(b aoai cq^)}
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a n d [ { b r a v . . . .</*) - ( b ' a ύ a 2 > . -.a(]) + . . . . + (
"which have common simplexes at most of (q — l)-dimensions with Kp+K We
replace (a^ax. ..aqaq+ι) + (aoaτ.. . .ata'1+l) by Q + 1 + Cq+1 -f Q + 1 If such a pro-
cess is done for every common </-simplexes of Kp+1 and Kq+1, then they have
common simplexes at most of (q — l)-dimensions. If we take care of only
fact that every simplex at most of (q — l)-dimensions is a common one face
of some (q -f l)-simplexes (its number need not to be two for the common
(q — l)-simplex|), we can perform similar process. By a repetition of similar
processes, we can lower the dimension of common simplexes of Kp+1 and
K1+1 untill at most p -{- q ~\- 2 — m, where the dimension of the last common
simplex is calculated from the dimensions of Sm

} Kp+1 and KQ+1.

LEMMA 2.3. Let Zv be any manifold of Euclidean space Rn. If we construct
a complex projecting Z® from a fix point, the resulted (p + l)-dimensional
complex may be deformed so as to have singular simplexes [1] at most of (2p
+ 2 — m)-dim2nsion.

PROOF. By the similar deformations of Lemma 2.2, we can prove
immediately.

THEOREM 2.1. K™~n+1 may be chosen as a manifold which has so?ne
singular simplexes at most of {m — 2n-\- 2)-dimension.

PROOF. Let us consider that a fixed point of Sm is a point at infinity,
then Sm may be regarded as the sum of the point at infinity and a m-dim-
ensional Euclidean space Rm. Of course, we don't take the point at infinity
on Mf-n. We project Mf~n from a suitable point O and denote by [O, MΓ~n\
the resulted sets. [O, M™~n] are special complexes bounded by Mf~a and are
one of KJ*-"*1. By Lemma 2.3, the dimension of singular simplex of [O,
M™~n] is at most

2(m — n -f 1) — m =. nι — 2n + 2.

r

LEMMA 2.4. f\ [O,MT~n] is a sum of finite manifolds which are at most

of (m — rn -\- r)-dimension having some singular simplexes at most of [m —
(r -f l)n + r + W-dimension.

PROOF. By ξt Φξj(i, j =* 0,1,2, .. .., r} i Φ j), we know that

MΓn Π MΓn = 0 (iJ = 0,1, 2, . .. r, ί * j)

If we consider [O,Mf~wJ and [O, M?-n] except for singular simplexes, [O,

Mψ~n] f~\ [O, Mf~n] are of at most of dimensions
2(m — n + 1) — m = m — 2n + 2.

By Theorem 2.1, the singular simplexes of [O,M;ι~n] are at most of (m —
2n + 2)-dimensions. Therefore the dimensions of singular simplexes of [O,
M ] Π [O, Λff"ΛJ are at most of dimensions
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On account of singularity of [O,Mf-n], [O,Mf~n] f] [O,M?-n] are a sum of
some manifolds having singular simplexes.

By Lemma 2.2 and Theorem 2.1, the intersection of [O, Mf- ) ι] f] [O,

Λf?"*] and [O, Mf"n] is studied. As the general case f~\ [O, Mf'71] are a
ί = l

sum of some manifolds whose dimension are at most

r(m — n -f 1) — (r — l)m = wa — rn -f r,

where the dimensions of those singular simplexes are at most
(m — 2n + 2)-\-(r — Y)(m - w + l ) - ( r - 1);?2 = m — (r -f- 1)» + r + 1.

L E M M A 2 . 5 M Γ ' 1 Π { j ^ \ fθ, Mf1-"]} Π {/^\ [O, Mf-?2]} βrβ a sum of

finite manifolds which are at most of (m — rn -\- r — 1) — dimensions having
some singular simplexes at most of (tn — (r + l)/i -f r)-dimensinn.

fc-l .

PROOF. If we replace r by r — 1 in Lemma 2. 4, j f^\ [O, Mf -w] ^v Π
4 = 1 ^

[O, Mf~n] \ are at most of [m — (r — l)n + (r — l)]-dimensions having

some singular simplexes at most of [m — rn -f r]-dimensions. Therefore the

dimension of M™~n Π ! Γ\\O, M?~n]\ Π { (~\ [O,M]ι-n] is at most [m -
^ 4 = 1 * { 7 ^ * + l ^

(r — V)n + (r — 1)] + (m — n) — m = »2 - rn + r - 1.
The dimensions of the singular simplexes of those complexes are at most

[m — rn + r] f (m — n) — m = n — (r 4- l)/z + r.

LEMMA 2.6. 7/^2 = (r + l)n — r, jf/̂  intersection number φ(M^ι~n, j \ [O,

M'l1"1']) can be defined uniquely.

PROOF. For j \ [O, M'll~n] of Lemma 2.4, we give an orientation as follows :
ί = l

We know an orientation for the faces of simplexes of [O, Mψ~n] and by
r

this orientation we introduce an orientation on f \ [O, Mj"~w]. This orientation

r

does notβdepend upon the singular simplexes of f~\ [O, Mf~n]. Similarly we

introduce an orientation for Mlι'n [\ I f^\ [O, Mf~n] [by the faces of
l 4=0,1,2,.. ,fc,..r '

simplexes of Mf ~n. This orientation does not depend upon the singular
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simplexes of Mf~n Π { f\ \O,Mf-n\. Then, by lemma 2.4,
^ ί =0,1,2. ..,fc,...r

dim I f^\ [O, M f - W ] | = m - rw + r = «.

r

The intersection of ΛfJ1"" and f\ [O, M^~n] are at most of dimensions n -h
i = l

(m — n) — m ~ 0.
r

From the orientations of /?"», M™~n and / ^ [O, Mf ~n] we know the inter-
im

section number φ (M™-n, f^\ [O, M f "w]).

i = l

M™~n, f^\ [O, Mf-n] ) does not depend on a choice of a

fixed point O.

PROOF. We consider ^-dimensional Euclidean space Rm as in the proof

of Theorem 2.1 and fixed point O' which is in Rm — {J Mf'n - O.
i

By the projection from O', we get a similar complex [O\,Mf~n]. If the
bounded set containing O and O' are covered by sufficiently fine open set,
we can choose a finite covering, which refine the given covering. If we
consider point-pairs in the same element of covering at first and remove
from one element to the adjacent secondly, we can remove from O to O'
by finite processes. Therefore we can assume without any loss of generality
that O' exist in sufficiently small neighborhood of O. We shall prove

Φ f r - , p\ [o, Mrnΐ) = Φ (M™-\ f\ [o\ Mrni).

As O and O' lie in sufficiently near, for fc = 0,1, Mf^

and Mln~n Γ\(f*\[O', Mfn]\ are situated sufficiently near in Rm and are

fremed each other. We consider a complex X which is bounded by Mζ"Λ

r r .

(Γ\lO9 Mf-"]) -M?-n[\ ί/°\ [O, Mf1'-11]) and is fremed from M^~n Π

^ [ O , Λff-n]) and Λf?1"11!! ( /^Γ 0 ' * MΓ""]). Similarly we consider a
i=2 ' \ i=2 '

complex Y which is bounded by Mf~w Π ( / ^ [O,Mf~w]) - Mf~n (\{f\

Γi
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[O',Mf-nΛ and is fremed from M™-n (] (f\[O,Mfi-nl)an.d ΛfJ1"" Π (f

[O.M?-''])-

?,Aff-»] n (Γ\ [o.Λί?—])} = Mr-n n ( Π ro.MT-"]),

Then
r r \

^ i=2 ' ^ i=2 '

r v r

r*~" n (/°\[o,Λfr-"j), [O.MT"1] n (Γ\[O,M?-})-Y-

[O',Mr-!j n (Γ\ιo',Mrn])] =o.x ϊ=2

On the other hand,

fm-n n
t o I I

Therefore,

φ{M™-n n (Qro,Mf-»]), [o,MrnJn ( Q [ ^ M r w ] ) }

Similarly,

Φ [ [o, Mf-M n (p\[o, Mf-wj), Mi n

ί / r \ ί r

= Φ [ [O', Mjr-"] n ( Π ισ, MΓΊ ) Mx n ( Q to',.
Then

- n (Πrσ;Mrnj)jo,Mr-w] n(Λto, MΓWJ)}Π ) (
f» n ( Λ [ O , M Γ W ] ) , [O',MΓ-W] n
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^ 4 = 2 '

^ i = 2 '

ί ''

DEFINITION 2.1. When m = n, we define φ [M% θ] (θ means the empty set)
as follows

Let fl+, or f- be the numbers of simplexes of K"1 which are mapped on

TQ positively or negatively respectively. Thenj

By Lemma 2.7 we know that φ\M^-n, f~\lθ, Mf~n]\ does not depend

on a choice of a fixed point O. By these reason and definition 2.1 we define
as follows :

DEFINITION 2.2. In cases m = (r + l)/2 — r or mw:

LEMMA 2. 8. W, (f, fυ, f i, • ,ξr) does not depend on a choice of ζo,ζu ,
ξr. in the following cases :

(i) m = n, or
(ii) m = (r 4- l)w — ?' «wJ ^ is îj^w.

PROOF. In case (i) Wr{f,ξv) means the Brouwer degree, and Lemma 2.8
is well known.

We shall prove this Lemma in case (ii).

,Moi n (

= (-1)*( - i)^«-D£φ {Λfi n (Γ\ [o, Afd), [O, Mo] n ( Q f0' M

- ( - m - i)»c»-i>φ | M Γ - » [O,M0] n ( Q [ O > A r i J ) }
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As n is even,

i . f o , ••••,&•)• α >
i r

φ[M™-", f\[O,Mγ-nY\ means a degree of/ ^ [ 0 , Λff-"], then
V ( .] / (.1

Wr(f,ξ<>, • • ••,ξr) does not depend on a choice of ξ0. Then

W4f,ξo, . -,ξuξr)= Wr(f, f ί,f,, £v) (2)
By using of (1) and (2), we can introduce the following calculations:

Wr(f, ξθ,ξί ξ t, • • • •, ξr) => £Wr(f, ξ 0, ξi, ξ a • • • • , ξu • • • • , ξr)

= WAf,ξτ,ξe,ξ* •-•-,&,••••,ξr)

that is,
W , { f , ξ α , ξ u - - - - , ξ i , - - , ξ r ) = W , { f , h , h , - - - , ?;,••••, ξr)

Furthermore,
Wr(f, ? « , ? „ • . . . , ? : , • . • • , ξr) = W,(f, ξ,,ξ:, ...,ξt , ξr)

From this relation, we can introduce the following relation by using of (3):
WJf, ξ o, ξ:, • • • •, ξi ,ξr) = W,{f, ξ,, ξu... •, ξ0, • • • •, ξr). ( 4 )

When we use (1), (2) and (4), successively,
Wr(f, ξo, £ „ • • • - , ξr) =» Wr(f, ξφ ξ[, • • , ξ'r).

By Lemma 2.8 we know that Wr{f,ξo,ξh •• -',ξr) does not depend on a
choise of ξOi ξΊ, •. -., ξr. Then we define as follows. .

DEFINITION 2.3. Wr(f) = Wr(f, ξo, ξi, • • , ξr).

THEOREM 2.2. Let m= n or m= (r + l)n — r and n be even. If f, g
are maps of Sm into Sn and f is homotopic to g, then WΛf) equals to
Wr(g).

PROOF. When K"ι,Kι are simplicial subdivision of Snι, Sn respectively,
we may assume that / and g are simplicial maps without any loss of
generality. As / i s homotopic to g, there exist a shar of maps Λ(l <Ξ r <;

2), of Km into Kn, where/i = / and f2 = g. Then we can consider /,. to be
a map of S'ilxl into Sn and use it as F(x,r). We define Smx(l) = Sΐ',Smx
(2) = ST.

fr(x) also may be assumed as simplicial map. Let ξι a interior point
of fixed ^-simplex τy of Kn and Φs™χi(ξ\), Φsψiξi), ψsf (ξi) inverse images of
ξ: for fr,f, a respectively.

As we have (Sm x ί) = Sf - 5f, by (1)', (2)' in § 2,

^»xi(f i) = ^ ? ί f i) - ^ Γ if i). (1)
We denote Ψs^(ξι),φslι(ξι) by Mi}M[ respectively. When we fix r, we denote
the inverse image of ξλ for fr by Ψs^xoΆξi), then
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= \J
Let O, O be fixed points of Swx(l),Swιx(2) respectively. We connect O

with O by an arc in Sm x / which intersect with Sm x O) at only one point.
These intersections will be denoted by Or.

In Smx(r) we project Φsnxwίξi) from Or and denote the resulted complex
by [Or, Φsnxwiξi)J. Then,

[Or,

We denote this relation by C2-[O,Mι] — [Of,M{] — A2 and a second
interior point of TJ by £., then

^ ( f s ) = 9\o,Λr,](f2) ~ ^ [ c . ^ i ί f a ) - ^ ( f 2 ) .
As/r has an uniquely determined image, Ψλ^ξ^ = 0 (for £i=f=f2).

We denote Ψvo^ίAζ^Φio'^iξ^ by Λfj, Mi'respectively. Then

10, Mi] Π ΓO,M2] and [O\M[] Π [O',MJ are complexes bounded by
9>ιo,Mi\(£ύ, <Po,Mfo) on[O,MΔ, [O,M[] respectively. Then Rd {<Pc%(ξ<ύ -

10, MΛ Π [O, MA + [O, M[] Π [O\ Mp> = 0, therefore ^ ( f , ) - [O, Λ/,] Π [O, MJ
+ [O', Mi] n [Of, M;] = Z, is a cycle.

ĉ«(fa) = ^ W f a ) - ^[o.ir'iίfa) is analogous to (1), then we consider a
third interior point ξ3 of TQ and similar relation as above and so on.
Therefore we obtain the following relation:

φCr(ξr) = φ r-i [oMύ (f r) _ φ r-x [ θ i^ (f p )

where CV is defined to be similar to Ca.

[O, ΛfiJ and (~\ [Of, AfJ] are complexes bounded by ^ fĵ o.ir̂  (fr),

',M;] respectively.

Then Rd φCr(ξr) - /°\ [O, M}] + / ^ [O', M;]} = 0, and φCr (f r) - /°\ [O, Mέj

r

+ /°\ [O', Λ/ j » Z; is a cycle.

When we denote the projection of Zn

r on Sf by ZJ, Z?—Z^ in Snxl. Then

~f(Zΐ) in S1*, therefore

F(Z?) = /(!«) in Sn.
On the other hand,

ZJ!~O in S?*
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;0 = 0 in S'\
Therefore

P(Z?) = 0,

F{φ,.r(ξr)) -f(Γ\ [o,Mt]) + g{Γ\ισ,M J ) = o,

FCPer(ξr)) = 0,

f(Γ\lO, Md) = <j(Γ\f°'' M'i

Wr(f) =
3. In this chapter we shall investigate that Wrif) is used for determining

whether a mapping of one sphere on another is essential or not. In case
m~n, W,(f) means Brouwer degree and it is well known that Wr(f) is only
used for determining whether the mapping is essential or not. In case m =
(r -f \)n — r and n is even, if r = 1, Wr(f) is the Hopf invariant and we
showed in my preceding paper that the Hopf invariant is used for such
purpose. In this chapter we consider the case W,(f) is determined, that is
(i) m~n> or (ii) m = (r + l)n — r and n is even. In the case (ii), by Lemma

r

2.4, l \ [O, M?~n] is a sum of finite manifolds which are at most of n

dimension having some singular simplexes at most of one-dimension. By a
r

s i m i l a r m e t h o d a s i n F r e n d e n t h a Γ s L e m m a [ 2 ] , w e c a n c o n s i d e r t h a t ( y ^ [ O ,
1 = 1

_Mf~n] is a manifold Mn which is at most of ^-dimensions having some
singular simplexes at most of one-dimention. Let TQ be a fixed ^-simplex
and ξ0 an interior point of τj,fo be the antipodal point of Sn. We assume
that σ = (aociι.. -an), σ! = (a'o ax.. . .an) are oriented w-simplexes of Mn with
the common (n — l)-face T = (βi «w). Then we obtain the following Lemma
in my preceding paper.

LEMMA 3.1. Let f be a standard map of Mn into Sίl and f(σ) = + Sn, f(σ')
= ξ0, then there is a standard map g which is homotopic to f and g(σ) = ξ0,

g(σ) = +Sn leaving the degree of Mil — (σ + σ) fixed.

LEMMA 3.2. Let f be a standard map of Mn into Sn and f(σ) = +Sn f(σr)
= ~SW, then there is a standard map g which is homotopic to f and g(σ) =

. fo, g(<r') = ξo leaving the degree of Mn — {σ -f σ) fixed.

A map / of Sm on Sn may be considered a simplicial map of R"b on

Kn. Let Po be an interior point of a fixed simplex TQ of Kn. We may

.assume that inverse image Ψs^{PS) of Po for / is a manifold Mm~n. The m-
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dimensional simplexes T™ of Km which are mapped on τ<5 necessarily

intersect Mm~n and Mm'n f] T% are (m — w> simplexes. ξt(i = 0,1,2, , r)

in § 2 may be considered in TJ without any Joss of generality. M-dimen-

sional simplexes T£ of .#> which are mapped on τj necessarily intersect

(Q| [O,MJ)and Mjf) ( f \[0, Mi]) Π Ta are (r - l)-simplexes. We

denote it by (e**, a**, , a%iτ). Let (eζ*, ef*, , <* :) be an (n — l)-face of

T'%~n such that any two of its vertices are not mapped by / on the same

vertex of TJ?, then {a**, a"*, , α£* j , e^, .. . ., βj* J is a (2n — l)-simρlex

which we denote by T^""1. T%ι~ι is a face of T™. Such a(2« — l)-dimensional

simplex T-£ςΛ is considered for all (n — 1)-dimensional-simplex TJ^"1 of

M, Π (/°\[O»Mi] J Π T'l1. We consider all (2n - l)-simplexes T^" 1 which

involve some ^-simplex of Mi 0 ( /\[^» Mίjj. Then Σ Σ (βζk,*-fk, • »̂ **i)

is (w — l)-manifold with singularity. We denote is by M11'1 and consider a
following complex:

, βj*j

Σ Σ [(#o *#?k β*-i> eok) + ( ~" l)w(βf *• > #nii> ̂ o*> β<fft) + •

is w-dimensional manifold with some singular simplexes bounded by Mi ft

, Mi Hand M ^ 1 . We denote it by K$.
•ί=2 ^

We replace (βf*, βf*, . . . . , efcj by (β;*, βj* 17 . . . . , e**v e**, . . . . , β;* i), then
V - 9.

. . . . + ( - l ) " ^ - 1 ^ * l f β-*, βj*„ -. -., e%lv e««, e*K . . . . , e-*x)]

is w-dimensional manifold with some singular simplexes bounded by Mi f]

( f~\[O, Mt]j and Mn~ι. We denote it by K*. Since M1*;1 is homologous

zero in S7Λ, there exists an ^-complex Kn bounded by Mn~1. K%= K™ +

Kίl is an 72-compIex bounded by Mi Π ( (~\[O,Mi]\ As p0 is an interior
^ 4 = 2 '

point of τό?, ίo a nd vertices of each (w — l)-face of TQ form w-simplexes τ^c,
τ r ι

1 ? ,τjn. If we replace rj? by τ|*0, , τ^n in X"n, then the complex thus

obtained is a finer simplicial subdivision than Kn. We may denote the
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resulted complex by the same notation K* for brevity, without any confusion.
Similarly we can consider a fine simplicial triangulation of K'n by inverse

image of Kn by f and a suitable additional subdivision. We shall also

denote it by Km. [O,MΛ f] (Γ\lO, Mil) which is bounded by Mτ f] (Γ\

[O, Mi] j may be considered as one of Kn

p. When Mi is mapped on ξ by /

we denote the complex which is mapped on τ$ by R(ξι). Evidently R(ξι) =
R{ζs) (ί =K7> ί 7 = 0,1, 2,. . . . , r). We denote this common complex by i? and
its «-skeleton by R".

THEOREM 3.1. // Wr(/) = 0, ίfcew /|ΛΛ & homotopic to zero.

PROOF. The map / can be considered as a standard map without any
loss of generality by Lemma 2.1, when we use Lemma 3.1 and Lemma 3.2.

As WΛf) = 0, φ\M*-n, f~\[O,Mi]) = 0 and there is a set of w-simple-

xes σi, σ2, . . . , crs σ'vσ[, , σ'8, on f \ [O, MJ, where σt and σ' are mapped

on S?i positively and negatively, respectively. f\ [0, Mi] may be considered
i = l

as one of K%. For σι and σ (/ = 1,2, - . . . , s), there are regularly connected
chain en + σh + <rί2 4- + σί;fc -f <r̂  on iiΓj. It may be supposed that dj{σu) =

+ 1, ί//<τ?1) = = £/X<rίA.) = 0, d/(<r;) = —1. Using Lemma 3.1, we deform/ in

σt 4- σ ̂ , next in σιx + o-ί2, etc.; then using Lemma 3.2, we deform the map

in σik + σ'. The new map / ' has as its degree df{σt) = df (atl) = = . . . .

= df(σ'-) = 0. We continue in this manner untill no simplexes are mapped

positively and none are mapped negatively over Sn. Then f\R% is homotopic

to zero, fixing the image of Mi on ξι.

By Definition, K^ = jfiΓj + Έn and i?J have no common w-simplex for any

p. When / i s simplicial mapping, we consider the state where K% are mapped

on TJJ). Kζ consist of the following complex:

«*, a"*, . . . . , aζtl9 e^) + ( - l ) w «^, <*, . . . . , β * l f β$*, ^ α ) + -. -

+ ( - i y ( - i ) ^ * l f «•», ^*1?....,<%*_,, e**, ef*,...., ^ ) .
I f «-i»^ί*,«5ii. ,<*p< A

7 βf*, , φ i ) is mapped on τJJ0, other simplexes

are mapped on faces of T^ and their dimensions depend on numbers of βι.

«*i> <*><ίi, •••••, <*i, <*, βf*, , <Λi) is mapped on τ£0 in the same manner

for each p except for orientation.
We may neglect this orientation when we take care of this similar

property for all tf*. If «* Γ , e«p*, e%%λi ...., e«nlx, <*, ef *;...., <Λi) is not mapped
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on τ&, we may neglect Γ£. In other words, we may consider that «*,#?*,

• , «ί*i) contract tos a point and T% is empty. As IP* is not mapped

on T̂ o, we may consider only Kp for the degree based on TQQ On the
other hand, deformations of Lemma 3.1 and Lemma 3.2 can bel intro-
duced leaving the degree of Kn fixed. If we deform / to the standard map
/' by Lemma 2.1, /' maps 2 K% on ~ξ0 and / maps Rn — 2 Kί on fi by the

above remark. Hence f\ Rn ~ 0.
When Mi is mapped on ξt by fL and Λ we denote the complex which is

mapped on TJ by Rλ and RΛ respectively. We denote their ^-dimentional
skeleton by /?? (i = 1,2).

THEOREM 3.2. Let fi and fz be continuous mappings and WAA) be equal to
then ΛI Λ» + #?~/21 Rζ + 7?̂ .

PROOF. We consider Cartesian (?w + l)-space ®w+1 and its subsets:

We and define φx as follows:
ψΛ maps iE1 ?̂ onto Sw,
Φi is a homeomorphism on E™ — SJ1"1,
^(S^-1) = P, where P is a fixed point on S V tf(9*i) = 1.

We also define <p2 as follows:
<P% maps E'i1 onto Sm,
Ψz is a homeomorphism on E™ — SQ""1,

= - 1 .
We may assume/3(P) =/2(P) = Q without any loss of generality. We

construct a map F of S™ into S^ as follows :

2 φz on hz.
From Wr(fι) = W,(f2) we know WΛ.F) = 0. If we denote by [F], [/J, [Λ3

the homotopy classes of FJΎ and /^respectively, [F] =• [/i] — [/J.
By Theorem 3.1, F | i?? + P? ^ 0, then fτ\ /?f + IK ̂ /a |'Λ? + i??.
Pontrjagin thaorem(6) may be obtained from Theorem 3.2 as its special

case when we put r = 1, and n = 2. For the proof, see my paper.

THEOREM 3.3. (Pontrjagin's theorem). If fx and f» are maps ofS3 on S*
and Wi(fi) is equal to W\{fz\ then f\ is homotopic to /2.
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4. Freudenthal introduced the idea of suspension in the well known
paper [2]. We shall investigate in this section some relations of the sus-
pension and Wr(f).

Let f be a map of Sm into Sn. We denote the equators of S*n+1 and Sn+ι

by Sm and Sn respectively and extend / to a map Ef of Sm+1 into Sn+1

as follows:
A point of Stn+1 is represented by (P,β), where P is a point of Sm and

- 1 <; / 3 ^ 1. Similarly, a point of S>1+1 is represented by {P, β\ where P'
is a point of Sw and — 1 <Ξ β g 1. We define

Ef(P,β)~(f(P),β).
If m + 1 = (r -4- IXΛ + 1) — r, and w -f 1 is even, it is trivial that Wr(Ef) = 0.
Secondly we investigate its inverse. We denote a subset of TZWICS***1)
whose elements have 0 as Wr(f) invariant by [πm+i(SH+1)]o-

THEOREM 4.1. E(τrm(Sn)) = [ α W S 1 " 1 ) ! ) .

PROOF. We consider a map / of Sm+1 into S*+1 where TFr(/) = 0. If
we can prove that the inverse image of a point P ' of Sn+ι consists of
only one point P, we can prove this theorem as follows: Let F ^ + 1 be
a closed neighborhood of P on Sm+1 and Vf+1 be the closure of the
complement of Vf+1. Then f(V^+1) or /(Ff + 1 ) does not completely cover
HS***1 and we can deform / t o a form of Eg. In order to prove that the
inverse image of P' consists of only one point it is sufficient to prove two

following properties: 1° f^\ [O,MJ is mapped on P' by Λ which is homo-
i = l

r

topic to/ . 2° f^\[O,Mi] is contractible to one point on itself. We shall
i = l

r

.prove them. By Wr{f) = 0, we have φ(M0, [\ [O,Mt]) = 0. As we know in
t = l

r

the proof of Theorem 3.1, the image of f\ [O. MJ can be contractible to a
i = l

r r

point fixing the image of Mi fl ( /°\ [O, M»]). Then the image of f^\ [O, MΛ
^ 1=2, ' ' i = l

by f[ can be considered to be P\ At first we consider any point R in

distance p ^ 8 of [\[O,Mi], where £ is sufficiently small and denote by Q
the fixed point of the segment PO for which RQ/QO = (£ — p)/p. Let <P(R,τ)
move linearly along the segment RQ as r move from 0 tol . For the point
R in distance p > <?, we set <P(R,T) = i?. We denote the inverse of <P{R,T)

by ψ(R,τ), and define / 1 + τ = /ifψ(/?, τ))} then Λ maps O and only O on P ; .
proof of (2) is complete.

We define some special sets which are used for the proof of Theorem 4.2.
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Let @>+2 be the Cartesian (m + 2) — space. We define its subsets as-
follows:

» + i = \χ<

, = A)}, ( - 1 ̂  /30

: 2 ^ Si »

. xt)l+t - βoy,

ψβl = {Λ: € S w +

Similarly we define for ^w+2.

THEOREM 4.2. If m ~ (r -\-l)n — r and n is even, E is an isomorphism
of[πJSn)},.

PROOF. Let g be a. map of Sm into Sn and be / = Eg- 0. Then / can be
extended to a map of Vm+2(Sm+ι = /?3yw + 2) into Sn+1. Let τ^+1 be a fixed4

simplex of S'i+1 and ξt(i = 1,2,3, ,r) be the fixed interior points of τ2+1

and let ξt exist onSJ ( — 1 < /? < 1). We denote the inverse image of ξt in

Sm+1 by Mf~w and the inverse image of ξι in F w + a by Ff-W+1.

Then, we have

and Γ f

On the other hand Mf~n belongs to S™ essentially and there exists a com-

plex KJ*'**1 bounded by M?~n in S$Q. When we denote the fixed point ofc

S ô by O, we can consider [O,Mf "n]as Λ^-n+1. We define
y r

z» = y -»+» n Π [O, M,] - f~\[O, M].

There exist a complex Kn+ι which is bounded by Zn in F w + 2 .

f(Kn+1) covers e^-times over yjt j and c"-times over V^β].

-Wr{f)~C -C".
c' and c" have the following properties:

(i) cr and d' are the same value when we use Y?+1 (i = 2,3, . . . r).
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In the relation of Zw we replace γ™-n+ι by Y?-**1, then it is similar

to the proof of Lemma 2.8 that d and c" are invariant.
(ii) d and c" are not depend on a choice of /fn+1.
In f(Kn+1) the difference of Kn+1 give us the difference only of the image

of bounding cycle.
(iίi) d and df do not depend on a choice of O. The proof is similar

as in Lemma 2.7.
(iv) d and d' do not depend on a choice of ξ«. We shall prove it.

Let f < and ξ t be the fixed interior points of τ3+1, where ξi, ξi exist on
SjJo and S£2 respectively. We introduce the following complexes:

Mm'n, Yψ~n+1, [O,Λf,J, Z", /P +i i

Mm-n, yΓ"Λ+1» [O,Λ/i], Z» ^»+1.

We consider a segment jr< in Fj+Ja whose end points are ξi and ξι and

denote the inverse image of xv m Sm+1 by Zj5"n+1, the inverse image of #i

inVw + aby Yψfn+'2. Besides we denote V^t by Sm x / w h e r e / is an interval

βi<;/<;/£,. We connect O with O by an arc in S**x/ which intersect with
Smx(t) on only one point. These points of intersection will be denoted by
Ot. We also denote Xι f\ Snx (t) by f ιt, in Sw x (ί) by Mit and the inverse
image of ξit in £f+ 1 by C%~n+1. Then we have

Kb ί y«--2 n { Π ( Π fOo ΛAJ )] 1

25—n ! f t U

and r (

1 βiSSβt v ;=2 / J

We define

Then

*_ _ / Λx \ *
- Y i U



236 K.AOKI

= 2

This complex is bounded by a cycle Mw + 1 included in Vm+1. Therefore
£n+i = /jgjlfn^ β y t h e fact o f Jtfn + l ^ ^m+i^ w e k n o w f(Mn+ι) C Fg+^ and

f(Mn+ι) cover the north pole and south pole with the degree 0. As w i&
even, c' 4- c" = 0, therefore — Wr(f) = c' — c'7 = 2c' > 0.

To prove Theorem 4. 2, using WVf/^c'^O and Eg-0, it is sufficient to prove
r

g = 0 . N o w , b y W r ( / ) = 0 w e c a n d e f o r m / i n Sj? s o a s t o m a p f \ [ O , Mi] t α
ί = l

one point and also f(RσKn+1) to one point. By d = 0, the image of Kn+ι is
contractible to one point fixing RdKn+1 and also Kn+1 can be contractible
to one point. Then, if f{Vm+2) a Sn+1, one point (for example north pole)
has one point (for example north pole) and only one point as inverse image,
therefore g is not essential.

5. Product theorem.

THEOREM 5.1. Let g be a map of one m-sphere Sf into another n-sphere

Sm of degree c. Iff is a map of Sm into Sn, then WAfg) = crWr(f).

PROOF. AS C and Wr(f) are constant for the homotopy class of maps-
respectively, we can assume that / and g are simplicial mappings. Let
ξι be a fixed point of Sn and ψ (ξι) and ψ(ξi) the inverse image of ξi for
/ and fg respectively. We also assume that ^-simplex Tm of Sm intersects-
with φ(ξι) and the number of wί-simplexes of Sf mapped on Tm positively
or negatively by g is p or q respectively. Then p — q = c and the number
of (m — n)-simplex of ψ(ζ{) are mapped on (m — w)-simplex of ψ{ξt) which
are included in Tm positively or negatively is p or q. Conversely the image
of each (m — w)-simρlex of ψ(ξi) are (m — w)-simplex of φ(ξi). Therefore
we have θ(Ψ(ξd) = c<φ{ξι\

We define L™~n+ι, Kf^1 as follows:

Then,

Rd(g(Lr-n+1)) = g(R3(Lf-^) = g{$(ξ)) = cφ(ξ) = c Rd K™™'1,

and, flf(Zf-n+1)-c ΛΓf-n+1 is a cycle of Sm. On the other hand, g(L?~n+1) ~

c-Kf-n+1 ~ 0 in Sm and fg (Lf-n+ι) - cf (K™~n+l) - 0 in Sn.

Then, fg(Lf-n+ι) = c f(Kf-n+1).

As in the proof of Theorem 2.1, we may use [O, Ψiξύl [O, ^(lOJ

for iffy1-"-1-1, Lf-n*1 respectively. Then. fg\f\ [O, ψ(ξi)] ) = cr •/ ( f~\
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[O,<P(ξt)]J, therefore Wr(fg) = (f Wrif).

THEOREM 5.2. Let h be a map of one n-sphere Sn into another nsphere
Si of degree c. If f is a map of Sm into Sn, then

Wr(hf) = c' +Wrif).

PROOF. AS C and Wr(f) are constant for the homotopy class of maps
respectively, we can assume that h and / are simplicial mappings. Let ξ
be a fixed point of Sn and φ and ψ the inverse image for / and hf respe-
ctively. The inverse image of ξ for h are denoted by, ηs, .. ..,vi>; ζ\X^
. . . . , ζq; where ?2-simplexes including Vi and ζ{ are mapped on w-simplex
including ξ positively and negatively respectively. It is clear that

c = p ^- q and 'ψ(ζ) = ^Σφy.ηi) -
We define Kf~n+1, Lfn+ι as follows:

Therefore we have

i s u s e d f o r ^r(Λ/), analogously

is used for {p — ̂ ) Wr(/). The degree c above con-

sidered is the degree of for h. Therefore we have.
Wr(hf) = e«>Wr(f) - Cr+1 Wr(f).
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