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1. Introduction. H.Samelson conjectured, in his paper [1] that the
Whitehead product in homotopy groups satisfies an analogous relation to
the Jacobi identity in Lie algebras. This is stated also by A.L.Blakers and
W.S. Massey [6]. We refer to the relation as the Jacobi identity in Whitehead
products.

The present paper proves the identity for elements of dimension > 1.
For this purpose we introduce a new product in homotopy groups of an
H-space (See section 3 below and J.-P.Serre [2]) by means of the product
operation of the space. We call the product an H-product. It is connected
to the Pontrjagin product of homology groups (cf. L. Pontrjagin [4], H. Hopf
[5]) and is interesting itself (see section 3, Proposition 2 below).

This product is bilinear for elements of dimension = 2 and isnot asso-
ciative but under some additional conditions?> satisfies a modified form of
the Jacobi identity, In the lacet spaces [2] the relation holds and is translated
to the Jacobi identity in Whitehead products of the original space, using
certain isomorphisms. These isomorphisms are Eilenberg’s suspension for
homotopy groups (see section 2 below) in a fiber space of paths starting
from a fixed point.

2. Preliminaries. Let X be an arcwise connected topological space
and x, be a fixed point in it. We consider a space whose elements are paths
beginning at x, with compact-open topology and denote it by E. A mapping
which associates each element of E with its terminal point, is continuous
and denoted by P. Moreover it it well known that E is a fiber space with
a base space X, projection P and a fiber, the lacet space Qr relative to
%y (see J.-P.Serre [2]).

Let p and # be integers such that 1 < p < n,f be a mapping from an z-
dimensional cube I”(an #-fold product space of I =[0,1]) into X such that
f(I*) = x, where I is the boundary of I*. Under these notations we define
a mapping T,f of I"~1 into Qx by the formula
1) Tof (%, -+ X)) = f21, oo o Xpr, 2, Xp, .o .., K1)y
(this definition has its sense if only the faces x, = 0 and x, = 1 of I” go into
%). Tp is one-to-one and induces a homomorphism of z,(X, ;) into 7,-,(Qx,
%) for » >1, where x, is also a constant path /- x, € X. We also denote
this homomorphism by T, Let 3, be the inverse of Ty;

2) Sof (%, oo ooy Xpo1y by Xpy oo Xm)) = (20, o e, X)),
where f’ is a mapping of I*~! into Qv then we have

1) §5, Theorem 3 in this paper.
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3) SpTof = 1.
A homomorphism of homotopy groups induced by 3, is denoted by 3.

ProproSITION 1. T, is an isomorphism of mwa(X, %) onto m,-1(Qx, %)? and
S» in its inverse.

The proof is trivial. Moreover we have the relations T, = ( — 1)?*T,
(1< p,q=<mn), T, =2 P;!whichwere shownby H. Samelson[1], where o is the
boundary homomorphism of the homotopy group z.(E, Qx, %)to 7,-1(Qx, %)
(this is an isomorphism onto, P. is an isomorphism ofz, (E, Qx, %) onto z.(X, %)
induced by the projection P. Hence a relation Tp = ( — 1)**?3P; ! holds.

T, is the transgression and 3, the Eilenberg’s suspension for z# and (»

—1) dimensional homotopy groups (cf. J.-P.Serre [2, pp.453]). For the
sake of convenience we write T, 3 instead of T, 3. respectively.

REMARK. The isomorphism T, was given by W. Hurewicz [9] for the first
time.

COROLLARY 1. If A is a subset of X containing %,, then for n > 2 we have
”’,‘(X; .A, x()) = ”n—](QX, QA, xg).
The isomorphism is indiiced by Tp (p < n).
Proor. Consider the exact homotopy sequences of pairs (X, A, x,) and

(Qx, Q4, %). Tp induces a homomorphism of the first sequence to the second.
In fact, in the diagram (n > 2)

J. 2] Z,
oo (X, %) —> (X, A, 20) —> wai(A, %) ~—> wn_r(X, %) —> .. ..
lT,, l:r,, 1T,, 1 T,
T < i,
e e—> ﬂn_l(Qx, xu)—>7rn_1(ﬂ_\r, Qx, xo) ——>7tn_2(QA, xo) —)ﬂn_z(ﬂx, xo) — e

homomorphisms of each square are commutative. Making use of Proposition
1 above and the five lemma (Eilenberg-Steenrod [7]), our result is obtained
immediately.

COROLLARY 2. For a triad (X;A, B, x,),where x,< A (| B, and for n >3,
we obtain
(XA, B, %) = 7wy 1(Qx; Q4, O, %)
The isomorphism is induced by Tp2 < p < n).
The proof is analogous to that of the Corollary 1 above.

3. A new product in homotopy groups of the H-space.
DEFINTTION 1. We call a space X with a product operation V, satisfying
following conditions, an H-space and denote it by (X, V):

2) If Qx is arcwise connected i.e. X is a simply connected space, we can take x; as
ths base point ot homotopy groups of Qx without any loss of generality. Even if X
has not this proparty, as for isomorphism 7}, it is enough to consider the arcwise
conaectel component containing z), therefore the condition is not so restrictive.
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(H.1). The mapping (x,5)->xVy is a continuous mapping of the space X
x X into X.

(H.2). There exists a fixed point 5y € X such that xVx,= x and the
continuous mappings of X into itself: x> xV %, x> % V x are homotopic
to the identical mapping of X by two fixed homotopies Hyx, t), H(x,t) which
leave the point x, invariant (cf. J.P.Serre [2, PR 474)).

REMARK. This definition is somewhat different from that of J.-P. Serre.
The latter treats the homology theory, therefore it does not need to fix
the point %, and the homotopies of (H. 2).

For example, Topological groups and lacet spaces become H-spaces.
In topological groups the operation of multiplication is regarded as V, the
unit element as % and the two homotopies of (H.2) are trivial. In lacet
spaces an ordinary product of paths [10, VIII, § 46, pp. 217-8] is considered
as V, a fixed constant path as x, and the two homotopies of (H.2) are
these induced by a homotopic transformation of parameters, which remove
the constant path at one end point [10, VIII, § 46, pp. 217-8]. These homoto-
pies in lacet spaces play a fundamental role to prove the modified form of
the Jacobi identity for the H-product (see Theorems 1,2).

Let X be an arcwise connected space and f,, g, be mappings from the
n-dimensional cube I” into the space X such that the restrictions of these

mappings on I* agree, i.e. f,.li" = gnli”. Similarly to the theory of S. Eilen-
berg [8, §1], we define a mapping d(fs, 9») of an #n-dimensional sphere S”
to X as follows: d(fu, gn)|I" is induced by fu,d(fn, gu)|I" is induced by g,,
where I I* are two copies of I* identified on the boundaries and represent
upper and lower hemispheres of S™ respectively. Hence we have I7|JI* =

S* and I*(\I" = S*-1, the latter is an(»# — 1) dimensional equatorial sphere

of S*". We take (0,....,0) € S*~! as a pole of S* and describe an element of
(X, %) determined by d(fu, gn) as d(fa, 9n)-

We define here that the two singular n-cubes (i. e. continuous mappings
of Euclidean #u-cubes) f»,/'» are the same if there exists a homeomorphism
A of the Euclidean #z-cubes preserving its orientation such that £, = f/,\.
For any singular #-cubes f5, g» and a homeomorphism A of the n-cubes such

that f,|I" = g,.)x]?”, we can define a mapping d(fz, 9.\) and an element
d(fs, 9a\) of 7a(X, %) determined by it.

Now let f be a mapping from /? into X such that/(I?) = x, and g be that

from 19 into X such that g(/%) = %, Let a be an element of z,(X, %,) deter-
mined by f and B be that of =X, %) determined by g. We define a mapping
Vg of I"x [? into X by a formula

VY 9(%,3) = L)V 9(») .
for x € I,y € 19. We deform a partial mapping /Vg|(/?xI?) to a mapping
which coincides with /(x)on 1? X 7 and with g(y) on I*xI'. This is established
as follows. The mapping f\V¢g on IPx 10is always a constant x,, therefore we
apply the homotopies (relative to x,) of condition (H.2) to both of I? x It and
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j‘” x I* independently and obtain the desired homotopy. Thus we have
extended the mapping f\Vg of I?x19x0 identified with I?x I? to that of I x
B x0U?x I x I=17. We denote it by fVg. I?*?is homeomorphic to
a (p + g)-dimensional Euclidean cube®, hence fVvg determines a singular
cube.

Let A », be a homeomorphism of I? x I' x [ onto I x I? x I defined by
Apo(%,9,8)=(y,x,t) for all x€ I*,y € I'and t € I. We consider d(fvg,
(V)N py) € pra (X, %) i. €. 2 homotopy class of A(fV g,(9VF)A »,,) by homo-
topies which map the point (0,....,0)x (0,....,0) x 1 ém = PP n e
always to %,. It is shown that the element is uniquely determined by «, B
and this operation is linear for elements of dimension > 1.

Let 7 be another mapping of a and ¢/ be that of 3. Let Fx,?) and G(»,1)
give these homotopies f >~ f/, g ~ g'relative to xy(x € ",y I"andt € I). We
define a mapping of I? x I'x 0 x IUY(I* x I)* x I x I'into X by the formulas

Kz, t)VG(y, 1), ifxxyx0xterPxIx0xl
H(F(x,1),s), ifxxyxsxtel"xiqxlxl,
H(G(y,t),s), ifxxyxsxteipxqulxl.

This gives a homotopy fVg ~/’Vg’ which maps (0,....,0) x(0,....,0) x 1
always to x. The homotopies of the mappings fVg,(gV/) A p,, defined above
agree on the boundary —}P—"" Hence we obtain the homotopy
dfVg,(9VS o) = d(/'V9, (4’ VI Wp,q)
relative to x,. This proves that d(fVvg,(gV/)As,,) is determined by a and .
Let oa,, a, be elements of 7y(X, %) such that ¢ = «; + «, and f,, f; be
mappings of 7? into X such that £,(7?) = f(I") = %. We define a mapping
11,2 by
FroX, o, X0) = i1y, .. .., Xp) ifo<x=<1/2
=f2x -1, ..... Xp) if 1/2=x=<1.
This belongs to «. Let SP*?be a (p + g)-dimensional sphere. We shrink its
equatorial sphere to a point and identify the two spheres thus obtained
with two copies [ | r+,, [I5% Y I°*9), of 1% Ii’T'", where the points
[1,0, ...., 00x(0,....,0) x 1], [0, ....,0) x (O, ...., 0) x 1], coincide with
the point shrunk. We describe the shrinking followed by d(f,Vg, (9V /1) Ap,,)
and d(f;Vy, (9V/f2)Ap,,) On the two spheres respectively, as F\ ..
Next we identify the part 1 x I#*%-! x I of [I2*9], with 0 x P*e-1x [
of [I%*%, and retract it to 1 x (I#*2-! x 0 x I***-! x 1). This is a deformation
retract. Similarly we consider this operation for P+, [Fz. A space

thus obtained is clearly homeomorphic to 73*? U I%*".
Let @ be a composite mapping of identifications and homeomorphisms

. 3) A homeomorphism is given as follows : we project the set I* x It X 0y(I? X
Ie) X I to a hyperplane 7p4q+1 = 1 from a point (%,.... ,%,2).
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stated above, from S?*? onto 777 |J I°*". We have easily

F ., >~ d(f1,:V9, (.QVfl,a)xth)e,
where this homotopy maps the point (0,....,0)x (0, ....,0) x 1 always te
%. Since the degree of g is + 1, Fy,, and d(f1,,V9, (9V/f1,2)\p,) represent the
same element of 7. X, x)). If o(a;) is an automorphism of 7.« X, %) induced
by a closed path Fy,|[7x (0, ....,0)x (0, ....,0)x 1I, = fA|lI x (0, .. .., 0), F,
determines
A(1Vg, gV ) Ap.) + 0(@:)A(f2V9, (GV/ N p,o)-

For p > 0 w is trivial.
Similarly this holds for 8. Thus the linearity is proved.

DEFINITION 2. To any elements @ € 7y(X, %), BE€ m(X, %) we associate an
element ( — 1)?d(fVg, (9Vf ) Apq) of 7mp+o(X, %) and call it an H-product of «
and B and denote it by < a, B8 >. '

We show some properties of this product in the following Propositions.

PRrROPOSITION 2. Let h be the Hurewicz natural homomorphism of m.(X, %)
imto H,(X) and * be the Pontrjagin product. We have the relation

(4) k< a,@> = (—1){hahB — ( — 1y hBrhar).

Proor. If we regard the mappings fVg, (9V/ sy A(FVY, (9VF) Ap,) @S
cubic singular cycles we have

d(fVg, (9Vf N,0) = Vg — (— 1)"gV/f.
By means of a natural deformation retract we obtain the relation fVy
~fV g (homologous) and this determines h« * k3. Thus the result is proved.

ProPOSITION 3. If a topological group G is abelian, then the H-product
in homotopy groups of G is trivial.

This is a direct consequence of the Definition 2.

4. A relation between the H-product and the Whitehead product.
In this section, we consider how to derive the Whitehead product from our
H-product. Let X be an arcwise connected space and f be a mapping of 7#+!
into X such that f(i”“) = %, and g be that of 7?*! into X such that g_(i"“ﬂ)
= %, where %, is a fixed point of X. Let a and 3 be elements of homotopy
groups determined by the mappings f and g respectively i.e, & € wp41(X, %),
B € m(X, %)

The Whitehead product [, B8] of @ and B (see [3]) is defined as an
element of 7y44+1(X, %) determined by a mapping % of (IP*! x I"“)i‘ into X
such that

h(x, ) = f(x) if xe P,y € I+,
= g(») if xe I,y € 1,

For the sake of convenience, we describe the mapping % as [/, g].
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PRrROPOSITION 4. In every H-space the Whitehead product is null.

Proor The mapping fVg gives a null homotopy of % = [f, g].

Let f/ be a transgression of the mapping f, namely a mapping of I*
into a lacet space Qxof X based on %, such that f ’(i”) = %", and similarly
¢’ be a transgression of g i.e. Tf=j’, Tg =4'. The elements of homotopy
groups determined by // and ¢’ are Ta € 7,(Qx, %) and T8 € 7 (Qx, %). We
denote them by a’ and @’ respectively.

THEOREM 1. Let «, B be as above. Then we have the formula
® Ta,Bl = <Ta,TB >.

Proor. We deform the mapping 3d(/'Vy', (9'V/ p,e) and will show that
the element of 7pwqe1 (X, %) determined by it, coincides with ( — 1)*[«, B].

‘Now, we construct a mapping [@s]. of E = P+ x I(0<s=<1) onto
itself. (It is not always necessary that the mapping is continuous). On 77+¢
x ¢, for any ¥ x ¥y € (I? x I?7)- we map the line segment with end points

1/2,....,1/2)x(1/2, ....,1/2) x 0 x ¢, x X  x 0 X ¢ onto a broken line segment
(tree) with vertices (1/2,....,1/2)x (1/2,....,1/2) x 0 x £, 2 xy x 0 X ¢, x X
y x s(1 —2t) x ¢t for 0=¢=<1/2 and onto that with vertices (1/2,....,1/2)

x(1/2,....1/2) x 0 x £, X% yx0xt,x x ¥y x s@2t—1)x 1, for 1/2<t<1

hnearly about length. On /**@x I x I, for any x € If’——I" ye 11 1/2
<t<1, in x xy x I x I we map the interval x x y x [0,2¢ — 1] x ¢ onto the
interval x x y x [s(2¢t —1), 2t — 1] x ¢ linearly, and the interval x X y x  x
[0, 1/2(1 + 7)] onto the line segment with end points x X y X ( + s(1 — 7)) x
0, x xy X7 x1/20+7)(0=< r =<1), linearly about length. For x <
I yen-— I* the mapping is defined similarly by inverting the value

t. For any x € i”, y € [* we map the interval x x y x [0,1 — 2] X  onto %
xzx[s(1—2t), 1—2]xtfor 0=<t=<1/2 and x xy X [0,2/ — 1] x ¢ onto %
Xy x [s(2t —1),2t — 1] x ¢t for 1/2=<?¢ =<1 linearly. We define a mapping
[ps]- by [@s]-(%,9,5,2) = [@s]+(%,3,5,1 — 1)

Let S¢+2+1 be a (p + q + 1)-dimensional sphere represented by two copies
E., E_of the cube E by identifying their boundaries and ¢; be a mapping of
Sv+1+1 onto itself. It is one-to-one for s-values 0 < s < 1, but is not continuous
on I* x " x I x I. However [Sd(f'Vy, (9V/") Mol @7 is defined for 0 <s
=1 and continuous and gives a homotopy of the mapping 3,d(/'vy’,(s'V/")
Ap,g)-

There exists a homeomorphism of @y(£,)onto (I? x IY) x (I x0U1x1)
U (I? x I x (the triangle with vertices (0,0),(1,0),(1,1)in I x I) as follows :
for any x €1, y € I*line segments ¢, (x x ¥ x 0 X [0,1/2]) and @y(x x ¥ x 0 x
[1/2,1]) go onto xxyxIx0 and x Xy x 1 X I obviously piecwise linearly.
For (x,) € (I? x Iy, @i(x x yxIxI) which is x X y x (the triangle with
vertices(1,0),(0,1/2),(1,1)in I x I)goes onto x X y X (the triangle with vertices
(0,0, (1,0), (1,1)) by an affine transformation which maps the vertices (1,0), (0,1/2),

4) x, means also the constant path I -» x &€ X.
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(1,1) to (0,0),(1,0),(1,1) in I x I respectively. Under this homeomorphism

line segments <p1<x Xy XS X [O, %D, g)l(x Xy XS X [1 '; s,l]) for any x

cr— }P, yE I' go onto the broken line segment with vertices ¥ x ¥ x 0 X

0, xxyx1xs, xxyx1x1and ¢ (xxyxsx[O,L;—sD,zpl(xxyxsx

[1-— s, ID for any x € I"’,yé 11— It go onto that with vertices x xy x 0 x

L 2
0, x xy x (1 —s)x0,2x yx1xland @i(xx yxsx([o, I_Z'SJU[l -;s’ l—é—s]u

[1 '; 3,1]» for any x € I?, ¥ € I go onto that with vertices x x y x 0 x 0,

X yx (1 —s)x0,xxyx1xs,xxyx1x1, piecewise linearly.Similarly
@(E_) is homeomorphic to I?x1? x (0 x IU I x 1) U (Z? x Iy X (the triangle
with vertices (0,0),(0,1),(1,1) in I x I). These induce a homeomorphism
¢’ of @i(Sr+e+t) onto (I? x I' x I x I). Let ¢ be a mapping ¢’ followed by
the transformation n: (I*xI*x I X I)>» (I? x I x 17 x 1) defined by #(x,y,s,
t) = (x,s,9,t). This is a homeomorphism with the degree ( — 1)>. From the

construction the relation
[2d(f'v9", (9" V) M)l @t = [f, 91
is obtained. Therefore for any a’ € 7, (Qx, %), B € 7w Qx, %,) We have
s<a,pB > =[3,308]
and this means that for any @ € 7p+(X, %), B € (X, %)
Tla,Bl= < Ta, TR > .

5. The Jacobi identities in homotopy groups. Let X be an
arcwise connected H-space and x,, H;, H, b= those of Definition 1.

We suppose that mappings f: "> X, g: 1> Y, h: I" > X, f(i") = g(j)
= h(f') = x, represent & € 7wy X, %), B <€ z(X, %), v € n{X, %) respecti-
vely. Let I?be I? x 0 U I? x I, where I, is [0,1] with the index p. Briefly we
set I x0=I°,1I? x I, = O, hence I* = I? | O°. First we construct two
mappings Fy,n, Fo,0n0f a(p + g + 7)-dimensional cube Eyp = 17 X I8 X I*
into X as follows. Let x be an arbitrary element of /7. We have x = x for
€I x 0 and x= x X t(x €I, 1, € I) for x € O and similarly for y € I,
z€ I'. We define

(6) Fr0.0(%, 9, 2) Fi0) 1%, 9, 2)
F@)V (9(¥) V h(2)) XV gV hz) onl’xIxI,
S(x) vV H(h(z),t,) H(f(x),,) V h(z) on I’ x O'x I,
F(x) vV H(g(9), tr) H(f(x) V 9(9), ) on I’ x I' x O,
= | HA9(») V h(z2), tp) = JH{9(9),20) V h(2) on O? x I' x I,
H{HA(h(2),t,), tp) on 0?x O'x I
H{(H(9(y), t+), tp) H(HAg(), t5), ty) on 0? x I' X O,

H(H(f(x), t.),1,) on I*x 0'x O,
X X on O’ x 0 x O,
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on I* x O' x O, Fy,,ny maps all points of the triangle with vertices x x y x
0xzx0, xxyx1xzx0,2xyx0xzxl(xel,yecl,zel)to XV
% and all points of a line segment connecting x X y X 1 X 2 X ¢ XXy X ¢
xz x1 to H(f(%),t). On 0? xO'x I' we define Fy, ), by a method analogous as
above. Thsse two mappings agree on the boundary Ej  of E, ... Moreover
we define such a pair of mappings for every order of suffixes f,g, /.

LEmMA 1. If X is a lacet space, x, is a constant path and H, H, are
homotopies induced by a homotopic transformation of parameters which remove
the constant patk % at one end (see section 3), then Fyq,uy, Fir,9),n are homotopic
leaving the mappings on the boundary Ep_q,r fixed. This holds good for any
order of 1,9, h.

Proor. For any points of E, ., paths of its images by the two mappings
change each other by means of a homotopic transformation of parameters
and we can define this transformation continuously on the whole Eg p,y.

Let C4" be a (q + r)-dimensional cube and pp be a mapping of it onto

I%7 |y I, which maps €% to (0, ...,0)x (0, ...,0) x1 and is a homeo-

morphism on C}*" — C}"". We set

D ¢, wns>> = dlfV(d(gVh, (RVgq.r)po, {d(gVE, (BV9M1,0)Pe)VS p 047
and denote its inverse image sphere by S?+%*", Similarly we can define

D, <1755, Dn, <05 >- -
We construct a mapping 4, of [[* x I'J,U [I' x I']- onto I3* Uy I%*"

©,....,0)x (0, ....,0) x 1 x Zint he following way. First we define a mapping
[ig,rJ+from [7% x I] onto I U (0, ----,0) x (0, -...,0) x 1 x Iby
y Xz ify=yel, z=2¢€I.

larde(xxy)={yxzxt, ify=yxt, €0, z=z€10I,
yxzxt ify=yxI, z=2z2xt €0,

In O x O, for any y € f", z€ ' and 0 =t =<2 we identify the line segment
{yxt; xzxt |t,+t =1t} to a point represented by y x £ x z x 0 for 0 <
t<landbyyxlxzx(@—1)for1<t=<2 Let U be a neighborhood of
©,....,0)x (0, ..... 0) on I x I, consisting of all points whose distances
from (0, ....,0) X (0, ....,0) are less than 1/2. For any (y,2) ¢ U we identify
yx1xzxItoyx1lxzx0. InU for any (y,2) € f]letlwbealinesegment
with end points y x 1 xz2x 1, (0,....,0) x1x(0,....,0) x 1 and ll’,'zbe that

connecting y x1xz2x0,(0, ....,00x1x(@, ....,00) x 0. We consider a
homeomorphism of Z, ; onto Z, , U (0, ....,0) x 1 x (0, ....,0) x I such that the
part of 7, , from (0, ....,0,) x 1 x (0, ....0) x 1 to its center goes onto (0, ..

+,0)x1x(0,....,0) x 7 and the other part onto I, linearly. We identify
every line segment connecting the two points corresponding under the above
homeomorphism to its end point belonging to 7, , U (0,....,0) x1x (O, ....,
0)x I Wemap(©0,....,00) x1x(0,....,0) x I onto (0, ....,0) x (0, ....,0) x
1 x I in the obvious way. Thus [¢,,]. is defined on the whole [/? x I']..
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Similarly [i,y]- is defined.
Let C%*" be a (g + 7)-dimensional cube and pr be a homeomorphism of

it onto a (g + 7)-dimensional cell Z;. [7:7 1%+7]. Let i, be a mapping of
C#7" onto Cj*"such that 4,, pr= ppi¢,. This is uniquely determined in C§*”

—-(j}:’ and is extended naturally to a mapping of C¢*". We construct a
mapping pr of C&*" onto [7Z x I'l, U[IY x I"]_by pr(u x 0) = pr(x) on Ci+" x
0 (# € C%*") and defining pAx X ¢) on Cf"F” x I 'as a point dividing the line
segment with end points, pH%)(u € Cg,”) and (0,....,0) x1x(0,....,0)x1
in the ratio £: 1 —¢. A mapping pp of C47 onto [I%" U I*"] U (0, ....,0) X
©,....,0) x 1 x I is defined by

po(v x 0) = pp(v) on C&*" x O(v € CL*"),

pov X ) = pp(v) X t on C§" x Iv € C4*7).

Let 57, be a mapping of C4*" onto Cj*" defined by

7 (u % 0) = i (a) on Ci*" x 0,
T (uxt)=i @)xt on Cy x I
Easily we have
iq,y- [_)AF = —{;D iE:'r'

There exist two mappings Fy, F; of I' x C¢*” induced by Fy,ny, Fron0
and Fi 1,15, Fng)n TEspectively. We set Foy, s> = d(Fy, Fy) and describe its
inverse image sphere by Sire+". Similarly F, <>~ and Fa, <r,05> can be
defined.

We construct a mapping 7 of Si+*?*" onto S§*?*" as follows:

(% x u)= % x 1% (u) if x=zxc I’ ycCy,
=xx4,u)xtif x=xxt€ 0% ucCy x0,
=xx i (u) xt ifx=xxt, € 0%u=ux tc_e‘C‘g.*’ x I
such that ¢, = ¢ and ¢ € [0,¢] or ¢ € [0, 1], 2. = L.

i induces mappings of [7? X ($"]. onto [7? x C} "], and of [/? x C4*']_onto
[I? x Cy’]- i.e. mapping of SE*e+" onto SEFe+”.

LEMMA 2. We have the following relation.
(7 D, cons>i = Fczconss,
where this homotopy maps the point (0, ....,0) x1x (0,....,0) x 1 x(0,....,0)
x 1 € S+ always to x,.

Proor. The mapping i is an identification imapping 7, of the four parts
of S4*7+" induced by that of E,,,, above, followed by an orientation prese-

rving homeomorphism of 7,(S)*¢*") onto Si*¢*". Changing the values on each
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line segment of S2*%+" which is identified to a point by 7,, for the value.of
its end point continuously in regard to a parameter+ (0 <1 <1), D<rsens> 1
Fs, «on> > aFe homotopic reélative to the point x, where the base point of
Spra+r is (0, +.-.,0) x 1% (0,....,0)x1x(0,.,..,0) x 1.

ReMARk. In lacet ‘spdces, this lemma' is proved directly, using the
homotopic transformation$ of* parameters of paths (see the proof of Lemma
1).

Since 7 is a mapping between the (p + g 4 r)-dimensional spheres with
the degree 1,D<s o1~ >, F<z, <on>>represent the same element of 7zp.q.n(X, %).

For the mappings of F’s the following result is obtained -

LEMMA 3. Let dF be an element of a homotopy group represented by a
mapping F of a sphere. We have the relation
(8) AFg wnss + (= 1PUIA Fog angss + (—17P+0d Fap, <505 = 0.

Proor. Let A%%" , be a homeomorphism of Ey,qronto Ep, ¢, ({p,q,7} =

P07
{#",¢",7"}) defined by the permutation ( 24", 7" of (p,q,7)and X5.%" .+ be

a homeomorphism of S%***"induced by Az,%; .. Let I'y be a space consis~
ting of three (p + ¢ + 7)-dimensional spheres which are copies of Sj*%*"
and have a base point (0, .. .., 0)x1x(,....,0) x1x(0,....,0)x1 in common.

Let G be a proper identification of a (p + g + 7)-dimensional sphere S*+%*"

to I', followed by F<r<o,ns >, Feo, cnyo> M and Fen, <05> Aoy on each Spra*”

respectively. Si+e*" consists of four inverse images of Ep ., under 1 X pr

(1 = identity mapping of 7). We identify each inverse images in T'; to copies
of Epqr. Let T, be a space constructed by this operation from T',. Then
F, <o,n> 5 is this identification followed by the mappings Fy 3% E},(,L,g)).”;‘;,,’,.

E,,,(f_g,M,’;g;g andFy, .1 Apse from four copies of E, . » respectively. Similarly

such decompositions hold for Fej, <z >A005 and Fq,, <1,05>A0my.. Moreover, six

pairs of mappings from copies of E,,» on I, i.e. Frqu and Fggm, Fyon

Apht and Fga,sA2y, etc. agree on the boundary E,» «.» respectively. Let I'; be
a space obtained by identifying the boundaries of each two copies of E, .,
on I', paired as above. The space consists of six spheres identified properly
on their equatorial spheres. Hence G is a composition of ‘the identification
Sr+a+r onto 1"y and the six mappings d(Fy.m, Faom), @ FpapAlds, Fou ,
AR, etc. of six spheres on I respectively. The latter is homotopic to
the constant mapping %, by Lemma 1 and the/homotopy extension property
of a finite polyhedron [11, pp. 501].

THEOREM 2. Let X be an arcwise connected space and Qx be ils lacet space
based on a fixed point x, € X. For any three elements o € wy(Qx, %), B € m,
(Qx, %), v € 7{Qx, %;) we have the Jacobi identity in H-products :

) (=DrrLa, <B,y>>+(—1)vbrL g3 <y, a>>
-y, <a,B>> =0

Proor. From (7),(8) and Definition 2 the relation follows easily, using
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the bilinearity of H-product for elements of dimension = 2.

COROLLARY 2.1. The Jacobi identity in Whitehead produdts for elements of
dimension > 1 holds i. e. for any set of elements a' € 7w (X, %), B € e X,
%) and o € weoi(X, xy), where p,q,r >0, we have the relation

(10) (= I)e+orfa, [B, o' ]] + (— 1)@ D[S [, a']]
+ (= Do/, [af, B]] = 0.

This is the Samelson’s conjecture.

Proor. From Theorem 2, this is immediately shown using Theorem 1.

When we take a topological space as an H-space (See section 3, example),
the result of Theorem 2 is also obtained. The procedure of the proof of
this fact is analogous to that of Theorem 2 and more easy.

The proof of theorem 2 can be applied for the H-space in which the
result of Lemma 2 is satisfied. Therefore the theorem is stated in the
following general form.

TueoreM 3. Let X be an arcwise connected H-space and %y, H,, H, be those
of Definition 1. If for any mappings f: I* > X, g: I'> X,h: "> X such that

FIr) = g(i )= h('l’) = % we have the homotopy Fyu == Fio,n leaving the

mappings on E"p,.,,, fixed and similar relations for all permutations of suffixes
1,4, h, then the Jacobi identity in H-products (9) holds.
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