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1. DerFiNITION A. Let AM(w) be continuous, differentiable and monotone
increasing in (A, o), where A is some positive number, and let A(w)->o as
@ > . Suppose Su, is a given infinite series and let

c(@) = 2 {M®) -~ A1)} n.

nNEw

The series Su, is said to be summable [R,A(n), 1] if

[ le[53]l <=

i.e. if
T N@)
- A)tn | dow < oo,
Mw)}? é
DErFINITION B. Suppose {#,} is a given sequence and let r, = (i; + %t._, +

+ %—t,.)/log n. If 7, >t as n-> oo, then the sequence {#,} is said to be
summable (R, log n, 1) to ¢. If the sequence {r,} is of bounded variation,

i.e.,if 2 |Ts — Ta+1] < oo, the sequence is said to be summable |R, log »,1].

2. Let @(¢) be an even function integrable in the sense .of Lebesgue in
(0, ) and defined outside ( — =, z) by periodicity. We assume that the con-
stant term in the Fourier series of ¢() is zero and that the special point
to be considered is the origin. In these circumstances

2.1) @(t)~ >, an cos nt,
where . !
2 .
= — 14
@.2) an= 2| (0 cos nt a,

0

and we are to consider the series 2 a,. It is well-known thatithese formal
1

simplifications do not limpair the generality of the problem. We write s,
n

for Ea,‘ and use the following notations.
1
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2.3) D) = P(a) f (t — uy~‘pu)du (t >0)and O < a < 1),
2.4) Do(2) = o(t),
(2.5) @u(t) = D(a + 1)t-2D,(2) O=ax<l),
(2.6) p@) =S etosn (log n)-1 a, (A >0),
"Sw

2.7) E(w, 1) = 2 e<i°g")A(Iog 7)1 cos nt,
(2.8) nw,t) = 2 e(logn)A(log n)-n-1sid nt,

n=w
(2.9) g(®, u) = I‘(1 %) f (t —u)-*E(w, t) at O=u=mn),
(2.10) Glw, u) = ‘l_f % da g(w, v) dv O=uxs7)..

’ INa +1) J dv 7"’ =T

3. The following result is well-known: -

(a) If @(t) = o(1), then s, = o(logn).
The statement (a) is equivalent to

(b) If @) = o(1), then the sequence {na,} is summable (R, logn,1) to 0.
It is reasonable to expect that the analoge of (b) for absolute summability
would be

(c) If @(¢) is of bounded variation, the sequence {na,} is summable
|R, log n, 1].
We shall however show that the statement (c) is false. We first prove the
following

LEMMA. If the series Su, is summable |R, logn, 1|, the mnecessary and
sufficient condition that it is absolutely conver gent is that the sequence {(n logn)u,)
is summable |R, logn,1|.

PrROOF OF LEMMA. We have on writing o = >, uzlogk, the identity
1

1
log(1 + 4
1 on_ _ Tn+1 = on n _ >
3.1) logn logn+1) ¢ log n log(n + 1) Unsy, for n=2.

.Hence we have the following inequalities

oo

(3 2) 2 On — On+1 1) ‘ la',.l + 2 |un+ll

logn log(n + n 7 (log n)?

and
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(3.3) i | < AS oal_ L h|an __own |
; [thnes | ?n(log ny Z logn  log(n + 1)
Since the series 3, is summable |R, log #n,1|, we have, by Definition A,
T
3.4) J ologay gw logn #, |dw < <o,
from which it follows that
3.5 > _loal
@9 gn(logn)" <
The proof of the Lemma then follows from Definition B and (3.2), (3.3) and
(3.5).

In order to prove that the statement (c) is false we observe that the

series Za,,/logn is summable |R, logn, 1| if

T sl
(3.6) f llog ey 40 <

The above condition is obviously satisfied when @(¢) is of bounded vari-

ation in (0, 7) and indeed when a continuity condition of the type @(2) =
O{(log%Y"} (0 < < 1) is satisfied; since with the latter condition we can

assert that s, = 0{(logn)1"'}1) . But bounded variation of ¢(¢) in (0, =) is not

o

sufficient to ensure absolute convergence of the series >, a,/log n. [3] Hence

2
writing as/log n for u, in the Lemma proved above, we can easily see that
bounded variation of ¢(#) alone is not sufficient ensure summability
|R, logn,1| of the sequence {na,}.

4. We now proceed to establish some tests for the absolute convergence

oo

of the series 211,./ logn. In the first instance we prove the
2

. THEOREM. If @alt) is of bounded variation in (0, z), then the series
Ea,./logn is summable |R, eliogm? 1|, where

0O<a<l and A=1+ —.

We first establish the following inequalities :

1) This can be proved with a slight modification of the proof of the theorem
“s,=o(logn), when ?(¢)=0(1)" as given in Titchmarsh [4].
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(4.1) E(,2) = 0{e%= w(log )2}

4.2) E(w,t) = Of{etos»*t-Y(log w)~'}

“4.3) 7w, 1) = O{ets*(log w)~2}

4. 4) nw,t) = O{ets*tYw log w)-1}

(4.5) 9(,u) = O{e®=) rw*(log )~}

(4.6) g(w, u) = O{e(l"“")Aw‘”"u"(logﬁ’)“}
“.7 G(w, u) = O{eMe *wru*(log w)~2}

4.8) G(w, u) = O{etos p=1+% y=1+*(log w)~'}

The inequalities (4.1) and (4.3) can be proved exactly in the same manner
as in [3]. The inequalities (4.2) and (4.4) can be proved by using Abel’s
Lemma.

PROOF OF (4.5) AND (4.6). For # + w~!< z¥), we write

utw”t

Il — a)y(w, %) == f + f =hL+1

u U=l

st~ L
[L| < Aetos "’)Af (2 — #)~* min [w(log w)~2, #-1(log w)~'] dt

w
u+@=1

< Aeos»® min [w (log )2, u~l(log )] (t — w)-*dt
U

= O{e%s*»-1+%} min [w(log ®)2, #~}(log )]

1o [
12:(?) f-g(m, t)dt (u+w1<p< )
o)
= o[y)(o, )]}, -1
= O{els “%w1+%} min [o(log @)%, %~ (log w)~!]

ProoOF OF (4.7). We have

@ + 1)G(w, u) = f v divg(w, o) dv

v
)

u"g(w,u) — f v*~! g(w,v) dv

1

0
= O{eMe*’*4,%y%(log w)-2}, by (4.6).

‘PROOF OF. (4. 8). It is-easy to.:see,that
(4.9) 9(@, m) = O{ets 0= i+*(log w)~1}.
Further

INa + 1)G(w, ») = [""’ g(w,v)r - af v*~1 g(w, v) dv.
0

0
But

2) For u+w-1=7, the integral need not be split up and the arguments for I, will
hold for the integral.
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ra - a)f v*"lg(w, v)dv = /. v*-! ([ t—v)*Ew, t)dt) dv
. .
f E(w, ) f el () dv) dt
f E(w,?) f x%-1(1 — x)~® dx) dt
0 u‘

Hence

(4.10) G, 7) = O{eWe»*w-1+%(log w)-'}, by (4.9).
To prove (4.8), we have

@ + 1) {G(«o, ) — Go, u)} = [vwg(w, v)]: —a f " g @, v

=0 {e(log “)Am-““(log w)‘l} + 0 {e(log “)Am-l"“u‘”“‘(log w)-1 }

—_ af w10 { elogw)® gy~ 1+ay~1 (log w)-! }dv.
uw
Since «a < 1, using (4.10)

G(w, u) = O{e<‘°g"’)Aw-1+“u:“"(log w)“l}.

ProorF oF THEOREM. To prove the theorem, we have to show that when
1
=1 o
A + p

- [ s ttogap-iecmas
2

H(w) ldw< 00,
We have 2 x
Q= — f @(t)cos nt dt
T
_ 2 . .
P P(l _ ) f Cos ntf (t u) Gd¢¢(u)
_ 2.1 .
I VG -a)f dq’ﬂ(“)f (t — u)-*cosnt dt, [1]
Hence |
: = 1 —_ - ogn)2 -
-2*71'?((0) - F(l —-a)(_)f d@a(u)f (t u) Ewe(l gn) (log”) ICOS nt dt

~ 1 T £ 4 . »
af v xaym Of dDu(u) ! t — u)-*E(w, t) dt
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7T

= f (@, u) ADy(n)

= [g(w u)<I>m(u) j CIJa(u)—g(w u) du.

Further since @o( + 0) is finite

7T

L f Pa(1t) u“jf; g(w,u) du

T
d
-0/ Do(n) an g(w, u)du = m
0

= P(a1+ 5 [qia(u) G[“vud—‘ig(w, v) a'v]0 m [ dqm(ll)}f - %g(m v) dv

= @i T)G(w, ) — f G(w, %) dpo(u).
0
So we have finally

1 - ® .
570®) = 00, 00uw) "~ galm)Glw, 7) + f G(w, ) dgpu(t)

= O{eﬂ"g "')Aw—“"‘(log m)'l} -+ f G(w, %) dpa(u), by (4.9) and (4.10).
Hence ’

I<Af (logm)A (log )*2 2_/‘ A (log wys-1 g-tos)

The mtegral

‘} G(w, u)d pu(u) | d

" (log @)~

17 Rl

dw < oo,
2
and the integral

f A (log w)A-1 gttosw)®
@

2

f G(o, %) d pu(u)|do
0

gf |d po (u)lf Aw~(log (ay)A“(z"<“’5"')A |G(w, u)| dw
0

Since @q(t) is of bounded variation in (0, z), to prove the theorem it will
be sufficient to show that

J= f Aw-1(log w)s-1e=00t »° | G(w, u)|dw < co.
Writing

T ©o 1
J=f +f =i+ ], where = %(log%)“. (k > em),
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we have

Ji= f Aw~Y(log w)A~1e-(os "”AO{""“g w Wiy (log w)"’} dw,by (4.7)
2

- O{u‘” f ‘;’Og‘w dw} = 0Q),
2

and

.= | Aw-1(log w)-1e-0oe® Ol uosw e -1+ay=-1+9(log w)-! Ldw, by (4.8)
( ( )

o s
— O{u—Hm Mdm} = 0(]_)’ ifA=1+ % .

wi-%

Hence the theorem is proved.
5. The following theorems have been proved elsewhere [2], [3].

THEOREM A. If (i) the sequence {ﬁéz}:ﬁ} 1s of bounded variation,

(ii) the sequence {)\(2(_7_)1)} is of bounded variation and (iii) the series Su, is

summable |R, \(n), 1|, then the series is absolutely convergent.

THEOREM B. If ¢(t) is of bounded variation in (0, ) then the series San/logn
is summable |R,e*”,1|, where 0 < a < 1.

Combining theorems A and B on the one hand and Theorem A and the
Theorem proved above on the other, we have the following criteria for the
absolute convergence of the series Sa,/log #.

(I) If @(#) is of bounded variation in (0, ) and the seqnence {n’(log #)~!a,}
is of bounded variation for & >0 then the series 3a,/logzn is absolutely
convergent.

(II) If @a(t) is of bounded variation in (0,7) for 0 < @ <1 and the

n
sequence { ——l'an} is of bounded variation, then the series Ja,/log »
(logn)'* &
is absolutely convergent.

We have already remarked that if @(¢) = 0{<Iog%~)_ﬂ} (0< < 1), then

the series 3a,/logn is summable |R;log»,1|. Combining:this with Theorem
A, we have

WD) If ot) = 0{(logtl) "} (0 < < 1) and the sequence {na,} is of bo-
unded variation, then the series 3a,/log z is absolutely convergent.

Reverting to the original problem ot summability |R, logn, 1| of
the sequence {na,}, we have the following results, which by virtue of the
Lemma of this paper, which by victure of the lemma of this paper are
practically restatements of (I)-(III) above.
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(d) If @{¢)is of bounded variation in (0, z) and the sequence {#%log »)~'a.}
is of bounded variation for § >0, then the sequence {7az,} is summable
|R,log n,1] :

(e) If @a(?)is of bounded variation in (0, ) for 0 < @ < 1 and the sequence

na
{‘(IW} is of bounded variation, then the sequence {na,} is summable
o

|R, log n, 1]; and

&) If o) = O{(log}l—yn} (0 < 5 < 1) and the sequence {n42,} is of bounded
variation, then the sequence is summable |R, log », 1].
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