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1. Introduction. In the study of homotopy groups of sphere there are
very few methods for determining whether a mapping of one sphere on
another is essential or not. One such method is furnished by Brouwer
degree of a mapping of S” on itself. Another is furnished by the Hopf
invariant of a mapping of S#-! on S'[3,4]. These methods are used only
for mappings of S* on S" with # =7 or » = 2r — 1. Freudenthal’s results
[2] are applied for the case 7 < n< 2r — 1 but almost nothing are known

about 7,(S") for » > 2» — 1. L.Pontrjagin [6] succeeded in the enumeration of
" the homotopy classes of maps of a 3-complex K® on S? and obtained the
result that Hopf's invariant determines completely homotopic classes of the
maps of S® on S%; Whitney [8] reformulated another Hopf’s theorem [5] and
introduced two deformation theorems. In this paper we shall at first attempt
to generalize both Hopf’s invariant and Brouwer degree. Such quantity will
be used for mappings of S* on S” with n=(k+1)r—k (k=0,1,2,3,....).
Secondly for this quantity we shall attempt to generalize Pontrjagin’s and
some other theorems,

2. Hopf [3] studied many interesting properties of maps of S*® on S* and
he stated [4] the generalization of these results for the maps of S*-! on S”
but he omitted these proofs.

We now consider maps f of S® on S™ (m >n) and denote by 7" any #»-
dimensional simplex on S™, by " a fined n-dimensional simplex on S*. Let
& be an interior point of . When & has only one interior point x in 7% as
inverse image of f, we denote ®;£) = +=x. The signs of x will be 4+ or —
according to whether 7" is mapped on 7" positively or negatively. If & does
not have inverse image of / in 7", we define ®/(E)= 0. We consider any
integral complex C" = 3a;T? and define by PE) = Sa; Pr}(E) the inverse
image for C". This integral complex is clearly 0-dimensional. From the
definition the following relations are introduced:

@ PAr+aiE) = L) + PAE)
@ P_o(E) = —Pe(E)
@) PoE)= 0

Secondly we consider any 7-dimensional simplex (m=7r=n-+1) 7T and
denote by ®.(£) the intersection of the inverse image of £ and 7*. From
the definition the following relations are introduced :

(1) Pii+dy (E) = 2oy (E) + P, (8)

2" P (&)= —Pc(E)
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@) Po(E) = 0
4) Per(E) = pir(E)

From the property $»= 0 and (3), (4), we know @sm(€) = 0. On the
other hand S™ is a manifold and ®gn(£) consists of finite numbers of
closed manifolds AM7%-", M»-" ....M;" which are disjoint each other. If
we apply the Freudenthal’s Lemma [2] for our mappings, we may assume
k =1 without any loss of generality. We consider » + 1 points &y, &, ....&,
on S* and denote by M" the inverse image of &, Let K™ K" be simplicial
subdivision of S™ S” respectively. We introduce the standard map which
has at first been introduced by Whitney and which the author has defined
for more general case[l]. The following Lemma is the immediate result
from the definition. Its proof is similar to the one of the preceding paper [1].

LeMMA 2.1 Let f be a map of S™ into S*, then there exists a standard map
which is homotopic to f.

As M™"~0 in S™, there exists a complex K"~"*! bounded by M*~". We
shall take useful one as K/*~"+! and following Lemma is used in studing
the special one of Kim-#+1,

LEMMA 2.2, Let Z?, Z° be any manifold of Euclidean space R™ which are
Sremed each oiher. The regular connected complexes which are bounded by Z?,
Z respectively can be deform.ed so as to hold at most p + g — m + 2 dimensional-
simplexes in common.

ProOF. We can assume p > ¢ without any loss of generality. Let K#+!,
K*+! be regularly connected complexes bounded by Z?, Z° respectively and
holding in common (q + 1)-dimensional simplex (ay, @i, ----@+1). If @+ 1=
P+ q —m + 2, then this Lemma is evident. Thus we assume g+ 1 >p+¢q
— m + 2 and consider (g + 2) — simplex (ay, @), - - - -, @+2) and its interior point
b. We replace the simplex (a, a, - - -, @g+1) of K% by

[(ba,....ap:) — (Bay@y- - - -Gger) + -+ .. + (=1)*(b aya;. . . .ag)].

If this process is done for every common (g + 1) - simplex of K?*! and
Ki+1 then they have common simplexes which are at most g-dimensional.
If g=p+ g —m~+ 2, this Lemma was completely proved. Thus we assume
g>p+q—m—2. Let (aa:---.a,) be any common simplex of K?+! and (aya:
. @Qlgsr), (@@ - .-uyd@qs1) be a pair of (g + 1) — simplexes of K?+! which
have the common ¢-simplex (aya;-.-.a;). We consider their interior points

b, b respectively. At first we replace (@@, - - --@qg+1), (Go@1-- - -ABy,,) DY
Ci*l=[(be: - . - -qlas)) — (bBe@y- - - -@yBys1) + - - .- + (—1)Ubaay. . - -
a,-1a,41)],
Citt = (Pa--- 'aqa:1+1) —(Vaya,....a@p1) + ... +(—1)4baya-. -
dg-18"q41)]

respectively. As ¢ >p + q+ 2 —m, we can construct regularly connected
complex C?! bounded by
[(bay-..a)—(baas . .a)+ ... +(—1)(baya....cq-1)}
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and [(Va,-.-.a") — (Vaa,.---a)) + -« +(—D'(Faa - --a4-1)]

which have common simplexes at most of (¢ — 1)-dimensions with K?+:. We
replace (2ya;. - -« @y@qs1) + (@otts- - --aid,,,) by Ci** 4 C™** + Cy*'. If such a pro-
cess is done for every common g-simplexes of K?*! and K¢*!, then they have
tommon simplexes at most of (¢ — 1)-dimensions. If we take care of only
fact that every simplex at most of (¢ — 1)-dimensions is a common one face
of some (g + 1)-simplexes (its number need not to be two for the common
(@ — 1)-simplex)), we can perform similar process. By a repetition of similar
processes, we can lower the dimension of common simplexes of K¥*! and
K1 untill at most p -+ ¢ 4 2 — m, where the dimension of the Iast common
simplex is calculated from the dimensions of S®, K?*' and K*!.

LeMMA 2.3. Let Z? be any manifold of Euclidean space R™. If we construct
a complex projecting Z° from a fix point, the resulted (p -+ 1)-dimensional
conplex may be deformed so as to have singular simplexes [1] at most of (2p
+ 2 — m)-dimznsion.
Proor. By the similar deformations of Lemma 2.2, we can prove
immediately.
 THEOREM 2.1. Kpr-m+'  may be chosen as a wmanifold which has some
singular simplexes at most of (m — 2n + 2)-dimension.

Proor. Let us consider that a fixed point of S™ is a point at infinity,
then S™ may be regarded as the sum of the point at infinity and a m-dim-
ensional Euclidean space R™. Of course, we don’t take the point at infinity
on M™ " We project M from a suitable point O and denote by [O, M™~"]
the resulted sets. [O, M™~"] are special complexes bounded by M™ " and are
one of Km-"*1 By Lemma 2.3, the dimension of singular simplex of [0,
M;*-"] is at most

2m—n+1)—m=m—2n+ 2.
r

LEMMA 2.4, ﬂ [O,M"™"] is a sum of finite manifolds which are at most

. i=1
of (m — rn + r)-dimension having some singular simplexes at most of [m —

(r + n + 7 + 1]-dimension.
ProOF. By &#&£,(6,7j=0,1,2,....,7,7 = 7), we know that
Mpn [\ Mpn=0G,j=012,....7,i %)
If we ‘consider [0, M*"] and [0, M"-"] except for singular simplexes, [O,
M®-7] ﬂ [O, M™-"] are of at most of dimensions
2m—n+1)—m=m— 2n + 2.
By Theorem 2.1, the singular simplexes of [O, M}-"] are at most of (m —

2n + 2)-dimensions. Therefore the dimensions of singular simplexes of [O,
M N[O, M*] are at most of dimensions
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m—-2n+2)+m—n+1)—m=m—3n+ 3.
On account of singularity of [0, M7 "], [O,M-"] N [0, M}-"] are a'sum of
some manifolds having singular simplexes.
By Lemma 2.2 and Theorem 2.1, the intersection of [0, MP*-"] N [O,

M»-*} and [O, M?-*] is studied. As the general case ﬂ [0, M "] are a
i=1
sum of some manifolds whose dimension are at most
rm—n—+1)—~(@r—ym=m—rn+r,
where the dimensions of those singular simplexes are at most
m=2n+2)+(r—-1m—n+1)—(@r—-—1Dm=m—(r+n+r+ 1.

LeMmA 2.5 M2*~" N {m[O MM} N {ﬂ [0, M}-"1} are a sum of

J=k+1
Jinite manifolds which are at moat of (m—rn-+ v — 1) — dimensions having
some singulay simplexes at most of (m — (r + Dn + r)-dimensinn.

k=1 \
Proor. If we replace r by r— 1 in Lemma 2.4, { ﬂ [0, M?;-n]j n
i=1

{ ﬂ [0, ZVI}"‘”J} are at most of [m — (r — 1)n + (v -- 1)]-dimensions having
J=k+1
some singular simplexes at most of [m — rn + 7]-dimensions. Therefore the

k-1
dimension of M"~" { m[O, MZ""”} N {ﬂ [0, M]'."'”]} is at most [m —
i=1 Feletr1
F—Dn+@E—-D]+m—n) —m=m—rn-+7v— 1.
The dimensions of the singular simplexes of those complexes are at most
(m—orn+rld-m—n)—m=n— (7 + Ln+r.

-
LemMa 2.6. Ifm= (v + 1)n — 7, the intersection number ¢(My-", ﬂ [O,
- i=1
M?"-"]) can be defined uniquely.
Proor. For ﬂ [O, M*"] of Lemma 2. 4, we give an orientation as follows:
i=1

We know an orientation for the faces of simplexes of [O, M}*-"] and by

¥
this orientation we introduce an orientation on m [O, M ;*~—*]. This orientation

i=1

does notldepend upon the singular simplexes of m [O, M™-7]. Similarly we

i=1

introduce an orientation for Mp-" ﬂ{ ﬂ
£=0,1,2,.. k.7
simplexes of M*-". This orientation does not depend upon the singular

[0, M7 }by the faces of
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simplexes of M " (Y { ﬂ

i=0,1,2 .., k...

[0, M™=7]. Then, by lemma 2.4,
dim { ﬂ [0, Mi"’”]} =m—ri+r=n
i=1

-

The intersection of M™ " and m [0, M"-"] are at most of dimensions # +
i=1

(m—n)—m=0.

From the orientations of R”, M " and ﬂ [O, M~"] we know the inter-

i=1

section number ¢ (M-, ﬂ[O, Mr=r]).

=1

LemMMa 2.7. ¢ ( Mn=n, m [0, M;"""]) does not depend on a choice of a
i=1 '
fixed point O.

Proor. We consider m-dimensional Euclidean space R™ as in the proof
of Theorem 2.1 and fixed point O’ which is in R™ — U M- — Q0.

By the projection from O, we get a similar complex [0/, M?*]. If the
bounded set containing O and O’ are covered by sufficiently fine open set,
we can choose a finite covering, which refine the given covering. If we
consider point-pairs in the same element of covering at first and remove
from one element to the adjacent secondly, we can remove from O to O
by finite processes. Therefore we can assume without any loss of generality
that O exist in sufficiently small neighborhood of O. We shall prove

>

# (30, (\10, M) = ¢ (b3, ﬂ (0, Mp=1),

i=1

As O and O’ lie in sufficiently near, for 2= 0,1, M (ﬂ [0, M%"'"])
i=2

and M;»-" ﬂ(ﬂ [0, M?{‘"”]) are situated sufficiently near in R™ and are
i=2

fremed each other. We consider a complex X which is bounded by Mg ~"

ﬂ(ﬂ [0, an_"]) — M7rN (n [0, M{”"“]) and is fremed from M7"-"
i=2 $=2

(ﬂ[O, M;"*”]) and M™ " (n[O’, M {“‘"’]). Similarly we consider a
i=2

=2

complex YV which is bounded by M»~" | (ﬂ [0, M;MJ) — M (ﬂ
: i=2 i=2
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[0, M{"'”]) and is fremed from M- (ﬂ[O, M;"‘”}) and Mp" N (m
=2 i=2
[0,M7-"1).

Ro {[0, My=r1n (ﬂ [o, M:"—"])} =M (f\ [0, M{"'"]),

i=2
Ro {[O’,M{”‘“J n (O[O’.M;’"”] )} =MPr" (h[O',M;"‘”]).
Then - o
. Ra{ (O, M?~"1N (Q[O,M?""]> =Y —[0,M? "] N (Q[OZ M%"‘"]) =0,

g{npn ( [\ (0,m3-11), 10,71 ( [:\2[0, Mp)— ¥ -

o, a1 (N0, M;"—n])} = 0.
i=2
On the other hand,

o(pez-s, 0, a07-11)

= E¢<Mg"-" n (Q[O,M;”'“]), [O,MP"] N (f) io, M;"‘"J)

i=

¢ {M},’"” n ( Mo, M;"""],Y} =0. (6= =1)
=2
Therefore,

s{arz= 0 (N0 ), 10, 802-711 (Nio.017-))

- ¢<‘Mg"" n (Q[o, M;"*"]), [0, M7= 0 (ﬂ[OM,J)}

Similarly,

#{ 10, Mm-"11 ( C)[o, M;n-n]), M N ( [\2 [0, M;”-”])}

{
=¢ {[0', M0 (ﬂ (0, Mp="1), M 1 (Q[Oz M:"-"])}-
Then

o {az+ 0 (01771} 10,0021 0 (o, z-1))

= ¢ {Mgt-n n ( Q(o, M;M]), [0, M- ( Q[O', Mg’""])}
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=(= 1)"“4>{[0, Mg1n <Q[O, Mg“-’ﬂ), Mr-n ([’r\ro M;n—aq)}

=2

=(- l)n_x¢{[0’, Mr-n ( Q[O” M;n—n]), Mn» () ( O [0’ M}n_u])}
= qb{M’gm-n n (O[O Mgn—n]>, [0, Mr-"1 N (é[O" Mzn_n])

1 :
= ¢ o{mp, Q[O’,Mgn—nj},

o(m5=, (V10,007701) = p(m157, (V10 ma77),

i=1

DeriNiTION 2.1. When m = n,we define ¢ [M), 8] (§ means the empty set)
as follows;
Let £, or #_ be the numbers of simplexes of K™ which are mapped on
-0 positively or negatively respectively. Then;
MG, 6] =1, — 1.

By Lemma 2.7 we know that d){M o, ﬂ[O, Mg‘—"]} does not depend
i=1

on a choice of a fixed point O. By these reason and definition 2.1 we define

as follows:
DEFINITION 2.2. In cases m = (# + 1)n — 7 or mn:

» -

Wr(f, EU) El: ] ET) = l:¢ {Mgl_iza m [O:Ml'i.n-n] }Jr ’ WU(f? El)) = ¢IM3, 6.]

i=1

LeEMMA 2.8. W.(f,E, &, ... ,Er) does not depend on a choice of &,&,----,
Er. in the following cases:
(i) m=n, or
(i) m= (@ + Dn —» and n is even.

Proor. In case (i) W,(/, &) means the Brouwer degree, and Lemma 2.8
is well known, :
We shall prove this Lemma in case (ii).

$( My, [\ [0,341) = &6 { My~ <Q[O,M¢]>, 0, m.1( Q[O, m)}
= (~1rep{i0, i (ﬂro MY), M0 ([\[0 )}
= (=1~ 1ymveq | w1 [\ [0, MJ),10, M1 N (ﬂ [0, MJ>}

= (= (=10 ¢ {0, 3400 1 (ﬂ[o MJ)}.
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As »n is even,

Wolf By Ery o v Ex) = Wollo By oy e vy Er)e oee e e 1)

¢<M(,”"”, m[O, M;"*"]) means a degree of f’ [-\ [O, M}-"], then
i=1 i=1

Wof; &, -- - -, E) does not depend on a choice of &. Then

Wolf, Eoy oo EnEr) = Wilfy ELEry ooy E)e e e (2)
By using of (1) and (2), we can introduce the following calculations :
WiAf, E &1, - 8y .. B = EW(f, E ELEy ... By - E))
EWAS, Ei €0, Es oo -, B BN
EWAL B\ B Bay oo Ereeeer oo &) (€= 1)
Wr(f*fhéﬂvs‘.’a ’52:’57)
Wr(f;fméhg‘z’ ¢ ":E:’ E’)!

1l

Il

Il

that is,

W?(f; Etl:gh v ";‘E!’, o "rff) = W"(fvgk':g‘r ] g:’ R ] ET)- .. (3)
Furthermore,

W, EnE, .- &, - B = W(ELE, .-, &, e, &)

= W« E,E,....Ep, . ... &)

From this relation, we can introduce the following relation by using of (3):
W, & &, - B E)Y=WALE, BBy LB 4)

When we use (1),(2) and (4), successively,

W)'(f;fﬂy 51) e 'af?‘) = W7(.f:§(;rgiy .t ’:E;)

By Lemma 2.8 we know that W.(f,&y, &, -. .., &) does not depend on a
choise of &, &, ....,&,. Then we define as follows. .
DEFINITION 2. 3. Wr(f,‘ = Wr(f, EU; EIJ et 57)

THEOREM 2.2. Let m=n or m= (r+1n —r and n be even. Iff, g
are maps of S™ into S™ and f is homotopic to g, then W,.(f) equals to
Wiy).

Proor. When K, K* are simplicial subdivision of S*, S” respectively,
we may assume that f and ¢ are simplicial maps without any loss of
generality. As f is homotopic to g, there exist a shar of maps f{l1=<7r =<
2), of K™ into 12", where f1 =f and f, = g. Then we can consider f, to be
a map of S*x7 into S® and use it as F(x,7). We define S™x(1) = S, S™x
2) =S

f+(x) also may be assumed as simplicial map. Let & a interior point
of fixed n-simplex 7 of K" and Psmxi(&1), PsE), psT (&:) inverse images of
&, for f,, f, 0 respectively.

As we have (S™ x I) = S — S by (1),(2) in § 2,

Pyt (E) = PLUE) — PSP (Er). oo ene e (1)
We denote ®<)(E)), Psi(&) by M,, M, respectlvely When we fix 7, we denote
the inverse image of & for f, by Penx(£;), then



228 K. AOKI

Psnsi(Er) = U Psmxn(&r)

1srs2
Let O, O be fixed points of S™x(1),S™x(2) respectively. We connect O
with O by an arc in S™x I which intersect with S™Xx(r) at only one point.

These intersections will be denoted by O,.
In S™x(r) we project Psunxey(E1) from O, and denote the resulted complex

by [Or, Psuxy(E)]l. Then,
{ \J 10, "’S’"XMEOJ} = [0, M,] — [0, M;] — Psmsa(E1)

1=rs2

We denote this relation by C,= [0, Mi]l — [0, M]]— A, and a second

interior point of 7} by £, then
Do) = ProrifE) — Pror, w2 — Pay(Er).

As f, has an uniquely determined image, ®.4(&,) =0 (for & =%E,).

We denote o, u, (), Pior,m;(€2) by M., M respectively. Then

(.Pcz(fz) =M, — M_:

[0,M.] N [0, M,] and [O',M;] N {O’, M,] are complexes bounded by
Po, 1 (B2, Por(Es) on [O,M], [0, M]] respectively. Then Ro{Py(E:)—
10, MN[0, M,] + [0, M{IN[O°, M.} = 0, therefore P(E.) — [0, Mi]1 N [O, M,]
+ [0, M]N [0, M]= Z, is a cycle.

Pel£) = Pro,m(E2) — PoowXE,) is analogous to (1), then we consider a
third interior point & of 7 and similar relation as above and so on.
‘Therefore we obtain the following relation:

¢cr(fr) =P 7'(_11 (0,24 (Er) - P rﬁl[o,d[;] (fr)
i=1 i=1
where C, is defined to be similar to C..

[\[0, M1 and [\ [O', M}] are complexes bounded by # 7, u, (&),
i=1 i=1

i=1

r—1 r-1
071751[0,’ g (Er). on ﬂ [0, M], m[O', M;] respectively.
i=1 i=1 i=1

Then K5 {2, &) — (\10,M1+ (10, M1} =0, and 2, @) — (10, My
i=1 i=1 iz

+ ([0, M= Z: is a cycle.
4=1

When we denote the projeciion of £ on S" by Z*’;, Z;‘~f¢ in S®x 1. Then
F(Z;%)~f(Z*;‘) in S*, therefore
Rz = f(Z*) in S
On the other hand,
Z2~0 in Sp
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F(Z:) = Z)~0 in S7,

fZ2)=0 in S
Therefore

F(Z" = 0,

@ (E)) ~f</r\ [0, Mu) + .a( ["\[O,’ M) ) ~0,
RPe (&)= 0, - ris1

7( Q[O, M) = ( Qroz 78)

WAf) = Wig).

3. In this chapter we shall investigate that W,(f) is used for determining
whether a mapping of one sphere on another is essential or not. In case
m = n, W.(f) means Brouwer degree and it is well known that W,(f) is only
used for deterimining whether the mapping is essential or not. In case m =
(r+1m—7r and n is even, if » =1, W.(f) is the Hopf invariant and we
showed in my preceding paper that the Hopf invariant is used for such
purpose. In this chapter we consider the case W,(f) is determined, that is
(i) m=m, or (ii) m = (r + 1)n — 7 and # is even. In the case (ii), by Lemma

r

2.4, n [O, M7-"] is a sum of finite manifolds which are at most of »
i=1

dimension having some singular simplexes at most of one-dimension. By a

:similar method as in Frendenthal’s Lemma [2], we can consider that n [O,
=1

M?P-"] is a manifold M" which is at most of n-dimensions having some
.singular simplexes at most of one-dimention. Let 7} be a fixed »n-simplex
and &, an interior point of 77,&, be the antipodal point of S*. We assume
that ¢ = (@a:. . --as), ¢’ = (a) a,....a,) are oriented n-simplexes of M" with
‘the common (# — 1)-face + = (a:---.as). Then we obtain the following Lemma
-in my preceding paper.
LeMMA 3.1. Let f be a standard map of M» into S* and flo) = + S* flo')
= E,, then there is a standard map g which is homotopic to f and g(c) = &,
.9(c’) = +S" leaving the degree of M"' — (o + o’) fixed.
LEMMA 3.2. Let f be a standard map of M* into S* and f(o) = +8S" f(o')
= —S", then there is a standard map ¢ which is homotopic to f and g(o) =
&0, 9(c’) = &, leaving the degree of M" — (o + o’) fixed.

A map f of S* on $* may be considered a simplicial map of K" on

S
I?". Let P, be an interior point of a fixed simplex +% of A*. We may
-assume that inverse image ®Psm(P,) of P, for f is a manifold M™-", The m-
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dimensional simplexes T% of K™ which are mapped on 7! necessarily
intersect M™~"* and M™-" 1 T, are (m -— n)-simplexes. &(=0,1,2,....,7)
in § 2 may be considered in 77 without any loss of generality. M-dimen-
sional simplexes 7% of K™ which are mapped on 7} necessarily intersect

M, N (d[O,MJ) and M ([3[0, MJ) N T, are (r —1)-simplexes. We

denote it by (af%,afx, ....,a%.). Let (e« e¥%, ...., %) be an (n — 1)-face of
T»-" such that any two of its vertices are not mapped by f on the same
vertex of ={, then {agr,af*, ....,a%,.... e5x, .... e } is a (2n — 1)-simplex

which we denote by i‘;z'l. %‘;—’,’2‘1 is a face of T%. Such a(2n — 1)-dimensional

*
simplex T;—;’;C“’ is considered for all (z# — 1)-dimensional-simplex T*gjc“l of

»

M, (ﬂ[O, M¢]> N T" We consider all (2n — 1)-simplexes f;’;-l which

i=2

involve some zn-simplex of M, ) (m[O, M,]). Then 3 3 (%%, ¢, .. .., €%k )
i=2 @ o

is (n — 1)-manifold with singularity. We denote is by M"-! and consider a
following complex :

(a:katflc, ... a% e(‘}”k( + (— 1)”(011%’ e, a%lgl, egla, evr) + .. ..
+ (= 1P Dagk,, efr, e3x, - - - - enk,).
Ew %k [(agka?k. .. .a;’:lgl’eglc) + (- 1)”(a'flc. orey aw’f.v eglc, gvfk) 4+ ...
coesH (=1 (@, €5k, ek, .. .. e%k,)]

is n-dimensional manifold with some singular simplexes bounded by M, (}

(ﬂ[O,MJ) and M"-'. We denote it by Ko
=2

We replace (eg": efk’ Tt egﬁl) by (eZIr, e(:ﬁ)—l! R ez{c_l, egk: cttty e;’il): then
2 E [(ag'k’ a;"k, MR ) azﬁl’ e:k) + ( - 1)n(a(1"k: agkr Tttty aZ’fn egk» e;—’fl) +
®& oz
s (= 1P D(agE, ek, €5k, -, Rk, €3k, ek, - - ., egk )]

is #-dimensional manifold with some singular simplexes bounded by M, (}
( h[O, M,~]) and M»-!, We denote it by K,. Since M" ! is homologous
ze:c; in S™, there exists an #-Complex K* bounded by M"-i. Ki= EZ +
K" is an n-complex bounded by M, N (h[ol M~]>. As py-is an interior
point of 7, p, and vertices of each (n —-L =12)-face of 72 form m-simplexes 7,

™, ..., 7. If we replace % by %, ...., 7%, in K", then the complex thus

*
obtained is a finer simplicial subdivision than K”. We may denote the
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resulted complex by the same notation K+ for brevity, without any confusion.
Similarly we can consider a fine simplicial triangulation of K" by inverse

image of Ig'" by 7 and a suitable additional subdivision. We shall also

7

denote it by K*. [0, Mi] N ( (1o, M. J) which is bounded by M, N (f\

i=2
[O, M]) may be considered as one of K7. When M; is mapped on & by /

we denote the complex which is mapped on ¢ by R(§). Evidently R(&;) =
RE)) (i+4,17=10,1,2,....,r). We denote this common complex by R and
its »n-skeleton by R».

THEOREM 3.1. If WAf) = 0, then f|R" is homotopic to zero.

Proor. The map f can be considered as a standard map without any
loss of generality bv Lemma 2.1, when we use Lemma 3.1 and Lemma 3. 2.

As Wi(f)=0, ¢>(M0"‘", ﬂ[O, Mt]) = 0 and there is a set of n-simple-
i=1

X€S G, Uy -+ 05; OpsCn -+, Ty ON ﬂ[O, M,), where o; and ¢’ are mapped
i=1

on S” positively and negatively, respectively. n [O, M;] may be considered
i=1

as one of K}. For o; and o; (i = 1,2, ....,s), there are regularly connected
chain o; + oiy + ot + ... + oy, + o on K° It may be supposed that dfo:,) =
+1,ddo) = -... =dfoy,) =0, d{o;) = —1. Using Lemma 3.1, we deform f in

o + oy, next in oy, + o, etc.; then using Lemma 3.2, we deform the map
in oy, + o;. The new map f’ has as its degree dy(o:) = dr(oy) = ---.
= d;(c])= 0. We continue in this manner untill no simplexes are mapped
positively and none are mapped negatively over S*. Then f/| K* is homotopic
to zero, fixing the image of M, on &,.

By Definition, K} = Kp -+ K» and K " have no common #-simplex for any
b. When fis simplicial mapping, we consider the state where K" are mapped

on tj,. K@ consist of the following complex :
(agk7 ai‘k, Tt a:ip e;k) + ( - ]_)"(a‘l’lc, a?kr tetty a;’f“ e‘;)kl e:fl) + cert
+ (= 1P -Xagk , e%, ek, - . . ., €%k _,, e%%, &%k, .. .., esk,).

If (ayr,,egr,eak , .. .. €%, e, e, . ... e%)) is mapped on 7%, other simplexes

are mapped on faces of 7 and their dimensions depend on numbers of e:.
(arr,egv,en, .. .., enk,, exv, ek, .. .., e% ) is mapped on 77, in the same manner
for each p except for orientation.

We may neglect this orientation when we take care of this similar

property for all a;. If (3%, e%x, ek, .. .., e5%  evx, efx, .. .., e5%,) is not mapped
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on 70, we may neglect T7. In other words, we may consider that (aj*, af*,
<v.., a%,) contract tos a point and 77 is empty. As K* is not mapped
on 7%, we may consider only K, for the degree based on f. On the
other hand, deformations of Lemma 3.1 and Lemma 3.2 can be| intro-
duced leaving the degree of K* fixed. If we deform f to the standard map
/" by-Lemma 2.1, /" maps 3 K? on & and f maps R*—3 K on &, by the
¥4 D

above remark. Hence f|R" ~ 0. )

When M; is mapped on &; by f, and f, we denote the complex which is
mapped on 77 by R, and R, respectively. We denote their #-dimentional
skeleton by R! (i =1,2).

THEOREM 3.2. Let fi and f, be continuous mappings and WAf,) be equal to
WAS2), then f1|RY + Ry=~f,| R} + R}.

Proor. We consider Cartesian (m + 1)-space €™+! and its subsets:

m+1

e fre o Seo1)

i=1
r={x€S"; X =0}
E" = {x € S™; %11 =0},
Sp1 = {x€ S Zpur = O).
We and define ®, as follows:
%1 maps E™ onto S™,
%, is a homeomorphism on E" — Sp~?,
®(Spr-') = P, where P is a fixed point on S*, d(®,) = 1.
‘We also define @, as follows :
®, maps E” onto S™,
@, is a homeomorphism on E™ — S,
PASy1) = P,
dp,) = —1.
We may assume f,(P) = f,(P) = @ without any loss of generality. We
construct a map F of S™ into S* as follows:
{f ) @, -on E™,
F= f: @, on E™,
From W.(f,) = W.(f,) we know W.{(F) = 0. If we denote by [F], [£1], [/.]
the homotopy classes of F,f, and fyrespectively, [F] = [fi] — [f.].
By Theorem 3.1, F|R? + R} ~ 0, then f,|R? + R? =~ f.|R? + R}.
Pontrjagin theorem® may be obtained from Theorem 3.2 as its special
case when we put » =1, and # = 2. For the proof, see my paper.

THEOREM 3.3. (Pontrjagin’s theorem). If /1 and f. are maps of S® on S*
and Wi(fy) is equal to Wi(fs), then f, is homotopic to f..
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4. Freudenthal introduced the idea of suspension in the well known
paper [2]. We shall investigate in this section some relations of the sus-
pension and W(f).

Let f be a map of S” into S*. We denote the equators of S”*! and S**!
by S™ and S* respectively and extend f to a map Ef of S™*! into S**+!
as follows:

A point of S™+! is represented by (P, 3), where P is a point of S” and
— 1< B=<1. Similarly, a point of S$*+! is represented by (P, 2), where P’
is a point of S” and — 1< B =<1. We define

' Ef(P,B)= (f(P),B).
If m+1= @+ 1)n+1)—7 and n -+ 1is even, it is trivial that W (Ef) = 0.
Secondly we investigate its inverse. We denote a subset of w4+ (S?+Y)
‘whose elements have 0 as W,(f) invariant by [zu+1(S*+1)],.

THEOREM 4.1.  E(7m(S™) = [Zm+:(S*+D)].

ProoF. We consider a map f of S™+! into S"+! where W.(f) =0. If
we can prove that the inverse image of a point P’ of S**! consists of
only one point P, we can prove this theorem as follows: Let V;*! be
a closed neighborhood of P on S™*! and V™! be the closure of the
«complement of V7*! Then f(V™*!) or f(Vy*+!) does not completely cover
S*! and we can deform f to a form of Eg In order to prove that the
inverse image of P’ consists of only one point it is sufficient to prove two

-
following properties: 1° ﬂ [O, M;] is mapped on P’ by f; which is homo-

i=1

topic to f. 2° ﬂ [0, M:] is contractible to one point on itself. We shall

i=1

;prove them. By W,(f) =0, we have ¢(My, ﬂ [O,M;]) = 0. As we know in
| i=1

the proof of Theorem 3.1, the image of ﬂ [O. M;] can be contractible to a

i=1
point fixing the image of M; (ﬂ[O, M]). Then the image of ﬂ [0, M;:]
S i=2 i=1
by f. can be considered to be P’. At first we consider any point R in

-distance p < &€ of m {0, M1, where & is sufficiently small and denote by @

d=1
‘the fixed point of the segment PO for which RQ/QO = (€ — p)/p. Let P(R, )
move linearly along the segment RQ as + move from 0 tol. For the point
R in distance p = ¢, we set ®(R,7)= R. We denote the inverse of ®(R, )
by Y¥(R,r), and define fi.. =fi(Y(R, 7)), then f, maps O and only O on /.
“The proof of (2) is complete.
We define some special sets which are used for the proof of Theorem 4.2.
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Let €m+2 be the Cartesian (m + 2) — space. We define its subsets as
follows:

Sm+l — {x (= Em+2z . Exf = 1},
i=1 :
S" = {xe Sm+l: Xm+1 = 0},
Sp = A{x € S™1: Kmaw= B}, (—1=By=1)

m+2

ym+z2 = {xe Em+2. Zx-<ll

Eprt = {x € V™ 2,0, = Bo),

V;n;: = {x€ 8" Tmex = B},

Vasl={x € 8" Xnex = By}

Vg;? ={xe€ S B = Hper = B},
Similarly we define for G»+2.

THEOREM 4.2. If m = (r +1)n — 7 and n is even, E is an isomorphisnt
of [”m(sn)}f)'

Proor. Let g be a map of S”into S* and be f= Eg= 0. 'Then f can be:
extended to a map of Vm+¥(S™+! = R V™) into S**!, Let 7i*' be a fixed’
simplex of S$"*! and &(i = 1,2,3, ....,7) be the fixed interior points of 7+V
and let & exist on S; (—1< B8< 1) We denote the inverse image of Et in.
S»+t by M- and the inverse image of &; in V™*2 by Y-+l
Then, we have

f{ Mo, MJ} = WIf)Ss,

i=1

and Rd? Ym-m+l = Mm-n,

On the other hand Mp-" belongs to S essentially and there exists a com--

plex K*~"*' bounded by M7 " in Sj. When we denote the fixed point of-
St by O, we can consider [0, M7-"Jlas K™-"*1. We define

Zn = yr-n+ m[o M, — ﬂ{O M1

i=2

There exist a complex K*+! which is bounded by Z# in V™+2,

ROf(K*+1) = fIROK*1) = f{ yr-nei ( Qro, Mil)} — f{Q[O, MJ}

= "‘Wr(f)s
J(K"+') covers ¢-times over V2%l and ¢"-times over Viil.
—WA)=¢ ="

¢’ and ¢” have fhe following properties :
(i) ¢’ and ¢” are the same value when we use Y/*! (i = 2,3, ....7)..
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In the relation of Z* we replace Y{-"*! by Y™ %1 then it is similar
to the proof of Lemma 2.8 that ¢’ and ¢” are invariant.
(ii) ¢’ and ¢” are not depend on a choice of K™*!
In f(K**') the difference of K»*! give us the difference only of the image
of bounding cycle.
{iii) ¢’ and ¢’ do not depend on a choice of Q. The proof is similar
as in Lemma 2.7.
(iv) ¢’ and ¢” do not depend on a choice of &. We shall prove it.
Let & and ?i be the fixed interior points of r4*!, where &, E‘i exist on
5, apd S, respectively. We introduce the following complexes:
Mr-r, Yronil 10, M), Z*, K#tig
Mm—n’ i’{n—n+1’ [*O’ ﬁl], Z*n’ Iéﬂ+l.
We consider a segment x; in Vi, whose end points are ff,. and & and
denote the inverse image of x, in S™*1 by Z%-*+1 the inverse image of %
in Y™+ by Y7, "**. Besides we denote Vji*3 by S*x 7 where I is an interval
Bi=t= B, Weconnect O with O by anarc in S"xI which intersect with
S™x (1) on only one point. These points of intersection will be denoted by
O.;. We also denote x; N S"x(f) by &, in S™x(¢) by M; and the inverse
image of &; in E7*! by C-**!. Then we have

Ro| v { N (fr\[o,, Ml )}]

P1= =82 © i=2

= Ppomi (ﬂ[o i) - yp-rry (Q[o, M -

zzn !\ ( O[Ot,MuD}:

Cpi=t=rp i
™ e (o))
= B () <Qr(*), M]} - M"f-“n([:_\’ro,m} -
{mgp, @ 0 ( ﬂ (0, Ml ).
We define
Lo+l = K+t Knes  pmenez) { U ( [r\[ot, M])}
Then e

* . * - it ¥*
Ro L= 2 — 20+ Y0 ([ \10, Md) = %u (16, 71) + z7
=2 i=2
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{\L (o)}
U (Nro.aa)

ﬂro Mf]—ﬂ[O M1+ Zp- ’“n{ }
B1=I=pg

=1

This complex is bounded by a cycle M%+*! included in V’"“. Therefore Ro>

L"+1 = Ro M"+'. By the fact of M"+' C Vi*l, we know fIM™') C Vit and

S(M*+') cover the north pole and south pole with the degree 0. As n is
even, ¢ + ¢’ =0, therefore —W,(f)=c¢ —c" = 2¢ >0.

To prove Theorem 4. 2, using W.(f)=¢'=0 and Eg=0, it is sufficient to prove

g = 0. Now, by W.(f) = 0 we can deform f in Sy so as to map ﬂ[O M;] to

one point and also f(RoK"*!) to one point. By ¢’ = 0, the image of K"*! is
contractible to one point fixing R2 K*+! and also K"*! can be contractible
to one point. Then, if fAV™*% < S*+1, one point (for example north pole)
has one point (for example north pole) and only one point as inverse image,
therefore g is not essential.

5. Product theorem.
THEOREM b5.1. Let g be a map of one m-sphere S™ into another n-sphere
S™ of degree c. If f is a map of S™ into S*, then Wifg) = cWif).

ProoF. As ¢ and W,(f) are constant for the homotopy class of maps.
respectively, we can assume that f and g are simplicial mappings. Let
& be a fixed point of S* and ¥ (£) and Y(E;) the inverse image of & for
S and fg respectively. We also assume that m-simplex 7™ of S™ intersects
with ®(&;) and the number of m-simplexes of S? mapped on T™ positively
or negatively by g is p or g respectively. Then p — g = c¢ and the number
of (m - n)-simplex of Y(£;) are mapped on (m — n)-simplex of ¥ (&) which
are included in T™ positively or negatively is p or ¢. Conversely the image
of each (m — m)-simplex of (&) are (m — n)-simplex of @(£:). Therefore
we have a(V(E)) = cplED.

We define L -1, Km-"+1 as follows:
Ro L=+t = (&),
Ra K'gn-n+1 = (/)(E‘)
Then,
RO(g(Lp-m+1)) = g(RALP-"+) = g(Y(F)) = c-p(§) = c-RO K™,
g(LP="+1) — c.Km~n+1 ig a cycle of S™. On the other hand, g(Lm-n+1y —
c¢KP-"+1 ~ 0 in S™ and fg (Lr"*') — ¢f (KP-"1) ~0 in S”.
Then fg(Lm—n+1)__ Cf(K'" 'n+1)
As in the proof of Theorem 2.1, we may use [0, ¥(&)], [0, ¥(E))

for Kp-n+!', Lm-n+1 respectively. Then, fg<ﬂ [O, 1!/@‘;)]) =c- f(n
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[0, ¢(§,)]), therefore Wi(fg) = ¢"W(/). -

THEOREM 5.2. Let h be a map of one n-sphere S* into another n-sphere
S? of degree c. If f is a map of S™ into S*, then
Wi(hf) = ¢ Wi(f).

Proor. As ¢ and W,.(f) are constant for the homotopy class of maps
respectively, we can assume that %z and f are simplicial mappings. Let &
be a fixed point of S* and ¥ and  the inverse image for f and hf respe-
ctively. The inverse image of & for ’ are denoted by, 7, .. .-, n»; &1, 8o,
«..., &; where m-simplexes including #; and {; are mapped on #u-simplex
including & positively and negatively respectively. It is clear that

c=p—gq and W(E) = @) — ZUE)).
We define K-+, Lr~"*! as follows:

Ro K7+ = @(g,)
RoLy=™ = (L),
Therefore we have

Ro( S Ept = S L) = 4a@)
3
SK, 1 _ L=+ s used for Wi(hf), analogously

ZK;"‘"“ - ZL}“‘"“ is used for (p —q) W.(f). The degree ¢ above con-

sidered is the degree of for k. Therefore we have.
Wihf) = cmc-Wf) = ¢+ W f).
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